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Are 2D fingerprints still valuable for drug
discovery?†

Kaifu Gao,a Duc Duy Nguyen,a Vishnu Sresht,b Alan M. Mathiowetz,b Meihua Tub

and Guo-Wei Wei *acd

Recently, molecular fingerprints extracted from three-dimensional (3D) structures using advanced

mathematics, such as algebraic topology, differential geometry, and graph theory have been paired with

efficient machine learning, especially deep learning algorithms to outperform other methods in drug

discovery applications and competitions. This raises the question of whether classical 2D fingerprints are

still valuable in computer-aided drug discovery. This work considers 23 datasets associated with four

typical problems, namely protein–ligand binding, toxicity, solubility and partition coefficient to assess the

performance of eight 2D fingerprints. Advanced machine learning algorithms including random forest,

gradient boosted decision tree, single-task deep neural network and multitask deep neural network are

employed to construct efficient 2D-fingerprint based models. Additionally, appropriate consensus

models are built to further enhance the performance of 2D-fingerprint-based methods. It is demon-

strated that 2D-fingerprint-based models perform as well as the state-of-the-art 3D structure-based

models for the predictions of toxicity, solubility, partition coefficient and protein–ligand binding affinity

based on only ligand information. However, 3D structure-based models outperform 2D fingerprint-based

methods in complex-based protein–ligand binding affinity predictions.

I. Introduction

Drug discovery is a multi-parameter optimization process,
which involves a long list of chemical, biological, and physio-
logical properties.1 For a drug candidate, numerous drug-
related properties must be assessed, including binding affinity,
toxicity, octanol–water partition coefficient (log P), aqueous
solubility (log S), etc. Binding affinity assesses the strength of
a drug’s binding to its target,2,3 while, toxicity is a measure of
the degree to which a chemical compound can damage an
organism adversely.4 In addition, a partition coefficient is
defined as the ratio of concentrations of a solute in a mixture
of two immiscible solvents at equilibrium and, in the case of
log P, represents the drug-relatedness of a compound as well
as its hydrophobic effect on human bodies.5 Another relevant
drug attribute is aqueous solubility which plays a vital role in
distribution, absorption, and biological activity, among other
processes because 65–90% of body mass is water.6,7 Their

importance to drug design and discovery has been emphasized
by many recent surveys.8,9 Indeed, unsatisfactory toxicity or
pharmacokinetic properties are responsible for approximately
half of drug candidate failures to reach the market.10

Traditional experiments for measuring drug properties are
conducted either in vivo or in vitro. Such experiments are quite
time consuming and expensive. Additionally, testing with ani-
mals can raise important ethical concerns. Therefore, various
computer-aided or in silico methods become more attractive
since they can produce quick results without sacrificing much
accuracy in many situations. Among them, one of the most popular
approaches is the quantitative structure–activity/property relation-
ship (QSAR/QSPR) analysis. It assumes that similar molecules have
similar bioactivities or physicochemical properties.11 Based on this
assumption, activities and properties of new molecules can be
predicted by studying the correlation between chemical or
structural features of molecules and their activities or properties,
reducing the need for time-consuming experiments.

Molecular fingerprints are one way of encoding the structural
features of a molecule. They play a fundamental role in QSAR/
QSPR analysis, virtual screening, similarity-based compound
search, target molecule ranking, drug ADMET prediction, and
other drug discovery processes. Molecular fingerprints are property
profiles of a molecule, usually in the form of vectors with each vector
element indicating the existence, the degree or the frequency of one
particular structure feature.12–14 Various fingerprints have been
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developed for molecular feature encoding in the past few
decades.15–17 Most fingerprints are 2D fingerprints which can
be extracted from molecular connection tables without 3D
structure information. However, high dimensional fingerprints
have also been developed to utilize 3D molecular structure and
other information.18

There are four main categories of 2D fingerprints, namely
substructure key-based fingerprints, topological or path-based
fingerprints, circular fingerprints, and pharmacophore finger-
prints. Substructure key-based fingerprints are bit strings
representing the presence of certain substructures or fragments
from a given list of structural keys in the compound. Molecular
access system (MACCS)19 is one of the most popular substructure
key-based fingerprint methods. Topological or path-based finger-
prints are based on analyzing all the fragments of a molecule
following a (usually linear) path up to a certain number of
bonds, and then hashing every one of these paths to create one
fingerprint. The most prominent ones in this category are
FP2,20 Daylight21 and electro-topological state (Estate)22 finger-
prints. Circular fingerprints are also hashed topological finger-
prints but rather than looking for paths in a molecule, they
record the environment of each atom up to a pre-determined radius.
A well-known example for this class is extended-connectivity finger-
print (ECFP).15 Pharmacophore fingerprints include the relevant
features and interactions needed for a molecule to be active against
a given target, including 2D-pharmacophore,23 3D-pharmaco-
phore24 and extended reduced graph (ERG)25 fingerprints as
examples. Since 2D fingerprints only rely on the 2D structures,
their generation is easy, fast and convenient.

In addition to the four categories mentioned above, recent
improvements in deep learning have enabled the creation of
neural fingerprints26,27 – where the mapping between finger-
prints and 2D structures is learned simultaneously with the
parameters of the regression/classification model that maps
fingerprints to targets. These ‘learned’ fingerprints can poten-
tially improve predictive performance on QSAR/QSPR tasks, but
they must be relearned when trying to predict new properties
across significantly different regions of chemical space. Since
the focus of this work is on comparing 2D and 3D descriptors
across a number of disparate tasks and chemically diverse
datasets, we have chosen not to consider neural fingerprints.

Most commonly used 2D molecular fingerprints were derived
over a decade ago and their validation was carried out using
classical regression or classification algorithms, such as linear
regression, logistic regression, logistic classification, naive Bayes,
k-nearest neighbors, support vector machine, etc. On the other
hand, new 3D structure-based fingerprints built from algebraic
topology,28,29 differential geometry,30 geometric graph theory,31,32

and algebraic graph theory33 have been developed in recent years.
In particular, these new fingerprints were mostly paired with
advanced machine learning algorithms, such as random forest
(RF),34 gradient boosting decision tree (GBDT),35 single-task deep
neural networks (ST-DNNs),36 multi-task deep neural networks
(MT-DNNs),37 convolutional neural network (CNN), recurrent
neural network (RNN), etc., which are now easily accessible
to the scientific community via user-friendly deep learning

frameworks in popular programming languages.38,39 Often,
these new methods have demonstrated higher accuracy or
better performance than earlier methods in the literature,
which are typically based on 2D fingerprints and/or simple
machine learning algorithms for drug discovery related appli-
cations, such as protein–ligand binding,28 virtual screening,29

toxicity,4 solubility,5 partition coefficient,5 as well as protein
folding stability change upon mutation.40 Additionally, recent
results from D3R Grand Challenges, a community-wide annual
competition series in computer-aided drug design, indicate that
structure-based methods using sophisticated 3D structure-based
fingerprints have an advantage over ligand-based methods using
2D fingerprints in scoring and free energy predictions.33,41 These
developments raise an interesting question of whether 2D finger-
prints are still valuable for drug design and discovery. Therefore,
there is pressing need to reassess 2D fingerprints with advanced
machine learning algorithms and compare their performance
with the state-of-the-art 3D structure-based fingerprints for drug
discovery related applications.

