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Semi-supervised learning (SSL) is fundamentally a geometric task: in order to classify 
high-dimensional point sets when only a small fraction of data points are labeled, the 
geometry of the unlabeled data points is exploited to gain better classifying accuracy. A 
number of state-of-the-art SSL techniques rely on label propagation through graph-based 
diffusion, with edge weights that are evaluated either analytically from the data or through 
compute-intensive training based on nonlinear and nonconvex optimization. In this paper, 
we bring discrete differential geometry to bear on this problem by introducing a graph-
based SSL approach where label diffusion uses a Laplacian operator learned from the 
geometry of the input data. From a data-dependent graph of the input, we formulate a 
biconvex loss function in terms of graph edge weights and inferred labels. Its minimization 
is achieved through alternating rounds of optimization of the Laplacian and diffusion-
based inference of labels. The resulting optimized Laplacian diffusion directionally adapts 
to the intrinsic geometric structure of the data which often concentrates in clusters or 
around low-dimensional manifolds within the high-dimensional representation space. We 
show on a range of classical datasets that our variational classification is more accurate 
than current graph-based SSL techniques. The algorithmic simplicity and efficiency of our 
discrete differential geometric approach (limited to basic linear algebra operations) also 
make it attractive, despite the seemingly complex task of optimizing all the edge weights 
of a graph.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Discrete differential geometry (DDG) has been very successful in expressing geometric concepts using complementary 
computational and mathematical points of view, for example using Discrete Exterior Calculus—see, for instance, Crane et al. 
(2013). This dual perspective has led to the development of countless practical algorithms for real-world 3D geometric data, 
ranging from curvature approximation, shape smoothing, surface parameterization, vector field design, to the computation 
of geodesic distances. While the geometric concepts at the core of all these developments are actually valid in arbitrary 
dimensions, the vast majority of DDG developments focused on surfaces embedded in 3D, or on 3D objects directly, with 
very few exceptions such as Budninskiy et al. (2017, 2019). Yet, geometry is relevant in a number of non-graphics areas.
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Error LNP HGF LLGC AEW-HGF AEW-LLGC Ours

%Labels Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
1% 0.165 0.017 0.201 0.017 0.186 0.016 0.185 0.018 0.150 0.015 0.0039 0.0105
5% 0.113 0.009 0.148 0.012 0.145 0.013 0.116 0.014 0.099 0.013 0.0021 0.0016
10% 0.094 0.009 0.116 0.007 0.127 0.008 0.074 0.011 0.079 0.017 0.0013 0.0007
20% 0.080 0.010 0.089 0.006 0.122 0.008 0.040 0.009 0.073 0.019 0.0010 0.0010
40% 0.066 0.011 0.051 0.006 0.124 0.007 0.012 0.005 0.063 0.016 0.0004 0.0006

Fig. 1. Laplacian-optimized Semi-supervised Classification. Exploiting the geometry of datasets can help with image recognition: from the COIL-20 library of 
1400 greyscale images spanning 20 classes (6 examples of class shown above) and knowing only in which class 1% of the images belong to (example of la-
beled images shown in yellow), our method learns a Laplacian operator over these images to infer the class of each unlabeled image. Our Laplacian-optimized 
approach produces a smaller error (proportion of mislabeled data points, computed as a mean and standard deviation over 20 runs with randomly-chosen 
labels) than existing semi-supervised learning techniques, even for a higher amount of labeled images (see table). For 10% of labels or more, only two 
images get sometimes misclassified (show in red) as class 5 instead of class 6. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

Over the last ten years, the advancements of machine learning have had a significant impact in science: learning al-
gorithms such as convolutional neural networks, generative adversarial networks, decision trees, or autoencoders offer 
opportunities to construct data-driven approaches to scientific problems instead of the traditional model-based approaches, 
improving efficiency and/or predictability in the process. As machine learning evolves, the importance of geometry and 
topology of data is increasingly acknowledged, see Sindhwani et al. (2010). For instance, a neural network classifier can be 
understood (or even visualized as in Playground (2018)) as applying a deformation of the input data to make it more easily 
linearly-separable: each layer nonlinearly deforms the embedding space where the data lies through an affine transform 
based on the weights of the network followed by a pointwise application of a monotone activation function as described 
in Olah (2014). Similarly, key in inferential tasks is the “manifold hypothesis”, see Zhu and Goldberg (2009), stating that data 
tend not to be uniformly distributed in their embedding space, but instead, lie approximately on manifolds of much lower 
dimensions than the embedding space. Despite the clear geometric nature of many learning approaches, limited efforts have 
been dedicated to extend discrete differential geometry techniques to high-dimensional spaces in order to develop novel, 
more powerful learning tools.

In this paper, we bring DDG to bear on SSL, and introduce a geometric approach to graph-based semi-supervised learning. 
By optimizing the edge weights of a sparse graph to customize a Laplacian operator adapted to the data, we show that 
labeling via the resulting anisotropic diffusion outperforms current approaches.

1.1. Semi-supervised learning

Semi-supervised learning (SSL, Chapelle et al. (2010)) consists in automatically classifying data (i.e., to give each data 
point a “label”—class, category, type, etc.) based on a few known labeled data points. Labeling data is often a time consuming 
task for humans, requiring the efforts of expert annotators or expensive computational probing. Unlabeled samples, on the 
other hand, are typically easy to collect, and often offer hints on the actual underlying spatial distribution of the data. Semi-
supervised learning tackles classification (i.e., inference of labels) by considering both unlabeled and labeled data: making 
use of this combined information often surpasses the classification performance that would have been obtained either by 
discarding the unlabeled data and doing fully supervised learning, or by discarding labels and doing fully unsupervised 
learning.

While deep learning methods can achieve high accuracy in classification problems by training neural networks on large 
datasets, the typical setup of SSL renders deep networks inappropriate in many contexts: there are often too few labeled 
data and/or too few unlabeled data to directly infer classification with decent accuracy. Note that recent results demon-
strate that deep networks can be successfully applied for SSL when large datasets are available; for instance, Rasmus et al. 
(2015) used a combination of supervised neural network classification with unsupervised nested denoising autoencoders 
to perform SSL; deep self-training (where more labels are gradually inferred and added) has also been proven feasible in 
specific areas such as natural language processing or face recognition, see Vesely et al. (2013); multi-layer graph convolu-
tional networks (see Kipf and Welling (2017)) have also shown promise recently. But when datasets of only moderate size 
need to be classified, popular semi-supervised learning approaches have involved, instead, mixture models, co-training and 
multiview learning, as well as semi-supervised support vector machines as in Zhu (2007). The success of these methods 
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depends critically on the validity of the underlying assumptions they make on the input data. In this paper, we focus on a 
particular class of SSL methods, so called graph-based SSL, that has consistently outperformed other methods and that offers 
interpretability, a feature lacking in deep learning.

1.2. Graph-based approaches to SSL

Foundations. A commonly-used assumption for input data stored in a meaningful embedding space is that two data points 
are likely to share the same label if they are “close” to each other, or if they lie on a same low-dimensional sub-manifold 
(i.e., if points of a same class form low dimensional subspaces locally, which can be seen as tangent spaces of a low-
dimensional manifold in the high-dimensional embedding space); see, e.g., Zhu and Goldberg (2009), Chapelle et al. (2010). 
These simple geometric assumptions, that we will respectively refer to as the cluster assumption and the manifold assumption
as various authors have done in the past (see Sindhwani et al. (2010)), are at the root of a large family of “graph-based 
methods”, including Zhu et al. (2003); Zhou et al. (2003); Wang et al. (2006); Karasuyama and Mamitsuka (2017), which 
are considered state-of-the-art methods in graph-based SSL.
Methodology. Graph-based methods begin with the creation of a sparse graph whose vertices are input (labeled and unla-
beled) data points. Typically, two data points are connected with an edge if either the distance between them is less than 
some threshold in the embedding space or if one of them is in the set of the K nearest neighbors of the other. This graph 
thus connects nearby points, and offers a discrete representation of the “geometry” of the data, which includes any sub-
manifold around which the data concentrate. Each edge of this graph is then assigned a weight based on either its length 
in the embedding space as in Belkin and Niyogi (2004) (sometimes using a data-dependent rescaling of the coordinates, 
see Karasuyama and Mamitsuka (2017)), or on the distribution of the nearest data points around as in Wang et al. (2006). 
Equipped with this weighted graph, classification is then performed typically through propagation of the known labels to 
the rest of the graph, using diffusion based on the edge weights or through some form of entropy minimization.
Strengths and limitations. One advantage of semi-supervised learning compared to deep learning is that the graph is entirely 
defined by the data: it therefore dramatically reduces the number of hyperparameters like number of layers, neuron count, 
connectivity type, etc. While SSL involves a weighted graph over which classification is performed, an obvious limitation is 
that the edge weights are rarely globally trained (i.e., optimized): they are usually chosen to be Gaussian weights à la Belkin 
and Niyogi (2004) or Locally Linear Embedding (LLE) weights à la Roweis and Saul (2000). Since these “pre-canned” weights 
strongly influence the behavior of the classifier as they indicate the similarity between data points, graph-based approaches 
to SSL also depend critically on how well the input data fits the underlying geometric assumptions in the actual embedding 
(feature) space. The few methods that try to partially optimize weights based on the input data do rely on nonlinear, 
nonconvex minimization, which hurts their scalability in practice. Note that many methods have built over this graph-based 
diffusion approach, introducing various additional terms such as iterated Laplacians (Zhou and Belkin (2011)), Tikhonov (as 
in Belkin et al. (2006)) or �1 (as in Rustamov and Klosowski (2018)) regularization, and diffusion-inspired convolutional 
filters, see Kipf and Welling (2017).

