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ABSTRACT: In cluster physics, the determination of the ground-state structure of medium-
sized and large-sized clusters is a challenge due to the number of local minimal values on the
potential energy surface growing exponentially with cluster size. Although machine learning
approaches have had much success in materials sciences, their applications in clusters are
often hindered by the geometric complexity clusters. Persistent homology provides a new
topological strategy to simplify geometric complexity while retaining important chemical and
physical information without having to “downgrade” the original data. We further propose
persistent pairwise independence (PPI) to enhance the predictive power of persistent
homology. We construct topology-based machine learning models to reveal hidden
structure—energy relationships in lithium (Li) clusters. We integrate the topology-based
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machine learning models, a particle swarm optimization algorithm, and density functional
theory calculations to accelerate the search of the globally stable structure of clusters.

The determination of the topography of the potential energy
surfaces of various clusters is a subject of intensive research in
cluster physics. One of the most challenging tasks is to
determine the ground-state structure of medium and large
clusters due to the fact that the number of local minima on the
potential energy surface grows exponentially with the increase
of cluster size.' It is commonly believed that the binding
energy of a cluster is mainly determined by the geometric
structure of the cluster. Therefore, the understanding of the
structure-energy relationship of clusters is the holy grail in
cluster research. In particular, the prediction of structures with
the global minimal energy and near minimal energies is of
practical interest.

Several eflicient global optimization methods, includin
random sampling,” basin hopping,” minimal hopping,
simulated annealing,5 genetic ;1lgorithm,6_8 and particle
swarm optimization (PSO) algorithm,” have been developed
in the past few decades for searching structures with near-
global minimal energies. Among them, the PSO algorithm, first
proposed by Kennedy and Eberhart,”'’ is a relatively efficient
one. Call et al. applied the PSO algorithm to the structure
prediction of small clusters or isolated molecules.'' Recently,
Ma et al. have developed a PSO-based structure analysis
method,'” which is widely applied to structure predictions.
However, all the aforementioned methods are computationally
expensive due to involved ﬁrst-Iprinciple calculations of
numerous local minimum values. As shown in a recent
review,"> machine learning (ML) has been proven to be an
efficient strategy for estimating the density functional theory
(DFT) energy of ground states of materials and for the
prediction of material properties. It has the potential for
material structure prediction as well.
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Recently, machine learning has had tremendous success in
science, engineering, finance, medicine, and various other
industrial sectors. Initial successes of machine learning
approaches were limited to image and video processing,
computer vision, etc. For relatively simple data sets, such as
images, advanced machine learning algorithms, such as a
convolutional neural network (CNN), can automatically
extract image patterns without handcrafted input features.
Such predictive models involve two essential components,
namely, data set and learning algorithm. However, for general
data sets, particularly data sets with complex geometric
structures in material sciences and molecular biology, the
internal structural complexity hinders the performance of the
aforementioned two-component machine learning approach. A
predictive machine learning model for complex data consists of
three essential components: the data set, learning algorithm,
and data representation. The representations of data, called
“descriptors” or “features”, play an essential role in
constructing an efficient machine learning model for data
sets with complex internal structures.

For complex three-dimensional (3D) cluster data, the
representations used in machine learning vary greatly in their
nature. Some representations are generated from Cartesian
coordinates, geometric properties, electrostatics, atom types,
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and atomic partial charges.”*”*° The most direct and crude

representation is Cartesian coordinates, but as regressive neural
networks are numerical fitting methods, the output depends on
the absolute values of the input coordinates. Since translation
and rotation of a cluster should not change cluster intrinsic
properties, Cartesian coordinate representation has a major
limitation in energy predictions. The conventional solution is
to describe cluster structures by using graph theory or
symmetric functions that are invariant to translation and
rotation. Graph-based representations have been successfully
applied to predict molecular properties.”"*> Meanwhile, many
symmetric functions based on interatomic distances have been
developed,”™*” which are equally applicable to very different
systems such as bulk metals, clusters or molecules. However,
graph-based representations may neglect some geometric
details, such as distortion, whereas symmetric function models
often contain too complex structural detail and are frequently
computationally intractable, due to its rather complicated
conversion formula. Therefore, continuous, complete and
simple low-dimensional representations that are invariant to
translation and rotation are greatly desired.