The objective of the present work is to reassess the predictive
power of eight popular 2D fingerprints for four important drug-
related problems, namely, toxicity, binding affinity, log P, and
log S, involving a total of 23 datasets. These problems are selected
for the availability of reference results generated by the state-of-
the-art 3D structure-based fingerprints in the literature. To optimize
2D fingerprints’ performance, advanced machine learning
algorithms, including RF, GBDT, ST-DNN, and MT-DNN, are
employed in the present study. Additionally, consensus models
are constructed from appropriate combinations of 2D fingerprint-
based predictions to further enhance their performance. The
predictive power of each 2D fingerprint for certain functional
groups is analyzed. Extensive numerical studies over 23 datasets
using eight 2D fingerprints and four different machine learning
algorithms indicate that the combination of appropriate machine
learning algorithms and 2D fingerprint-based models, particularly
consensus models, can bring significant improvements over pre-
vious 2D QSPR approaches especially on toxicity predictions.42

Moreover, 2D fingerprint-based models perform as well as the
state-of-the-art 3D structure-based fingerprints in the predictions
of toxicity, log S, log P and ligand-based protein–ligand binding
affinity. Finally, topology-based fingerprints extracted from 3D
protein–ligand complexes have a significant advantage over 2D
fingerprints in complex-based protein–ligand binding affinity pre-
dictions. This is because 2D models can only take care of relatively
simple geometry, so do not work well for macromolecules that have
complex 3D structures.43 We believe that the present performance
analysis and assessment will provide a useful guideline on how to
choose appropriate fingerprints and machine learning methods for
drug discovery related applications.

II Methods
II.A 2D fingerprints

In the present work, we investigate eight popular 2D finger-
prints, including FP2 fingerprint, MACCS fingerprint, Daylight
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fingerprint, Estate1 fingerprint, Estate2 fingerprint, ECFP4
Fingerprint, 2D-pharmacophore (Pharm2D), and extended reduced
graph fingerprint (ERG). They are chosen to represent four main 2D
molecular fingerprint categories, namely key-based fingerprints,
topological or path-based fingerprints, circular fingerprints,
pharmacophore fingerprints. These features are some of the most
popular and commonly used ones. Table 1 summarizes the
information related to these fingerprints. All 2D fingerprints
were generated by Openbabel (version 2.4.1)20 and RDKit (version
2018.09.3).44

II.B Ensemble methods

Two popular ensemble methods were used in our work. The first
method is random forest (RF), which constructs a multitude of
decision trees during a training process. RF can be used to predict
a classification label (classification model) or a mean prediction
(regression model) of the individual trees. The second method
is gradient boosting decision tree (GBDT). In this approach,
individual decision trees are combined in a stage-wise fashion
to achieve the capability of learning complex features. It uses
both gradient and boosting strategies to reduce model errors.
Compared to deep neural network (DNN) approaches, these
two ensemble methods are robust against overfitting, rela-
tively insensitive to hyper parameters, and easy to implement,
moreover, they are much faster to train than DNN. In fact, for
small datasets, RF and GBDT can perform even better than
DNN or other deep learning algorithms.4,5 Therefore, these
methods have been applied to a variety of QSAR prediction
problems, such as toxicity, solvation, and binding affinity
predictions.4,28,42,46,47

II.C Single-task deep neural network (ST-DNN)

A DNN mimics the learning process of a biological brain by
constructing a wide and deep architecture of numerous connected
neuron units. A typical deep neural network often includes
multiple hidden layers. In each layer, there are hundreds or even
thousands of neurons. During learning stages, weights on each
layer are updated by backpropagation. With a complex and deep

network, DNN is capable of constructing hierarchical features and
model complex nonlinear relationships.

ST-DNN is a regular deep learning algorithm. It only takes
care of one single prediction task, therefore, it only learns from
one specific training dataset. A typical four-layer ST-DNN is
showed in Fig. 1, where Ni (i = 1, . . ., 4), represents the number
of neurons in the ith hidden layer.

II.D Multitask deep neural network (MT-DNN)

The multitask (MT) learning technique has achieved much suc-
cess in qualitative Merck and Tox21 prediction challenges.48–51

In the MT framework, multiple tasks share the same hidden
layers. However, the output layer is attached to different tasks.
This framework enables the neural network to learn all the data
simultaneously for different tasks. Thus, the commonalities and
differences among various datasets can be exploited. It has been
showed that MT learning typically can improve the prediction
accuracy of relatively small datasets if it combines with relatively
larger datasets in its training.

Fig. 2 is an illustration of a typical four-layer MT-DNN for
training four different tasks simultaneously. Suppose there are
totally T tasks and the training data for the tth task are

Xt
i ; y

t
i

� �Nt

i¼1, where t = 1,. . .,T, i = 1,. . .,Nt, Nt is the number of

samples in the tth task, and Xt
i is the feature vector for the ith

sample in the tth task, yt
i is the label value of the ith sample in

the tth task, respectively. The purpose of MT learning is to
simultaneously minimize the loss function:

argmin
XT

t¼1

XNt

i¼1
Lðyti ; f tðXt

i ; y
tÞÞ

where f t is the prediction for the ith sample in the tth task by
our MT-DNN, which is a function of the feature vector Xt

i, L is
the loss function, and yt is the collection of machine learning
hyperparameters. A popular cost function for regression is the
mean squared error, which can be defined as:
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tÞ
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Table 1 A introduction of eight fingerprints used in the present study

Fingerprint Description
Number
of features Package

FP2 A path-based fingerprint which indexes small molecule fragments based on linear segments
of up to 7 atoms20

256 Openbabel20

Daylight A path-based fingerprint consisting 2048 bits and encoding all connectivity pathways in a
given length through a molecule21

2048 RDKit44

MACCS A substructure keys-based fingerprint with 166 structural keys based on SMARTS patterns19 166
Estate1 A topological fingerprint based on electro-topological State Indices, which encodes the

intrinsic electronic state of the atom as perturbed by the electronic influence of all other
atoms in the molecule within the context of the topological character of the molecule.
Estate1 represents the number of times each atom type is hit22

79

Estate2 Similar to Estate1, however it contains the sum of the Estate indices for atoms of each type22 79
ECFP4 The de facto standard circular fingerprint based on the Morgan algorithm,45 which uses an

iterative process to assign numeric identifiers to each atom15
2048

Pharm2D Each bit corresponds to a particular combination of features and interactions needed for a
molecule to be active against a given target23

990

ERG A Pharmacophore fingerprint, which is an extended reduced graph approach using
pharmacophore-type node descriptions to encode the relevant molecular properties25

315
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In this study, MT learning technology is applied to the
toxicity prediction. The ultimate goal of this MT learning is to
potentially improve the overall performance of multiple toxicity
prediction models, especially for the smallest dataset that
performs relatively poorly in the ST-DNN. More concretely, it
is reasonable to assume that different toxicity indexes share a
common pattern so that these different tasks can be trained
simultaneously when their feature vectors are constructed
in the same manner. For our toxicity prediction, four different
tasks (LD50, IGC50, LC50, LC50-DM data sets) are trained
together. This leads to four output neurons in the output layer

(see O1 to O4 in Fig. 2), with each neuron being specific to one
of four tasks.

II.E Consensus of multiple model predictions

Consensus means the average value from multiple model
predictions, which typically enhances the results from indivi-
dual models.