1.3. Contributions

In this paper, we approach the design of a new Laplacian-optimized diffusion for semi-supervised learning using discrete 
differential geometry. To exploit the intrinsic structure of the data which is often spatially distributed in clusters and/or on 
low-dimensional manifolds within the high-dimensional representation space, we propose a biconvex minimization where 
the edge weights of a data-dependent graph are optimized in alternation with an inference of labels over the unlabeled 
data points. This edge weight optimization constructs a Laplacian operator whose quadratic form represents a smoothness 
energy in a metric adapted to the intrinsic distribution of the input in the embedding space. The resulting Laplacian-
optimized graph diffusion of known labels exploits the geometry of the input, classifying unlabeled data more accurately 
than current SSL techniques. The algorithmic simplicity and efficiency of our approach also make it attractive, despite the 
seemingly complex task of optimizing all the graph weights.

2. Review of graph-based SSL methods

Before introducing our approach, we first delve into the existing graph-based methods to gather some of the key concepts 
we will leverage in our work, but also to point out how usual differential geometry notions (from Laplacian and Dirichlet 
energy to optimal transport) play a central role throughout this literature.

2.1. Notations

Semi-supervised learning considers an input dataset D={xi}i=1..n of n points distributed in the D-dimensional Euclidean 
space �D . The first � input points are labeled, so that the input set can be written as D = DL ∪ DU , where DL ={xi}i=1...�

are the labeled points and DU ={xi}i=�+1...n the unlabeled points, with � �n. Assuming there are C categories of labels 
(defined to be the integers {1, 2, ..., C} for simplicity), we store label information in an n ×C matrix P, such that
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Pik =
{

1 if xi ∈DL and label(xi) = k,

0 otherwise.

Note that the Euclidean norm of vectors will be denoted by ‖.‖, while the Frobenius norm of a matrix will be represented 
as ‖.‖F , with ‖M‖2

F ≡Tr(MMt). We will also denote by diag(.) the operator that turns a vector v of size k into a diagonal 
k ×k matrix diag(v) such that [diag(v)]ii =[v]i .

All graph-based methods proceed quite similarly. They begin by defining a connected graph G = (V , E ) with the nodes 
V corresponding to the n input data points, and where an edge ei j ∈E connecting points xi and x j is created iff x j is among 
the K nearest neighbors of xi or vice-versa. With this data representation, they proceed to propagate known labels through 
the graph. This label propagation is achieved through various means designed to exploit the geometric assumptions of the 
data, as we review next.

2.2. Harmonic Gaussian fields

Harmonic Gaussian fields (HGF, Zhu et al. (2003)), one of the early approaches in graph-based SSL, proposed to use a 
discrete Laplacian operator over the graph to induce diffusion of the labels. For every graph edge ei j ∈E , they assign a 
positive Gaussian weight wi j of the form:

wi j = exp
(
−‖xi − x j‖2

2/σ
2
)

, (1)

where σ is a length scale hyperparameter, typically picked based on the average distance between data points connected 
by an edge. Since these weights are known to give rise to a discrete approximation of the Laplace operator, see Belkin and 
Niyogi (2004), the inherent smoothness of the data can be leveraged by forming a harmonic interpolation of the labels 
based on these weight expressions. More precisely, let’s define the matrix Q of size n × C , where Qi denotes its i-th row 
with C values, representing the likelihood scores for node xi to be in each of the C classes. The HGF approach computes 
matrix Q as the minimizer of the following discrete Dirichlet energy:

arg min
Q

∑
ei j∈E

wi j‖Qi − Q j‖2 s.t.Qi = Pi ∀xi ∈DL . (2)

This minimization calculates C harmonic functions (one per class, stored in columns of Q) subject to label constraints; the 
inferred label of a given unlabeled node is then defined as the index of the largest element in Q’s i-th row:

label(xi) = arg max
k=1...C

Qik. (3)

This approach can be interpreted as a Gaussian regression, since it corresponds to the conditional expectation of label 
assignment assuming that the latter is a realization of a Gaussian process with a covariance function given by the Laplace 
operator; it also shares obvious connections to the graph mincut approach of Blum and Chawla (2001). Note that the 
optimal Q is easily solved for via a sparse linear system, and by definition of Eq. (2), this harmonic label propagation is 
interpolatory, i.e., known input labels are kept unaltered. Prior knowledge of class sizes can also be accommodated through 
post-processing using class mass normalization as in de Sousa (2015).

2.3. Learning with local and global consistency

Learning with Local and Global Consistency method (LLGC, Zhou et al. (2003)) relies on the same Gaussian edge weights, 
but modifies the variational problem for Q to mimic spreading activation networks: first, they replace the interpolation of P
with a fitting penalty, which only favors the initial labeling (in lieu of enforcing it exactly) to result in a globally smoother 
assignment; second, they propose to rescale the value of Q at a node xi in the Dirichlet energy by dividing by the sum 
of the edge weights emanating from that node in order to compensate for unavoidable density variation in real datasets. 
Classification is therefore achieved by solving:

arg min
Q

‖Q − P‖2
F + η

∑
ei j∈E

wi j‖ Qi√∑
k wik

− Q j√∑
k w jk

‖2. (4)

Note that this normalization of the Dirichlet energy corresponds precisely to what is called the “normalized Laplacian” 
quadratic form (Lnorm) in Normalized Cuts of Shi and Malik (2000), a well-known approach to spectral clustering. The trade-
off between the two competing energy terms in Eq. (4) is captured by a positive hyperparameter η. Finally, minimizing the 
resulting energy turns out to be an implicit integration step of diffusion as in Desbrun et al. (1999); indeed, differentiating 
the objective function shows that optimization of Eq. (4) amounts to solving:(

Id + ηLnorm)
Q = P. (5)

Unlike HGF, LLGC does not guarantee label preservation, and mislabeling happens in practice for most choices of size η. Still, 
the normalization of the Dirichlet energy allows for better results overall compared to previous methods.
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Fig. 2. Swirls. For a 2D dataset with points on 4 spiraling arms with 100 points and one label (marked as a colored cross) per spiral, previous SSL approaches 
fail to capture the obvious manifold structure of the data (each point is colored based on the inferred labeling). The three leftmost results (HGF from Zhu 
et al. (2003), LLGC from Zhou et al. (2003)) and LNP from Wang et al. (2006)) rely on local choices of edge weights, with the leftmost two overemphasizing 
label proximity and the third one focusing on local linearity instead. While the AEW approach from Karasuyama and Mamitsuka (2017) optimizes the 
weights globally (before using label propagation through HGF or LLGC), it properly discovers only two spirals at best. Our approach distinguishes the four 
spirals even with only one label per class.

2.4. Linear neighborhood propagation

The Linear Neighborhood Propagation (LNP, Wang and Zhang (2008)) departs from previous methods by rejecting the 
use of Gaussian weights since the Laplacian is certainly not the only operator to capture smoothness of label assignments. 
Instead, they take a cue from work on dimensionality reduction (namely, Locally Linear Embedding (LLE), Roweis and Saul 
(2000)), and propose to locally optimize edge weights to exploit the local linearity assumption. For a given node xi , weights 
of emanating edges ei j are found through constrained quadratic optimization:

arg min
{wi j} j∈N(i)

‖xi −
∑

j∈N(i)

wi j x j‖2 s.t. wi j ≥0 and
∑

j∈N(i)

wi j =1, (6)

where N (i) represents the indices of the vertices connected to xi in the graph G . Since this optimization is performed in-
dependently for each node, note that wi j 
=w ji , and we should consider the graph as directed in this case. The interpretation 
of this optimization, also adopted in de Sousa (2015), is clear: a weight wi j measures (between 0 and 1) how similar x j is 
to xi , independent of the actual distances unlike what is used for Gaussian weights. It is thus more likely to build strong 
edges between quite separate manifolds, whereas Gaussian weights would just assume they are only weakly linked simply 
based on large distances.