Topology, free of metrics or coordinates, offers an entirely
different approach and could provide the ultimate simplifica-
tion of structural complexity. In fact, one only needs qualitative
topological information to understand many physical proper-
ties. However, traditional topology oversimplifies data
structures and leads to too much loss in geometric information.
Persistent homology is a relatively new method that bridges
geometry and topology. It integrates multiscale geometric
analysis and algebraic topology via a filtration process,
rendering a low-dimensional representation of complex
data.’®™* Persistent homology characterizes the geometric
features in data without having to “downgrade” the original
data as much as the original topology does. Topological
invariants, i.e., the properties of topological spaces that do not
vary with certain types of continuous deformations, are used as
the key feature of persistent homology. Through filtration and
persistence, topological invariants can capture geometric
structures continuously over a range of spatial scales. Unlike
commonly used computational homology, which results in
truly metric free or coordinate-free representations, persistent
homology is able to embed geometric information into
topological invariants so that the “birth”, “death”, and
“persistence” of isolated components, circles, holes, and void
at all geometric scales can be monitored by topological
measurements. The basic idea of size functions was introduced
by Frosini and Landi*' and by Robins.** Edelsbrunner et al.*®
formulated persistent homology, and Zomorodian and
Carlsson generalized the mathematical theory.”” Usually,
topological persistence over the filtration is represented either
in persistent diagrams or in persistent barcodes,*’ in which
various horizontal line segments or bars indicate homology
generators. Persistent homology has been applied to a variety
of fields, including image analysis,** ™%’ image retrieval,*®
chaotic dynamics verification,*”>° shape recognition,51 and
computational biology.'#**™>* Wei and workers explored the
utility of persistent homology for the quantitative analysis of
protein®* and fullerene®> and proposed some of the first
integrations of persistent homology and machine learning.*® It
has been shown that persistent-homology-based machine
learning algorithms outperform other methods in D3R
Grand Challenges, a worldwide competition series in
computer-aided drug design.”’
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The objective of the present work is to introduce persistent
homology as a unique representation of cluster structures. The
persistent homology representation of cluster structures is
realized using persistent barcodes. To enhance the predictive
power of persistent barcode representation, we propose a new
concept, persistent pairwise independence (PPI), as an
auxiliary feature. The resulting topological fingerprints,
including both persistent barcodes and PPI, are employed in
a machine learning model to understand the structure—energy
relationship of clusters. In a further combination with the PSO
algorithm and DFT calculation, a topology-ML-PSO—DFT
protocol is developed for the high throughput screen of cluster
structures with the global energy minima. Lithium (Li) is the
lightest metallic element in the periodic table and Li cLuster is
a subject of intense research in Li anode materials in storage
battery. So Li cluster were studied by our topology-ML-PSO-
DEFT protocol as an illustration in this work. In fact, the idea
about the combination of ML model with DFT-based structure
prediction is not new.”*”® Among them, the Gaussian
approximation potential (GAP) method is a relatively efficient
one and has been successfully tested on many cases. However,
these works focused on the acceleration of crystal structure
relaxation with ML model learning and interatomic potential.
In contrast, the part of acceleration in our work focused on the
combination of ML model and stochastic global optimization
algorithm to avoid the expensive DFT calculation on screening
local minimum values.

In this work, persistent homology is used to characterize
topological invariants, such as isolated components, circles,
rings, loops, pockets, voids, and cavities, via topological spaces
and algebraic group representations. We associate each atom in
a cluster with an ever-increasing diameter to systematically
generate a multiscale representation. We use persistent
barcodes to represent cluster atomic interactions. Topological
invariants are combined with PPIs to describe cluster
molecules in our machine learning modeling. The global
optimization algorithm and the first principle calculation used
in this work are also discussed.

