
Computer Aided Geometric Design 79 (2020) 101864
Contents lists available at ScienceDirect

Computer Aided Geometric Design

www.elsevier.com/locate/cagd

Laplacian-optimized diffusion for semi-supervised learning

Max Budninskiy a,b, Ameera Abdelaziz a, Yiying Tong c, Mathieu Desbrun d,a,∗
a Caltech, Pasadena, CA, USA
b true[X], Los Angeles, CA, USA
c Michigan State University, East Lansing, MI, USA
d ShanghaiTech University, Shanghai, China

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 20 April 2020

Keywords:
Semi-supervised learning
Graph Laplacian
Biconvex optimization
High-dimensional geometry

Semi-supervised learning (SSL) is fundamentally a geometric task: in order to classify
high-dimensional point sets when only a small fraction of data points are labeled, the
geometry of the unlabeled data points is exploited to gain better classifying accuracy. A
number of state-of-the-art SSL techniques rely on label propagation through graph-based
diffusion, with edge weights that are evaluated either analytically from the data or through
compute-intensive training based on nonlinear and nonconvex optimization. In this paper,
we bring discrete differential geometry to bear on this problem by introducing a graph-
based SSL approach where label diffusion uses a Laplacian operator learned from the
geometry of the input data. From a data-dependent graph of the input, we formulate a
biconvex loss function in terms of graph edge weights and inferred labels. Its minimization
is achieved through alternating rounds of optimization of the Laplacian and diffusion-
based inference of labels. The resulting optimized Laplacian diffusion directionally adapts
to the intrinsic geometric structure of the data which often concentrates in clusters or
around low-dimensional manifolds within the high-dimensional representation space. We
show on a range of classical datasets that our variational classification is more accurate
than current graph-based SSL techniques. The algorithmic simplicity and efficiency of our
discrete differential geometric approach (limited to basic linear algebra operations) also
make it attractive, despite the seemingly complex task of optimizing all the edge weights
of a graph.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Discrete differential geometry (DDG) has been very successful in expressing geometric concepts using complementary
computational and mathematical points of view, for example using Discrete Exterior Calculus—see, for instance, Crane et al.
(2013). This dual perspective has led to the development of countless practical algorithms for real-world 3D geometric data,
ranging from curvature approximation, shape smoothing, surface parameterization, vector field design, to the computation
of geodesic distances. While the geometric concepts at the core of all these developments are actually valid in arbitrary
dimensions, the vast majority of DDG developments focused on surfaces embedded in 3D, or on 3D objects directly, with
very few exceptions such as Budninskiy et al. (2017, 2019). Yet, geometry is relevant in a number of non-graphics areas.

* Corresponding author at: Caltech, Pasadena, CA, USA.
E-mail addresses: mbudnin@caltech.edu (M. Budninskiy), aabdelaz@caltech.edu (A. Abdelaziz), ytong@msu.edu (Y. Tong), mathieu@caltech.edu

(M. Desbrun).
https://doi.org/10.1016/j.cagd.2020.101864
0167-8396/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cagd.2020.101864
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2020.101864&domain=pdf
mailto:mbudnin@caltech.edu
mailto:aabdelaz@caltech.edu
mailto:ytong@msu.edu
mailto:mathieu@caltech.edu
https://doi.org/10.1016/j.cagd.2020.101864

2 M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864
Error LNP HGF LLGC AEW-HGF AEW-LLGC Ours

%Labels Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
1% 0.165 0.017 0.201 0.017 0.186 0.016 0.185 0.018 0.150 0.015 0.0039 0.0105
5% 0.113 0.009 0.148 0.012 0.145 0.013 0.116 0.014 0.099 0.013 0.0021 0.0016
10% 0.094 0.009 0.116 0.007 0.127 0.008 0.074 0.011 0.079 0.017 0.0013 0.0007
20% 0.080 0.010 0.089 0.006 0.122 0.008 0.040 0.009 0.073 0.019 0.0010 0.0010
40% 0.066 0.011 0.051 0.006 0.124 0.007 0.012 0.005 0.063 0.016 0.0004 0.0006

Fig. 1. Laplacian-optimized Semi-supervised Classification. Exploiting the geometry of datasets can help with image recognition: from the COIL-20 library of
1400 greyscale images spanning 20 classes (6 examples of class shown above) and knowing only in which class 1% of the images belong to (example of la-
beled images shown in yellow), our method learns a Laplacian operator over these images to infer the class of each unlabeled image. Our Laplacian-optimized
approach produces a smaller error (proportion of mislabeled data points, computed as a mean and standard deviation over 20 runs with randomly-chosen
labels) than existing semi-supervised learning techniques, even for a higher amount of labeled images (see table). For 10% of labels or more, only two
images get sometimes misclassified (show in red) as class 5 instead of class 6. (For interpretation of the colors in the figure(s), the reader is referred to the
web version of this article.)

Over the last ten years, the advancements of machine learning have had a significant impact in science: learning al-
gorithms such as convolutional neural networks, generative adversarial networks, decision trees, or autoencoders offer
opportunities to construct data-driven approaches to scientific problems instead of the traditional model-based approaches,
improving efficiency and/or predictability in the process. As machine learning evolves, the importance of geometry and
topology of data is increasingly acknowledged, see Sindhwani et al. (2010). For instance, a neural network classifier can be
understood (or even visualized as in Playground (2018)) as applying a deformation of the input data to make it more easily
linearly-separable: each layer nonlinearly deforms the embedding space where the data lies through an affine transform
based on the weights of the network followed by a pointwise application of a monotone activation function as described
in Olah (2014). Similarly, key in inferential tasks is the “manifold hypothesis”, see Zhu and Goldberg (2009), stating that data
tend not to be uniformly distributed in their embedding space, but instead, lie approximately on manifolds of much lower
dimensions than the embedding space. Despite the clear geometric nature of many learning approaches, limited efforts have
been dedicated to extend discrete differential geometry techniques to high-dimensional spaces in order to develop novel,
more powerful learning tools.

In this paper, we bring DDG to bear on SSL, and introduce a geometric approach to graph-based semi-supervised learning.
By optimizing the edge weights of a sparse graph to customize a Laplacian operator adapted to the data, we show that
labeling via the resulting anisotropic diffusion outperforms current approaches.

1.1. Semi-supervised learning

Semi-supervised learning (SSL, Chapelle et al. (2010)) consists in automatically classifying data (i.e., to give each data
point a “label”—class, category, type, etc.) based on a few known labeled data points. Labeling data is often a time consuming
task for humans, requiring the efforts of expert annotators or expensive computational probing. Unlabeled samples, on the
other hand, are typically easy to collect, and often offer hints on the actual underlying spatial distribution of the data. Semi-
supervised learning tackles classification (i.e., inference of labels) by considering both unlabeled and labeled data: making
use of this combined information often surpasses the classification performance that would have been obtained either by
discarding the unlabeled data and doing fully supervised learning, or by discarding labels and doing fully unsupervised
learning.

While deep learning methods can achieve high accuracy in classification problems by training neural networks on large
datasets, the typical setup of SSL renders deep networks inappropriate in many contexts: there are often too few labeled
data and/or too few unlabeled data to directly infer classification with decent accuracy. Note that recent results demon-
strate that deep networks can be successfully applied for SSL when large datasets are available; for instance, Rasmus et al.
(2015) used a combination of supervised neural network classification with unsupervised nested denoising autoencoders
to perform SSL; deep self-training (where more labels are gradually inferred and added) has also been proven feasible in
specific areas such as natural language processing or face recognition, see Vesely et al. (2013); multi-layer graph convolu-
tional networks (see Kipf and Welling (2017)) have also shown promise recently. But when datasets of only moderate size
need to be classified, popular semi-supervised learning approaches have involved, instead, mixture models, co-training and
multiview learning, as well as semi-supervised support vector machines as in Zhu (2007). The success of these methods

M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864 3
depends critically on the validity of the underlying assumptions they make on the input data. In this paper, we focus on a
particular class of SSL methods, so called graph-based SSL, that has consistently outperformed other methods and that offers
interpretability, a feature lacking in deep learning.

1.2. Graph-based approaches to SSL

Foundations. A commonly-used assumption for input data stored in a meaningful embedding space is that two data points
are likely to share the same label if they are “close” to each other, or if they lie on a same low-dimensional sub-manifold
(i.e., if points of a same class form low dimensional subspaces locally, which can be seen as tangent spaces of a low-
dimensional manifold in the high-dimensional embedding space); see, e.g., Zhu and Goldberg (2009), Chapelle et al. (2010).
These simple geometric assumptions, that we will respectively refer to as the cluster assumption and the manifold assumption
as various authors have done in the past (see Sindhwani et al. (2010)), are at the root of a large family of “graph-based
methods”, including Zhu et al. (2003); Zhou et al. (2003); Wang et al. (2006); Karasuyama and Mamitsuka (2017), which
are considered state-of-the-art methods in graph-based SSL.
Methodology. Graph-based methods begin with the creation of a sparse graph whose vertices are input (labeled and unla-
beled) data points. Typically, two data points are connected with an edge if either the distance between them is less than
some threshold in the embedding space or if one of them is in the set of the K nearest neighbors of the other. This graph
thus connects nearby points, and offers a discrete representation of the “geometry” of the data, which includes any sub-
manifold around which the data concentrate. Each edge of this graph is then assigned a weight based on either its length
in the embedding space as in Belkin and Niyogi (2004) (sometimes using a data-dependent rescaling of the coordinates,
see Karasuyama and Mamitsuka (2017)), or on the distribution of the nearest data points around as in Wang et al. (2006).
Equipped with this weighted graph, classification is then performed typically through propagation of the known labels to
the rest of the graph, using diffusion based on the edge weights or through some form of entropy minimization.
Strengths and limitations. One advantage of semi-supervised learning compared to deep learning is that the graph is entirely
defined by the data: it therefore dramatically reduces the number of hyperparameters like number of layers, neuron count,
connectivity type, etc. While SSL involves a weighted graph over which classification is performed, an obvious limitation is
that the edge weights are rarely globally trained (i.e., optimized): they are usually chosen to be Gaussian weights à la Belkin
and Niyogi (2004) or Locally Linear Embedding (LLE) weights à la Roweis and Saul (2000). Since these “pre-canned” weights
strongly influence the behavior of the classifier as they indicate the similarity between data points, graph-based approaches
to SSL also depend critically on how well the input data fits the underlying geometric assumptions in the actual embedding
(feature) space. The few methods that try to partially optimize weights based on the input data do rely on nonlinear,
nonconvex minimization, which hurts their scalability in practice. Note that many methods have built over this graph-based
diffusion approach, introducing various additional terms such as iterated Laplacians (Zhou and Belkin (2011)), Tikhonov (as
in Belkin et al. (2006)) or �1 (as in Rustamov and Klosowski (2018)) regularization, and diffusion-inspired convolutional
filters, see Kipf and Welling (2017).