II.F Hyperparameters

Ensemble hyperparameters. Both RF and GBDT were imple-
mented with the scikit-learn package (version 0.20.1).52 In this

Fig. 2 An illustration of a typical MT-DNN training four tasks (datasets) simultaneously. Four hidden layers are included in this network, ki (i = 1, 2, 3, 4)
represents the number of neurons in the ith hidden layer and Ni,j is the jth neuron in the ith hidden layer. Here O1 to O4 represent four predictor outputs
for four tasks.

Fig. 1 An illustration of a typical ST-DNN. Only one task (data set) is trained in this network. Four hidden layers are included, ki (i = 1, 2, 3, 4) represents
the number of neurons in the ith hidden layer and Ni,j is the jth neuron in the ith hidden layer. Here, O1 is the single output for the task.
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work, there are a total of 23 datasets with their training data
size varying from 94 to 8199. RF has been showed to be
consistent and robust with various datasets. However, if its
parameters are carefully tuned based on the size of a given
training set, GBDT can attain better performance than RF does
in most cases. For all experiments in this work, the most
essential parameters of GBDT are chosen as learning rate =
0.01, min_samples_split = 3, max_features = sqrt. Detail values
of other parameters are given in Table 2.

Network hyperparameters. Since the numbers of features
differ much in different 2D fingerprints, different network
architectures have to be adopted. For example, Estate1 finger-
print has only 79 bits. Therefore a 4-layer network with the
number of neurons in various hidden layers are chosen as 500,
1000, 1500, and 500. However, the Daylight fingerprint has as
many as 2048 features, and thus a much larger network is
needed. The network for this fingerprint still has 4 layers but
there are 3000, 2000, 1000, and 500 neurons in the first, second,
third and fourth hidden layers, respectively. Other network
parameters are as followed: the optimizer is stochastic gradient
descent (SGD) with momentum of 0.5. 2000 epochs were run for
all the networks. Mini-batch size is set to 4. The learning rate is
set to 0.01 in the first 1000 epochs and 0.001 for the rest
epochs. Our tests indicate that adding a dropout or using L2

decay does not necessarily improve the accuracy, and thus, we
omit these two techniques. All the network hyperparameters
are summarized in Table 3. These hyperparameters are applied
to both ST-DNN and MT-DNN. All the DNN training is per-
formed with Pytorch (version 1.0).53

III Results
III.A Toxicity prediction

Four toxicity datasets were studied in our work, namely oral rat
LD50 (LD50), 40 h Tetrahymena pyriformis IGC50 (IGC50), 96 h
fathead minnow LC50 (LC50), and 48 h Daphnia magna LC50

(LC50-DM). Among them, LD50 measures the amount of chemicals
that can kill half of rats when orally ingested. IGC50 records the
50% growth inhibitory concentration of Tetrahymena pyriformis

organism after 40 h. LC50 reports at the concentration of test
chemicals in water in milligrams per liter that cause 50%
of fathead minnows to die after 96 h. The last one is LC50-DM,
which represents the concentration of test chemicals in water in
milligrams per liter that cause 50% Daphnia magna to die
after 48 h. The unit of toxicity reported in these four datasets is
�log10 mol L�1. All of them are accessible from the recent
publications42,54,55 and the public database (https://www.epa.
gov/chemical-research/toxicity-estimation-software-tool-test). The
sizes of these four datasets vary from 353 to 7413 (see Table 4),
which raises a challenge for a predictive model to achieve a
consistent accuracy and robustness.

III.A.1 The performance of ensemble methods. Because it
is easy to implement and fast to train, two ensemble methods,
RF and GBDT, were first tested. Since four datasets have very
different sizes, different numbers of estimators in RF and
GBDT models should be used. Specifically, for two relatively
small sets, LC50 and LC50-DM, the numbers of estimators are
set to 2000. For IGC50, 10 000 estimators are used. For the
largest set LD50, we have used 20 000 estimators.

The accuracy is measured in term of the square of Pearson
correlation coefficient (R2). Overall, GBDT’s performance is
always better than that of RF, which agrees with the early
publication.4 Among all the eight fingerprints we tested,
Estate2, Estate1, Daylight, FP2, ECFP and MACCS usually work
well on these four sets. Thus the consensus of these six
fingerprints or say the average prediction of the six fingerprints,
was also considered (‘‘Top 6-cons’’ in Fig. 4). The consensus
model typically gives rise to a further improvement over all
single fingerprints in most cases.

(a) LD50 test set. LD50 dataset is the largest set having as
many as 7413 compounds. However, the set has a higher
experimental uncertainty of the values (see ‘‘Max value’’ and
‘‘Min value’’ in Table 4) and more importantly, as revealed in
Fig. 3(a), the ranges of the training set and test set are almost
the same. The boundary values of the training set overlap with
those of the test set, which brings difficulty to machine learning
models. In our GBDT model, the best single fingerprint

Table 2 RF and GBDT parameters for different training-set sizes

Training-set size RF parameters GBDT parameters

o800 n_estimators = 1000, criterion = ‘mse’, max_depth = none,
min_samples_split = 2, min_samples_leaf = 1,
min_weight_fraction_leaf = 0.0

n_estimators = 2000, max_depth = 9, min_samples_split = 3,
learning_rate = 0.01, subsample = 0.1, max_features = ‘sqrt’

800 to 5000 n_estimators = 10 000, max_depth = 7, min_samples_split = 3,
learning_rate = 0.01, subsample = 0.3, max_features = ‘sqrt’

5000 to 10 000 n_estimators = 20 000, max_depth = 7, min_samples_split = 3,
learning_rate = 0.01, subsample = 0.3, max_features = ‘sqrt’

Table 3 The network hyperparameters for both ST-DNN and MT-DNN

Fingerprint
Number
of features

Number of
hidden layers

Number of neurons
in each hidden layer Optimizer Mini-batch Learning rate

Estate1 79 4 500, 1000, 1500, 500 SGD with a momentum of 0.5 4 First 1000: 0.01; then: 0.001
Estate2 79
Daylight 2048 3000, 2000, 1000, 500
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(MACCS) yields an R2 of 0.643, while the consensus of the top 6
fingerprints increases R2 to 0.679.

(b) IGC50 test set. IGC50 set is the second largest set (1792
compounds) among the four sets we investigated. As indicated
in Table 4, this set has the smallest range of label. Moreover,
Fig. 3(b) shows that the test set has a smaller range than that of
the training set, indicating a relatively easy case for machine
learning models. Our results show that Estate2 is the best
single fingerprint with an R2 of 0.742, and the consensus of
the top 6 fingerprints leads to an R2 of 0.785.

(c) LC50 test set. LC50 set is a relative smaller set (823
compounds). Fig. 3(c) indicates that the ranges of the training
set and test set are almost the same. In our GBDT model,
Estate2 fingerprint achieves the top performance, which yields

an R2 of 0.662. The consensus of the top 6 fingerprint improves
the R2 to 0.715.

(d) LC50-DM test set. Among the four sets, LC50-DM test set is
the smallest one with only 283 training molecules and 70 test
molecules, which is troublesome to build a robust model.
Moreover, as revealed in Fig. 3(d), not only the boundary values
of the training set overlap with those of the test set, but also the
test set has a higher distribution at the left boundary, rendering
a difficult case for machine learning. Specifically, the best
single fingerprint Estate1 only has an R2 of 0.520. The con-
sensus model even lowers the R2 a little bit to 0.486. Similar
difficulty is also faced by other recent work, such as the R2 of
the 3D-topology based GBDT model only reaches 0.505.4 Thus,
there is a need for multitask deep learning when dealing with
such a small dataset.