Simplicial Homology. Let {v, v, .., v,} be an affine
independent sets in R", and a k-simplex, 6" is a k-dimensional
polytope that is the convex hull of above k + 1 vertices,
expressed as

k
o* = Ao + Ay + - + AnvnIZ/li =1
i=0

OSAIS1)1=0)1))]€
(1)

To combine these geometric components, such as vertices,
edges, triangles, and tetrahedrons together under certain rules,
a simplicial complex K is constructed, which is a set of
simplices that satisfies the following two conditions. The first is
that any face of a simplex from K is also in K. The second is
that the intersection of any two simplices in K is either empty
or a shared face of both simplices.

A k-chain [6*] is a linear combination Z¥a,6* of k-simplex o*.
The coefficients a; can be chosen from rational number field Q,
integers Z, and prime field Z, with prime number p. For

simplicity, in this work the coefficients @' is chosen from z,

for which the addition operation between two chains is the
modulo 2 addition for the coefficients of their corresponding

https://dx.doi.org/10.1021/acs.jpclett.0c00974
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Figure 1. Flowchart illustrating the workflow from a geometric structure, distance matrix, topological barcodes, and vectors of topological invariants
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Figure 2. Illustration of barcode changes for two clusters. The diameter-based filtration process and barcodes for (a) Li, cluster and (b) Lig cluster.
With the increase of their diameter €, the balls connect to form higher-dimensional simplexes. In this manner, the previously formed simplicial
complex is included in the latter ones. Four panels from top to bottom are f3, 3, ff,, and PPI barcodes, respectively. The horizontal axis is the

filtration parameter (A).

simplices. The set of all k-chains of simplicial complex K
together with the addition operation forms an Abelian group
C.(K, Z,). The homology of a topological space is represented
by a series of Abelian groups satisfying certain relations.

Let 0, be a boundary operator d;: C, = C,_,. The boundary
of a k-simplex is given by

0k0 = Z {Vor woor Uy ooy 1) o)

where {v,, .., 7, ..., v,} means the elimination of vertex v; from
the simplex. The most important topological property is that a
boundary has no boundary. In other words, a k-chain will be
mapped to an empty set by the twice applications of boundary
operations d;_,0; = . The kth cycle group Z, and the kth
boundary group B; are the subgroups of C; defined respectively
as

Z,=Kerd,={ce Clc=} (3)
and
Bi=Imo, ,,={ceClIIdeC,:c=0, +d}
4)

The kth homology group H,, defined by the kth cycle group Z;
and the kth boundary group By, is given by the quotient group

H, = Ker(9,)/Im(d;,,) = Z,/B, (s)
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The homology group extracts low-dimensional topological
invariants from original data, which can lie in a very high
dimensional space. In practical applications, it is the Betti
number (f3;), one of the most important topological invariants,
that is employed in our computation. For a given cluster
structure, roughly speaking, the number of independent
components, rings and cavities are topological invariants and
they are referred to as f3,, /3, and f3,, respectively.”” With the
homology group Hj, the kth Betti number is given by

B, = Rank(H,) (6)

However, as mentioned earlier, the Betti number alone leads to
a severe topological abstraction of real-world data.

Persistent Homology, Barcode, and Persistent Pairwise
Independence. Persistent homology addresses the aforemen-
tioned oversimplification issue by introducing a multiscale
geometric analysis to the original homology. Specifically, it
systematically creates a family of inclusive topological spaces
from a filtration process and then defines a nested family of
homology groups over the filtration. In a filtration process, a
chain complex, including a family of ordered subcomplexes, is
created from a given simplicial complex K by a parameter ¢,

P=K,CKC~CK,=K )