1.3. Contributions

In this paper, we approach the design of a new Laplacian-optimized diffusion for semi-supervised learning using discrete
differential geometry. To exploit the intrinsic structure of the data which is often spatially distributed in clusters and/or on
low-dimensional manifolds within the high-dimensional representation space, we propose a biconvex minimization where
the edge weights of a data-dependent graph are optimized in alternation with an inference of labels over the unlabeled
data points. This edge weight optimization constructs a Laplacian operator whose quadratic form represents a smoothness
energy in a metric adapted to the intrinsic distribution of the input in the embedding space. The resulting Laplacian-
optimized graph diffusion of known labels exploits the geometry of the input, classifying unlabeled data more accurately
than current SSL techniques. The algorithmic simplicity and efficiency of our approach also make it attractive, despite the
seemingly complex task of optimizing all the graph weights.

2. Review of graph-based SSL methods

Before introducing our approach, we first delve into the existing graph-based methods to gather some of the key concepts
we will leverage in our work, but also to point out how usual differential geometry notions (from Laplacian and Dirichlet
energy to optimal transport) play a central role throughout this literature.

2.1. Notations

Semi-supervised learning considers an input dataset D={xi}i=1..n of n points distributed in the D-dimensional Euclidean
space �D . The first � input points are labeled, so that the input set can be written as D = DL ∪ DU , where DL ={xi}i=1...�

are the labeled points and DU ={xi}i=�+1...n the unlabeled points, with � �n. Assuming there are C categories of labels
(defined to be the integers {1, 2, ..., C} for simplicity), we store label information in an n ×C matrix P, such that

4 M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864
Pik =
{

1 if xi ∈DL and label(xi) = k,

0 otherwise.

Note that the Euclidean norm of vectors will be denoted by ‖.‖, while the Frobenius norm of a matrix will be represented
as ‖.‖F , with ‖M‖2

F ≡Tr(MMt). We will also denote by diag(.) the operator that turns a vector v of size k into a diagonal
k ×k matrix diag(v) such that [diag(v)]ii =[v]i .

All graph-based methods proceed quite similarly. They begin by defining a connected graph G = (V , E) with the nodes
V corresponding to the n input data points, and where an edge ei j ∈E connecting points xi and x j is created iff x j is among
the K nearest neighbors of xi or vice-versa. With this data representation, they proceed to propagate known labels through
the graph. This label propagation is achieved through various means designed to exploit the geometric assumptions of the
data, as we review next.

2.2. Harmonic Gaussian fields

Harmonic Gaussian fields (HGF, Zhu et al. (2003)), one of the early approaches in graph-based SSL, proposed to use a
discrete Laplacian operator over the graph to induce diffusion of the labels. For every graph edge ei j ∈E , they assign a
positive Gaussian weight wi j of the form:

wi j = exp
(
−‖xi − x j‖2

2/σ
2
)

, (1)

where σ is a length scale hyperparameter, typically picked based on the average distance between data points connected
by an edge. Since these weights are known to give rise to a discrete approximation of the Laplace operator, see Belkin and
Niyogi (2004), the inherent smoothness of the data can be leveraged by forming a harmonic interpolation of the labels
based on these weight expressions. More precisely, let’s define the matrix Q of size n × C , where Qi denotes its i-th row
with C values, representing the likelihood scores for node xi to be in each of the C classes. The HGF approach computes
matrix Q as the minimizer of the following discrete Dirichlet energy:

arg min
Q

∑
ei j∈E

wi j‖Qi − Q j‖2 s.t.Qi = Pi ∀xi ∈DL . (2)

This minimization calculates C harmonic functions (one per class, stored in columns of Q) subject to label constraints; the
inferred label of a given unlabeled node is then defined as the index of the largest element in Q’s i-th row:

label(xi) = arg max
k=1...C

Qik. (3)

This approach can be interpreted as a Gaussian regression, since it corresponds to the conditional expectation of label
assignment assuming that the latter is a realization of a Gaussian process with a covariance function given by the Laplace
operator; it also shares obvious connections to the graph mincut approach of Blum and Chawla (2001). Note that the
optimal Q is easily solved for via a sparse linear system, and by definition of Eq. (2), this harmonic label propagation is
interpolatory, i.e., known input labels are kept unaltered. Prior knowledge of class sizes can also be accommodated through
post-processing using class mass normalization as in de Sousa (2015).

2.3. Learning with local and global consistency

Learning with Local and Global Consistency method (LLGC, Zhou et al. (2003)) relies on the same Gaussian edge weights,
but modifies the variational problem for Q to mimic spreading activation networks: first, they replace the interpolation of P
with a fitting penalty, which only favors the initial labeling (in lieu of enforcing it exactly) to result in a globally smoother
assignment; second, they propose to rescale the value of Q at a node xi in the Dirichlet energy by dividing by the sum
of the edge weights emanating from that node in order to compensate for unavoidable density variation in real datasets.
Classification is therefore achieved by solving:

arg min
Q

‖Q − P‖2
F + η

∑
ei j∈E

wi j‖ Qi√∑
k wik

− Q j√∑
k w jk

‖2. (4)

Note that this normalization of the Dirichlet energy corresponds precisely to what is called the “normalized Laplacian”
quadratic form (Lnorm) in Normalized Cuts of Shi and Malik (2000), a well-known approach to spectral clustering. The trade-
off between the two competing energy terms in Eq. (4) is captured by a positive hyperparameter η. Finally, minimizing the
resulting energy turns out to be an implicit integration step of diffusion as in Desbrun et al. (1999); indeed, differentiating
the objective function shows that optimization of Eq. (4) amounts to solving:(

Id + ηLnorm)
Q = P. (5)

Unlike HGF, LLGC does not guarantee label preservation, and mislabeling happens in practice for most choices of size η. Still,
the normalization of the Dirichlet energy allows for better results overall compared to previous methods.

M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864 5
Fig. 2. Swirls. For a 2D dataset with points on 4 spiraling arms with 100 points and one label (marked as a colored cross) per spiral, previous SSL approaches
fail to capture the obvious manifold structure of the data (each point is colored based on the inferred labeling). The three leftmost results (HGF from Zhu
et al. (2003), LLGC from Zhou et al. (2003)) and LNP from Wang et al. (2006)) rely on local choices of edge weights, with the leftmost two overemphasizing
label proximity and the third one focusing on local linearity instead. While the AEW approach from Karasuyama and Mamitsuka (2017) optimizes the
weights globally (before using label propagation through HGF or LLGC), it properly discovers only two spirals at best. Our approach distinguishes the four
spirals even with only one label per class.

2.4. Linear neighborhood propagation

The Linear Neighborhood Propagation (LNP, Wang and Zhang (2008)) departs from previous methods by rejecting the
use of Gaussian weights since the Laplacian is certainly not the only operator to capture smoothness of label assignments.
Instead, they take a cue from work on dimensionality reduction (namely, Locally Linear Embedding (LLE), Roweis and Saul
(2000)), and propose to locally optimize edge weights to exploit the local linearity assumption. For a given node xi , weights
of emanating edges ei j are found through constrained quadratic optimization:

arg min
{wi j} j∈N(i)

‖xi −
∑

j∈N(i)

wi j x j‖2 s.t. wi j ≥0 and
∑

j∈N(i)

wi j =1, (6)

where N (i) represents the indices of the vertices connected to xi in the graph G . Since this optimization is performed in-
dependently for each node, note that wi j
=w ji , and we should consider the graph as directed in this case. The interpretation
of this optimization, also adopted in de Sousa (2015), is clear: a weight wi j measures (between 0 and 1) how similar x j is
to xi , independent of the actual distances unlike what is used for Gaussian weights. It is thus more likely to build strong
edges between quite separate manifolds, whereas Gaussian weights would just assume they are only weakly linked simply
based on large distances.

With these (directed) edge weights, the labels are inferred like in LLGC, by solving for the matrix Q that minimizes:

‖Q − P‖2
F + η

∑
i, j

wi j
∣∣∣∣Qi − Q j

∣∣∣∣2
. (7)

The resulting implicit diffusion thus uses a locally-optimized “composite” Laplacian, and this labeling was shown to improve
accuracy sometimes.