With these (directed) edge weights, the labels are inferred like in LLGC, by solving for the matrix Q that minimizes:

‖Q − P‖2
F + η

∑
i, j

wi j
∣∣∣∣Qi − Q j

∣∣∣∣2
. (7)

The resulting implicit diffusion thus uses a locally-optimized “composite” Laplacian, and this labeling was shown to improve 
accuracy sometimes.

2.5. Measure-based classifiers

Previous classifiers are, in essence, using C different scalar functions, the largest of which indicates the predicted la-
bel for a given node. Subramanya et al. Subramanya and Bilmes (2011) noted that these C values can also be seen as 
providing a histogram (or probability distribution) for each data point, measuring the probability for this point to be of 
class c. As a consequence, they proposed to consider the smoothness of an assignment of probability distributions over 
the graph (instead of the smoothness of the numerical labels) to further improve accuracy. They formulated a loss func-
tion based on Kullback-Leibler (KL) divergence1 which, after several tweaks, results in a convex programming problem. This 
problem was then solved via an alternating minimization (AM) approach, akin to the traditional Expectation-Maximization 
of Dempster et al. (1977) method, with closed-form updates. Improvements in classification accuracy were demonstrated 
from this measure-based approach. Further noting that the KL divergence cannot capture interactions between histogram 
bins, Solomon et al. (2014) suggested using optimal transport instead, and proposed a generalized Dirichlet energy over 
distribution-valued nodes of a graph to induce information propagation. However, they neither discussed computational 
complexity nor demonstrated improvement in classification accuracy.

2.6. Learning with weight optimization

Finally, the best results to date in graph-based SSL involve optimizing the edge weights globally, to best adapt them 
to the data. In fact, the idea dates back to HGF, where the authors noted that the Gaussian weights from Eq. (1) can be 
extended to read:

1 KL divergence is also called “relative entropy” or “information gain’, depending on the scientific field where it is invoked.
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Fig. 3. Weighted graph. We visualize the different weighted graphs of the Swirls example in Fig. 2 as 2D matrices where element (i, j) is wi j (for LNP, 
(wi j +w ji)/2). Points are arranged by class (first 100 for class 1, ..., last 100 for class 4), but shuffled within each class. Since weights measure similarity 
between vertices of a common edge, one should expect a block diagonal structure, with weights corresponding to interclass edges near zero. Weights below 
10−5 are not shown, and values above 0.1 are all displayed in a dark blue color.

wσ
i j = exp

( D∑
d=1

(xi,d − x j,d)
2

σ 2
d

)
(8)

where now the D scaling hyperparameters σ = (σ1, ...σD) can be optimized based on the data to “learn” the relevant dimen-
sions of the dataset. Unfortunately, Zhu et al. (2003) proposed to minimize label entropy to learn these hyperparameters, 
which led to very limited improvements: first, their optimization required regularization to prevent the hyperparameters 
from going to 0, otherwise it would end up selecting non-zero weights only between labels and their spatially closest 
unlabeled nodes; second, their entropy-based functional is highly nonlinear and nonconvex, hampering its efficient mini-
mization.

Recently, Karasuyama and Mamitsuka Karasuyama and Mamitsuka (2017) revisited this idea by optimizing parameters 
σ = (σ1, ...σD) so as to minimize an LLE-type energy instead: they compute σ through

arg min
{σ1,...,σD }

∑
i

‖xi − 1∑
k wσ

ik

∑
j∈N(i)

wσ
i j x j‖2.

That is, they mixed the LLE weights Roweis and Saul (2000) advocated in LNP with the weight normalization proposed in 
Normalized Cuts Shi and Malik (2000), and used the above “normalized LLE” energy to find the hyperparameters {σd}d=1..D
that make the weighted graph best fit the input data manifolds (i.e., for which every point can be best represented as a 
linear combination of its neighbors). The authors dubbed their approach Adaptive Edge Weighting (AEW). Unfortunately, 
the energy they use to optimize the weights is not convex. Minimizing it requires some form of gradient descent, and each 
gradient evaluation can be quite costly for high-dimensional input spaces since it is of complexity O(nK D2). Yet, diffusing 
using HGF or LLGC the known labels through the graph with AEW-optimized weights was shown to beat previous methods 
on many datasets.

2.7. Discussion

The best current diffusion-based SSL approaches rely on graphs with learned edge weights (and their corresponding 
Laplacian operators) to proceed with label propagation in a way that most effectively leverages oft-present geometric prop-
erties of large data sets. However, they are often hampered by highly nonlinear optimizations of the weights, preventing 
their scalability and reliability; moreover, the loss function used to learn the weights is totally independent of the subse-
quent diffusion or even of the labels that are known. Instead, we propose to construct a consistent optimization of edge 
weights which, with the corresponding anisotropic diffusion they define, allows to adapt to the intrinsic geometric structure 
of the data in order to capture the cluster and manifold assumptions. Our variational approach thus improves on previous 
state-of-the-art semi-supervised learning methods in a number of ways:

• Edge weights are globally optimized in order to give rise to a (possibly anisotropic) diffusion of labels that best adapts 
to the intrinsic geometry of the data;

• Our loss function is biconvex in edge weights and label likelihood scores, rendering its optimization via alternating 
minimization particularly efficient;

• The resulting label propagation is interpolatory (i.e., is guaranteed to keep the known labels intact) and not biased by 
large density variations in the input data.

More importantly, our approach outperforms previous methods on typical datasets used to evaluate labeling accuracy.

3. Our Laplacian-optimized classifier

In this section, we present our variational approach to design a classifier through optimization of the Laplace operator.
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Fig. 4. Weights visualization. For the swirls dataset (see Fig. 2), we display the top 10% (in red) and the bottom 10% (in blue) of edge weights in terms of 
their magnitude, for the various types of Laplacian used in SSL. The graph was constructed with each node connected to its 20 nearest neighbors. Optimally, 
edges connecting nearby points of the same class should have larger weights, while edges connecting different classes should have vanishing weights; our 
approach fares much better than the other SSL techniques.

3.1. Notations

We will use the same notations as defined earlier in Sec. 2.1. We also assemble the coordinates of the input data points 
into a n ×D matrix X = (x1, ...xn), and we denote by S the label selection matrix, that is, the n ×n diagonal matrix such that 
Sii =1 if xi ∈ DL (i.e., if i ≤�), and Sii =0 otherwise. Based on the data-dependent graph G = {V , E } of a set of n vertices 
V , edges E and a (fixed, but arbitrary) orientation of its edges, we also assemble the “adjacency” matrix d of size |E | ×n
containing ±1 for the endpoints of a given edge with the sign based on edge orientation; that is, dev =1 if v refers to the 
index of the target vertex of the edge with index e, dev =−1 if v refers to the index of the source vertex of the edge with 
index e, and dev =0 otherwise. This matrix is the classical discrete exterior derivative on 0-forms (see Desbrun et al. (2008)), 
i.e., a sparse matrix that is completely determined by the graph topology and the chosen edge orientations. With a slight 
notation abuse, we will also denote by |d| the same matrix but where the absolute value of each element is used instead; 
i.e., this matrix contains as many 1’s on the row i as there are neighbors of the corresponding vertex xi in G . Finally, we will 
use the n ×C matrix Q already mentioned in Sec. 2.2 to store C discrete functions on graph G that indicate the likelihood 
score for each node to be of a given class.