In our case, a simple choice of € is the atomic diameter,
which goes from 0 to a given maximal length €. A simplex is
a geometric generalization of a triangle to arbitrary dimensions,

https://dx.doi.org/10.1021/acs.jpclett.0c00974
J. Phys. Chem. Lett. 2020, 11, 4392—4401
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Table 1. List of Mean Absolute Error (MAE), Pearson
Correlation Coefficient (PCC), and €,,,, Used in the Present
Work”

structure of TFs €mx MAE (eV/atom)  PCC
p(Bo)+p(B)+p(B) 10 0.039 0.979
p(Bo)+p(B1)+p(p,)+p(PPI) 10 0.028 0.986
p(Bo)+p(B1)+p(B,)+d(PPI) 10 0.026 0.990
p(B1)+p(B,)+d(PPI) 10 0.031 0.981
bd(B,)+bd(f,;)+bd(B,)+d(PPI) 10 0.030 0.983
bpd(B,)+bpd(B,)+bpd(B,)+d(PPI) 10 0.026 0.988
p(Bo)+p(B1)+p(p,)+d(PPI) s 0.028 0.986
p(Bo)+p (1) +p(B,)+d(PPI) 15 0.026 0.989

“b(*), p(*), and d(*) represent the birth, the persistence, and the
death of topological invariant *, respectively. Here, bd(*) represents

b(*)+d(*) and bpd(*) represents b(*)+p(*)+d(*).

namely, a O-simplex is a vertex, a 1-simplex is an edge, a 2-
simplex is a triangle, and a 3-simplex represents a tetrahedron.
Simplexes can describe very complicated geometric shapes and
are much more computationally tractable than the original
shapes that they represent. There are actually many different
types of simplicial complex constructions that can be used in
persistent homology. The Vietoris Rips complex,”® a type of a
simplicial complex derived from the connectivity of e-balls in a
given metric space, is used in this work as it is fairly easy to
describe and reasonably practical for point cloud data. For
example, a 1-simplex is formed if two points with diameter €
contact with each other. Vietoris Rips complex models the
pairwise interaction of atoms. Specifically, for € sufficiently
small, one has only isolated points, i.e., 0-simplexes, whereas,
for € sufficiently large, one can have high-dimensional simplex.
As such, a nested sequence of subcomplexes is defined when
we grow diameter e-ball around each atom in a cluster, as
shown in eq 7. For each subcomplex in a chain complex,
homology groups and the corresponding topological invariants
can be computed. The resulting family of topological invariants
in terms of persistent Betti numbers record the “birth” and/or
“death” of all topological features in data, giving rise to
topological fingerprints. Therefore, the evolution of topological
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invariants over the filtration process can be recorded as a
barcode*® or a persistence diagram.

The proposed persistent pairwise independence (PPI)
counts the independence of each pair of atoms (or points)
over the filtration. Initially, all atoms are not connected. The
number of PPI bars is equal to the number of pairs of
independent atoms. As the filtration parameter increases, some
pairs of atoms become connected and their persistent bars
terminate. The proposed PPI barcode is more informative than
the f3, persistent barcode. As shown in Figure 1, it can be used
together with topological invariants to describe material
structures.

Topological Fingerprints as Machine Learning Features. A basic
assumption of persistent homology as applied to cluster
binding energy predictions is that vectors of topological
invariants and PPI are able to effectively represent cluster
structures. We call such vector topological fingerprints
(TFEs)."***** To convert barcodes of f,, B, f,, and PPI to
1D vector applied in machine learning, we combine the birth,
death, and persistence patterns of S, S, $,, and PPL In
practice, the abscissas of barcodes from 0 to €, are divided
into n equal length subintervals. Then, the patterns of
topological invariants and PPI are counted and recorded on
each subinterval, further transformed to four n-length vectors
V0, V!, V2, and V.. As shown in Figure 1, on the basis of the
point cloud data of a cluster, represented by a distance matrix,
we calculate topological invariants and PPI from 0 to €,
according to definition mentioned above and present all this
information in four barcodes, corresponding to S, S, £, and
PPL With [0, €,,,] divided evenly into [¢y, €,, ..., €, €141y -y
€max), V! represents how many persistent 3, within [e; €;,,], V}
represents how many persistent 3, within [e;, €], V7
represents how many persistent /3, within [€; €;,,], and V™!
represents how many PPI within range [¢, €;,,]. Finally, these
vectors were combined together as TFs, W, ., VO v ., V,
W, Vo, iFL Vi), a 4n-length vector.