III.A.2 The performance of single-task and multitask deep
learning. On average, Estate2, Estate1, and Daylight are the top
three fingerprints when using GBDT models in all the four sets.
Thus, these three fingerprints are picked up to perform higher-
level ST-DNN and MT-DNN.

Since the lengths of the three fingerprints differ much,
different DNN architectures are needed. Four hidden layers
with 500, 1000, 1500, and 500 neurons are used for Estate1 and
Estate2, whose fingerprints have 79 features. Four hidden

Table 4 The quantitative summary of four toxicity datasets. The original
datasets and prediction results are available at https://www.epa.gov/
chemical-research/toxicity-estimation-software-tool-test

Data set Total size Train set size Test set size Max value Min value

LD50 7413 5931 1482 7.201 0.291
IGC50 1792 1434 358 6.36 0.334
LC50 823 659 164 9.261 0.037
LC50-DM 353 283 70 10.064 0.117

Fig. 3 The sample distributions of LD50, IGC50, LC50, LC50-DM training and test sets.
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layers with 3000, 2000, 1000, and 500 neurons are used for
Daylight, whose fingerprint has 2048 bits.

The pattern of ST-DNN results is similar to that of GBDT results.
On four data sets, a ST-DNN consensus model yields an average R2 of
0.658 (0.632, 0.791, 0.687, and 0.523 respectively). As a comparison,
the average R2 by a GBDT consensus model is 0.666 (0.679, 0.785,
0.715, and 0.486 respectively). However, the performance can be
largely enhanced by the multitask strategy because the two relatively
smaller sets LC50 and LC50-DM can benefit much from two larger
sets LD50 and IGC50. As shown in Table 5, while the MT-DNN model
performance seldom changes on LD50 and IGC50, it gives rise to a
dramatic improvement on LC50 and LC50-DM, especially on
LC50-DM. The consensus R2 are lifted from 0.523 to 0.725.

III.A.3 Systematic comparison with other toxicity predictions.
A systematic comparison with other methods was provided in
Table 6. The same datasets are also used to develop the Toxicity
Estimation Software Tool (T.E.S.T), so many related results can be
found in its user’s guide,42 including hierarchical, single model,
FDA, group contribution, nearest neighbor, and T.E.S.T consensus.

Since T.E.S.T is also based on 2D descriptors, the compar-
ison between the results from the present models and T.E.S.T
can largely reflect the predictive power of the present models.
As shown in Table 6, on the LD50, IGC50 and LC50 sets, the
present MT-DNN consensus always leads to a higher R2 than
T.E.S.T consensus. Especially, on the IGC50 and LC50 sets,
the present MT-DNN consensus models largely beat T.E.S.T
(0.794 vs. 0.764 and 0.765 vs. 0.728), and the present GBDT
results also quite outperform T.E.S.T (0.679 vs. 0.626) on the
LD50 set. Even on the LC50-DM set, because the training set is
so small (283), ensemble methods (RF and GBDT) and DNN
methods are not suitable for it: R2 of ST-DNN and GBDT are,
respectively, 0.523 and 0.486. However, the R2 of MT-DNN is as
high as 0.725 for LC50-DM dataset, which is quite comparable
to the T.E.S.T result with an R2 of 0.739.

2D MT-DNN consensus has an average R2 of 0.731 for these
four datasets, while the average of T.E.S.T model is 0.714, and
the recent 3D structure-based topological MT-DNN consensus
result is also 0.731.4 These results confirm that 2D fingerprints

Fig. 4 The R2 on LD50, IGC50, LC50, LC50-DM test sets yielded by eight fingerprints and the consensuses of the top 6 features. Two ensemble methods
were adopted (GBDT: blue, RF: red). The values shown in the figure are the R2 of GBDT.

Table 5 The R2 of ST-DNN and MT-DNN based on the top 3 fingerprints
in GBDT (Estate2, Estate1, Daylight) and their consensuses

Method
R2 of
LD50

R2 of
IGC50

R2 of
LC50

R2 of
LC50-DM

Estate2 ST-DNN 0.484 0.715 0.569 0.433
Estate2 MT-DNN 0.489 0.696 0.660 0.623
Estate1 ST-DNN 0.569 0.733 0.650 0.601
Estate1 MT-DNN 0.566 0.735 0.694 0.684
Daylight ST-DNN 0.619 0.701 0.570 0.346
Daylight MT-DNN 0.617 0.717 0.724 0.694
Consensus ST-DNN 0.632 0.791 0.687 0.523
Consensus MT-DNN 0.639 0.794 0.765 0.725
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integrated with MT-DNN model surpass the previous 2D models
and are as good as the recent 3D structure-based topological
model.4

III.B Aqueous solubility (log S)

For log S, following the previous literature,5,56 we test Klopman’s
test set57 with the original train set. The unit of log S in these sets
is log10 mol L�1. Since the size of the training set is 1290, 10 000
estimators were used in the GBDT model (Table 7).

In the log S test, the top 6 fingerprints are MACCS, FP2,
Daylight, Estate1, Estate2, and ECFP, which perform much
better than the other two fingerprints, Pharm2D and ERG.
The consensuses of the top 6 fingerprints results in R and

RMSE of 0.944 and 0.684, respectively. The consensus of top 3
is even better, which improves R and RMSE to 0.955 and 0.648
(see Table 8). A systematic comparisons to other methods are
included in Table 9. It indicates the present method outper-
forms all other state-of-the-art 3D and 2D methods.

III.C Partition coefficient (log P)

Three log P data sets were tested using the GBDT model. The
training set has 8199 molecules, which was originally compiled
by Cheng et al.58 There are three test sets, namely FDA,58 Star,59

and Non-star59 respectively, which are given in Table 10. The
log P in these sets is by the unit of log10. Due to the size of the
training set, 20 000 estimators are used in the GBDT model.

In order to easily compare to the earlier literatures, accura-
cies on these three test sets are reported by R2 or acceptable
rate. The acceptable rate here is defined as the percentage of
molecules within error range o0.5.60 Of all the three sets, the
2D fingerprints of Estate2, Estate1, MACCS, and ECFP are
always the top 4. The consensuses of the top 4 fingerprints
produce R2 up to 0.901 on the FDA set and attain an acceptable
rate on Star set at 71.3%. On the Non-star set, the top 4
consensus is somehow worse than the best single fingerprint

Table 6 Comparison to other toxicity prediction methods. The prediction
results for Hierarchical, Single model, FDA, Group contribution, Nearest
neighbor, and T.E.S.T consensus are available in ref. 44 and at https://
www.epa.gov/chemical-research/toxicity-estimation-software-tool-test

LD50

Method R2 RMSE Coverage

The present 2D MT-DNN consensus 0.639 0.549 1.000
The present 2D GBDT consensus 0.679 0.580 1.000
Hierarchical42 0.578 0.650 0.876
FDA42 0.557 0.657 0.984
Nearest neighbor42 0.557 0.656 0.993
T.E.S.T consensus42 0.626 0.594 0.984
3D MT-DNN consensus4 0.653 0.568 0.997