3.2. Parameterization of the Laplacian

A reasonable assumption for SSL is that the data in the embedding space is concentrated around a manifold or a set of 
manifolds. For example, scans of handwritten digits possess certainly less possible variations in style than the dimensionality 
of the ambient representation space which is the number of pixels the scans have. Exploiting the geometric structures of 
input datasets is thus crucial: in effect, it brings down the dimensionality of the problem at hand. Since the most successful 
approaches to graph-based SSL thus far have been based on some form of label diffusion to best leverage the structure of 
data, we adopt a similar approach here.
Failures of previous Laplacians. However, selecting a good Laplace operator to induce label propagation is a difficult task. As we 
reviewed in Sec. 2, the use of “pre-canned” weights on edges such as the Gaussian weights from Eq. (1) relies too much on 
pure distances in the embedding space to be useful, strongly biasing diffusion in high density regions; even variants taking 
local densities into account such as Zelnik-Manor and Perona (2004) to try to decrease this high dependence to irregular 
sampling suffer from this issue. Locally-optimized weights like in Eq. (6) fare sometimes better, but double the number of 
variables needed and totally ignore distances within kNN neighborhoods. Other data-dependent choices of weights such as 
AEW showed improved results by globally optimizing a more general parameterization of the weights, using the form given 
in Eq. (8). However, note that the number of hyperparameters (D) is potentially very different from the number of data 
points n: this means that one does not have much degrees of freedom to optimize if D �n (they only rescale each axis 
individually); or too many degrees of freedom if n �D (for example, images with D pixels) which could lead to overfitting. 
Moreover, their loss function is highly nonlinear and nonconvex in the edge weights, making them difficult to optimize. 
Finally, it is interesting to notice that none of the existing works have exploited the presence of labels to further improve 
weights.
DEC Laplacian. In this work, we parameterize the Laplacian by the values of its positive edge weights on the graph G using 
the notation adopted in Discrete Exterior Calculus (DEC, Desbrun et al. (2008)). If we denote the vector of all positive edge 
weights by w (given in the order of the set of edges E ) such that wi j is the weight associated with edge ei j between 
vertices i and j, the DEC Laplacian (see, for instance, Crane et al. (2013)) is expressed as:

L(w) = dt diag(w) d. (9)

Note that this expression is strictly equivalent to the usual unnormalized graph Laplacian used in SSL: indeed, if we instead 
assemble the |V | ×|V | matrix � from the vector of edge weights w through �i j =wi j and call � the diagonal matrix such 
that �ii = ∑

j W ij , one has: L(w) =� −�. The graph-based Laplacian is guaranteed to be symmetric positive semi-definite 
(with a kernel purely dependent on the topology of the weighted graph) if only non-negative weights are present, and it 
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does not depend on the choice of edge orientations. We adopt the DEC notation in this paper for one key reason: it empha-
sizes that the edge weights are the only metric dependence of the graph Laplacian, since the matrix d is purely topological. 
In fact, the diagonal matrix diag(w) can be interpreted as a discrete “diagonal” Hodge star �1 (see Bossavit (1998); Desbrun 
et al. (2008)) for differential 1-forms. Given an intrinsic metric m on a smooth manifold that the graph G represents, the 
edge weights thus approximate the continuous Hodge star of 1-forms induced by m Abraham et al. (1988). Therefore, the 
(positive) edge weights are the degrees of freedom to explore all possible intrinsic metrics in which to compute the Laplacian, 
instead of blindly sticking to the metric induced by the embedding space. This important geometric fact underlies our work.

3.3. Normalized Laplacian

Normalized Laplacians have been proposed in the past: to bring all the eigenvalues of the Laplacian between zero and 
one in mesh fairing, see Desbrun et al. (1999), to balance intercluster and intracluster similarity in spectral clustering, 
see Shi and Malik (2000), etc. In all these instances, the Laplace operator is altered by making the diagonal entries of its 
matrix representation unit. In our context of label propagation, existing (unnormalized) Laplacians have the issue that dense 
regions overpower sparse regions, as input labels in denser regions propagate much further than they should. Normalized 
Laplacians prevent that from happening by equalizing the local diffusivity on a per-vertex basis. To achieve this goal and 
render our Laplacian insensitive to large density variations, we propose to simply constrain the sum of the edge weights at each 
vertex of G to be 1, which has the effect of forcing all the diagonal entries of L to be 1. Notice that such linear constraints 
are much simpler to deal with numerically than relying on an “analytically-normalized” Laplacian with highly-nonlinear 
dependence on w as in Eq. (4) for instance. Since the operator |d|t defined in Sec. 3.1 amounts to summing edge weights 
around each vertex, we can thus write that our choice of normalization verifies, for 1 denoting the vector of all ones,

|d|tw = 1. (10)

3.4. Variational classification principle

Based on our choice of Laplacian parameterization, we now define our classification energy E, function of both the label 
likelihood scores matrix Q and the vector of all positive edge weights w, as follows:

E(Q,w) = μ‖SQ − P‖2
F + ν Tr

[
QtL(w)Q

]︸ ︷︷ ︸
(diffusion)

+α ‖L(w) X‖2
F + γ wtw︸ ︷︷ ︸

(data priors)

+β ‖1 − |d|tw‖2︸ ︷︷ ︸
(normalization)

. (11)

Classification will be performed by minimizing this energy over all positive edge weights w ∈�|E | and matrices Q ∈�n×C , 
that is, by solving:

arg min
Q,w

E(Q,w) s.t. w � 0, (12)

from which all labels are derived using Eq. (3); i.e., the index of the largest value in the C components of row Qi is the 
inferred label for xi . We postpone discussing how to perform this constrained minimization of E and how to select the 
various parameters involved (α, β, γ , μ, ν), focusing first on explaining each of the terms of Eq. (11) to understand their 
respective geometric meanings.
Diffusion. The first term simply forces the label likelihood scores Qi for each labeled data point i to be equal to its proper 
given label Pi ; we will show that with appropriate parameter choice, it promotes an interpolatory label propagation. Notice 
our use of the label selection matrix S compared to Eq. (4), so as not to add any side effects for unlabeled data. The second 
term is the Dirichlet energy of Q based on the Laplacian L(w). Its presence enforces label coherency (i.e., smoothness) 
with respect to the metric defined by the current weights w; note the actual diffusion may be strongly anisotropic if the 
geometry of data in the embedding space satisfies the manifold assumption such as in Fig. 2. The sum of these two terms is 
responsible for label diffusion: we will see that minimizing these two terms with respect to Q will lead to an interpolatory 
variant of the implicit diffusion given in Eq. (5).
Data priors. The third term of the energy E exploits the local linearity assumption of manifold learning: this biharmonic energy 
of the data (in the metric induced by the edge weights) promotes larger weights between nearby data points that are sitting 
on the same linear subspace. We thus let the metric vary to improve the square of the Dirichlet energy of the embedding of 
the data, thus capturing the smoothness present in the intrinsic geometry of the input. Note that using this biharmonic term 
is akin to the use of iterated Laplacians for SSL in Zhou and Belkin (2011) to prevent the typical spikes in point-constrained 
harmonic solutions. The fourth term encodes prior knowledge on weights through the use of a data-dependent, user-selected 
vector w of edge values: a large value wi j for a particular edge ei j forces the corresponding edge weight wi j to be small. 
This term can thus encode the usual “cluster” assumption, i.e., nearby points are likely to have similar labels. This can be 
achieved, for instance, by setting wi j ∼||xi −x j ||p as we will discuss later. Together, these energy terms regularize weights 
and prevent overfitting.
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Normalization. Finally, the fifth term serves as a penalty for deviating from a normalized Laplacian. It avoids having to enforce 
the linear constraints of Eq. (10) exactly, and maintains the simplicity of the energy since only quadratic terms are used. 
Note that enforcing exact normalization is not particularly vital: we only need to roughly equalize the various scales of the 
Laplacian, for which a penalty energy amply suffices.

3.5. Optimality conditions

Our particular choice of energy does not only exploit the traditional (cluster and manifold) assumptions of SSL: our 
energy also has, by design, the nice property of being biconvex, i.e., it is convex in w for a fixed matrix Q, and in Q for a 
fixed set of weights w. We now describe the conditions of optimality for these two convex energies.
Label optimality. For a fixed set of weights w, the optimal label matrix Q∗ is given as:

Q∗ = arg min
Q∈�n×C

E(Q,w).

Setting the derivative of E with respect to Q, ∂E/∂Q =2μSt (SQ − P) + 2νL(w)Q, to zero yields the necessary optimality 
condition (since SP =P and SS =S by definition):(

S + ν

μ
L(w)

)
Q∗ = P. (13)

Observe that it corresponds to an implicit integration step of graph diffusion of P based on the metric imposed by the fixed 
weights, matching the diffusion from Eq. (5) but with the added use of our selection matrix—which only adds extra terms 
on labeled points. Assuming the diagonal terms of the Laplacian are unit, these extra terms guarantee that labeled nodes 
will have a likelihood score above μ/(ν+μ) for their original label, and below ν/(ν + μ) for all their other (C-1) label 
scores. As a consequence, selecting ν/μ <1 will guarantee interpolatory diffusion. In practice, we will use ν/μ = 1

2 to allow 
slack since weights are only weakly constrained to sum to one per data point.
Weight optimality. If we now fix matrix Q, the optimal weights w∗ are found through a convex quadratic programming (QP) 
problem:

arg min
w∈�|E |

E(Q,w) s.t. w � 0. (14)

For computational convenience, our energy can be rewritten (proof omitted as being an unenlightening exercise in linear 
algebra) as a quadratic form of w as follows:

E(Q,w) = 1
2 wtA w + wt b + c (15)

where the sparse matrix A ∈�|E | is assembled once and for all as:

A = 2
(
α (ddt)�(dXXtdt) + β |d||d|t)

with � denoting the Hadamard (elementwise) product, the vector b∈R|E | is easily evaluated based on Q through:

bi j = γ wi j + ν‖Qi − Q j‖2 − 4β,

and the vector c does not depend on w. Note that the matrix A is positive-definite, sparse and easy to assemble, making 
the underlying QP problem particularly simple to solve.