2.5. Measure-based classifiers

Previous classifiers are, in essence, using C different scalar functions, the largest of which indicates the predicted la-
bel for a given node. Subramanya et al. Subramanya and Bilmes (2011) noted that these C values can also be seen as
providing a histogram (or probability distribution) for each data point, measuring the probability for this point to be of
class c. As a consequence, they proposed to consider the smoothness of an assignment of probability distributions over
the graph (instead of the smoothness of the numerical labels) to further improve accuracy. They formulated a loss func-
tion based on Kullback-Leibler (KL) divergence1 which, after several tweaks, results in a convex programming problem. This
problem was then solved via an alternating minimization (AM) approach, akin to the traditional Expectation-Maximization
of Dempster et al. (1977) method, with closed-form updates. Improvements in classification accuracy were demonstrated
from this measure-based approach. Further noting that the KL divergence cannot capture interactions between histogram
bins, Solomon et al. (2014) suggested using optimal transport instead, and proposed a generalized Dirichlet energy over
distribution-valued nodes of a graph to induce information propagation. However, they neither discussed computational
complexity nor demonstrated improvement in classification accuracy.

2.6. Learning with weight optimization

Finally, the best results to date in graph-based SSL involve optimizing the edge weights globally, to best adapt them
to the data. In fact, the idea dates back to HGF, where the authors noted that the Gaussian weights from Eq. (1) can be
extended to read:

1 KL divergence is also called “relative entropy” or “information gain’, depending on the scientific field where it is invoked.

6 M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864
Fig. 3. Weighted graph. We visualize the different weighted graphs of the Swirls example in Fig. 2 as 2D matrices where element (i, j) is wi j (for LNP,
(wi j +w ji)/2). Points are arranged by class (first 100 for class 1, ..., last 100 for class 4), but shuffled within each class. Since weights measure similarity
between vertices of a common edge, one should expect a block diagonal structure, with weights corresponding to interclass edges near zero. Weights below
10−5 are not shown, and values above 0.1 are all displayed in a dark blue color.

wσ
i j = exp

(D∑
d=1

(xi,d − x j,d)
2

σ 2
d

)
(8)

where now the D scaling hyperparameters σ = (σ1, ...σD) can be optimized based on the data to “learn” the relevant dimen-
sions of the dataset. Unfortunately, Zhu et al. (2003) proposed to minimize label entropy to learn these hyperparameters,
which led to very limited improvements: first, their optimization required regularization to prevent the hyperparameters
from going to 0, otherwise it would end up selecting non-zero weights only between labels and their spatially closest
unlabeled nodes; second, their entropy-based functional is highly nonlinear and nonconvex, hampering its efficient mini-
mization.

Recently, Karasuyama and Mamitsuka Karasuyama and Mamitsuka (2017) revisited this idea by optimizing parameters
σ = (σ1, ...σD) so as to minimize an LLE-type energy instead: they compute σ through

arg min
{σ1,...,σD }

∑
i

‖xi − 1∑
k wσ

ik

∑
j∈N(i)

wσ
i j x j‖2.

That is, they mixed the LLE weights Roweis and Saul (2000) advocated in LNP with the weight normalization proposed in
Normalized Cuts Shi and Malik (2000), and used the above “normalized LLE” energy to find the hyperparameters {σd}d=1..D
that make the weighted graph best fit the input data manifolds (i.e., for which every point can be best represented as a
linear combination of its neighbors). The authors dubbed their approach Adaptive Edge Weighting (AEW). Unfortunately,
the energy they use to optimize the weights is not convex. Minimizing it requires some form of gradient descent, and each
gradient evaluation can be quite costly for high-dimensional input spaces since it is of complexity O(nK D2). Yet, diffusing
using HGF or LLGC the known labels through the graph with AEW-optimized weights was shown to beat previous methods
on many datasets.

2.7. Discussion

The best current diffusion-based SSL approaches rely on graphs with learned edge weights (and their corresponding
Laplacian operators) to proceed with label propagation in a way that most effectively leverages oft-present geometric prop-
erties of large data sets. However, they are often hampered by highly nonlinear optimizations of the weights, preventing
their scalability and reliability; moreover, the loss function used to learn the weights is totally independent of the subse-
quent diffusion or even of the labels that are known. Instead, we propose to construct a consistent optimization of edge
weights which, with the corresponding anisotropic diffusion they define, allows to adapt to the intrinsic geometric structure
of the data in order to capture the cluster and manifold assumptions. Our variational approach thus improves on previous
state-of-the-art semi-supervised learning methods in a number of ways:

• Edge weights are globally optimized in order to give rise to a (possibly anisotropic) diffusion of labels that best adapts
to the intrinsic geometry of the data;

• Our loss function is biconvex in edge weights and label likelihood scores, rendering its optimization via alternating
minimization particularly efficient;

• The resulting label propagation is interpolatory (i.e., is guaranteed to keep the known labels intact) and not biased by
large density variations in the input data.

More importantly, our approach outperforms previous methods on typical datasets used to evaluate labeling accuracy.

3. Our Laplacian-optimized classifier

In this section, we present our variational approach to design a classifier through optimization of the Laplace operator.

M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864 7
Fig. 4. Weights visualization. For the swirls dataset (see Fig. 2), we display the top 10% (in red) and the bottom 10% (in blue) of edge weights in terms of
their magnitude, for the various types of Laplacian used in SSL. The graph was constructed with each node connected to its 20 nearest neighbors. Optimally,
edges connecting nearby points of the same class should have larger weights, while edges connecting different classes should have vanishing weights; our
approach fares much better than the other SSL techniques.

3.1. Notations

We will use the same notations as defined earlier in Sec. 2.1. We also assemble the coordinates of the input data points
into a n ×D matrix X = (x1, ...xn), and we denote by S the label selection matrix, that is, the n ×n diagonal matrix such that
Sii =1 if xi ∈ DL (i.e., if i ≤�), and Sii =0 otherwise. Based on the data-dependent graph G = {V , E } of a set of n vertices
V , edges E and a (fixed, but arbitrary) orientation of its edges, we also assemble the “adjacency” matrix d of size |E | ×n
containing ±1 for the endpoints of a given edge with the sign based on edge orientation; that is, dev =1 if v refers to the
index of the target vertex of the edge with index e, dev =−1 if v refers to the index of the source vertex of the edge with
index e, and dev =0 otherwise. This matrix is the classical discrete exterior derivative on 0-forms (see Desbrun et al. (2008)),
i.e., a sparse matrix that is completely determined by the graph topology and the chosen edge orientations. With a slight
notation abuse, we will also denote by |d| the same matrix but where the absolute value of each element is used instead;
i.e., this matrix contains as many 1’s on the row i as there are neighbors of the corresponding vertex xi in G . Finally, we will
use the n ×C matrix Q already mentioned in Sec. 2.2 to store C discrete functions on graph G that indicate the likelihood
score for each node to be of a given class.

3.2. Parameterization of the Laplacian

A reasonable assumption for SSL is that the data in the embedding space is concentrated around a manifold or a set of
manifolds. For example, scans of handwritten digits possess certainly less possible variations in style than the dimensionality
of the ambient representation space which is the number of pixels the scans have. Exploiting the geometric structures of
input datasets is thus crucial: in effect, it brings down the dimensionality of the problem at hand. Since the most successful
approaches to graph-based SSL thus far have been based on some form of label diffusion to best leverage the structure of
data, we adopt a similar approach here.
Failures of previous Laplacians. However, selecting a good Laplace operator to induce label propagation is a difficult task. As we
reviewed in Sec. 2, the use of “pre-canned” weights on edges such as the Gaussian weights from Eq. (1) relies too much on
pure distances in the embedding space to be useful, strongly biasing diffusion in high density regions; even variants taking
local densities into account such as Zelnik-Manor and Perona (2004) to try to decrease this high dependence to irregular
sampling suffer from this issue. Locally-optimized weights like in Eq. (6) fare sometimes better, but double the number of
variables needed and totally ignore distances within kNN neighborhoods. Other data-dependent choices of weights such as
AEW showed improved results by globally optimizing a more general parameterization of the weights, using the form given
in Eq. (8). However, note that the number of hyperparameters (D) is potentially very different from the number of data
points n: this means that one does not have much degrees of freedom to optimize if D �n (they only rescale each axis
individually); or too many degrees of freedom if n �D (for example, images with D pixels) which could lead to overfitting.
Moreover, their loss function is highly nonlinear and nonconvex in the edge weights, making them difficult to optimize.
Finally, it is interesting to notice that none of the existing works have exploited the presence of labels to further improve
weights.
DEC Laplacian. In this work, we parameterize the Laplacian by the values of its positive edge weights on the graph G using
the notation adopted in Discrete Exterior Calculus (DEC, Desbrun et al. (2008)). If we denote the vector of all positive edge
weights by w (given in the order of the set of edges E) such that wi j is the weight associated with edge ei j between
vertices i and j, the DEC Laplacian (see, for instance, Crane et al. (2013)) is expressed as:

L(w) = dt diag(w) d. (9)

Note that this expression is strictly equivalent to the usual unnormalized graph Laplacian used in SSL: indeed, if we instead
assemble the |V | ×|V | matrix � from the vector of edge weights w through �i j =wi j and call � the diagonal matrix such
that �ii = ∑

j W ij , one has: L(w) =� −�. The graph-based Laplacian is guaranteed to be symmetric positive semi-definite
(with a kernel purely dependent on the topology of the weighted graph) if only non-negative weights are present, and it

8 M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864
does not depend on the choice of edge orientations. We adopt the DEC notation in this paper for one key reason: it empha-
sizes that the edge weights are the only metric dependence of the graph Laplacian, since the matrix d is purely topological.
In fact, the diagonal matrix diag(w) can be interpreted as a discrete “diagonal” Hodge star �1 (see Bossavit (1998); Desbrun
et al. (2008)) for differential 1-forms. Given an intrinsic metric m on a smooth manifold that the graph G represents, the
edge weights thus approximate the continuous Hodge star of 1-forms induced by m Abraham et al. (1988). Therefore, the
(positive) edge weights are the degrees of freedom to explore all possible intrinsic metrics in which to compute the Laplacian,
instead of blindly sticking to the metric induced by the embedding space. This important geometric fact underlies our work.

