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ABSTRACT: Machine learning approaches have had tremendous  Input Multitask Deep Learning Decision Tree Output

success in various disciplines. However, such success highly depends g 0
on the size and quality of datasets. Scientific datasets are often small Task 1 L & L
and difficult to collect. Currently, improving machine learning T N 0
I . . . ask 2 o/o 2
performance for small scientific datasets remains a major challenge in =) = A = .
many academic fields, such as bioinformatics or medical science. . . .
Gradient boosting decision tree (GBDT) is typically optimal for . . .
small datasets, while deep learning often performs better for large |45k 5 7 0
datasets. This work reports a boosting tree-assisted multitask deep N 2% "

learning (BTAMDL) architecture that integrates GBDT and

multitask deep learning (MDL) to achieve near-optimal predictions for small datasets when there exists a large dataset that is
well correlated to the small datasets. Two BTAMDL models are constructed, one utilizing purely MDL output as GBDT input while
the other admitting additional features in GBDT input. The proposed BTAMDL models are validated on four categories of datasets,
including toxicity, partition coefficient, solubility, and solvation. It is found that the proposed BTAMDL models outperform the
current state-of-the-art methods in various applications involving small datasets.

B INTRODUCTION limitation of small data sizes.'"’'> The original motivation of
In the past a few decades, substantial advances in machine transfer learning is from the fact that one can cleverly apply the
learning (ML) algorithms have spanned data-driven ap- knowledge previously learned to solve new related problems.
proaches throughout essentially every field, including science, Note that the difference between the learning process of
engineering, technology, medicine, and industry.1_3 The traditional ML and the transfer learning technique is that the
essence behind these achievements is that the behavior in former tries to learn each task from scratch, while the latter
unknown domains can be accurately estimated by quantita- transfers the knowledge from some previous tasks to a current
tively learning the pattern from sufficient training samples. task when the current task has insufficient training data.

However, compared to the large dataset with billions or even A unified definition of transfer learning is given as
trillions of data points in computer vision and image analysis, it following.'* Given a specific domain, D = {X, P(X)}, which

is typically difficult to obtain large datasets in scientific has two parts, a feature space X and a marginal probability
experiments. For example, in biomedical research, the size of distribution P(X), where X = {x, x)€X, a task
) - g ey Ky ]

is off i h lexi hnici
datasets is often constrained by the complexity, ethnicity, and T = (¥, ()} also has two parts, a label space ¥/ and a

high cost of large-scale experiments.*”” A similar problem is e ) i
faced in the material study where the data size is typically predictive function f(+) that is not observed and can be learned

smaller compared with that in other fields.*” Moreover, in the from the feature, and the label pairs {x, y;} are formed, where
domains of structural bioinformatics, it is also very difficult to x; € X and ¥ E Y. Most of the literature in transfer learning
construct a large-scale well-annotated dataset due to the high only considers the case that there is one source domain s and

expense of data acquisition and costly annotation. When the
number of training examples is very small, the ability for ML-
based models to learn from the observed data sharply
decreases, resulting in the poor performance of predictions.
Therefore, improving the performance of ML for small
scientific datasets is an important issue.

One possible way to solve this problem is transfer learning, Received: December 23, 2019
which pretrains a model by using existing related datasets and Published: January 24, 2020
then uses the trained model either as an initialization or a fixed
feature extractor for a new task. This method reduces the need
and effort to recollect a large training data, mitigating the

one target domain D, and thus the transfer learning is
formally defined as that, given a source domain D with a
corresponding source task 7, and a target domain 9 with a
corresponding target task 7, it is the process of improving the
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target predictive function f(-) by using the knowledge from
Dy and Dy, where Dg # Dy or T5 # T 1. There are many
successful applications of transfer learning applied to different
fields, including text sentiment classification,'® image classi-
fication,"”*®* human activity classification,"” software defect
classification,* multilanguage text classification,”" and so on.

The problem of limited sample sizes also occurs in other
important fields of ML, such as deep learning, which recently
has received increasing attention. Deep learning has been
successfully applied to numerous real-world applications. The
algorithm of deep learning attempts to learn high-level features
from massive datasets, which makes it different from traditional
ML. In other words, deep learning is a representation learning
algorithm based on large-scale datasets in ML. Unfortunately,
deep learning with conventional methods on small datasets
commonly shows worse performance than traditional ML
methods, such as gradient boosting decision tree (GBDT);*
hence, data size dependence becomes one of the most
challenging aspects for deep learning since it needs to take
massive training dataset to learn the latent patterns behind the
data. Therefore, the combination of deep learning and transfer
learning, i.e., deep transfer learning (DTL) is a good choice to
resolve the problem of insufficient training data when there is a
large related dataset available. Recently, based on the
techniques used in DTL, Tan et al. classified the deep transfer
learning into four categories: instance-based DTL, mapping-
based DTL, network-based DTL, and adversarial-based
DTL."> Feng et al. attempted to predict solidification defects
by deep neural network regression with a small dataset and
found that a pretrained and fine-tuned deep neural network
shows a better generalization performance over traditional ML
methods, like shallow neural network and support vector
machine.® Liu et al. designed an ensemble transfer learning
framework to improve classification accuracy when the training
data are insufficient.”” George et al. applied DTL to transfer
the knowledge from real-world object recognition tasks to
glitch classifier for the detector of multiple gravitational wave
signals.”® In addition, there are many successful applications of
DTL on image classification,**** lan§uage learning,26 domain
adaption,”””* and gene regulation.””*" From the literature, one
may notice that the previous studies of ML with small dataset
paid more attention to deep learning or transfer learning and
less attention to multitask deep learning, which is similar to the
inductive transfer learning when labeled datasets in the source
domain are available. The target and source tasks can be
learned simultaneously in multitask deep learning.