IGC50

Method R2 RMSE Coverage

The present 2D MT-DNN consensus 0.794 0.457 1.000
The present 2D GBDT consensus 0.785 0.457 1.000
Hierarchical42 0.719 0.539 0.933
FDA42 0.747 0.489 0.978
Group contribution42 0.682 0.575 0.955
Nearest neighbor42 0.600 0.638 0.986
T.E.S.T consensus42 0.764 0.475 0.983
3D MT-DNN consensus4 0.802 0.438 1.000

LC50

Method R2 RMSE Coverage

The present 2D MT-DNN consensus 0.765 0.718 1.000
The present 2D GBDT consensus 0.715 0.783 1.000
Hierarchical42 0.710 0.801 0.951
Single model42 0.704 0.803 0.945
FDA42 0.626 0.915 0.945
Group contribution42 0.686 0.810 0.872
Nearest neighbor42 0.667 0.876 0.939
T.E.S.T consensus42 0.728 0.768 0.951
3D MT-DNN consensus4 0.789 0.677 1.000

LC50-DM

Method R2 RMSE Coverage

The present 2D MT-DNN consensus 0.725 0.935 1.000
The present 2D GBDT consensus 0.486 1.239 1.000
Hierarchical42 0.695 0.979 0.886
Single model42 0.697 0.993 0.871
FDA42 0.565 1.190 0.900
Group contribution42 0.671 0.803 0.657
Nearest neighbor42 0.733 0.975 0.871
T.E.S.T consensus42 0.739 0.911 0.900
3D MT-DNN consensus4 0.678 0.978 1.000

Table 7 The sizes of log S training set and Klopman’s test set

Training set Klopman’s test set

1290 21

Table 8 The R and RMSE of predicting log S by eight fingerprints and the
consensuses of the top 3 and top 6 on Klopman’s test set

Fingerprint R RMSE

Cons-top 3 0.955 0.648
Cons-top 6 0.944 0.684
MACCS 0.958 0.664
Estate1 0.932 0.791
Daylight 0.923 0.780
FP2 0.908 0.853
ECFP 0.904 0.875
Estate2 0.897 0.907
Pharm2D 0.832 1.114
ERG 0.811 1.202

Table 9 Comparison of prediction results on the log S data set

Method R RMSE

Cons-top 3 0.955 0.648
Cons-top 6 0.944 0.684
MT-ESTD+-1 (3D)5 0.94 0.69
Drug-LOGS (2D)56 0.94 0.64
Klopman MLR (2D)57 0.92 0.86

Table 10 The sizes of log P training set and test sets

Training set

Test set

FDA Star Non-star

8199 406 223 43
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Estate1 but it is still in the second place with an acceptable rate
of 46.5% (see Fig. 5).

A detailed comparison with other log P prediction methods
was shown in Table 11. On the FDA data set, GBDT-ESTD+-
2-AD5 and MT-ESTD-15 are based on 3D descriptors. GBDT-
ESTD+-2-AD model includes some molecules from the NIH-
dataset in its training set. Therefore, its performance is slightly
better than the present one. The 2D method ALOGPS58 also
performs slightly better (0.908 vs. 0.901) than the present one.
However, a previous study56 has pointed out that for the
PHYSPROP database,61 the training set of ALOGPS actually
contains all of the compounds in the FDA set. It is unclear
how well it will perform if the overlapping compounds are
removed from the training set. Unlike ALOGPS, XLOGP3’s
training data is completely independent of the test set.58

In this case, the present prediction is more accurate than that
of XLOGP3 (0.901 vs. 0.872).

The present results on the Star and Non-star sets are also
systematically compared with other stat-of-the-art models as
shown in Table 12. For the Star set, 71% of total number of
molecules have the predicted error less than 0.5 (acceptable rate
71%). This result is quite satisfactory and is comparable to the 3D
structure-based model developed by Wu et al.5 with an acceptable
rate of 72% on the same training set (‘‘MT-ESTD-1’’ in Table 12).
There are many commercial software packages developed
to predict log P such as AB/log P,60 S/log P,60 ACD/log P,60 etc.
However, we cannot validate whether the training sets used in
these software packages overlap with the Star set. It is more
meaningful when comparing the present model to XLogP3
software60 since its training dataset does not contain any molecules
in the test set. Again, the present model outperforms XLogP3
package on the Star set with the acceptable rates being 71% and
60%, respectively. In the Non-star set, all of the published methods
perform as accurate as those in the FDA and Star data set, since the
structures in the Non-star set are relatively new and complex. Thus,
our model also only achieves an acceptable rate of 47%. However,
it is still tied for the third place among all predictors. This result is
even better than some 3D structure-based models, though RMSE
is relatively high due to a few large outliers.

III.D Protein–ligand binding affinity prediction

III.D.1 The S1322 dataset. To assess the predictive power of
2D-fingerprint based models, two protein–ligand binding affinity

Fig. 5 The performance of eight fingerprints and the consensuses of the top 4 on the FDA, Star and Non-star data sets of log P. To be consistent with
previous results, on the FDA set, R2 is given, while on star and non-star datasets, acceptable rate is given.

Table 11 Comparison of log P predictions on the FDA set

Method R2 RMSE

GBDT-ESTD+-2-AD (2D + 3D)5 0.935 0.51
MT-ESTD-1 (3D)5 0.920 0.57
ALOGPS (2D but the training set contains test set)58 0.908 0.60
Our Cons-top 4 (2D) 0.901 0.63
XLOGP3 (2D)58 0.872 0.72
XLOGP3-AA (2D)58 0.847 0.80
CLOGP (2D)58 0.838 0.88
TOPKAT (2D)58 0.815 0.88
ALOGP98 (2D)58 0.80 0.90
KowWIN (2D)58 0.771 1.10
HINT (2D)58 0.491 1.93
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datasets were investigated. The first one is denoted as the S1322
set. It is a high quality data set with 1322 protein–ligand complexes
involving 7 protein clusters (labeled as CL1, CL2, . . ., CL7).29,47

It is a subset of the refined set of PDBbind v2015.62 The other
dataset is PDBbind v2016,63 in which the refined set excluding the
core set in PDBbind v2016 is used as a training data. The core set is
a test set. These two sets are summarized in Table 13.

The ligand-based model is used in the present work. For the
S1322 set, a 5-fold cross validation was conducted with the
GBDT method. To be consistent with the results in the previous
literature, accuracy is measured in term of Pearson correlation
coefficient (R). Because the results from Daylight and Pharm2D
fingerprints are relatively poor, their results are omitted here. The
performance of the other six fingerprints (ECFP, FP2, Estate2,
MACCS, Estate1, ERG) and their consensus are shown in Fig. 6.

Fig. 6 indicates that for all the seven clusters, the consen-
suses of the six fingerprints largely achieve better performance
than that of any single fingerprint. Specifically, the R values of
consensus models are 0.717, 0.847, 0.708, 0.718, 0.831, 0.777,
and 0.760 on each of 7 clusters, respectively and 0.765 on
average. These results are comparable to ones achieved by a
ligand-based 3D topology and GBDT model (Fig. 7).28

III.D.2 PDBbind v2016 refined set and core set. The pre-
sent ligand-based model was also tested on PDBbind v2016.
Rather than cross validation, this time the core set is regarded
as a test set. Quite consistent with core validation on the S1322 set,
the consensus of the six fingerprints leads to a large improvement
than any single one, with an R of 0.747. These results indicate that
the present model has a stable and reliable performance on
different protein–ligand binding affinity data sets.