3.6. Optimization

The constrained minimization of Eq. (12) can be efficiently performed by exploiting its biconvexity: it lends itself natu-
rally to alternating minimization, see Csiszár and Tusnády (1984), where the energy is minimized with respect to each of its 
two variables in alternation, guaranteeing the decrease of the energy as iterations go.

Algorithm 1 Alternating optimization of weights and labels.
Initialize Q = 0
repeat

Update weights w via sparse QP solve � Eq. (15)
Update Q via sparse linear solve � Eq. (13)

until convergence
Output: Q as the matrix of label likelihoods

Alternating steps. We proceed with the minimization of E as outlined in Algorithm 1: starting from a matrix Q set to zero, 
we repeatedly solve for optimal weights and optimal label likelihoods Q until convergence, i.e., until both variables do not 
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change more than a prescribed threshold per step. This simple procedure was found to perform more efficiently than other 
strategies: we tried for instance to start with Gaussian weights (Eq. (1)) with σ based on the median edge length of the 
graph, but found it was actually increasing computational time to reach convergence, while leading to very similar optimal 
label likelihood scores.
Fast solves. While optimizing Q corresponds to a simple sparse linear solve using Eq. (13), optimizing w is more expensive: 
solving the QP problem in Eq. (14) with existing solvers is significantly slower than a linear solve for large graphs. We 
instead solve this QP problem by exploiting the simplicity of the inequality constraints and the sparsity of matrix A: we 
employ a variation of Entropic Mirror Descent (EMD, Beck and Teboulle (2003)), which amounts to iteratively solving for 
the optimal weights through:

wk+1 = wk� ExpClip
(
−(

Awk + b
))

,

where ExpClip denotes the exponential function applied to each component of its vector argument, with the final values 
being clipped if they are outside of the range [1 −h, 1 +h] to prevent too large updates of weights. The value of h is initialized 
to 1

2 , and reduced by a factor 0.8 each time E(wk+1) > E(wk) to force smaller update sizes. This choice is particularly 
appropriate because of two key factors. First, the weights are constrained to be strictly positive, so this multiplicative update 
automatically maintains this property (by working in log space). Second, it bypasses the need for an involved line search by 
exploiting the convexity of the function and by implicitly using entropic regularization (preventing the new weights from 
moving far-away from the previous weights based on generalized KL divergence, see Beck and Teboulle (2003)): adaptive 
time stepping along the gradient Aw +b of the energy is thus parameter-free, and particularly efficient since A is sparse and 
updates are achieved in parallel.

3.7. Implementation details

We now go over our classification procedure in more details. In particular, we review how the graph is created and how 
the various hyperparameters are adapted to the input data.
Graph assembly. From the input (labeled and unlabeled) data points, we form the graph G by creating an edge ei j ∈E
between two points xi and x j iff x j is among the K nearest neighbors of xi or vice-versa. This graph construction is 
common to all previous works, and we use a value for K =10 in all our examples (with the exception of Swirls (Figs. 2&4) 
where we use 20 neighbors to better demonstrate visually the behavior of weight optimization).
Insertion of interclass edges. Moreover, we insert additional edges between labels: for each labeled node xi of class c, we 
add edges to 10% (at least 5 for small datasets) of the other labeled nodes of the same class, picked randomly within the 
input. These additional “randomized” label-to-label edges help making sure that labels have a big role to play in deciding 
edge weights: they allow for long edges acting as bridges between different spatial components of the same class. Previous 
methods did not tailor the graph based on labels as it may create more valence imbalance; instead, our Laplacian param-
eterization exploits the presence of these added label-to-label edges to find a more appropriate Laplacian to perform the 
label diffusion with, while normalization prevents the typical issues with high valences.
Choice of weight priors. In order to constrain the range search of weights and prevent overfitting, we use a vector w to act 
as a prior on weights: for every edge ei j that is not linking two labeled nodes of the same class, we set: wi j =‖xi − x j‖4, 
to induce smaller weights on long edges; all other values of w are set to zero. The Euclidean distance to the power 4
was chosen after several experiments, which showed in particular that squared distances or inverse Gaussian weights did 
not perform as well. Other priors could be used, based on geometric quantities such as distances between tangent spaces 
as in Wang et al. (2011) and accumulated path curvatures, or even non-geometric data specific choices such as enforcing 
sparsity through �1 regularization as proposed in Rustamov and Klosowski (2018). We only used the distance to power 
p = 4 in all our tests not to obfuscate the interpretation of our results.
Fixing hyperparameters. Hyperparameter selection can be performed using cross-validation. However, when very few labels 
are known (e.g., COIL-20 dataset with 1 label per class, see Fig. 1), cross-validation is inadequate. In order to overcome 
this issue, we apply a set of simple heuristics for parameter selection that can be used for any input dataset. While our 
classification energy E in Eq. (11) uses five hyperparameters, we actually keep γ =1 as a gauge, and compute data-depen-
dent values for most of the others as follows. We begin with a “canonical” energy using μ = 2 and ν =α =β =γ = 1, 
corresponding to a diffusion step size of 1/2. After the first round of optimizations (one step for Q, one step for w, see 
Algorithm 1), we adjust the hyperparameters as follows:

• if 1000γ wt w ≤ν Tr
[
Qt L(w)Q

]
, we change the value of ν to:

ν = γ

1000
wtw/Tr

[
QtL(w)Q

]
.

The rationale behind this choice comes from the fact that the trace term is the only “cross term” for which Q and 
w interact, penalizing edge weights between nodes with strongly varying likelihoods. While this cross term penalizes 
diffusion across class borders, it may overpower prior-based contribution wt w if ν and γ are not chosen carefully to 
balance the contributions of these terms. In practice, we found that choosing a value for ν such that the second term 
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Table 1
Datasets tested in this paper.

Parameters Data characteristics Relevant figures
Dataset K α D n C

Swirls 20 0.5 2 400 4 Figs. 2, 3, 4
COIL-20 10 1 16384 1440 20 Figs. 1, 8(b)
MNIST-1K 10 3 784 1000 10 Figs. 5(left), 9(left)
MNIST-5K 10 3 784 5000 10 Figs. 5(right), 9(right)K
USPS-1K 10 3 256 1000 10 Figs. 6(left), 9(right)
USPS-5K 10 3 256 5000 10 Figs. 6(right), 9(right)
Vowels 10 3 10 990 11 Fig. 10(left)
Seeds 10 3 1024 1990 38 Fig. 10(middle)
Yale 10 3 7 210 3 Fig. 10(right)

Fig. 5. MNIST. For the MNIST-1K (left) and MNIST-5K (right), Laplacian-optimized classification outperforms all other methods, independent of the number 
of labels used. Note that AEW cannot handle the 5K dataset in a reasonable amount of time, hence its omission.

is about 1000 times smaller than the fifth energy term after the first iteration of Algorithm 1 leads to the best results, 
hence this parameter selection.

• if ν is changed, μ is set to 2ν to keep a diffusion step size of 1/2.
• if the sum of the adjacent edge weights of a node is above 2 or below 1/2, we increase β by 1 in order to tighten the 

normalization constraint on the Laplacian.