In the present work, we introduce a boosting tree-assisted
multitask deep learning (BTAMDL) to improve the perform-
ance of GBDT and/or DTL on predictions of small training
dataset. In this framework, transfer learning is implemented by
the method of multitask deep learning. We emphasize that
different from the traditional multitask learning, where all
relevant tasks may be benefited together simultaneously by
leveraging the task relatedness and the shared information
across different tasks, in the proposed framework, we aim at
achieving better performance for the task with a small number
of training samples. This is achieved by transferring knowledge
from other tasks and we only care about whether the task with
a small dataset is benefited or not from the transfer learning.
Since our goal is to enhance performance of the task with small
datasets, we do not care whether the task with large dataset
become better or worse. Under the framework of the deep
neural network, the task with a large number of training
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samples can usually achieve a good performance, which
consequently assists the task with a small number of training
samples to boost its predictive power.

The GBDT method is a widely used ML algorithm for
handling problems with low feature dimensions and small data
size, although it becomes very time-consuming when dealing
with large datasets.’’>* Based on the advantage of GBDT
over small datasets, we develop two BTAMDL methods to
combine GBDT with multitask deep neural networks. In the
first BTAMDL method, we utilize the output of the last hidden
layer of multitask deep neural networks as the input of the
GBDT. In the second BTAMDL method, the GBDT input
also includes additional features. Furthermore, consensus
393% and feature selection from importance rank-
are implemented in the present work. The proposed
methods are validated on various datasets, and the results of
our numerical experiments confirm that the present models
indeed achieve better performance on tasks with small data and
outperform other state-of-the-art ML methods.

B METHODS

Multitask Deep Learning (MDL). The multitask learning
technique learns multiple tasks simultaneously with the aim of
mutual benefit and has been widely applied in various
implementations, includin§ image processing,” speech recog-
nition and classification,”™** identification of handwritten
digits,** natural language processing,* computer vision,*
microarray data integration,”” and drug discovery.**™>" Most
formulations of multitask learning extract hand-crafted features
during the learning process and are based on the assumption
that there is a linear relationship between the data and target
labels. However, this assumption is not true in many practical
applications where a complex nonlinear data-to-target relation-
ship may exist, which limits the predictive performance of the
model.>* Recently, due to the capability in learning a latent
representation of the data without significant hand-crafted
feature formulation, deep learning with neural networks has
been adopted for multitask learning with an end-to-end
fashion.® There are two commonly used approaches to
perform multitask learning in deep neural networks. One is
called hard parameter sharing of hidden layers, which shares
the hidden layers between all tasks. The other is called soft
parameter sharing of hidden layers, which contains individual
hidden layers for each task. In the present study, we adopt the
first approach in our multitask deep learning, which is shown in
Figure 1 as a simple illustration of a typical four-layer MDL for
training four different tasks simultaneously.

Suppose that there are T tasks during the learning, the
training data for the tth task is (x/, yl_t)IN’, where Xit e RN s
a feature vector of the tth task, y: e RN a target vector with
the ith sample in the tth task, t = 1, ..., T, with T being the total
number of tasks, i = 1, .., N;, with N, being the number of
samples in the fth task, and D the number of features in each
task. f W' = {w; € R} denotes the weight vector in the tth
task, there would be a relationship between X! and y}, y; = Z}D
Xf}w]t +& R~ Z}D Xf]w]t for a linear regression problem, where ¢; is
random noise and can be neglected. A typical formulation for a
MDL algorithm is given in the following form:

arg min Z Ly, ff (X', 6")) + AReg(W)

t=1

(1)
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Figure 1. Simple illustration of a typical MDL training four tasks
(datasets) simultaneously, including four hidden layers. k; (i = 1, 2, 3,
4) denotes the neuron number in the ith hidden layer, and N;; is the
jth neuron in the ith hidden layer. O; (i = 1, 2, 3, 4) represents the
output of the ith task.

where the first term is the loss function (L) and the second
term is a regularizer. f(X', ) = {f(X], 6)} is a predictor
vector and its ith sample in the tth task is a function of the
feature vector X’ and €. Here, @' is the collective set of machine
learning hyper-parameters for the tth task. Note that, for a
given fingerprint, the feature vector of all the tasks has the
same dimensionality of features D but each task can have a
different number N, of samples. Here, W = [W', .., W'] is a
weight vector of all the tasks and can be obtained by
concatenating all the weight vectors {w'} of each task together
and the features in each row of W for each task. Reg(W)
denotes the regularizer of W and gives the constraint of weight
vectors. Here 4 is the regularization parameter balancing the
loss function and the regularizer.