3.3. Normalized Laplacian

Normalized Laplacians have been proposed in the past: to bring all the eigenvalues of the Laplacian between zero and
one in mesh fairing, see Desbrun et al. (1999), to balance intercluster and intracluster similarity in spectral clustering,
see Shi and Malik (2000), etc. In all these instances, the Laplace operator is altered by making the diagonal entries of its
matrix representation unit. In our context of label propagation, existing (unnormalized) Laplacians have the issue that dense
regions overpower sparse regions, as input labels in denser regions propagate much further than they should. Normalized
Laplacians prevent that from happening by equalizing the local diffusivity on a per-vertex basis. To achieve this goal and
render our Laplacian insensitive to large density variations, we propose to simply constrain the sum of the edge weights at each
vertex of G to be 1, which has the effect of forcing all the diagonal entries of L to be 1. Notice that such linear constraints
are much simpler to deal with numerically than relying on an “analytically-normalized” Laplacian with highly-nonlinear
dependence on w as in Eq. (4) for instance. Since the operator |d|t defined in Sec. 3.1 amounts to summing edge weights
around each vertex, we can thus write that our choice of normalization verifies, for 1 denoting the vector of all ones,

|d|tw = 1. (10)

3.4. Variational classification principle

Based on our choice of Laplacian parameterization, we now define our classification energy E, function of both the label
likelihood scores matrix Q and the vector of all positive edge weights w, as follows:

E(Q,w) = μ‖SQ − P‖2
F + ν Tr

[
QtL(w)Q

]︸ ︷︷ ︸
(diffusion)

+α ‖L(w) X‖2
F + γ wtw︸ ︷︷ ︸

(data priors)

+β ‖1 − |d|tw‖2︸ ︷︷ ︸
(normalization)

. (11)

Classification will be performed by minimizing this energy over all positive edge weights w ∈�|E | and matrices Q ∈�n×C ,
that is, by solving:

arg min
Q,w

E(Q,w) s.t. w � 0, (12)

from which all labels are derived using Eq. (3); i.e., the index of the largest value in the C components of row Qi is the
inferred label for xi . We postpone discussing how to perform this constrained minimization of E and how to select the
various parameters involved (α, β, γ , μ, ν), focusing first on explaining each of the terms of Eq. (11) to understand their
respective geometric meanings.
Diffusion. The first term simply forces the label likelihood scores Qi for each labeled data point i to be equal to its proper
given label Pi ; we will show that with appropriate parameter choice, it promotes an interpolatory label propagation. Notice
our use of the label selection matrix S compared to Eq. (4), so as not to add any side effects for unlabeled data. The second
term is the Dirichlet energy of Q based on the Laplacian L(w). Its presence enforces label coherency (i.e., smoothness)
with respect to the metric defined by the current weights w; note the actual diffusion may be strongly anisotropic if the
geometry of data in the embedding space satisfies the manifold assumption such as in Fig. 2. The sum of these two terms is
responsible for label diffusion: we will see that minimizing these two terms with respect to Q will lead to an interpolatory
variant of the implicit diffusion given in Eq. (5).
Data priors. The third term of the energy E exploits the local linearity assumption of manifold learning: this biharmonic energy
of the data (in the metric induced by the edge weights) promotes larger weights between nearby data points that are sitting
on the same linear subspace. We thus let the metric vary to improve the square of the Dirichlet energy of the embedding of
the data, thus capturing the smoothness present in the intrinsic geometry of the input. Note that using this biharmonic term
is akin to the use of iterated Laplacians for SSL in Zhou and Belkin (2011) to prevent the typical spikes in point-constrained
harmonic solutions. The fourth term encodes prior knowledge on weights through the use of a data-dependent, user-selected
vector w of edge values: a large value wi j for a particular edge ei j forces the corresponding edge weight wi j to be small.
This term can thus encode the usual “cluster” assumption, i.e., nearby points are likely to have similar labels. This can be
achieved, for instance, by setting wi j ∼||xi −x j ||p as we will discuss later. Together, these energy terms regularize weights
and prevent overfitting.

M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864 9
Normalization. Finally, the fifth term serves as a penalty for deviating from a normalized Laplacian. It avoids having to enforce
the linear constraints of Eq. (10) exactly, and maintains the simplicity of the energy since only quadratic terms are used.
Note that enforcing exact normalization is not particularly vital: we only need to roughly equalize the various scales of the
Laplacian, for which a penalty energy amply suffices.

3.5. Optimality conditions

Our particular choice of energy does not only exploit the traditional (cluster and manifold) assumptions of SSL: our
energy also has, by design, the nice property of being biconvex, i.e., it is convex in w for a fixed matrix Q, and in Q for a
fixed set of weights w. We now describe the conditions of optimality for these two convex energies.
Label optimality. For a fixed set of weights w, the optimal label matrix Q∗ is given as:

Q∗ = arg min
Q∈�n×C

E(Q,w).

Setting the derivative of E with respect to Q, ∂E/∂Q =2μSt (SQ − P) + 2νL(w)Q, to zero yields the necessary optimality
condition (since SP =P and SS =S by definition):(

S + ν

μ
L(w)

)
Q∗ = P. (13)

Observe that it corresponds to an implicit integration step of graph diffusion of P based on the metric imposed by the fixed
weights, matching the diffusion from Eq. (5) but with the added use of our selection matrix—which only adds extra terms
on labeled points. Assuming the diagonal terms of the Laplacian are unit, these extra terms guarantee that labeled nodes
will have a likelihood score above μ/(ν+μ) for their original label, and below ν/(ν + μ) for all their other (C-1) label
scores. As a consequence, selecting ν/μ <1 will guarantee interpolatory diffusion. In practice, we will use ν/μ = 1

2 to allow
slack since weights are only weakly constrained to sum to one per data point.
Weight optimality. If we now fix matrix Q, the optimal weights w∗ are found through a convex quadratic programming (QP)
problem:

arg min
w∈�|E |

E(Q,w) s.t. w � 0. (14)

For computational convenience, our energy can be rewritten (proof omitted as being an unenlightening exercise in linear
algebra) as a quadratic form of w as follows:

E(Q,w) = 1
2 wtA w + wt b + c (15)

where the sparse matrix A ∈�|E | is assembled once and for all as:

A = 2
(
α (ddt)�(dXXtdt) + β |d||d|t)

with � denoting the Hadamard (elementwise) product, the vector b∈R|E | is easily evaluated based on Q through:

bi j = γ wi j + ν‖Qi − Q j‖2 − 4β,

and the vector c does not depend on w. Note that the matrix A is positive-definite, sparse and easy to assemble, making
the underlying QP problem particularly simple to solve.

3.6. Optimization

The constrained minimization of Eq. (12) can be efficiently performed by exploiting its biconvexity: it lends itself natu-
rally to alternating minimization, see Csiszár and Tusnády (1984), where the energy is minimized with respect to each of its
two variables in alternation, guaranteeing the decrease of the energy as iterations go.

Algorithm 1 Alternating optimization of weights and labels.
Initialize Q = 0
repeat

Update weights w via sparse QP solve � Eq. (15)
Update Q via sparse linear solve � Eq. (13)

until convergence
Output: Q as the matrix of label likelihoods

Alternating steps. We proceed with the minimization of E as outlined in Algorithm 1: starting from a matrix Q set to zero,
we repeatedly solve for optimal weights and optimal label likelihoods Q until convergence, i.e., until both variables do not

10 M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864
change more than a prescribed threshold per step. This simple procedure was found to perform more efficiently than other
strategies: we tried for instance to start with Gaussian weights (Eq. (1)) with σ based on the median edge length of the
graph, but found it was actually increasing computational time to reach convergence, while leading to very similar optimal
label likelihood scores.
Fast solves. While optimizing Q corresponds to a simple sparse linear solve using Eq. (13), optimizing w is more expensive:
solving the QP problem in Eq. (14) with existing solvers is significantly slower than a linear solve for large graphs. We
instead solve this QP problem by exploiting the simplicity of the inequality constraints and the sparsity of matrix A: we
employ a variation of Entropic Mirror Descent (EMD, Beck and Teboulle (2003)), which amounts to iteratively solving for
the optimal weights through:

wk+1 = wk� ExpClip
(
−(

Awk + b
))

,

where ExpClip denotes the exponential function applied to each component of its vector argument, with the final values
being clipped if they are outside of the range [1 −h, 1 +h] to prevent too large updates of weights. The value of h is initialized
to 1

2 , and reduced by a factor 0.8 each time E(wk+1) > E(wk) to force smaller update sizes. This choice is particularly
appropriate because of two key factors. First, the weights are constrained to be strictly positive, so this multiplicative update
automatically maintains this property (by working in log space). Second, it bypasses the need for an involved line search by
exploiting the convexity of the function and by implicitly using entropic regularization (preventing the new weights from
moving far-away from the previous weights based on generalized KL divergence, see Beck and Teboulle (2003)): adaptive
time stepping along the gradient Aw +b of the energy is thus parameter-free, and particularly efficient since A is sparse and
updates are achieved in parallel.