While these updates of the parameters could be done after each round of optimizations, we found that ν rarely changes 
after the first time, so we opted to only update ν (and consequently, μ) once. We do keep tracking the normalization term 
though, increasing β as needed. In practice, we never found a case where β goes over 22, so this adaptation of β is rare and 
minor in magnitude. The only hyperparameter that is not set automatically is α. Our approach thus has the same number 
of hyperparameters as HGF or LLGC (which use η to adapt to the data). Additionally, our tests show that the optimal choice 
of α covers only a small range: it is always between 0.5 and 3 in all our examples (see Table 1). Therefore, as usual in 
SSL, we run our classification in parallel using values of α in the set {0.5, 1, 2, 3} on a random subset of the dataset and 
pick the best of these four values. From our tests, it seems that α has to be raised when the data does not have a clear 
manifold structure (explaining why the swirl dataset uses α=0.5 while the speech vowel, which is more spread out in high 
dimension, requires α=3 to perform best), since the ratio α/γ indicates how much the manifold assumption is treated 
over other priors. There may thus be a way to set α directly through a finer evaluation of the input dataset; but tests on 
many more sets should be performed to validate this assumption. Finally, note that this simple hyperparameter selection is 
already enough to outperform other graph-based SSL methods as we will demonstrate shortly; but cross-validation can be 
employed instead (when appropriate) to further improve performance as it can lead to better data-adapted hyperparameter 
values.
Energy minimization. Alternate optimizations of the two arguments of the energy are performed as explained in Sec. 3.6. 
For the optimization of Q, we add the identity matrix times 10−8 to the Laplacian to remove its kernel and prevent numer-
ical issues; we use the SuperLU solver from scipy.sparse to solve the resulting sparse linear system. For the optimization of 
the weights w, EMD iterations are performed until the relative change of energy becomes smaller than 10−7. Note that this 
EMD approach scales very well: as we will demonstrate in Sec. 4.6, the computational gain we obtain compared to a QP 
solver like OSQP from Stellato et al. (2017) is already a factor 10 on small datasets (n =1000), and grows quickly to multiple 
orders of magnitude with the size of the dataset.

3.8. Discussion

We conclude this section with a few comments on our geometric approach to SSL and possible extensions.
Importance of embedding space. Because we optimize the edge weights to capture the best metric in which to exploit 
the geometry of the input data, our approach is less sensitive to the choice of embedding space than methods based on 
pre-canned weights. However, the cluster and manifold assumptions are all the more valid if data is captured in a space 
where coordinates are meaningful. While our results show good behavior on typical datasets, finding a better feature space 
for a given dataset would improve the results further.
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Fig. 6. USPS. For the USPS-1K (left) and USPS-5K (right), Laplacian-optimized classification outperforms all other methods, independent of the number of 
labels used. Note that AEW cannot handle the 5K dataset in a reasonable amount of time, hence its omission.

Importance of graph connectivity. Our graph connectivity is entirely determined (aside from the few randomized edges 
between labels of identical classes) by the Euclidean distance between nodes. Using other notions of proximity graphs 
(e.g. mutual kNN or ε-ball NN) and other distances (or kernels) for this construction could also be considered. The cosine 
distance d(x, y) =1 −xt y/(‖x‖‖y‖) is another common notion of distance, which indeed leads to marginal improvements to 
our results on a few datasets. We kept the Euclidean distance in all of our tests to allow for fair comparisons across the 
various datasets.
Post-processing. While we directly infer labels based on the maximum values of the label likelihood scores in Q for sim-
plicity, more involved techniques could be used, using either k-means clustering or entropy minimization (in which case, 
a three-way alternating minimization approach could be performed). Moreover, class mass normalization could be used if 
class sizes are known as priors, as in Zhu et al. (2003).
Frobenius norm vs. cross-entropy. A sum-of-squares error function is not the most appropriate for classification problems: it 
corresponds to a maximum likelihood estimation with the assumption of Gaussian distributed target data. Using an entropy-
based energy in lieu of ‖SQ − P‖2

F is theoretically preferable. However, it would make the (still convex) minimization with 
respect to Q no longer as simple as a sparse linear solve. So any labeling benefit derived from this change in our energy 
would suffer increased computational times.
Interpretation of edge weight optimization. As expected due to our used of geometric data priors, we observe that our 
SSL implicitly learns an intrinsic metric for the data in which an anisotropic label diffusion is performed. Indeed, Fig. 4
demonstrates that the larger the edge weight is, the more likely the associated edge vertices are from the same class. 
Diffusivity is thus strong within each class, but weak across classes.
Transductive vs. inductive learning. In most graph-based frameworks, semi-supervised learning is often only transductive, 
i.e., the classification is only done for the unlabeled points in the training set. LNP Wang et al. (2006) suggested that 
inductive learning can also be performed, i.e., the classification of a new point which was not an unlabeled point in the 
training set can be performed as well. We can employ the same strategy by estimating the weights for the neighborhood of 
the new point locally once we added it to the graph without retraining the whole set, and then use diffusion of class labels 
to perform class inference for the new point.

4. Results and comparisons

In this section, we evaluate our Laplacian-optimized SSL method on a number of datasets with various characteristics 
(data size, dimension of the embedding space, number of classes, etc) to study its efficiency and classification accuracy. We 
also compare our results to previous methods in order to understand the pros and cons of our approach.

4.1. SSL methods

In all our tests, we compare our method to HGF from Zhu et al. (2003), LLGC from Zhou et al. (2003), LNP from Wang 
et al. (2006), as well as the most recent AEW-HGF and AEW-LLGC (i.e., the AEW-based optimization of edge weights 
from Karasuyama and Mamitsuka (2017), followed by either HGF-based or LLGC-based label diffusion as recommended by 
the authors). These methods were shown to outperform all basic classification techniques (such a nearest-neighbor voting 
or SVM), so we did not include earlier SSL techniques for conciseness.

For HGF and LLGC that use Gaussian weights, we use a standard deviation σ equal to the median edge length and use 
the diffusion parameters recommended in the original papers. Given its heavy computational requirements, we implemented 
AEW with TensorFlow (Abadi et al. (2015)) to exploit parallelism. Finally, OSQP (Stellato et al. (2017)) is used to solve the 
QP problems arising in LNP, as it systematically outperformed CVX (Grant and Boyd (2014)).

4.2. Datasets

In order to test our technique on very different types of data, we selected the following well-known datasets as they 
cover geometric, image, sound and biology datasets and they have been extensively tested in previous SSL papers. Each of 
these datasets contains all the labels for all the data points; we can thus test classification methods using only a percentage 
(varying from 1% to 40%) of randomly selected labels, and compare the results to the ground-truth labels.
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Fig. 7. Mislabeled images. For MNIST (left) and USPS (right), four examples of images that our approach misclassifies for 1% of labels.

Fig. 8. Heatmaps. Laplacian-optimized classification performs systematically better than existing SSL algorithms for various percentage of labels in the 
swirls and COIL-20 datasets. The other trained approach, AEW, often performs 10 times worse, while predefined-weights approaches lead to even worse 
results.

Swirls. This pointset in D =2 dimensions contains 4 classes (one spiraling arm per class) of 100 points each (thus, n =400). 
This simplistic test (inspired by a similar dataset in Karasuyama and Mamitsuka (2017)) already highlights how well a 
variational SSL technique can leverage the manifold structure of data, compared to deciding labeling purely based on shortest 
distances; see Fig. 2. Despite its low-dimensionality, symmetry and obvious manifold structure, other methods surprisingly 
struggle with this example. This indicates that previous SSL approaches could easily fail even if applied to the output of one 
of the many existing dimensionality reduction algorithms (e.g., Isomap and LLE).
COIL. The Columbia University Image Library (COIL-20 from Nene et al. (1996)) dataset contains n =1440 grayscale images 
of 128 × 128 pixels (hence, D =16384). There are 72 images per class, and 20 classes (see class examples in Fig. 1). Each 
class consists in an object (toy car, sandwich, mug, etc) photographed from different angles.
MNIST. The MNIST dataset is a very common collection of grayscale images of handwritten digits of size 28 ×28 pixels (thus, 
D =784), with 10 classes (digits 0 to 9). We consider several subsets to test the influence of the size of the input, with 
n =500, 1000, 2000, 5000 and 10000.
USPS. The USPS dataset is similar to the MNIST dataset (grayscale images of digits as well), but with a coarser resolution 
(16 ×16 pixels, D =256). Just like for MNIST, we also consider several subsets with n varying from 500 to 10000 to test 
scalability and accuracy.
Vowels. This dataset of Dheeru and Taniskidou (2017) uses the Deterding numerical description of n =990 British-English vowel 
sounds pronounced by different people (10 scores per sound, D =10), for 11 different vowels.
Yale faces. The Yale Face Dataset B of Georghiades et al. (2001) consists of 32 ×32 grayscale images (D =1024) of 38 people 
with different lighting conditions and facial expressions. There are 50 images per person, leading to a total number of points 
of n =1990.
Seeds. The Wheat Seeds dataset of Dheeru and Taniskidou (2017) contains descriptions of seed kernels belonging to three 
different types of wheat, with 70 observations for each (hence, n =210). Each seed kernel is represented with D =7 geo-
metric features (area, perimeter, compactness, etc).