The mean square loss function for regression is given as
following:

N,
Z (yit _ft (Xit) 6t))2

i=1

Lo fx,0) = ¥ 25

t=1 t (2)

where W' e [0, 1] is a weight factor for balancing different
tasks. Note that, in the present study, we can change the value
of this factor to emphasize the task with a small dataset. When

t. 1 .
W' is equal to - eq 2 recovers the conventional mean square

loss function.>**® For the constraint on weight vector W, there
are several different commonly used regularizations for various
conditions, including /;-norm regularization,56 l,;-norm
regularization,57 lp’q—norm regularization,sg’59 ca})ped lp,l—norm
regularization,60 multilevel Lasso constraint,’”®* and low-rank
constraint.”®

Gradient boOsting Decision Tree (GBDT). Due to its
high efliciency, accuracy, and interpretability, GBDT is a
widely used ensemble model of decision trees. It has already
achieved good performances in many different ag)splications,
such as multiclass classification,®* learning to rank,” and click
prediction.66 In this method, individual decision trees are
trained sequentially and are assembled in a stagewise fashion to
boost their capability of learning complex feature—target
relationships. In general, based on N consecutive decision
trees, the prediction of the model with data {x(i>, y(i)}f\fl (M is
the number of samples) is as follows:

INOEDWNAC) 3)

where p,(x) is the predicted labels of the nth tree. At each step,
a new decision tree is trained to fit the residual between
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ground truth and current prediction. Taking regression as an
example, a general loss function is given by

Ln = Z li(y(i)) ),;n(l)) ( )
; 4

where [, = () — 5?)?/2 with a square loss is taken into
consideration. In each iteration, GBDT learns the decision
trees by fitting the negative gradients. The total loss function L
can be minimized along the following gradient direction:

) (" (s)

The main procedure of GBDT is the learning of decision
trees, which costs most of the time to find the best split spot.
Compared to deep neural networks (DNN), GBDT is robust,
relatively insensitive to hyper-parameters, more suitable for
dealing with small datasets, and easy to implement. Addition-
ally, it is faster to train than DNN, which is a major advantage
of GBDT. A challenge of GBDT is how to balance the trade-off
between the accuracy and efficiency under the emergence of
big datasets, which makes the GBDT implementation very
time-consuming.

Boosting Tree-Assisted Multitask Deep Learning
(BTAMDL). In order to take the advantages of both GBDT
and MDL, we introduce two two-step approaches to integrate
MDL and GBDT. In the first step, MDL networks are
constructed and trained to achieve better performance for the
tasks with small datasets. After the training, outputs from the
last hidden layer are put forward to the GBDT as its inputs.
We call this method boosting tree-assisted multitask deep
learning (BTAMDL). BTAMDL 1 denotes the case there are
no additional features in GBDT rather than the features from
MDL. In BTAMDL 2, additionally, inputs of nondeep learning
features, in terms of the features of fingerprint, are applied to
the GBDT as well.

Note that, the present BTAMDL proposes to further
improve the generalization of GBDT on small datasets.
These approaches may be or may not be suitable for relatively
larger datasets.

Figure 2 illustrates our BTAMDL 1 with a four-task system.
In the figure, ). denotes the sum of all weighted inputs from
the previous hidden layer at a neuron, and AO denotes the
activated output at a hidden layer neuron. For example, on the

A
Dataset 1 z Ie) z 1) _‘@
Dataset 2 Nia / Npx / Ns, / N,
Dataset 3 . . oo .
Dataset 4 N . A \ 3 \ Z \
Input layer o Zo z
Ny, N, Naje, Ny
Hidden Hidden  Hidden  Hidden
layer 1 layer 2 layer 3 layer 4

Training data

O N ¢

Y
Output

Figure 2. Simple illustration of BTAMDL 1 where the input vector of
the training data of GBDT is from the activated outputs (AO) on the
last hidden layer of BTAMDL, marked by the blue rectangle.
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Table 1. Comparison of Prediction Results of GBDT for Four Datasets in Quantitative Toxicity Prediction

LDy, IGCq, LCay LC,-DM

R? MAE RMSE R? MAE RMSE R? MAE RMSE R? MAE RMSE
Estate 2 0.589 0.455 0.629 0.742 0.341 0.503 0.662 0.597 0.830 0.502 0.871 1.117
Estate 1 0.590 0.456 0.627 0.720 0.360 0.525 0.634 0.612 0.847 0.532 0.850 1.105
Daylight 0.620 0.434 0.607 0.687 0.383 0.554 0.599 0.637 0.862 0.313 0.973 1.294
consensus 0.662 0.406 0.557 0.777 0.334 0.481 0.692 0.570 0.811 0.472 0.899 1.120

first hidden layer, for the tth task, summing the weighted
inputs of the jth neuron is ), w;tXit, where wj is the weight
between the input layer and the first hidden layer of the jth
neuron in the fth task, and then the activated output (AO) of
the jth neuron on the first hidden layer is a(ziw}thf), where
o(+) is an activation function. Training on different tasks is
carried out iteratively. The AOs of the last hidden layer in each
task are put forward as the inputs to train the GBDT model for
the tasks with small datasets in step two.