To further demonstrate the advantage and benefit of TFs
using the barcode representation, Figure 2 illustrates the
structures of a quadrilateral Li, cluster and an octahedral Lig
cluster at various filtration diameters. The horizontal axis

https://dx.doi.org/10.1021/acs.jpclett.0c00974
J. Phys. Chem. Lett. 2020, 11, 4392—4401
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Figure 4. Comparison between persistent homology prediction results and DFT calculation results of the binding energy of Li, (n = 3, 4, .., 10)
with the number of subintervals in 1 A being (a) S with GBR, (b) 10 with GBR, (c) 20 with GBR, (d) 5 with NN, (e) 10 with NN, and (f) 20 with

NN.

represents the filtration parameter €. From top to bottom, the
behaviors of f, f;, f,, and PPI are depicted in four individual
subfigures. It is seen that as € increases, initially isolated atoms
will gradually grow into e-balls with increasing diameter. Once
two e-ball overlap with each other, one f bar is terminated. As
shown in Figure 2, at the very beginning, all e-balls do not
overlap with one another. There are four purple bars in the first
subfigure, meaning that there are four isolated f, bars. When
the filtration parameter reaches 3 A, each e-ball overlaps with
its closest two balls, forming a connected square. Therefore,
four bars of 3, (purple bars) turn into one bar and a f3; (blue
bars) bar appears, which represents the emergence of an
independent noncontractible quadrilateral structure (loops). In
the end when the filtration parameter reaches around 4.2 A,
the f3, bar disappears, leaving only a f3, bar persistent in all
subfigures. As can be seen from the last subfigure, Li, cluster
has two different kinds of bars of PPI with lengths around 3
and 4.2 A, respectively, indicating its two types of interatomic
distances. Similarly, an octahedral structure is captured by bars
Po and B, (orange bars) in Figure 2b. First, there are /3, bars at
the beginning. As the filtration progress, there are only one f,
bar and one f3, bar, which corresponds to void structure in the
center of the cage. The initial six f, bars imply this void
structure having six vertices. It is obvious that polygon and
polyhedron structures, even with perturbations, could be
described by f,, ), and f, bars. More specific examples of
barcode representation are shown in the Supporting
Information.

Machine Learning Models. The success of a machine learning
model for material sciences depends not only on the quality of
original data, appropriate descriptors but also on learning
algorithms. Gradient boosting regression (GBR)®* and neural
network (NN)® have been the methods of choice for
modeling atomic interactions. In particular, the GBR is
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known to be robust to small data sets and less prone to
overfitting. Compared with NN, GBR is very easy to train and
much more efficient. Essentially, GBR constructs a strong
regressor from an ensemble of weak regressors. Here, we
choose GBR to optimize feature parameters, including the
structure of the TFs, the number of subintervals in each
angstrom, and €,,,,.

Once the optimized feature parameters are obtained, we
further choose the neural network method for deep learning.
Neural networks are modeled after the function of neurons in
the brain. A neural network applies activation functions, called
perceptrons, to inputs. During the training, weights of the
neurons are updated through the backpropagation to minimize
a loss function over many epochs, or passes of an entire
training data set. The detail of the machine learning models
used in this work was listed in the Supporting Information). In
this work, to evaluate the performance of our models, mean
absolute error (MAE) and Pearson correlation coefficient
(PCC) were used. The MAE is given by

1N
MAE = — m—);l
NE’ (8)

where N is the number of samples and f; and y; are the
prediction and true value of sample i, respectively. Given a pair
of random variables (X, Y), the formula of PCC is

cov(X, Y)

%0,

PCC =
©)

where the cov(X, Y) is the covariance of X and Y and o, and o,
are the standard deviations of X and Y, respectively.