For protein–ligand binding affinity prediction, the present
2D fingerprint-based model is not competitive, because pro-
tein–ligand binding not only depends on the ligand, but also on
the protein. Therefore, for a more accurate prediction, the
information of the protein, at least the information of the
binding site should be included. State differently, a complex
based model is recommended. Recently, Wójcikowski et al.64

reports 2D fingerprint-based complex models. In their work, a
recently developed 2D fingerprint model is used to encode
protein–ligand complex information. When combined with
DNN, their method gives rise to an R of 0.817 on the PDBBind
v2016 core set. Table 14 lists these results.

IV Discussion
IV.A General analysis

In the present work, the predictive power of eight popular 2D
fingerprints as well as their consensuses on four important
drug-related properties (i.e., toxicity, log S, log P, binding affi-
nity) was investigated. The present study reveals that with a
proper machine learning algorithm, the 2D fingerprint-based
models including their consensuses outperform other 2D QSPR
approaches in most cases, especially on the toxicity predictions.
Additionally, 2D fingerprint-based models are comparable to
state-of-the-art 3D structure-based models in most drug-related
property predictions, except for protein–ligand binding affinity
prediction. Considering 2D fingerprints are very ‘‘cheap’’ mole-
cular descriptors that are easy and fast to generate, our results
are very impressive. It means that 2D fingerprints with appro-
priate machine learning algorithms are still very valuable for
practical problems, such as the prediction of toxicity, the
aqueous solubility (log S), and the partition coefficient (log P).
However, for protein–ligand binding affinity prediction,
complex-based models using 3D topological fingerprints have
a major advantage over the present 2D fingerprints, i.e., a GBDT
model based on 3D topological fingerprints can achieve about
15% more accurate.28

IV.B The performance analysis of 2D fingerprints

IV.B.1 Analysis of 2D fingerprints for PDBbind v2016 core
set predictions. The performance of each 2D fingerprint can be
systematically analyzed by comparing the difference between
prediction errors of every pair of fingerprints as follows.

(1) The relative absolute error for the fth fingerprint on the
ith sample (molecule) in the test set is defined by

Errorf ;i ¼
jprediction valuef ;i � experimental valueij

jexperimental valueij

Table 12 Comparison of log P predictions of the Star and Nonstar sets

Method

Star set (N = 223) Non-star set (N = 43)

% of molecules
within error range

RMSE

% of molecules
within error range

RMSEo0.5 o1 o0.5 o1

AB/log P60 84 12 0.41 42 23 1.00
MT-ESTD+-1-AD5 77 16 0.49 49 19 0.98
S + log P60 76 22 0.45 40 35 0.87
ACD/log P60 75 17 0.50 44 32 1.00
CLOGP60 74 20 0.52 47 28 0.91
MT-ESTD-15 72 18 0.55 33 28 1.01
ALOGPS60 71 23 0.53 42 30 0.82
Our cons-top 4 71 18 0.625 47 16 1.233
MiLogP60 69 22 0.57 49 30 0.86
KowWIN60 68 21 0.64 40 30 1.05
TLOGP60 67 16 0.74 30 37 1.12
CSLogP60 66 22 0.65 58 19 0.93
SLIPPER-200260 62 22 0.80 35 23 1.23
XLOGP360 60 30 0.62 47 23 0.89
XLOGP260 57 22 0.87 35 23 1.16
QLOGP60 48 26 0.96 21 26 1.42
VEGA60 47 27 1.04 28 30 1.24
SPARC60 45 22 1.36 28 21 1.70
LSER60 44 26 1.07 35 16 1.26
CLIP60 41 25 1.05 33 9 1.54
MLOGP (Sim+)60 38 30 1.26 26 28 1.56
HINTLOGP60 34 22 1.80 30 5 2.72
NC + NHET60 29 26 1.35 19 16 1.71

Table 13 The quantitative summary of the S1322 and PDBbind v2016 data
sets

S1322 set PDBBind v2016 refined set

CL1 CL2 CL3 CL4 CL5 CL6 CL7
Refined
set

Training
set

Core set
(test set)

333 264 219 156 134 122 94 4057 3767 290
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(2) For each molecule, the error difference between each pair
of fingerprints is calculated.

(3) Then, the differences for all molecules are ranked from
the largest to smallest. The result for PDBbind v2016 core set of

290 complexes is plotted in Fig. 8. We have shown all of 6 pairs
for the top four 2D fingerprints.

(4) To further analyze the strength of each fingerprint on
certain molecules, we collect those molecules on which a

Fig. 6 Pearson correlation coefficient (R) on the seven clusters of the S1322 data set yielded by the six fingerprints (ECFP, FP2, Estate2, MACCS, Estate1,
ERG) and their consensuses.
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fingerprint is able to outperform another fingerprint by 0.4 in
the error difference.

(5) Among these molecules for each fingerprint, we identify the
top 10 most frequently occurring functional groups. The frequency
of the occurrence of each functional group, along with the total of
number of molecules, are given in Table 15.

This analysis is quite significant as shown in Table 15.
It indicates that different fingerprints have different perfor-
mance on certain functional groups: some fingerprints perform
better on some functional groups, while other fingerprints
perform better on other functional groups. Our explanation
to this is, the different fingerprints are based on different
chemical features, since different functional groups have
different chemical properties, different fingerprints are sensitive
to different functional groups. One can find, in the columns for
different fingerprints, the number of functional groups are differ-
ent, this is because, in the table those molecules on which a
fingerprint is able to outperform another fingerprint by 0.4 in
the error difference are collected, for different fingerprints, the
number of such molecules are different.

One can select an appropriate fingerprint to represent a
certain class of functional groups based on Table 15. For the
FP2, Estate1, and Estate2 fingerprints, the top two functional
groups are carbonyl groups and unfused benzene rings.
However, the MACCS fingerprint is different. Its top two func-
tional groups are bicyclic compounds and pyridine. The third
top functional groups differ much for four fingerprints: bicyclic
compounds for FP2, aniline for Estate1, carboxylate ion for
Estate2, and ether for MACCS, which gives us more information
to choose fingerprints. Such as, if one has a molecule including
aniline, then Estate1 should be selected. Noticeably, some

functional groups occur exclusively for one or two types of
fingerprints. For example, F, Cl, Br, I is only on the lists of FP2
and Estate1. While azole appears only on the list of FP2 and
MACCS and multiple non-fused benzene rings are only for FP2
and Estate2. Moreover, phenol occurs only for Estate1 and
furan occurs only for MACCS.

IV.B.2 Analysis of 2D fingerprints for the IGC50 toxicity
data set prediction and also other data sets. Using the same
5-step procedure outlined above, we carry out a performance
analysis for toxicity dataset IGC50, which is shown in Fig. 9 and
Table 16. The molecules in the toxicity data set are typically
small and simple, leading to the functional groups in Table 16
also small. Moreover, since there are not too many functional
groups in these relatively simple molecules, only top 8 func-
tional groups are presented in the table. Similar to the perfor-
mance on the binding affinity, for the top 4 fingerprints on the
toxicity set, the carbonyl group is in the first place. Unfused
benzene rings also have a high occurrence frequency, resulting
in the second or third ranking. The difference between the
performance of various fingerprints is mainly located on sulfide
and aliphatic chains with 8 or more members. FP2 fingerprint
works well on sulfide, whereas, Daylight, Estate1 and Estate2 work
well on aliphatic chains with 8 or more members.