2D Fingerprint. Compared to the traditional experiments
conducted in vivo or in vitro, quantitative structure—activity/
property relationship (QSAR/QSPR) analysis is one of the
most popular computer-aided or in-silico methods in the
measurement of drug properties nowadays, based on the
assumption that similar molecules have similar bioactivities or
physicochemical properties. Currently, this method becomes
more and more attractive since it can quickly generate highly
accurate results.”” As the property profile of a molecule,
molecular fingerprint plays a fundamental role in QSAR/QSPR
analysis and can be used to represent the molecules in the
datasets due to the ability of encoding the structure of a
molecule. The common type of fingerprint is a series of binary
digits (bits) that indicate the presence or absence of particular
substructures in the molecule. Additionally, for a SMARTS
pattern, if a substructure was present in the given molecule, the
corresponding bit was set to 1 and otherwise set to 0.°® One
can determine the similarity between two molecules by
comparing the fingerprints. There are four major 2D molecular
fingerprints, in terms of keys-based fingerprints, pharmaco-
phore fingerprints, topological or path-based fingerprints, and
circular fingerprints.””’® In present work, we select four
popular 2D fingerprints, namely Daylight fingerprint,”'
molecular access system (MACCS) fingerprint,’” Estate 1
(electro-topological state) fingerprint, and Estate 2 finger-
print,”* which are generated by RDKit (version 2018.09.3)”*
and were tested with good performance in toxicity prediction
in our other work.”> Table S1 (see Supporting Information)
summarizes the essential information related to these finger-
prints.

B RESULTS

In this section, we will show how to improve the performance
of machine learning on small datasets in different fields,
including toxicity prediction and small molecule property
prediction, based on the aforementioned methods, such as
GBDT, MDL, and two BTAMDL models. We use Pearson
correlation coefficient (R), root mean squared error (RMSE),
mean absolute error (MAE), and Tanimoto coefficient (S, )
to evaluate the performances of these models. The details of
these evaluation metrics can be found in section S1 of the
Supporting Information. The toxicity prediction contains four
quantitative datasets, including LDs,, IGCs, LCs, and LCyg,-
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DM. The description and origin of these datasets are in section
S2 of the Supporting Information.

Performance of GBDT. For all experiments in the present
study, GBDT is implemented by the Scikit-learn package
(version 0.20.1).”° Since the size of four datasets is not the
same, we choose different hyper-parameters in respective
GBDT models, which can be found in Table S3 in the
Supporting Information. We measure the model accuracy via
the squared Pearson correlation coefficient (R?). Table 1
shows the values of R? with three fingerprints, Estate 2, Estate
1, and Daylight for four datasets, as well as the consensus
results of these three models, which produces the average
predicted values of three fingerprints. The method of
consensus is to train different models on the same set of
descriptors and average across all predicted values.

From Table 1, one can find the following:

(1) The LDy, test set is the largest set having as many as
7413 compounds, compared to the other three sets
studied. Since this set has a relatively high experimental
uncertainty of the values or high diversity of
molecules;”” that is, the large difference between the
maximum value and the minimum value (shown in
Table S2 in the Supporting Information), it is relatively
difficult to do the prediction with high accuracy. From
results, the Daylight fingerprint gets the largest R* of
0.620 for a single fingerprint, while the consensus of
three fingerprints can further improve the performance
by 6.8% up to R* = 0.662.

The IGC; test set is the second largest set investigated
with 1792 compounds and has the lowest diversity of
molecules as indicated in Table S2 in the Supporting
Information, resulting in the best prediction among four
sets. The results show that Estate 2 fingerprint achieves
the best performance with R* = 0.742 for a single
fingerprint, and the consensus method using all three
fingerprints can improve the result by 4.7% with R* =
0.777.

LCy, is a small set with 823 compounds. By comparison,
the Estate 2 fingerprint gets a good result with R*
0.662 and a better result is obtained by the consensus
method with R* = 0.692, increased by 4.5%.

LCs-DM has the smallest size with only 353
compounds, which gives rise to a difficulty to build a
robust model. As a result, the best single fingerprint
Estate 1 gets a low accuracy with R* = 0.532, compared
to other datasets. Unexpectedly, the consensus model
even gets a worse result with R* as low as 0.472, which
decreased by 11.3%. The possible reason is that the
Daylight fingerprint with a poor performance of R* =
0.313 hinders the consensus method. In addition, due to
the same difficulty of the small dataset, using a 3D-
topology fingerprint, the accuracy R® of the GBDT
model can only be improved to 0.505.”° Hence, with
respect to the small dataset, multitask deep learning

(2)

)

(4)

https://dx.doi.org/10.1021/acs.jcim.9b01184
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Table 2. Comparison of Prediction Results of MDL for Four Datasets in Toxicity Prediction