3.7. Implementation details

We now go over our classification procedure in more details. In particular, we review how the graph is created and how
the various hyperparameters are adapted to the input data.
Graph assembly. From the input (labeled and unlabeled) data points, we form the graph G by creating an edge ei j ∈E
between two points xi and x j iff x j is among the K nearest neighbors of xi or vice-versa. This graph construction is
common to all previous works, and we use a value for K =10 in all our examples (with the exception of Swirls (Figs. 2&4)
where we use 20 neighbors to better demonstrate visually the behavior of weight optimization).
Insertion of interclass edges. Moreover, we insert additional edges between labels: for each labeled node xi of class c, we
add edges to 10% (at least 5 for small datasets) of the other labeled nodes of the same class, picked randomly within the
input. These additional “randomized” label-to-label edges help making sure that labels have a big role to play in deciding
edge weights: they allow for long edges acting as bridges between different spatial components of the same class. Previous
methods did not tailor the graph based on labels as it may create more valence imbalance; instead, our Laplacian param-
eterization exploits the presence of these added label-to-label edges to find a more appropriate Laplacian to perform the
label diffusion with, while normalization prevents the typical issues with high valences.
Choice of weight priors. In order to constrain the range search of weights and prevent overfitting, we use a vector w to act
as a prior on weights: for every edge ei j that is not linking two labeled nodes of the same class, we set: wi j =‖xi − x j‖4,
to induce smaller weights on long edges; all other values of w are set to zero. The Euclidean distance to the power 4
was chosen after several experiments, which showed in particular that squared distances or inverse Gaussian weights did
not perform as well. Other priors could be used, based on geometric quantities such as distances between tangent spaces
as in Wang et al. (2011) and accumulated path curvatures, or even non-geometric data specific choices such as enforcing
sparsity through �1 regularization as proposed in Rustamov and Klosowski (2018). We only used the distance to power
p = 4 in all our tests not to obfuscate the interpretation of our results.
Fixing hyperparameters. Hyperparameter selection can be performed using cross-validation. However, when very few labels
are known (e.g., COIL-20 dataset with 1 label per class, see Fig. 1), cross-validation is inadequate. In order to overcome
this issue, we apply a set of simple heuristics for parameter selection that can be used for any input dataset. While our
classification energy E in Eq. (11) uses five hyperparameters, we actually keep γ =1 as a gauge, and compute data-depen-
dent values for most of the others as follows. We begin with a “canonical” energy using μ = 2 and ν =α =β =γ = 1,
corresponding to a diffusion step size of 1/2. After the first round of optimizations (one step for Q, one step for w, see
Algorithm 1), we adjust the hyperparameters as follows:

• if 1000γ wt w ≤ν Tr
[
Qt L(w)Q

]
, we change the value of ν to:

ν = γ

1000
wtw/Tr

[
QtL(w)Q

]
.

The rationale behind this choice comes from the fact that the trace term is the only “cross term” for which Q and
w interact, penalizing edge weights between nodes with strongly varying likelihoods. While this cross term penalizes
diffusion across class borders, it may overpower prior-based contribution wt w if ν and γ are not chosen carefully to
balance the contributions of these terms. In practice, we found that choosing a value for ν such that the second term

M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864 11
Table 1
Datasets tested in this paper.

Parameters Data characteristics Relevant figures
Dataset K α D n C

Swirls 20 0.5 2 400 4 Figs. 2, 3, 4
COIL-20 10 1 16384 1440 20 Figs. 1, 8(b)
MNIST-1K 10 3 784 1000 10 Figs. 5(left), 9(left)
MNIST-5K 10 3 784 5000 10 Figs. 5(right), 9(right)K
USPS-1K 10 3 256 1000 10 Figs. 6(left), 9(right)
USPS-5K 10 3 256 5000 10 Figs. 6(right), 9(right)
Vowels 10 3 10 990 11 Fig. 10(left)
Seeds 10 3 1024 1990 38 Fig. 10(middle)
Yale 10 3 7 210 3 Fig. 10(right)

Fig. 5. MNIST. For the MNIST-1K (left) and MNIST-5K (right), Laplacian-optimized classification outperforms all other methods, independent of the number
of labels used. Note that AEW cannot handle the 5K dataset in a reasonable amount of time, hence its omission.

is about 1000 times smaller than the fifth energy term after the first iteration of Algorithm 1 leads to the best results,
hence this parameter selection.

• if ν is changed, μ is set to 2ν to keep a diffusion step size of 1/2.
• if the sum of the adjacent edge weights of a node is above 2 or below 1/2, we increase β by 1 in order to tighten the

normalization constraint on the Laplacian.

While these updates of the parameters could be done after each round of optimizations, we found that ν rarely changes
after the first time, so we opted to only update ν (and consequently, μ) once. We do keep tracking the normalization term
though, increasing β as needed. In practice, we never found a case where β goes over 22, so this adaptation of β is rare and
minor in magnitude. The only hyperparameter that is not set automatically is α. Our approach thus has the same number
of hyperparameters as HGF or LLGC (which use η to adapt to the data). Additionally, our tests show that the optimal choice
of α covers only a small range: it is always between 0.5 and 3 in all our examples (see Table 1). Therefore, as usual in
SSL, we run our classification in parallel using values of α in the set {0.5, 1, 2, 3} on a random subset of the dataset and
pick the best of these four values. From our tests, it seems that α has to be raised when the data does not have a clear
manifold structure (explaining why the swirl dataset uses α=0.5 while the speech vowel, which is more spread out in high
dimension, requires α=3 to perform best), since the ratio α/γ indicates how much the manifold assumption is treated
over other priors. There may thus be a way to set α directly through a finer evaluation of the input dataset; but tests on
many more sets should be performed to validate this assumption. Finally, note that this simple hyperparameter selection is
already enough to outperform other graph-based SSL methods as we will demonstrate shortly; but cross-validation can be
employed instead (when appropriate) to further improve performance as it can lead to better data-adapted hyperparameter
values.
Energy minimization. Alternate optimizations of the two arguments of the energy are performed as explained in Sec. 3.6.
For the optimization of Q, we add the identity matrix times 10−8 to the Laplacian to remove its kernel and prevent numer-
ical issues; we use the SuperLU solver from scipy.sparse to solve the resulting sparse linear system. For the optimization of
the weights w, EMD iterations are performed until the relative change of energy becomes smaller than 10−7. Note that this
EMD approach scales very well: as we will demonstrate in Sec. 4.6, the computational gain we obtain compared to a QP
solver like OSQP from Stellato et al. (2017) is already a factor 10 on small datasets (n =1000), and grows quickly to multiple
orders of magnitude with the size of the dataset.

3.8. Discussion

We conclude this section with a few comments on our geometric approach to SSL and possible extensions.
Importance of embedding space. Because we optimize the edge weights to capture the best metric in which to exploit
the geometry of the input data, our approach is less sensitive to the choice of embedding space than methods based on
pre-canned weights. However, the cluster and manifold assumptions are all the more valid if data is captured in a space
where coordinates are meaningful. While our results show good behavior on typical datasets, finding a better feature space
for a given dataset would improve the results further.

12 M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864
Fig. 6. USPS. For the USPS-1K (left) and USPS-5K (right), Laplacian-optimized classification outperforms all other methods, independent of the number of
labels used. Note that AEW cannot handle the 5K dataset in a reasonable amount of time, hence its omission.

Importance of graph connectivity. Our graph connectivity is entirely determined (aside from the few randomized edges
between labels of identical classes) by the Euclidean distance between nodes. Using other notions of proximity graphs
(e.g. mutual kNN or ε-ball NN) and other distances (or kernels) for this construction could also be considered. The cosine
distance d(x, y) =1 −xt y/(‖x‖‖y‖) is another common notion of distance, which indeed leads to marginal improvements to
our results on a few datasets. We kept the Euclidean distance in all of our tests to allow for fair comparisons across the
various datasets.
Post-processing. While we directly infer labels based on the maximum values of the label likelihood scores in Q for sim-
plicity, more involved techniques could be used, using either k-means clustering or entropy minimization (in which case,
a three-way alternating minimization approach could be performed). Moreover, class mass normalization could be used if
class sizes are known as priors, as in Zhu et al. (2003).
Frobenius norm vs. cross-entropy. A sum-of-squares error function is not the most appropriate for classification problems: it
corresponds to a maximum likelihood estimation with the assumption of Gaussian distributed target data. Using an entropy-
based energy in lieu of ‖SQ − P‖2

F is theoretically preferable. However, it would make the (still convex) minimization with
respect to Q no longer as simple as a sparse linear solve. So any labeling benefit derived from this change in our energy
would suffer increased computational times.
Interpretation of edge weight optimization. As expected due to our used of geometric data priors, we observe that our
SSL implicitly learns an intrinsic metric for the data in which an anisotropic label diffusion is performed. Indeed, Fig. 4
demonstrates that the larger the edge weight is, the more likely the associated edge vertices are from the same class.
Diffusivity is thus strong within each class, but weak across classes.
Transductive vs. inductive learning. In most graph-based frameworks, semi-supervised learning is often only transductive,
i.e., the classification is only done for the unlabeled points in the training set. LNP Wang et al. (2006) suggested that
inductive learning can also be performed, i.e., the classification of a new point which was not an unlabeled point in the
training set can be performed as well. We can employ the same strategy by estimating the weights for the neighborhood of
the new point locally once we added it to the graph without retraining the whole set, and then use diffusion of class labels
to perform class inference for the new point.