4.3. Measuring accuracy

To obtain a reasonable estimate of a method’s classification performance and to adhere to common practices of the SSL 
community, each of our results is obtained by running 20 labeling processes with a fixed amount of randomly-selected 
input labels. For each run, we compute the 0/1 error, i.e., the proportion of mislabeled data points:

Error = 1

n

n∑
i=1

1label(i) 
=ground_truth(i). (16)

We then report the mean and standard deviation of this error over the 20 runs. Observe that random guessing of labels over 
C classes would result in an error of 1 −1/C , so any mean error below this value indicates classifying power.
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Fig. 9. Varying data sizes. By randomly subsampling MNIST (left) / USPS (right), we can test the various SSL algorithms for varying data sizes (from n =500
to 10, 000) and 10% of labels. Our Laplacian-optimized classifier exceeds all other approaches in accuracy, as demonstrated through barplots using the 0/1 
error (proportion of mislabeled points) averaged over 20 runs with randomly selected labels.

Fig. 10. Varying label proportions. On all the datasets we tried (here, seeds/vowels/Yale), classification performs better as the number of labels grows. 
While a low percentage of labels is common, we note that the accuracy of different methods increases at different rates with the percentage of labels. Our 
Laplacian-optimized approach behaves consistently on all datasets, quickly increasing accuracy as the number of labels increases.

4.4. Varying number of input labels

We tested our approach and other SSL techniques for varying proportions of labeled points: 1%, 5%, 10%, 20% and 40%. 
While real datasets cannot be reasonably expected to have more than 10% of labeled points, this test is important to prove 
“convergence” as the number of labels increases.

For Swirls, our Laplacian-optimized approach is the only one that recognized the four spiral-shaped classes perfectly at 
all label proportions, as seen in Fig. 8(a). Surprisingly, LNP improves only marginally with the number of labels, pointing to 
the need of having some notion of distance for the weights to be efficient at labeling. The AEW-optimized weights can only 
reconstruct the four classes perfectly when there is more than 20% of labels: this poor performance is probably due to the 
fact that having only one coefficient per dimension in �2 is not enough to adapt to the data.

For COIL, our approach significantly outperforms all other methods for all label proportions as well, see Fig. 8(b). LNP 
fares better than on swirls, but is only marginally better than HGF. Notice also that the AEW-optimized weights perform 
quite differently if they are used with HGF or LLGC for label propagation, which makes sense since the functional being 
minimized is not really related to either of these diffusion processes, unlike in our framework. Starting at 10% of labels, our 
technique only misclassifies a maximum of two images (see Fig. 1), which is 10 to 25 times better than other methods, and 
these two images are arguably taken from an angle that makes them similar to another class (class 6 in the figure, instead 
of class 5).

For the MNIST-1K, MNIST-5K, USPS-1K, and USPS-5K datasets, we also outperform the other methods systematically as 
demonstrated by the barplots in Figs. 5 and 6. Here again, LNP fails to show much improvement as the number of labels 
increases. While HGF performs very poorly for 1% of labels, it produces surprisingly good results for higher percentages. 
As expected, HGF and our approach are always interpolatory, while LNP, AEW-LLGC and LLGC quickly start violating input 
information in almost every tested dataset; for MNIST-1K, they mislabel 1-2 input data points when only 5% labels are 
given, and for 40% labels, they make respectively 182, 51 and 16 mistakes on average. Note that we did not include AEW 
results for the 5K datasets: the optimization required by AEW did not converge even after six hours using TensorFlow; but 
even for 1K datasets, AEW-optimized weights actually perform worse than Gaussian weights.

The other datasets offer more uniform results, see Fig. 10. In particular, all the methods perform about the same for the 
vowel dataset, which suggests that either there are not enough points, or there is a lack of well-defined geometric structures 
in this dataset. Still, our diffusion-optimized labeling performs nearly best on all these examples for all label proportions, 
with a noticeable improvement over previous methods for the Yale dataset. Table 2 recaps our results.

4.5. Varying dataset sizes

For our next set of experiments, we kept the proportion of labels fixed, but increased the size of the dataset instead. 
Intuitively, the more populated the dataset is, the more clear the geometric information we rely on should become, since 
the presence of clusters or manifolds ought to be more obvious as the number of unlabeled data points increases.
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Table 2
Varying proportion of labels (with mean and standard deviation of 0/1 error, Eq. (16)).

Error LNP HGF LLGC AEW-HGF AEW-LLGC Ours
Dataset %labels Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Swirls

1 0.676 0.056 0.564 0.057 0.538 0.061 0.273 0.122 0.157 0.076 0.000 0.000
5 0.633 0.073 0.213 0.056 0.281 0.064 0.019 0.031 0.014 0.022 0.000 0.000
10 0.596 0.096 0.093 0.039 0.173 0.045 0.003 0.013 0.003 0.007 0.000 0.000
20 0.568 0.057 0.035 0.031 0.147 0.045 0.000 0.000 0.000 0.000 0.000 0.000
40 0.589 0.038 0.006 0.014 0.128 0.055 0.000 0.000 0.000 0.000 0.000 0.000

MNIST-1K

1 0.612 0.111 0.606 0.076 0.489 0.060 0.701 0.078 0.474 0.060 0.444 0.062
5 0.556 0.125 0.268 0.026 0.304 0.025 0.320 0.032 0.332 0.034 0.212 0.023
10 0.562 0.091 0.205 0.012 0.270 0.023 0.215 0.013 0.299 0.023 0.158 0.014
20 0.577 0.065 0.141 0.014 0.224 0.020 0.141 0.013 0.269 0.027 0.107 0.012
40 0.567 0.052 0.086 0.007 0.168 0.010 0.081 0.008 0.230 0.015 0.062 0.007

USPS-1K

1 0.672 0.102 0.656 0.086 0.524 0.048 0.770 0.071 0.550 0.050 0.454 0.042
5 0.596 0.081 0.315 0.040 0.362 0.050 0.413 0.042 0.422 0.055 0.233 0.026
10 0.576 0.091 0.220 0.027 0.308 0.055 0.256 0.030 0.377 0.060 0.164 0.024
20 0.593 0.080 0.147 0.011 0.248 0.032 0.157 0.013 0.334 0.042 0.099 0.012
40 0.604 0.050 0.086 0.009 0.191 0.016 0.086 0.009 0.321 0.026 0.052 0.008

MNIST-5K

1 0.297 0.081 0.296 0.063 0.176 0.028 Not converged 0.162 0.028
5 0.184 0.035 0.097 0.008 0.108 0.009 Not converged 0.078 0.008
10 0.154 0.019 0.076 0.005 0.092 0.006 Not converged 0.059 0.005
20 0.130 0.012 0.059 0.003 0.078 0.003 Not converged 0.044 0.003
40 0.123 0.005 0.040 0.002 0.065 0.002 Not converged 0.029 0.002

USPS-5K

1 0.335 0.077 0.283 0.038 0.204 0.025 Not converged 0.183 0.027
5 0.229 0.040 0.117 0.007 0.133 0.009 Not converged 0.086 0.007
10 0.203 0.028 0.089 0.004 0.114 0.006 Not converged 0.061 0.003
20 0.174 0.016 0.066 0.003 0.098 0.004 Not converged 0.042 0.003
40 0.159 0.009 0.041 0.003 0.078 0.003 Not converged 0.025 0.003

Vowels

1 0.685 0.030 0.704 0.036 0.691 0.036 0.739 0.029 0.692 0.033 0.702 0.037
5 0.517 0.035 0.472 0.041 0.498 0.035 0.483 0.038 0.474 0.047 0.475 0.037
10 0.388 0.039 0.319 0.026 0.389 0.036 0.299 0.038 0.306 0.035 0.292 0.028
20 0.296 0.026 0.194 0.026 0.311 0.029 0.158 0.029 0.194 0.032 0.150 0.022
40 0.234 0.026 0.084 0.013 0.230 0.018 0.035 0.011 0.096 0.014 0.042 0.011

Seeds

1 0.474 0.152 0.204 0.147 0.141 0.075 0.233 0.157 0.160 0.100 0.172 0.096
5 0.337 0.171 0.107 0.013 0.105 0.017 0.106 0.011 0.105 0.010 0.111 0.016
10 0.273 0.147 0.096 0.011 0.094 0.008 0.096 0.013 0.096 0.009 0.095 0.010
20 0.237 0.111 0.084 0.010 0.092 0.007 0.083 0.014 0.094 0.010 0.084 0.014
40 0.254 0.096 0.063 0.013 0.088 0.006 0.060 0.014 0.094 0.006 0.062 0.014

Yale

1 0.684 0.064 0.778 0.020 0.761 0.020 0.718 0.025 0.677 0.028 0.535 0.028
5 0.601 0.134 0.670 0.023 0.675 0.021 0.573 0.029 0.560 0.031 0.399 0.024
10 0.546 0.190 0.505 0.015 0.554 0.018 0.382 0.017 0.413 0.017 0.251 0.013
20 0.476 0.215 0.368 0.010 0.442 0.016 0.276 0.011 0.321 0.019 0.177 0.008
40 0.427 0.127 0.221 0.010 0.312 0.010 0.161 0.009 0.229 0.016 0.103 0.005

We used the MNIST and USPS datasets for this test, and randomly downsampled them to n =10000, 5000, 2000, 1000, 
and 500 to have five testing sizes. Once again, AEW was only performed for sizes below 2000, as the optimization would 
not finish in less than six hours for the largest size. As demonstrated in Fig. 9 through horizontal barplots, all methods 
benefit from an increase in data points, giving credence to the geometric hypothesis that datasets are spatially distributed 
in a fashion that can be exploited for classification. Moreover, Laplacian-optimized weights beat all other methods for all 
five dataset sizes, be it for MNIST or for USPS. HGF is surprisingly accurate on these datasets (being slightly better than 
AEW), but fails to match our results. See also Fig. 7 to check examples of images (representing, arguably, very distorted 
digits) that fail to be properly classified. Table 3 recaps all the results.