LDy, IGCq, LCay LC,-DM
R? MAE RMSE R? MAE RMSE R? MAE RMSE R? MAE RMSE
Estate 2 0.489 0.511 0.701 0.696 0.373 0.541 0.660 0.587 0.834 0.623 0.770 1.028
Estate 1 0.560 0.473 0.652 0.725 0.357 0.519 0.733 0.586 0.747 0.700 0.718 0.946
Daylight 0.606 0.446 0.616 0.711 0.395 0.541 0.713 0.561 0.803 0.672 0.731 0.992
consensus 0.627 0.439 0.594 0.792 0.323 0.446 0.772 0.483 0.701 0.721 0.667 0.927
Table 3. Comparison of Prediction Results of BTAMDL 1 in Toxicity Prediction
LB 1GGCq, L LCy,-DM
R? MAE RMSE R? MAE RMSE R? MAE RMSE R? MAE RMSE
Estate 2 0.478 0.519 0.711 0.686 0.383 0.555 0.684 0.578 0.825 0.655 0.744 1.011
Estate 1 0.565 0.469 0.649 0.724 0.358 0.520 0.749 0.577 0.736 0.700 0.718 0.945
Daylight 0.605 0.447 0.616 0.713 0.393 0.539 0.704 0.579 0.820 0.683 0.726 0.980
consensus 0.639 0.426 0.579 0.795 0.322 0.445 0.776 0.480 0.697 0.733 0.655 0.905
Table 4. Comparison of Prediction Results of BTAMDL 2 in Toxicity Prediction
LDy, IGCq, LCap LC,-DM
R? MAE RMSE R? MAE RMSE R* MAE RMSE R? MAE RMSE
Estate 2 0.479 0.525 0.716 0.685 0.382 0.556 0.686 0.578 0.823 0.668 0.850 1.124
Estate 1 0.564 0.472 0.652 0.716 0.363 0.531 0.750 0.514 0.735 0.698 0.710 0.946
Daylight 0.605 0.448 0.617 0.710 0.395 0.541 0.706 0.583 0.823 0.675 0.723 0.993
consensus 0.638 0.428 0.580 0.793 0.321 0.447 0.778 0.477 0.694 0.741 0.682 0.934

method is needed and will be introduced in the next
subsection.

Performance of Multitask Deep Learning (MDL). As
Estate 2, Estate 1, and Daylight fingerprints have different
feature numbers (See Table S1 in Supporting Information), we
adopt different neural network architectures. For example, for
Estate 2 and Estate 1 fingerprints with a small number of
features, a six-layer neural network is built with four hidden
layers, 500, 1000, 1500, and 500 neurons, respectively, while,
for Daylight fingerprint with a large number of features, a six-
layer neural network with more neurons is built. The number
of neurons for four hidden layers are 3000, 2000, 1000, and
500, respectively. The other network parameters used in
multitask deep learning are as follows: (1) the optimizer is
SGD (stochastic gradient descent) with a momentum value of
0.5; (2) 2000 epochs for all networks; (3) the mini-batch is 4;
(4) the learning rate is 0.01 for the first 1000 epochs and 0.001
for the remaining 1000 epochs. Besides these parameters, we
tried the technique of dropout or L, regularization to avoid the
overfitting and to increase the prediction accuracy. Unfortu-
nately, they do not seem to work well. Therefore, these two
tricks are omitted in our experiments. In addition, all the
multi7t9ask deep learning were performed by Pytorch (version
1.0).

In Table 2, we show the performance of MDL on four
datasets with three different fingerprints, which is significantly
promoted by the multitask strategy. Compared to the results of
GBDT in Table 1, the relatively small set, especially, LC,-DM,
benefits a lot from the large sets, improved as high as 52.8% of
R? that is increased from 0.472 to 0.721 with consensus, and
for Estate 2, Estate 1, and Daylight fingerprints, the values of
R? are significantly increased by 24.1%, 31.6%, and 114.7%,
respectively. For other relatively small datasets, such as LCy,
and IGCy, with the method of consensus, the accuracies of R*
are increased by 11.6% and 1.9%, respectively. However, for
the largest set LDy, it is even decreased by 5.3% from 0.662 to
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0.627 with consensus. Therefore, multitask deep learning could
be a good choice for small datasets, which better learned from
other large datasets by sharing representations between
datasets. Additionally, the Daylight fingerprint performs the
best with MDL among three fingerprints in the LDj, dataset.

Performance of Two BTAMDL Models. From the above
performances of four datasets with different models of GBDT
and MDL, the framework of MDL can indeed dramatically
improve the prediction accuracy of the task with a small
dataset, like LCs-DM. Since GBDT is well-known for its
superb performance for small datasets, we are particularly
interested to know whether the combination of GBDT and
MDL can further improve the predictions on small datasets,
ie, LCso-DM. To this end, we test our BTAMDL models.
Meanwhile, we also concern how BTAMDL models perform
on other datasets.