4. Results and comparisons

In this section, we evaluate our Laplacian-optimized SSL method on a number of datasets with various characteristics
(data size, dimension of the embedding space, number of classes, etc) to study its efficiency and classification accuracy. We
also compare our results to previous methods in order to understand the pros and cons of our approach.

4.1. SSL methods

In all our tests, we compare our method to HGF from Zhu et al. (2003), LLGC from Zhou et al. (2003), LNP from Wang
et al. (2006), as well as the most recent AEW-HGF and AEW-LLGC (i.e., the AEW-based optimization of edge weights
from Karasuyama and Mamitsuka (2017), followed by either HGF-based or LLGC-based label diffusion as recommended by
the authors). These methods were shown to outperform all basic classification techniques (such a nearest-neighbor voting
or SVM), so we did not include earlier SSL techniques for conciseness.

For HGF and LLGC that use Gaussian weights, we use a standard deviation σ equal to the median edge length and use
the diffusion parameters recommended in the original papers. Given its heavy computational requirements, we implemented
AEW with TensorFlow (Abadi et al. (2015)) to exploit parallelism. Finally, OSQP (Stellato et al. (2017)) is used to solve the
QP problems arising in LNP, as it systematically outperformed CVX (Grant and Boyd (2014)).

4.2. Datasets

In order to test our technique on very different types of data, we selected the following well-known datasets as they
cover geometric, image, sound and biology datasets and they have been extensively tested in previous SSL papers. Each of
these datasets contains all the labels for all the data points; we can thus test classification methods using only a percentage
(varying from 1% to 40%) of randomly selected labels, and compare the results to the ground-truth labels.

M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864 13
Fig. 7. Mislabeled images. For MNIST (left) and USPS (right), four examples of images that our approach misclassifies for 1% of labels.

Fig. 8. Heatmaps. Laplacian-optimized classification performs systematically better than existing SSL algorithms for various percentage of labels in the
swirls and COIL-20 datasets. The other trained approach, AEW, often performs 10 times worse, while predefined-weights approaches lead to even worse
results.

Swirls. This pointset in D =2 dimensions contains 4 classes (one spiraling arm per class) of 100 points each (thus, n =400).
This simplistic test (inspired by a similar dataset in Karasuyama and Mamitsuka (2017)) already highlights how well a
variational SSL technique can leverage the manifold structure of data, compared to deciding labeling purely based on shortest
distances; see Fig. 2. Despite its low-dimensionality, symmetry and obvious manifold structure, other methods surprisingly
struggle with this example. This indicates that previous SSL approaches could easily fail even if applied to the output of one
of the many existing dimensionality reduction algorithms (e.g., Isomap and LLE).
COIL. The Columbia University Image Library (COIL-20 from Nene et al. (1996)) dataset contains n =1440 grayscale images
of 128 × 128 pixels (hence, D =16384). There are 72 images per class, and 20 classes (see class examples in Fig. 1). Each
class consists in an object (toy car, sandwich, mug, etc) photographed from different angles.
MNIST. The MNIST dataset is a very common collection of grayscale images of handwritten digits of size 28 ×28 pixels (thus,
D =784), with 10 classes (digits 0 to 9). We consider several subsets to test the influence of the size of the input, with
n =500, 1000, 2000, 5000 and 10000.
USPS. The USPS dataset is similar to the MNIST dataset (grayscale images of digits as well), but with a coarser resolution
(16 ×16 pixels, D =256). Just like for MNIST, we also consider several subsets with n varying from 500 to 10000 to test
scalability and accuracy.
Vowels. This dataset of Dheeru and Taniskidou (2017) uses the Deterding numerical description of n =990 British-English vowel
sounds pronounced by different people (10 scores per sound, D =10), for 11 different vowels.
Yale faces. The Yale Face Dataset B of Georghiades et al. (2001) consists of 32 ×32 grayscale images (D =1024) of 38 people
with different lighting conditions and facial expressions. There are 50 images per person, leading to a total number of points
of n =1990.
Seeds. The Wheat Seeds dataset of Dheeru and Taniskidou (2017) contains descriptions of seed kernels belonging to three
different types of wheat, with 70 observations for each (hence, n =210). Each seed kernel is represented with D =7 geo-
metric features (area, perimeter, compactness, etc).

4.3. Measuring accuracy

To obtain a reasonable estimate of a method’s classification performance and to adhere to common practices of the SSL
community, each of our results is obtained by running 20 labeling processes with a fixed amount of randomly-selected
input labels. For each run, we compute the 0/1 error, i.e., the proportion of mislabeled data points:

Error = 1

n

n∑
i=1

1label(i)
=ground_truth(i). (16)

We then report the mean and standard deviation of this error over the 20 runs. Observe that random guessing of labels over
C classes would result in an error of 1 −1/C , so any mean error below this value indicates classifying power.

14 M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864
Fig. 9. Varying data sizes. By randomly subsampling MNIST (left) / USPS (right), we can test the various SSL algorithms for varying data sizes (from n =500
to 10, 000) and 10% of labels. Our Laplacian-optimized classifier exceeds all other approaches in accuracy, as demonstrated through barplots using the 0/1
error (proportion of mislabeled points) averaged over 20 runs with randomly selected labels.

Fig. 10. Varying label proportions. On all the datasets we tried (here, seeds/vowels/Yale), classification performs better as the number of labels grows.
While a low percentage of labels is common, we note that the accuracy of different methods increases at different rates with the percentage of labels. Our
Laplacian-optimized approach behaves consistently on all datasets, quickly increasing accuracy as the number of labels increases.

4.4. Varying number of input labels

We tested our approach and other SSL techniques for varying proportions of labeled points: 1%, 5%, 10%, 20% and 40%.
While real datasets cannot be reasonably expected to have more than 10% of labeled points, this test is important to prove
“convergence” as the number of labels increases.

For Swirls, our Laplacian-optimized approach is the only one that recognized the four spiral-shaped classes perfectly at
all label proportions, as seen in Fig. 8(a). Surprisingly, LNP improves only marginally with the number of labels, pointing to
the need of having some notion of distance for the weights to be efficient at labeling. The AEW-optimized weights can only
reconstruct the four classes perfectly when there is more than 20% of labels: this poor performance is probably due to the
fact that having only one coefficient per dimension in �2 is not enough to adapt to the data.

For COIL, our approach significantly outperforms all other methods for all label proportions as well, see Fig. 8(b). LNP
fares better than on swirls, but is only marginally better than HGF. Notice also that the AEW-optimized weights perform
quite differently if they are used with HGF or LLGC for label propagation, which makes sense since the functional being
minimized is not really related to either of these diffusion processes, unlike in our framework. Starting at 10% of labels, our
technique only misclassifies a maximum of two images (see Fig. 1), which is 10 to 25 times better than other methods, and
these two images are arguably taken from an angle that makes them similar to another class (class 6 in the figure, instead
of class 5).

For the MNIST-1K, MNIST-5K, USPS-1K, and USPS-5K datasets, we also outperform the other methods systematically as
demonstrated by the barplots in Figs. 5 and 6. Here again, LNP fails to show much improvement as the number of labels
increases. While HGF performs very poorly for 1% of labels, it produces surprisingly good results for higher percentages.
As expected, HGF and our approach are always interpolatory, while LNP, AEW-LLGC and LLGC quickly start violating input
information in almost every tested dataset; for MNIST-1K, they mislabel 1-2 input data points when only 5% labels are
given, and for 40% labels, they make respectively 182, 51 and 16 mistakes on average. Note that we did not include AEW
results for the 5K datasets: the optimization required by AEW did not converge even after six hours using TensorFlow; but
even for 1K datasets, AEW-optimized weights actually perform worse than Gaussian weights.

The other datasets offer more uniform results, see Fig. 10. In particular, all the methods perform about the same for the
vowel dataset, which suggests that either there are not enough points, or there is a lack of well-defined geometric structures
in this dataset. Still, our diffusion-optimized labeling performs nearly best on all these examples for all label proportions,
with a noticeable improvement over previous methods for the Yale dataset. Table 2 recaps our results.

4.5. Varying dataset sizes

For our next set of experiments, we kept the proportion of labels fixed, but increased the size of the dataset instead.
Intuitively, the more populated the dataset is, the more clear the geometric information we rely on should become, since
the presence of clusters or manifolds ought to be more obvious as the number of unlabeled data points increases.

M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864 15
Table 2
Varying proportion of labels (with mean and standard deviation of 0/1 error, Eq. (16)).