Particle Swarm Optimization (PSO). The next vital ingredient
required in the prediction of the global stable structure of a
cluster is a stochastic global optimization algorithm. Particle

https://dx.doi.org/10.1021/acs.jpclett.0c00974
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Figure S. Comparison between persistent homology prediction and
DFT calculation of the binding energy of (a) TFs on Liy, (b) GAP
on Liyo, and (c) TFs on Liy.

swarm optimization (PSO) strategy is based on behaviors of
swarms of flocks of birds, where a displacement velocity
updates the position of each candidate particle. In this work, a
candidate cluster structure is regarded as a particle. The jth
dimension of ith particle is updated over a unit time according
to

(10)

where t denotes the generation index, xfl is the coordinate of
the jth dimension of the ith particle, and vj; is its correspond
. . . . . f+1 -
displacement velocity per unit time. Each velocity v is
determined according to the formula
t+1
v,

= wvf‘j + clrl(xifj(sbest) - xit,j)

+ czrz(xit,}.(ibest) - xit,,‘) (11)
where w is the inertia coefficient, x{;(sbest) is the value of the
given coordinate from the best solution seen by the swarm,
x;j(ibest) is the value of the given coordinate from the best
solution seen by the ith particle, and ¢; and ¢, are constants.
Here, r, and r, are random numbers. The methodology has
been demonstrated to be efficient and powerful for global
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Figure 6. (a) Putative global stable structure of Li,y. Two metastable
structures of Li,, are depicted in (b), (c). (d) Putative global stable
structure of Liy,. The internal and external atoms are shown in red
and green, respectively.

structural convergence.'”**®” The first generation of clusters
are stochastically generated from crystal structures.

Topology-ML-PSO-DFT Protocol. Our topology-ML-PSO-
DEFT protocol consists of mainly four steps as depicted in the
flowchart of Figure 3. First, the initial structures are randomly
generated from crystal structures. Once a new structure
generated, the TFs are calculated and used to examine the
consistency of this structure with all the previous ones. When
the TFs of the two structures are the same, we conclude that
they are identical and discard the new structure. In this work,
the number of subintervals in each angstrom is the essential
parameter of our model and ultimately determines the length
of the TFs and the precision for deduplication. The larger the
number of subintervals per unit length, the more compatible
the deduplication process is. Then, the PSO procedure is
applied to generate new structures for the next generation.
After all the structures of the final generation have been
generated, the three lowest energy structures of every
generation determined by the machine learning model were
collected in a low-energy set. Eventually, the structures in the
low-energy set are further optimized using DFT calculation to
obtain more stable structures, among them the structure with
the lowest binding energy was picked as the final globally stable
structure.

DFT Calculation. For Li, clusters, to match the results of
previous studies,'”®” the DFT calculations were performed
using the same method, namely, the plane-wave projector-
augmented wave method®®*® implemented in the Vienna ab
initio simulation package (VASP)”® with an energy cutoff of
520 eV. The generalized gradient approximation (GGA) with
the Perdew—Burke—Enzerhoff parametrization (PBE)’' was
chosen as the exchange—correlation potential. The binding
energy, the energy to form a cluster with joint atoms from
isolated atoms in a vacuum, is defined as
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Epng = (Ecluster - nEatom)/n (12)
where Ejgep Eqtony and n is the energy of cluster, the energy of
the sole atom, and the numbers of atoms, respectively. The
energy was divided by n is to make clusters with a different
number of atoms comparable.

Data and Model Availability. To ensure the reproducibility of
the results, the code and data used in this work were uploaded
to Github. More details are given in the Supporting
Information.

First, we generate some data of small-size clusters for
machine learning and optimize essential parameters. With
generated data and optimized parameters, the comparisons of
the algorithm of GBR and NN were also carried out. Then, we
apply the model to predict the most stable isomer for medium-
size clusters.