As the input matrix of GBDT in BTAMDL 1 is the activated
output obtained from trained MDL on the last hidden layer,
the feature numbers of training data of four datasets become
the same and are equal to the neuron number on the last
hidden layer of the neural network. Table 3 shows the
prediction performance under this new framework. The
consensus results of the four sets are improved slightly by
1.9%, 0.4%, 0.5%, and 1.7% of R?, respectively, compared to
those of MDL in Table 2. In particular, for the smallest dataset,
LCsy-DM, there is the largest improvement from 0.472 to
0.733 of R? increased as high as $5.3% for that of GBDT in
Table 1. Moreover, for Estate 2, Estate 1, and Daylight
fingerprints, their results are improved by 30.5%, 31.6%, and
118.2%, respectively. These results indicate the usefulness of
the proposed BTAMDL method.

We further analyze the performance of BTAMDL 2. Table 4
confirms the following. (1) Compared with those of MDL in
Table 2, in terms of consensus methods, the accuracies of four
datasets are improved by 1.8%, 0.1%, 0.8%, and 2.8%,
respectively. The highest improvement is from the smallest

https://dx.doi.org/10.1021/acs.jcim.9b01184
J. Chem. Inf. Model. 2020, 60, 1235—1244


http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b01184/suppl_file/ci9b01184_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b01184/suppl_file/ci9b01184_si_001.pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.9b01184?ref=pdf

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

LD50
0.6
0.5 1 0.6
0.4 4 0.4 A
o
X 0.3 0.21
0.0 T T T T T
0.24 0 10 20 30 40 50 60
—— daylight
0.1 —+— Estatel
—=— Estate2
0.0 +— - r . . .
0 500 1000 1500 2000 2500
Number of feature
LC50
0.75 A
0.70 A
0.65
0.60
o~
ac 0.55 A
0.50 L . . .
0 25 50 75 100
0451 —— daylight
0.40 - —~— Estatel
(c) —a— Estate2
035 1 T T T T T T
0 500 1000 1500 2000 2500

Number of feature

IGC50
0.70
0.65
0.60
0.55
o~
g +
0.50 4 0.4
0.45] | 0 20 40 60
. .
0.404 —4— daylight
—— Estatel
0351 L (b) —a— Estate2
0 500 1000 1500 2000 2500
Number of feature
LC50DM
0.70
0.65
0.60
0.55
o~
o
0.50
0.45 0 25 50 75 100
—— daylight
0.40 1 (d) —— Estatel
—a— Estate2
0.35
0 500 1000 1500 2000 2500

Number of feature

Figure 3. Relationship between R* value and the number of top features for three different fingerprints, Daylight, Estate 2, and Estate 1 in four

datasets obtained by BTAMDL 2 in toxicity predictions.

dataset, LC5-DM as expected. (2) Compared with the results
of BTAMDL 1 in Table 3, in terms of consensus methods,
there is a minor decrease —0.2% for datasets LDy, and IGCq,.
In contrast, there are slight improvements of 0.3% and 1.1% for
tasks with small datasets, LCsy, and LCs-DM, respectively.
From these findings, we can conclude that using the activated
output of MDL and additional features or the features of
fingerprint as the new features in training data in BTAMDL
approaches can bring a better performance on small datasets.

Feature Importance Analysis. Since different features
should play different roles in machine learning predictions,
redundant and noisy features may play a negative role in the
training process. Hence, it is often necessary to rank the
importance of all features to understand the relationship
between predictive accuracy and feature importance. During
the feature importance analysis, we construct a family of
models using top N% features obtained from feature
importance ranking, where N goes from 0 to 100. The
optimized number of features is reached when the maximum
accuracy is obtained.

Figure 3 shows the influence of the number of features on
the accuracy R? of four datasets with BTAMDL 2 in toxicity
prediction, where the feature numbers of Estate 2, Estate 1,
and Daylight are 579, 579, and 2548, respectively. In Figure 3a,
for the LDs, set, R* increases sharply with the increase of
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feature number for all three fingerprints. Specifically, for
Daylight fingerprint marked by the red line, when the number
of features increases up to around 15 (0.6% of 2548 features),
the value of R? is saturated and reaches the maximum value
0.604, which is almost the same as that in Table 4. This result
suggests that for Daylight fingerprint, choosing only 0.6% most
important features could optimize the prediction performance
and the method of rank feature importance is a more efficient
and less time-consuming way for machine learning. Similarly,
for Estate 1 and Estate 2 fingerprints marked by the blue and
black lines, the maximum R? values of 0.569 and 0.479 are
reached with feature numbers being around 21 and 60,
respectively, which are about 3.6% and 10.3% of their
respective features. Similar to Figure 3a, Figure 3 parts b—d
have a similar relation between accuracy R* and number of
features. More precisely, in Figure 3b, for the IGCsj set, 7, 35,
and 37 top features can yield the maximal R? values, i.e., 0.707,
0.717, and 0.681 for Daylight, Estate 1, and Estate 2
fingerprints, respectively. In Figure 3c, for the LCs, set, the
maximal values 0.755, 0.690, and 0.704 are achieved with 20,
40, and 67 top features for Daylight, Estate 1, and Estate 2
fingerprints, respectively. In Figure 3d, for the LCs,-DM set,
the 21, 45, and 61 top features could sharply increase the R*
values to 0.666, 0.697, and 0.656, for three fingerprints,
respectively.
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Comparison with Other Methods. The toxicity
estimation software tool (TEST) is a useful program that
allows a user to easily estimate the quantitative toxicity of
chemicals using QSAR methodologies. Results for the
hierarchical method, single-model method, FDA method,
group contribution method, nearest neighbor method, and
consensus method are made available for all of four datasets
studied above.®® Therefore, a comparison between the results
from our models and those from TEST is meaningful and
helps in understanding the predictive power of our models.