Error LNP HGF LLGC AEW-HGF AEW-LLGC Ours
Dataset %labels Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Swirls

1 0.676 0.056 0.564 0.057 0.538 0.061 0.273 0.122 0.157 0.076 0.000 0.000
5 0.633 0.073 0.213 0.056 0.281 0.064 0.019 0.031 0.014 0.022 0.000 0.000
10 0.596 0.096 0.093 0.039 0.173 0.045 0.003 0.013 0.003 0.007 0.000 0.000
20 0.568 0.057 0.035 0.031 0.147 0.045 0.000 0.000 0.000 0.000 0.000 0.000
40 0.589 0.038 0.006 0.014 0.128 0.055 0.000 0.000 0.000 0.000 0.000 0.000

MNIST-1K

1 0.612 0.111 0.606 0.076 0.489 0.060 0.701 0.078 0.474 0.060 0.444 0.062
5 0.556 0.125 0.268 0.026 0.304 0.025 0.320 0.032 0.332 0.034 0.212 0.023
10 0.562 0.091 0.205 0.012 0.270 0.023 0.215 0.013 0.299 0.023 0.158 0.014
20 0.577 0.065 0.141 0.014 0.224 0.020 0.141 0.013 0.269 0.027 0.107 0.012
40 0.567 0.052 0.086 0.007 0.168 0.010 0.081 0.008 0.230 0.015 0.062 0.007

USPS-1K

1 0.672 0.102 0.656 0.086 0.524 0.048 0.770 0.071 0.550 0.050 0.454 0.042
5 0.596 0.081 0.315 0.040 0.362 0.050 0.413 0.042 0.422 0.055 0.233 0.026
10 0.576 0.091 0.220 0.027 0.308 0.055 0.256 0.030 0.377 0.060 0.164 0.024
20 0.593 0.080 0.147 0.011 0.248 0.032 0.157 0.013 0.334 0.042 0.099 0.012
40 0.604 0.050 0.086 0.009 0.191 0.016 0.086 0.009 0.321 0.026 0.052 0.008

MNIST-5K

1 0.297 0.081 0.296 0.063 0.176 0.028 Not converged 0.162 0.028
5 0.184 0.035 0.097 0.008 0.108 0.009 Not converged 0.078 0.008
10 0.154 0.019 0.076 0.005 0.092 0.006 Not converged 0.059 0.005
20 0.130 0.012 0.059 0.003 0.078 0.003 Not converged 0.044 0.003
40 0.123 0.005 0.040 0.002 0.065 0.002 Not converged 0.029 0.002

USPS-5K

1 0.335 0.077 0.283 0.038 0.204 0.025 Not converged 0.183 0.027
5 0.229 0.040 0.117 0.007 0.133 0.009 Not converged 0.086 0.007
10 0.203 0.028 0.089 0.004 0.114 0.006 Not converged 0.061 0.003
20 0.174 0.016 0.066 0.003 0.098 0.004 Not converged 0.042 0.003
40 0.159 0.009 0.041 0.003 0.078 0.003 Not converged 0.025 0.003

Vowels

1 0.685 0.030 0.704 0.036 0.691 0.036 0.739 0.029 0.692 0.033 0.702 0.037
5 0.517 0.035 0.472 0.041 0.498 0.035 0.483 0.038 0.474 0.047 0.475 0.037
10 0.388 0.039 0.319 0.026 0.389 0.036 0.299 0.038 0.306 0.035 0.292 0.028
20 0.296 0.026 0.194 0.026 0.311 0.029 0.158 0.029 0.194 0.032 0.150 0.022
40 0.234 0.026 0.084 0.013 0.230 0.018 0.035 0.011 0.096 0.014 0.042 0.011

Seeds

1 0.474 0.152 0.204 0.147 0.141 0.075 0.233 0.157 0.160 0.100 0.172 0.096
5 0.337 0.171 0.107 0.013 0.105 0.017 0.106 0.011 0.105 0.010 0.111 0.016
10 0.273 0.147 0.096 0.011 0.094 0.008 0.096 0.013 0.096 0.009 0.095 0.010
20 0.237 0.111 0.084 0.010 0.092 0.007 0.083 0.014 0.094 0.010 0.084 0.014
40 0.254 0.096 0.063 0.013 0.088 0.006 0.060 0.014 0.094 0.006 0.062 0.014

Yale

1 0.684 0.064 0.778 0.020 0.761 0.020 0.718 0.025 0.677 0.028 0.535 0.028
5 0.601 0.134 0.670 0.023 0.675 0.021 0.573 0.029 0.560 0.031 0.399 0.024
10 0.546 0.190 0.505 0.015 0.554 0.018 0.382 0.017 0.413 0.017 0.251 0.013
20 0.476 0.215 0.368 0.010 0.442 0.016 0.276 0.011 0.321 0.019 0.177 0.008
40 0.427 0.127 0.221 0.010 0.312 0.010 0.161 0.009 0.229 0.016 0.103 0.005

We used the MNIST and USPS datasets for this test, and randomly downsampled them to n =10000, 5000, 2000, 1000,
and 500 to have five testing sizes. Once again, AEW was only performed for sizes below 2000, as the optimization would
not finish in less than six hours for the largest size. As demonstrated in Fig. 9 through horizontal barplots, all methods
benefit from an increase in data points, giving credence to the geometric hypothesis that datasets are spatially distributed
in a fashion that can be exploited for classification. Moreover, Laplacian-optimized weights beat all other methods for all
five dataset sizes, be it for MNIST or for USPS. HGF is surprisingly accurate on these datasets (being slightly better than
AEW), but fails to match our results. See also Fig. 7 to check examples of images (representing, arguably, very distorted
digits) that fail to be properly classified. Table 3 recaps all the results.

4.6. Further evaluation of our approach

Finally, we conducted more tests on our approach to justify some of our previous claims and to offer a better under-
standing of what makes it competitive.
Optimized weights. Even the simplest dataset offers some interesting insights on our approach: Fig. 4 displays the top and
bottom 10% of weights ordered by magnitude for the swirls dataset (for K =20) to show where the diffusion is most pre-
ferred, and most avoided. While LNP clearly fails to capture the data by overemphasizing local linearity, Gaussian weights
only partially capture the manifolds (see the large gaps between red edges) and assign very small weights almost only to
edges across spirals (see blue edges). Instead, our Laplacian optimization consolidates the manifolds by assigning all man-
ifold edges with high weights (red edges), while blue edges (i.e., small weights) are not just between spirals, but also for

16 M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864
Table 3
Varying data size with 10% of labels (with mean and standard deviation of 0/1 error, Eq. (16)).

Error LNP HGF LLGC AEW-HGF AEW-LLGC Ours
Dataset N Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

MNIST

500 0.692 0.161 0.245 0.027 0.349 0.029 0.261 0.027 0.408 0.043 0.198 0.034
1000 0.562 0.091 0.205 0.012 0.270 0.023 0.215 0.013 0.299 0.023 0.158 0.014
2000 0.355 0.047 0.129 0.008 0.170 0.012 0.133 0.009 0.183 0.016 0.108 0.008
5000 0.154 0.019 0.076 0.005 0.092 0.006 Not converged 0.059 0.005
10000 0.088 0.007 0.059 0.002 0.073 0.004 Not converged 0.045 0.002

USPS

500 0.729 0.086 0.318 0.039 0.453 0.074 0.377 0.042 0.526 0.066 0.239 0.027
1000 0.576 0.091 0.220 0.027 0.308 0.055 0.256 0.030 0.377 0.060 0.164 0.024
2000 0.396 0.052 0.141 0.014 0.193 0.014 0.162 0.014 0.240 0.018 0.100 0.012
5000 0.203 0.028 0.089 0.004 0.114 0.006 Not converged 0.061 0.003
10000 0.101 0.008 0.068 0.004 0.086 0.005 Not converged 0.044 0.003

geodesically-distant points, which is the right choice to create a data-adapted Laplacian. In this example, AEW shows nearly
no improvement over the Gaussian weights: optimizing the only two scaling hyperparameters does not make much of a dif-
ference since the data is not homogeneous in either coordinate and does not exhibit global anisotropy. Another visualization
is also instructive: Fig. 3 shows a matrix-form display of the weighted graphs generated by the various methods, for the
same graph based on swirls. Clearly, the Gaussian-based and LLE-based weighted graphs connect a lot of nodes in differ-
ent classes; AEW manages to partially improve the situation, but it still connects different classes. Our Laplacian-optimized
approach eliminates undesirable edges, and the 4-class structure becomes very clear, leading to perfect labeling prediction
when label diffusion is performed.
EMD vs. SQP. As part of our biconvex optimization, we use an iterative EMD approach instead of a classical QP solver. In order
to verify that our alternate solver leads to speed improvement, we ran weights optimizations for various sizes of graphs (we
used MNIST-5K with an increasing amount of nearest neighbors K to obtain examples with a growing amount of edges). As
the inset indicates, we see several orders of magnitude improvements compared to OSQP Stellato et al. (2017), already for
sizes of the order of 40K.

Alternating optimization. One could think that the single “cross term” using both Q and w is not enough to play a big role
in our energy. Yet, on COIL for 1% of labeled points, using just the first optimization round of weights and labels leads
to a classifying error of 1%, while after 5 rounds of alternating minimization, the error goes down to 0.39%. Even for 5%
of labeled data, the error after one round of optimization is 0.35%, and goes to 0.21% after convergence. Our alternating
optimization can thus have a significant effect on the classifier’s accuracy. We note also that the optimization of w becomes
faster as the solver goes on: while the first weight optimization takes 370 EMD iterations on the COIL-20 dataset, the second
optimization round only takes 170 EMD iterations, and all subsequent rounds take less than 30 EMD iterations.
Timings. All methods first involve the same graph construction (which can be implemented in O(n log n) with a dedicated
nearest-neighbor data structure for high dimensions), so we disregard this preprocessing step in our discussion of timings.
HGF and LLGC are the fastest, as they only involve a sparse linear solve. LNP is more time consuming due to the fact that
finding optimal weights requires solving 2n QP solves and a non-symmetric matrix in the diffusion solve. Our algorithm is
in between these methods: as a concrete example, on the same laptop and using COIL-20 with 1% of labels, our approach
takes 4 seconds (excluding the offline computation of the matrix A, which has complexity of O(nD) and can be assembled
efficiently through parallelization), while LNP took 14 seconds, and HGF and LLGC took 0.1 seconds. Comparatively, AEW
took 137 seconds, that is, over thirty times slower than our approach. Note finally that based on our tests, the empirical
complexity of our EMD-based biconvex optimization for classification is O(n1.6), although a more efficient implementation
may further reduce this empirical computational complexity.