The same performance analyses were also conducted for
other toxicity and log P data sets, the results are shown in
Tables S1 to S4 (ESI†). These tables indicate, for the toxicity
data sets of LD50, LC50, LC50-DM, the performance of the
Estate1 and Estate2 fingerprints are similar, they both work
well on bicycle compounds; comparing to it, the FP2 fingerprint

Fig. 7 The R on the PDBbind v2016 binding affinity set yielded by the six
fingerprints (ECFP, FP2, Estate2, MACCS, Estate1, ERG) and their
consensus.

Table 14 Comparison of protein–ligand binding affinity predictions
PDBbind v2016 core set

Method R RMSE (kcal mol�1)

TopBP (complex)29 0.861 1.65
PLEC FP (complex)64 0.817 1.71
Our cons-top 6 (ligand) 0.747 2.02

Fig. 8 The ranked error differences between pairs of fingerprints for
PDBbind v2016 core set of 290 molecules. Only the top 4 fingerprints
(i.e., Estate2, FP2, Estate1, MACCS) are considered.
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Table 15 The top 10 frequently occurred functional groups in PDBbind v2016 core set for each fingerprint. For each fingerprint, the occurrence
frequency and the total number of molecules are also given

Ranking FP2 Estate1 Estate2 MACCS

1

2

3

4

5

6

7
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works better on aliphatic chains with 8 or more members, the
daylight fingerprint has a better performance on amide. For
log P data set, the ECFP and Estate2 fingerprints lead to a good
performance on aniline, the Estate1 fingerprints works better
on bicycle compounds; MACCS fingerprint works better on
unfused benzene ring.

IV.C The predictive power of the consensus of 2D fingerprints

The consensus of several different fingerprints typically further
enhances the performance of a single fingerprint. This
enhancement can be quite significant. However, on the data-
sets of different drug-related properties, the best fingerprint
combinations for the consensus are not consistent. One possible
explanation is that different fingerprints are good at encoding
certain functional groups, and datasets for different drug-related
properties have different functional group distributions. This is
also the reason why a consensus can enhance performance. The
consensus can capture more functional groups and counter-
balance the systematical bias from different fingerprints.

On toxicity prediction, the best combination for consensus
is obtained with Estate2, Estate1, Daylight, FP2, ECFP, and
MACCS. On the log S prediction, the best combination is
achieved with MACCS, Estate1, and Daylight. While on the
log P prediction, the best consensus involves Estate2, Estate1,

ECFP, and MACCS. Finally, on the binding affinity prediction,
the best consensus uses Estate2, Estate1, FP2, ECFP, MACCS,
and ERG. It is worth noting that, Estate related (Estate1, Estate2
or both) models are always included in the best combinations.
In fact, their single performances are also relatively good. This
finding is not surprising since Estate fingerprints encode
the intrinsic electronic state of the atom as perturbed by the
electronic influence of all other atoms. It is well-known that
electronic state is important to drug-related properties.

IV.D Multitask deep learning

Multitask deep learning was utilized on our toxicity prediction.
It turns out that the smallest set LC50-DM with only 283 training
samples benefits dramatically from the multitask deep learning
strategy. Its R2 value rises from 0.523 to 0.725. This is because,
in the frame of multitask deep learning, different data sets
(tasks) share similar structure–function relationships. When a
small dataset is trained with a large dataset through shared
neural networks, the statistics learned from the large datasets in
the shared neurons can help predict the small dataset property.
As a result, the other three large toxicity sets can share their
patterns learned from training with the small toxicity set, enhan-
cing its prediction. Therefore, multitask deep learning could be a
useful strategy to train relatively small datasets.

Table 15 (continued )

Ranking FP2 Estate1 Estate2 MACCS

8

9

10

Paper PCCP



This journal is©the Owner Societies 2020 Phys. Chem. Chem. Phys., 2020, 22, 8373--8390 | 8387

IV.E The limitation and advantage of 2D fingerprints

Typically, 2D fingerprints only encode small molecules, such as
ligands, although high level 2D fingerprint models including
both proteins and ligands have also been developed.64,65

Theoretically, 2D fingerprints are more suitable for target-
independent or target-unspecific problems involving small
molecules, such as toxicity, solvation free energy, aqueous
solubility, partition coefficient, permeability, etc. The current
investigation confirms this point. For toxicity, aqueous solubi-
lity and partition coefficient, the present 2D-fingerprint based
methods perform quite similar to or even somewhat better than
3D structure-based methods in some cases.

For protein–ligand binding affinity predictions, both ligand-
based approaches and complex-based are examined. For ligand-
based approaches, 2D-fingerprint based methods can perform as
well as 3D structure-based models. However, 3D structure-based
topological models29 outperform 2D-fingerprint based methods
(i.e., R: 0.861 vs. 0.747 for PDBbind v2016 core test). In fact, more
sophisticated 2D fingerprint models that utilize the protein–
ligand complex information and DNN64,65 are still not as accurate
as 3D topology-based models29 (i.e., R: 0.817 vs. 0.861 for PDBbind
v2016 core test and 0.774 vs. 0.808 for PDBbind v2013 core test).
Essentially, algebraic topology is designed to simplify the geo-
metric complexity of biological macromolecules. Therefore, it is
able to extract vital information from protein–ligand complexes to
predict their binding affinities.

When there is no available 3D experimental structure, 3D
models can still largely outperform 2D models on the binding

affinity prediction. An example occurs in D3R Grand Chal-
lenges (D3R GC),66 in which binding affinities are to be
predicted without given 3D experimental structures. Therefore,
3D models can only be built from docking. Even in this
circumstance, from GC1 to recent GC4,41,66–68 3D models has
been always proven to be more reliable than 2D models. For
example, in recent GC4,66 our 3D model (receipt ID ar5p6)
achieved the smallest RMSEc at 0.47 kcal mol�1, while the best
2D model in that competition attained RMSEc as high as
0.53 kcal mol�1. These results confirm the 3D structured-
based model is superior to 2D counterpart in binding affinity
prediction even there is no crystal structure.

Moreover, binding affinities typically depend on target
(protein). The same ligand can have quite different binding
affinities on different targets. The 3D models can take care of
binding affinities on different targets but for most 2D models,
because of lacking protein information, they work only for a
single target.

In general, 2D models can only take care of simple geometry
and do not work as well as 3D models do for macromolecules
that have complex 3D structures.43 The complexity of bio-
molecular structure, function, and dynamics often makes 2D
models inconclusive, inadequate, inefficient and sometimes
intractable. In contrast, 3D models can easily handle the
complexity of biomolecular structures.

However, the advantage of 2D fingerprints is, they are much
easier to generate than 3D structure-based fingerprints built
from algebraic topology, differential geometry or various graph
theory. Therefore, 2D-fingerprint based models can be useful
tools for preliminary drug screening studies.