Table 5 shows this comparison of three relatively small
datasets, i.e.,, IGCsy, LCsq, and LCyp-DM, using GBDT, MDL,

Table 5. Comparison Results of Accuracy R* between Our
Models (green) and Other Methods (pink) of Toxicity
Prediction”

Method 1GCsy LCsy LCs5-DM  Average
BTAMDL 2 0.793 0.778 0.741 0.771
BTAMDL 1 0.795 0.776 0.733 0.768

MDL consensus 0.792 0.772 0.721 0.762
GBDT consensus 0.777  0.692 0.472 0.647

Hierarchical [79] 0.719  0.710 0.695 0.708
Single-model [79] NA  0.704 0.697 0.701
FDA [79] 0.747  0.626 0.565 0.646

Group contribution [79] 0.682  0.686 0.671 0.680
Nearest neighbor [79]  0.600  0.667 0.733 0.667
TEST consensus [79]  0.764  0.728 0.739 0.744

3D MDL consensus [78] 0.802 0.789 0.678 0.756

“The results in pink are available in ref 4 of the Supporting
Information.

and two BTAMDL approaches. As shown in Table 5, the
values of R* with BTAMDL 2 are higher than those of all
TEST methods on three datasets. Especially, compared to the
best method of TEST, TEST consensus, the increments of R?
are 3.8%, 6.9%, and 0.3%, respectively, for three datasets.
Additionally, the average R* for BTAMDL 2 is 0.771 for
three datasets, while that for TEST consensus is 0.744. The
result of the recent 3D structure-based topological consensus is
0.756.” These results confirm that the proposed BTAMDL
method outperforms previous 2D and recent 3D models.
Dataset Similarity Analysis. The above results indicate
that the performance of the task with a small dataset, like LCy-
DM, can be dramatically improved by tasks with large datasets
in BTAMDL. To better understand our results, we analyze the
similarity between the largest dataset (LDs, (7413)) and other
datasets through eq 4 in the Supporting Information. Our
similarity analysis is shown in Table 6 with three fingerprints.
The improvement in accuracy R’ is also given through the

Table 6. Similarity between the Largest Dataset LDy,
(7413) with the Other Three Datasets with Three Different
Fingerprints in Toxicity Prediction”

fingerprint IGCs, (1792) LCq, (823) LCs-DM (353)
Estate 2 0.968 0.980 0.989
Estate 1 0.950 0.973 0.985
Daylight 0.778 0.869 0.914
increment of R? 2.1% 12.4% 57.0%

“The number in the bracket is the total size of the dataset. The
percentage in the last row is the increment of accuracy for three
datasets.

comparison between the results with consensus in Tables 1
and 4. First, we found that LCs;-DM dataset has the highest
similarity with LDs, by every fingerprint, which explains why
its prediction gets the largest improvement in BTAMDL
approaches. Data set IGCg, (1792) has the lowest similarity
and thus its prediction benefits the smallest amount in
BTAMDL. Based on this similarity analysis, one can anticipate
the potential improvement before carrying out the actual
BTAMDL calculation.

It is interesting to note that Estate 2 reports the highest
similarity scores while Daylight reports the lowest similarity
scores as shown in Table 6. As shown in Figure 3, the Estate 2
fingerprint has the lowest prediction accuracy for every dataset,
which indicates that the Estate 2 fingerprint has the lowest
ability to discriminate these compounds.

More Validation. We did more tests of BTAMDL model
in small molecule property predictions, including the datasets
of partition coefficient (logP), solubility (logS), and solvation
in section S3 and S4 of the Supporting Information,
respectively. These two parts additionally validate that
BTAMDL model can boost the performance of small datasets
and suggest that more similarity between large and small
datasets, higher increment of prediction power for small
datasets. Table 7 summarizes the improvement by the
BTAMDL model upon MDL and GBDT including the
applications of toxicity prediction.

B DISCUSSION AND CONCLUSION

The combination of machine learning and big data has had
great success in image analysis, computer vision, and language
processing, which has lead to substantial impact on a wide
variety of fields, including social media, banking, insurance, etc.
However, in science, one often faces an obstacle with limited
data size. The collection of scientific data can be very difficult,
time-consuming, and expensive. Therefore, enhancing the
performance of machine learning with small scientific datasets
is an important issue.