4.6. Further evaluation of our approach

Finally, we conducted more tests on our approach to justify some of our previous claims and to offer a better under-
standing of what makes it competitive.
Optimized weights. Even the simplest dataset offers some interesting insights on our approach: Fig. 4 displays the top and 
bottom 10% of weights ordered by magnitude for the swirls dataset (for K =20) to show where the diffusion is most pre-
ferred, and most avoided. While LNP clearly fails to capture the data by overemphasizing local linearity, Gaussian weights 
only partially capture the manifolds (see the large gaps between red edges) and assign very small weights almost only to 
edges across spirals (see blue edges). Instead, our Laplacian optimization consolidates the manifolds by assigning all man-
ifold edges with high weights (red edges), while blue edges (i.e., small weights) are not just between spirals, but also for 
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Table 3
Varying data size with 10% of labels (with mean and standard deviation of 0/1 error, Eq. (16)).

Error LNP HGF LLGC AEW-HGF AEW-LLGC Ours
Dataset N Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

MNIST

500 0.692 0.161 0.245 0.027 0.349 0.029 0.261 0.027 0.408 0.043 0.198 0.034
1000 0.562 0.091 0.205 0.012 0.270 0.023 0.215 0.013 0.299 0.023 0.158 0.014
2000 0.355 0.047 0.129 0.008 0.170 0.012 0.133 0.009 0.183 0.016 0.108 0.008
5000 0.154 0.019 0.076 0.005 0.092 0.006 Not converged 0.059 0.005
10000 0.088 0.007 0.059 0.002 0.073 0.004 Not converged 0.045 0.002

USPS

500 0.729 0.086 0.318 0.039 0.453 0.074 0.377 0.042 0.526 0.066 0.239 0.027
1000 0.576 0.091 0.220 0.027 0.308 0.055 0.256 0.030 0.377 0.060 0.164 0.024
2000 0.396 0.052 0.141 0.014 0.193 0.014 0.162 0.014 0.240 0.018 0.100 0.012
5000 0.203 0.028 0.089 0.004 0.114 0.006 Not converged 0.061 0.003
10000 0.101 0.008 0.068 0.004 0.086 0.005 Not converged 0.044 0.003

geodesically-distant points, which is the right choice to create a data-adapted Laplacian. In this example, AEW shows nearly 
no improvement over the Gaussian weights: optimizing the only two scaling hyperparameters does not make much of a dif-
ference since the data is not homogeneous in either coordinate and does not exhibit global anisotropy. Another visualization 
is also instructive: Fig. 3 shows a matrix-form display of the weighted graphs generated by the various methods, for the 
same graph based on swirls. Clearly, the Gaussian-based and LLE-based weighted graphs connect a lot of nodes in differ-
ent classes; AEW manages to partially improve the situation, but it still connects different classes. Our Laplacian-optimized 
approach eliminates undesirable edges, and the 4-class structure becomes very clear, leading to perfect labeling prediction 
when label diffusion is performed.
EMD vs. SQP. As part of our biconvex optimization, we use an iterative EMD approach instead of a classical QP solver. In order 
to verify that our alternate solver leads to speed improvement, we ran weights optimizations for various sizes of graphs (we 
used MNIST-5K with an increasing amount of nearest neighbors K to obtain examples with a growing amount of edges). As 
the inset indicates, we see several orders of magnitude improvements compared to OSQP Stellato et al. (2017), already for 
sizes of the order of 40K.

Alternating optimization. One could think that the single “cross term” using both Q and w is not enough to play a big role 
in our energy. Yet, on COIL for 1% of labeled points, using just the first optimization round of weights and labels leads 
to a classifying error of 1%, while after 5 rounds of alternating minimization, the error goes down to 0.39%. Even for 5% 
of labeled data, the error after one round of optimization is 0.35%, and goes to 0.21% after convergence. Our alternating 
optimization can thus have a significant effect on the classifier’s accuracy. We note also that the optimization of w becomes 
faster as the solver goes on: while the first weight optimization takes 370 EMD iterations on the COIL-20 dataset, the second 
optimization round only takes 170 EMD iterations, and all subsequent rounds take less than 30 EMD iterations.
Timings. All methods first involve the same graph construction (which can be implemented in O(n log n) with a dedicated 
nearest-neighbor data structure for high dimensions), so we disregard this preprocessing step in our discussion of timings. 
HGF and LLGC are the fastest, as they only involve a sparse linear solve. LNP is more time consuming due to the fact that 
finding optimal weights requires solving 2n QP solves and a non-symmetric matrix in the diffusion solve. Our algorithm is 
in between these methods: as a concrete example, on the same laptop and using COIL-20 with 1% of labels, our approach 
takes 4 seconds (excluding the offline computation of the matrix A, which has complexity of O(nD) and can be assembled 
efficiently through parallelization), while LNP took 14 seconds, and HGF and LLGC took 0.1 seconds. Comparatively, AEW 
took 137 seconds, that is, over thirty times slower than our approach. Note finally that based on our tests, the empirical 
complexity of our EMD-based biconvex optimization for classification is O(n1.6), although a more efficient implementation 
may further reduce this empirical computational complexity.

5. Conclusions

In this paper, we showed that the geometry of complex data can be leveraged through a sparse, nearest-neighbor graph 
and an optimized Laplacian over this graph, in order for a label diffusion to directly infer classification of all unlabeled 
nodes. This simple algorithm matches or exceeds the accuracy of all previous diffusion-based SSL techniques on a variety of 
datasets. At its core is a biconvex energy which optimizes the edge weights to directionally adapt a graph diffusion process 
to propagate labels over the dataset by exploiting its intrinsic geometric structure.
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Future work. Our work raises a number of interesting research questions mixing machine learning and geometry in high 
dimensional spaces. Still in the context of SSL, inductive learning is trivial to incorporate in our framework as we briefly 
discussed earlier: for any new data point, we can recompute optimal weights in its two-ring neighbors and use the opti-
mized weights to label it. However, this approach will become inefficient if a significant number of new points are added. 
Finding ways to update weights and likelihood scores efficiently could be useful in online applications for instance. Applying 
the graph convolutional network method of Kipf and Welling (2017) to our optimized Laplacian is also an intriguing direc-
tion, which could allow the method to scale to large datasets more efficiently. Our geometric approach to classification could 
also be used for geometric datasets: meshes or pointsets could be encoded via eigenvalues or feature vectors, and classifica-
tion in one of these embedding spaces could be performed as explained in this document. However, it would be interesting 
to study which embedding space would be more likely to result in high accuracy classification from labels for this specific 
type of data. Even for D =3, our approach could detect noise and outliers vs. surface samples for dense pointsets: if a user 
can label a few parts of the pointsets into one of these two classes, inference on the rest of the data could be performed 
through our approach. Whether this approach would compete against random forests for this type of low-dimensional data 
remains to be seen. Clustering is another learning task that may benefit from geometric insights. In this unsupervised case, 
an input must be grouped into sets in such a way that objects in the same group (called a cluster) are more similar to 
each other than to those in other groups. The absence of labels renders our approach inadequate, obviously. However, our 
optimization of the Hodge star can still be very relevant, as it can be made to identify clusters and manifolds like we 
did for SSL. Adapting our work to current state-of-the-art k-means methods for clustering like Shah and Koltun (2017) or 
spectral-based approaches that rely on edge weights may prove very fruitful. More generally, the computational efficiency 
of our optimized Laplacian offers insight on the viability of machine learning on point sets as the design of convolutional 
pointsets has been a particularly active research topic of late. Developing additional discrete differential geometry tools that 
apply to high dimensions could also be a rich source of new algorithms for data analysis.
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