V Conclusion

Two-dimensional molecular fingerprints, or 2D fingerprints, refer
to molecular structural patterns, such as elemental composition,
atomic connectivity, functional groups, 2D-pharmacophores etc.
extracted from a molecule without taking into account the
3D-structural representation of these properties. 2D fingerprints
have been a main workhorse for cheminformatics and bio-
formatics for decades. However, their validations in various
datasets were typically carried out long time ago with earlier
machine learning algorithms. Recently, new 3D structure-based
molecular fingerprints built from algebraic topology,28,29 differ-
ential geometry,30 geometric graph theory,31,32 and algebraic
graph theory33 have found much success in drug discovery related
applications,4,5,28,29 including D3R Grand Challenges.33,41 It raises
an interesting issue whether 2D fingerprints are still competitive
in drug discovery related applications.

This work reassesses 2D fingerprints for their performance
in drug discovery related applications. We consider a total of
eight commonly used 2D fingerprints, namely FP2, Daylight,
MACCS, Estate1, Estate2, ECFP, Pharm2D, and ERG. Four types
of drug discovery related applications with 23 datasets, including
solubility (log S) and partition coefficient (log P) that are indepen-
dent of a target protein, toxicity that may depend on certain

Fig. 9 The ranked error differences between pairs of fingerprints for
IGC50 toxicity set of 358 molecules. Only the top 4 fingerprints (i.e.,
Estate2, FP2, Estate1, Daylight) are considered.
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unknown target proteins, and protein–ligand binding affinity that
depend on known target proteins, are designed to validate 2D
fingerprints. Advanced machine learning algorithms, including
random forest (RF), gradient boosting decision trees (GBDT),
single-task deep neural network (ST-DNN), and multitask deep
neural network (MT-DNN) are used to optimize the performance
of the above 2D fingerprints in the aforementioned four types of
datasets. In particular, MT-DNN is designed to enhance the
performance of 2D fingerprints on relatively small datasets by a
simultaneous training with relatively large datasets that share a
similar pattern. Since each fingerprint may have an explicit bias
on certain functional groups or 2D patterns, we carry out various
consensus to further boost the performance of 2D fingerprints in
all the datasets. Finally, the strengths of top four 2D fingerprints
for predicting protein–ligand binding affinity and quantitative
toxicity are analyzed in detail.

Our general findings are as follows. (1) 2D fingerprint-based
models are as good as 3D structure-based models for various
toxicity, log S and log P datasets under the same training-test
condition. (2) For ligand-based protein–ligand binding affinity

predictions, 2D fingerprint-based models perform equally well
as 3D structure-based models that are based only on ligand 3D
structures. (3) 3D structure-based models that utilize 3D protein–
ligand complex information outperform 2D fingerprints that
based on either ligand information or protein–ligand complex
information. (4) Advanced machine learning algorithms, such as
DNN and MT-DNN, are crucial for 2D fingerprints to achieve
optimal performance. (5) There is no 2D fingerprint that outper-
forms all other 2D fingerprints in all applications. However, Estate
related (Estate1, Estate2 or both) models always perform well.
(6) Appropriate consensus of a few 2D models typically achieves
better performance. Therefore, if combined with advanced
machine learning algorithms, the 2D fingerprints are still compe-
titive in most drug discovery related applications except for those
that involve macromolecular structures.
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Table 16 The top 10 frequently occurred functional groups in IGC50 toxicity set for each fingerprint. For each fingerprint, the occurrence frequency and
the total number of molecules are also given
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S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu and X. Zheng, TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems,
2015, https://www.tensorflow.org/, Software available from
tensorflow.org.

39 A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga and A. Lerer,
NIPS Autodiff Workshop, 2017.

40 Z. Cang and G.-W. Wei, Bioinformatics, 2017, 33, 3549–3557.
41 Z. Gaieb, C. D. Parks, M. Chiu, H. Yang, C. Shao, W. P.

Walters, M. H. Lambert, N. Nevins, S. D. Bembenek and
M. K. Ameriks, et al., J. Comput.-Aided Mol. Des., 2019, 33,
1–18.

42 T. Martin, User’s guide for TEST (version 4.2) (Toxicity
Estimation Software Tool): A program to estimate toxicity
from molecular structure, 2016.

43 D. D. Nguyen, Z. Cang and G.-W. Wei, Phys. Chem. Chem.
Phys., 2020, 22, 4343–4367.

44 G. Landrum, et al., RDKit: Open-source cheminformatics,
2006.

45 H. Morgan, J. Chem. Doc., 1965, 5, 107–113.

PCCP Paper

https://hadoop.apache.org
https://hadoop.apache.org
https://www.tensorflow.org/


8390 | Phys. Chem. Chem. Phys., 2020, 22, 8373--8390 This journal is©the Owner Societies 2020

46 B. Wang, C. Wang, K. Wu and G.-W. Wei, J. Comput. Chem.,
2018, 39, 217–233.

47 B. Wang, Z. Zhao, D. D. Nguyen and G.-W. Wei, Theor. Chem.
Acc., 2017, 136, 55.

48 S. J. Capuzzi, R. Politi, O. Isayev, S. Farag and A. Tropsha,
Front. Environ. Sci., 2016, 4, 3.

49 B. Ramsundar, B. Liu, Z. Wu, A. Verras, M. Tudor,
R. P. Sheridan and V. Pande, J. Chem. Inf. Model., 2017,
57, 2068–2076.

50 J. Wenzel, H. Matter and F. Schmidt, J. Chem. Inf. Model.,
2019, 59, 1253–1268.

51 Z. Ye, Y. Yang, X. Li, D. Cao and D. Ouyang, Mol. Pharma-
ceutics, 2018, 16, 533–541.

52 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss
and V. Dubourg, et al., J. Mach. Learn. Res., 2011, 12,
2825–2830.

53 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein and L. Antiga,
et al., Advances in Neural Information Processing Systems, 2019,
8024–8035.

54 K. S. Akers, G. D. Sinks and T. W. Schultz, Environ. Toxicol.
Pharmacol., 1999, 7, 33–39.

55 H. Zhu, A. Tropsha, D. Fourches, A. Varnek, E. Papa,
P. Gramatica, T. Oberg, P. Dao, A. Cherkasov and I. V.
Tetko, J. Chem. Inf. Model., 2008, 48, 766–784.

56 T. Hou, K. Xia, W. Zhang and X. Xu, J. Chem. Inf. Comput.
Sci., 2004, 44, 266–275.

57 G. Klopman, S. Wang and D. M. Balthasar, J. Chem. Inf.
Comput. Sci., 1992, 32, 474–482.

58 T. Cheng, Y. Zhao, X. Li, F. Lin, Y. Xu, X. Zhang, Y. Li, R. Wang
and L. Lai, J. Chem. Inf. Model., 2007, 47, 2140–2148.

59 A. Avdeef, Absorption and drug development: solubility, perme-
ability, and charge state, John Wiley & Sons, 2012.

60 R. Mannhold, G. I. Poda, C. Ostermann and I. V. Tetko,
J. Pharm. Sci., 2009, 98, 861–893.

61 P. Howard and W. Meylan, Physical/chemical property
database (PHYSPROP), 1999.

62 Z. Liu, Y. Li, L. Han, J. Li, J. Liu, Z. Zhao, W. Nie, Y. Liu and
R. Wang, Bioinformatics, 2014, 31, 405–412.

63 M. Su, Q. Yang, Y. Du, G. Feng, Z. Liu, Y. Li and R. Wang,
J. Chem. Inf. Model., 2018, 59, 895–913.
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