Gradient boosting decision trees (GBDT) are known for
their advantage in handling small datasets, while deep learning
algorithms typically perform better for large datasets. Transfer
learning is an excellent approach for enhancing the prediction
of small datasets when they have shared statistics with a large
dataset; therefore, multitask deep learning (MDL) based on
transfer learning techniques becomes a good choice for aiding
the prediction of small datasets where there is a large dataset
involved. In this work, we propose boosting tree-assisted
multitask deep learning (BTAMDL) to take the advantages of
GBDT, deep learning, and transfer learning. In BTAMDL,
MDL is used to generate a set of input features for GBDT.
These features are the outputs of the last hidden layer of the
MDL network. The BTAMDL is realized in two ways. In
BTAMDL 1, MDL outputs are used for GBDT inputs.
Whereas in BTAMDL 2, GBDT admits the features of
fingerprint as the additional nondeep learning features.

To validate the proposed methods and understand their
limitations, we select four types of benchmark datasets, namely
toxicity, partition coefficient (logP), solubility (logS), and
solvation. Among them, toxicity includes four subsets, i.e.,
LDy, IGCs, LCy, and LCsy-DM. Additionally, each dataset
has nonoverlapping training set and test set. The aforemen-
tioned molecular datasets are the so-called complex data for
which each data entry has its internal structure. As a result,
their predictions involve not only datasets and learning models,
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Table 7. Summary of the Improvement by BTAMDL Models upon MDL and GBDT for Four Toxicity Datasets”

LDy, (7413) IGCy, (1792) LCy, (823) LCq,-DM (353)
model MDL GBDT MDL GBDT MDL GBDT MDL GBDT
BTAMDL 1 —3.5% 1.9% 2.3% 0.4% 12.1% 0.5% 55.3% 1.7%
BTAMDL 2 —3.6% 1.8% 2.1% 0.1% 12.4% 0.8% 57.0% 2.8%

“The number in the bracket is the total size of the dataset.

but also descriptors or features to represent the internal
structure. We select four popular 2D fingerprints, i.e., Daylight
fingerprint,”" molecular access system (MACCS) fingerprint,”*
Estate 1 (electro-topological state) fingerprint, and Estate 2
fingerprint”® to represent the above molecular datasets.

To understand the performance of various methods, we first
compare the results of MDL and GBDT using various datasets.
It is found that relatively small datasets, namely IGCs,, LCs,
and LCs;-DM, can be efliciently boosted by 1.9%, 11.6%, and
52.8% respectively from their GBDT predictions by the MDL
model. Additionally, the GBDT performance of another
relatively small dataset, the solvation dataset, is also enhanced
by 0.2% and 3.9% with two large datasets, logP, and logs,
respectively, by using MDL. All these results suggest that
compared to GBDT, MDL could be a useful strategy to
improve the prediction accuracy of relatively small datasets.

It is also interesting to know whether the proposed
BTAMDL methods can further improve the predictions of
small datasets. To this end, we compare the performance of
BTAMDL and MDL methods. It is found that with BTAMDL
1 model, the prediction accuracies of four toxicity datasets
were further improved by 1.9%, 0.4%, 0.5%, and 1.7% from
their MDL predictions, respectively. For logP and solvation
datasets, the increments are very small, i.e, 0.1% and 0.3%,
respectively. Last, the results of BTAMDL 2 are also compared
with those of MDL. It is found that BTAMDL 2 model can
further improve MDL predictions by 1.8%, 0.1%, 0.8%, and
2.8%, respectively, for four toxicity datasets, and 0.5% for the
solvation dataset. Hence, we confirm that BTAMDL models
are able to boost the performance of small datasets.

It is noted that none of the aforementioned transfer learning
methods can guarantee a performance enhancement to a small
dataset from a large dataset. The amount of enhancement
depends on the similarity between datasets and the quality of
the large datasets. To illustrate this point, we have carried out
systematic similarity analysis between small and large datasets.
We show that for a given large dataset and many small datasets,
those small datasets that have higher similarity with the large
dataset could obtain more benefits from multitask learning
methods. Similarly, for a given small dataset and many large
datasets, the large dataset that has a higher similarity with small
dataset will be able to provide a higher enhancement in the
transfer learning. This explains why the prediction accuracy of
a small solvation dataset gets a higher improvement from logS
than from logP, although the size of logS is smaller than that of
logP. In this work, we assume that all datasets have the same
level of quality, which may not be true in practice.

Finally, we would like to mention that compared with the
literature, the performances of the proposed methods are some
of the best for all datasets tested in the present work.
Therefore, we recommend transfer learning methods, including
BTAMDL methods proposed in this work, as the state-of-the-
art approaches for small scientific datasets. Nonetheless, for a
given pair of small and large datasets, the amount of
enhancement to the small dataset from the large dataset
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depends crucially on the similarity between them, the quality
of the large datasets, and the transfer learning algorithm
selected.

B ASSOCIATED CONTENT

@ Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.9b01184.

The description of four fingerprints used in ML
algorithms is given in Table S1. The statistics of four
datasets of toxicity prediction is presented in Table S2.
Additional validation of the tests of BTAMDL model on
datasets partition coefficient (logP) and solvation is
given in section S3, and other validation on datasets
solubility (logS) and solvation is given in section S4
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