Data Generation. Li is the lightest metallic element in the
periodic table. Li clusters are thus considered to be prototype
systems for understanding the various physical properties of
simple metal clusters. Numerous theoretical studies have been
performed to understand the structures of Li clusters.'>”*~"®
Here, we use the PSO method to generate the structures of Li,
clusters, where n = 3, 4, .., 10, for optimizing the essential
parameters and training our machine learning models. For each
cluster, a search with a population size of 50 was performed
and stopped at the 21st generations. All the above-mentioned
DFT calculations were performed with ion step below 20. A
total of 136 617 structures was produced. Meanwhile, it has
also carried on the processing of duplication removal for
similar structures with identical TFs. Finally, 70% of structures
are used as the training set, with the other 30% being used as
the testing set.

Parameter Optimization. First, the structure of TFs, i.e., the
number of subintervals in each angstrom and €, should be
optimized. The number of subintervals in each angstrom, n, is
an essential parameter of our model and ultimately determines
the length of the TFs and the precision for deduplication,
which means that the ng affects the number of distinct
structures we finally collect. Thus, we first optimize the
structure of TFs and €, with n, = 10. Subsequently, n; could
be optimized. As for the structure of TFs, the topological
invariants and PPI could be described by birth, death, and
persistence.

We are interested in examining the utility of the newly
proposed PPL In the comparison of the statistics in the first
three lines in Table 1, the MAE of the TFs without PPI is
0.039 eV/atom, and with PPI used the MAE is below 0.030
eV/atom. Therefore, it can be concluded that the accuracy of
the present model has been significantly improved by the
application of PPI as an auxiliary feature. More specifically, the
death of PPI is more effective than the persistence of PPL

As shown in Table 1, the combination of the persistence of
Bo P, and B, and the death of PPI would provide the lowest
MAE and the highest PCC when the value of €, was the
same. However, it is obvious when the structures of TFs were
the same, the PCC would be increased in accordance with the
increase of the value of €, but the increase was not obvious
when ¢€,,,, was greater than 10 A. Thus, we choose the
combination of the persistence of 3, f,, and 3, and death of
PPI with e, of 10 A as our TFs. These results are further
compared with previous ML model, GAP,”” with GBR as the
base ML algorithm. More details are shown in Supporting
Information. The PCC of GAP the GAP model is 0.990.
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In this work, since the structure of TFs and €,,,,, were settled,
119219, 130 099, and 132 874 distinct structures linked to the
binding energy were acquired after deduplication process from
initial 136 617 structures with n of 5, 10, and 20, respectively.
We compared the MAE and PCC of the algorithm of the GBR
and NN and found the latter algorithm had a better predictive
ability. As shown in Figure 4, the MAEs of n, = 10 and n, = 20
by NN were minimal, and their PCCs were higher than others.
A higher value of ny indicates a longer time training model
needs. Thus, the followed work was all based on the algorithm
of NN with ng of 10.

Performance on Li,. Additionally, we use the same method to
generate only two generation of Li,, and Liy clusters for
further testing our model. The learning task is to predict the
cluster binding energy of Li,, and Li,, clusters with model
learning on Li, (n = 3, 4, ..., 10) clusters. As shown in Figure 5,
the model trained on Li, (n = 3, 4, .., 10) cluster data
performed well on Li, (n =3, 4, .., 10) (PCC = 0.993) and Li,y
clusters (PCC = 0.990) but did not do well on Liy, clusters
(PCC = 0.950). The MAEs of both Li,, and Liy, are larger
than MAE of Li, (n = 3, 4, .., 10). The larger MAEs were
caused by the systematical error (overall migration of
prediction compared to true value). Since we only concerned
about relative energy values rather than absolute energy values
(it has no effect on global stable structure search when all
prediction energy values shift to lower or higher values
overall), the quality of the model was evaluated by the PCC.
The results showed that our model could be applied in a
certain range (Liy, n was the maximum value of number of
atoms learned) with wide adaptability and exactitude. The
reason for its large deviation on Liy, is that there are some
contributions from long-range interactions in large clusters that
cannot be learned from small-sized clusters. These results are
further compared with GAP, as shown in Figure S, on Liy, TF
model performs better.

Putative Globally Stable Structures of Liy, and Liy, As a case
study, we test our structure prediction protocol on Li,, and
Liy clusters. Our topology-ML-PSO-DFT protocol mainly
consists of two steps. First, a search with the population size of
2000 was performed and stopped at the 1Sth generation
through the machine learning model, which avoided the
expensive DFT calculation on screening local minimum values.
Second, three predicted lowest energy structures (determined
by our machine learning model) of every generation were
collected for deduplication and optimized through DFT
calculations. For each cluster, two independently topology-
ML-PSO-DFT structural searchs were performed and both
searchs found the same lowest energy structure.

Our predicted lowest energy structures of Li,, is composed
of three centered trigonal prisms with five additional capped
atoms, as shown in Figure 6a. This is in agreement with the
result of Ma et al. obtained by CALYPSO'*°” and Fournier et
al. obtained by using the Tabu search in the descriptor space.”’
The second and the third lowest energy structures are very
similar. The only difference is that the middle layer of the first
one is an isosceles trapezoid (Figure 6b) whereas the other is
hexagonal (see Figure 6¢). Ma et al. found the latter structure
but not the former. As shown in Figure 6d, our predicted
lowest energy structure of Liy, is a 45-atom polyicosahedron
with five missing vertex atoms. This is also in agreement with
the previous work,'> more detail of this structure could be
found in the Supporting Information. In order to demonstrate
the role of the ML model in the structure prediction, three
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independent topology-ML-PSO-DFT searches of Li,, and
three independently PSO-DFT searches of Liy, with a
population size of 20 were performed and stopped when the
lowest energy structures were found. Since the DFT
calculation is far more computationally expensive than the
ML model prediction, only the DFT calculation is used to
measure the efficiency. The average number of DFT
calculations taken of topology-ML-PSO-DFT is 21 and of
PSO-DFT is 480. The ratio of average CPU time used of
topology-ML-PSO-DFT/PSO-DFT is 1:25. Of course, a large
DFT-based data set is required for training the ML model,
which is even more computationally expensive than the
structure search. However, if we did not carry out just one,
but two or more structure searches, the ML-PSO-DFT would
reach orders of magnitude speedup compared to PSO-DFT.
For example, ML model training on Li, (n = 3, 4, ..., 10) could
be applied to the structure search of Li, (n = 11, 12, ..., 20).

In conclusion, data representation is one of three major
ingredients of machine learning (ML) studies. It becomes
more important as the data complexity increases. A wide
variety of data representation has been proposed for material
sciences. However, topology has been hardly introduced to the
field. In this work, we introduce persistent homology, a new
branch of algebraic topology, as a new tool for representing
metal cluster structures. Unlike conventional topology,
persistent homology bridges geometry and topology, achieving
an interplay between geometry and topology without down-
grading important geometric information of structures.
Persistent homology extracts low-dimensional topological
invariants from high-dimensional data. It has been successfully
applied to various data science problems. To enhance the
predictive power of persistent homology, we propose persistent
pairwise independence (PPI) as an auxiliary feature. Persistent
barcodes of both topological invariants and PPI are utilized as
cluster descriptors. Our topology-based ML models are found
to offer highly accurate predictions of lithium (Li) cluster
binding energies. Then, a systematic predictive protocol for
generating the globally stable cluster structure is constructed
by integrating a topology-based ML, particle swarm
optimization (PSO), and density functional theory (DFT)
calculation. The proposed topology-ML-PSO-DFT protocol is
validated on medium-sized Li, clusters. The predicted globally
stable structure is in agreement with that in the literature.
Therefore, the current methodology has been proved to be a
reliable approach for cluster structure prediction. It is worthy
to mention that this is the first time that topology and ML are
applied to avoid the expensive DFT calculation on screening
local minimum values. However, there are many aspects to be
improved, such as the precision and generalization. Moreover,
the method accelerating crystal structure relaxation by ML
could be integrated with our method to further accelerate
structure prediction in future work. This work is a precursor
for the prediction of multielement clusters and the structure
prediction of complex crystal surface adsorption.
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