5. Conclusions

In this paper, we showed that the geometry of complex data can be leveraged through a sparse, nearest-neighbor graph
and an optimized Laplacian over this graph, in order for a label diffusion to directly infer classification of all unlabeled
nodes. This simple algorithm matches or exceeds the accuracy of all previous diffusion-based SSL techniques on a variety of
datasets. At its core is a biconvex energy which optimizes the edge weights to directionally adapt a graph diffusion process
to propagate labels over the dataset by exploiting its intrinsic geometric structure.

M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864 17
Future work. Our work raises a number of interesting research questions mixing machine learning and geometry in high
dimensional spaces. Still in the context of SSL, inductive learning is trivial to incorporate in our framework as we briefly
discussed earlier: for any new data point, we can recompute optimal weights in its two-ring neighbors and use the opti-
mized weights to label it. However, this approach will become inefficient if a significant number of new points are added.
Finding ways to update weights and likelihood scores efficiently could be useful in online applications for instance. Applying
the graph convolutional network method of Kipf and Welling (2017) to our optimized Laplacian is also an intriguing direc-
tion, which could allow the method to scale to large datasets more efficiently. Our geometric approach to classification could
also be used for geometric datasets: meshes or pointsets could be encoded via eigenvalues or feature vectors, and classifica-
tion in one of these embedding spaces could be performed as explained in this document. However, it would be interesting
to study which embedding space would be more likely to result in high accuracy classification from labels for this specific
type of data. Even for D =3, our approach could detect noise and outliers vs. surface samples for dense pointsets: if a user
can label a few parts of the pointsets into one of these two classes, inference on the rest of the data could be performed
through our approach. Whether this approach would compete against random forests for this type of low-dimensional data
remains to be seen. Clustering is another learning task that may benefit from geometric insights. In this unsupervised case,
an input must be grouped into sets in such a way that objects in the same group (called a cluster) are more similar to
each other than to those in other groups. The absence of labels renders our approach inadequate, obviously. However, our
optimization of the Hodge star can still be very relevant, as it can be made to identify clusters and manifolds like we
did for SSL. Adapting our work to current state-of-the-art k-means methods for clustering like Shah and Koltun (2017) or
spectral-based approaches that rely on edge weights may prove very fruitful. More generally, the computational efficiency
of our optimized Laplacian offers insight on the viability of machine learning on point sets as the design of convolutional
pointsets has been a particularly active research topic of late. Developing additional discrete differential geometry tools that
apply to high dimensions could also be a rich source of new algorithms for data analysis.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We thank Rick Szeliski for very early feedback, and Tong Zhao and Florent Lafarge for proof-reading our first draft. This
work was partially supported by NSF grants DMS-1721024 and IIS-1900473.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015.
TensorFlow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/.

Abraham, R., Marsden, J., Ratiu, T., 1988. Manifolds, Tensor Analysis, and Applications. Applied Mathematical Sciences, vol. 75. Springer-Verlag.
Beck, A., Teboulle, M., 2003. Mirror descent and nonlinear projected subgradient methods for convex optimization. Oper. Res. Lett. 31, 167–175.
Belkin, M., Niyogi, P., 2004. Semi-supervised learning on Riemannian manifolds. Mach. Learn. 56, 209–239.
Belkin, M., Niyogi, P., Sindhwani, V., 2006. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn.

Res. 7, 2399–2434.
Blum, A., Chawla, S., 2001. Learning from labeled and unlabeled data using graph mincuts. In: ICML, pp. 19–26.
Bossavit, A., 1998. Computational Electromagnetism. Academic Press.
Budninskiy, M., Liu, B., Tong, Y., Desbrun, M., 2017. Spectral affine-kernel embeddings. Comput. Graph. Forum 36, 117–129.
Budninskiy, M., Yin, G., Feng, L., Tong, Y., Desbrun, M., 2019. Parallel transport unfolding: a connection-based manifold learning approach. SIAM J. Appl.

Algebra Geom. 3, 266–291.
Chapelle, O., Schlkopf, B., Zien, A., 2010. Semi-Supervised Learning. MIT Press.
Crane, K., de Goes, F., Desbrun, M., Schröder, P., 2013. Digital geometry processing with discrete exterior calculus. In: ACM SIGGRAPH 2013 Course Notes.
Csiszár, I., Tusnády, G., 1984. Information geometry and alternating minimization procedures. Stat. Decis. 1 (Supplement Issue), 205–237.
Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc., Ser. B, Methodol. 39, 1–38.
Desbrun, M., Kanso, E., Tong, Y., 2008. Discrete differential forms for computational modeling. In: Bobenko, et al. (Eds.), Discrete Differential Geometry.

Birkhäuser, Basel, pp. 287–324.
Desbrun, M., Meyer, M., Schröder, P., Barr, A., 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In: ACM SIGGRAPH, pp. 317–324.
Dheeru, D., Taniskidou, E.K., 2017. UCI Machine Learning Repository. U. of California, Irvine. http://archive .ics .uci .edu /ml.
Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J., 2001. From few to many. IEEE Trans. Pattern Anal. Mach. Intell. 23, 643–660.
Grant, M., Boyd, S., 2014. CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com /cvx.
Karasuyama, M., Mamitsuka, H., 2017. Adaptive edge weighting for graph-based learning algorithms. Mach. Learn. 106, 307–335.
Kipf, T., Welling, M., 2017. Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations,

pp. 1–14. OpenReview.Net.
Nene, S.A., Nayar, S.K., Murase, H., 1996. Columbia Object Image Library (COIL-20). Technical Report CUCS-005-96. Columbia University.
Olah, C., 2014. Neural networks, manifolds, and topology from Colah’s blog. http://colah .github .io /posts /2014 -03 -NN -Manifolds -Topology/.
Playground, T., 2018. Playground. http://playground .tensorflow.org.
Rasmus, A., Valpola, H., Honkala, M., Berglund, M., Raiko, T., 2015. Semi-supervised learning with ladder networks. In: NIPS, pp. 3546–3554.
Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326.

https://www.tensorflow.org/
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib70438F03FF5AC0DACEBA94C356F0823Es1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibA2DA4D24F502002A27007F4D37B04781s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib34675A0F2A4E55CAE8ED61C1C18E92D4s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib67E6858D70BDB28AD1ED83C7D8D97EEDs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib67E6858D70BDB28AD1ED83C7D8D97EEDs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibEB3DC31A31D549BB0D7815A8155BE2C2s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibB3412F51DDC3025079F9D1541DBE8A0As1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib7178A89B3ECC7BEB2A350A36C25525F5s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibFE9BCAB4108CECCAC8DC93734F32292Fs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibFE9BCAB4108CECCAC8DC93734F32292Fs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibAFB031DEE9437C9BA795A4F87E7A5EE4s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib530D81E19FB65A6C53C3C5995D28DCE0s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibEAF7EDEFA1F116BDA8A62EA478F74E12s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibB95C3D50FA47443166F7D356EAED8006s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib7D78C57DF8EDABFBEEB1900772D8595Bs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib7D78C57DF8EDABFBEEB1900772D8595Bs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib06F9A3899ED36FB539F7BBA165478DD2s1
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibBB42F68958832D8FA0C78D028D57FB40s1
http://cvxr.com/cvx
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib274296A49FA05CA770B456D6EF0ED923s1
http://OpenReview.Net
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibEB125705C764B19DA51E071864F955CEs1
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
http://playground.tensorflow.org
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib6C0A0FE6C54B3F17530E3FED6C09B0BAs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibE575CF7777457DE267BB060D932C5704s1

18 M. Budninskiy et al. / Computer Aided Geometric Design 79 (2020) 101864
Rustamov, R.M., Klosowski, J.T., 2018. Interpretable graph-based semi-supervised learning via flows. In: AAAI Conference on Artificial Intelligence,
pp. 3976–3983.

Shah, S.A., Koltun, V., 2017. Robust continuous clustering. Proc. Natl. Acad. Sci. 114, 9814–9819.
Shi, J., Malik, J., 2000. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905.
Sindhwani, V., Belkin, M., Niyogi, P., 2010. Semi-supervised Learning, pp. 35–54. Chapter: The geometric basis of SSL. In: Chapelle et al. (2010).
Solomon, J., Rustamov, R.M., Guibas, L., Butscher, A., 2014. Wasserstein propagation for semi-supervised learning. In: ICML, pp. 306–314.
de Sousa, C.A.R., 2015. An overview on the Gaussian fields and harmonic functions method for semi-supervised learning. In: Int. Joint Conf. on Neural

Networks, pp. 1–8.
Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S., 2017. OSQP: an operator splitting solver for quadratic programs. ArXiv e-prints arXiv:1711.08013.
Subramanya, A., Bilmes, J., 2011. Semi-supervised learning with measure propagation. J. Mach. Learn. Res. 12, 3311–3370.
Vesely, K., Hannemann, M., Burget, L., 2013. Semi-supervised training of deep neural networks. In: IEEE Workshop on Automatic Speech Recognition and

Understanding, pp. 267–272.
Wang, F., Wang, J., Zhang, C., Shen, H.C., 2006. Semi-supervised classification using linear neighborhood propagation. In: CVPR, pp. 160–167.
Wang, F., Zhang, C., 2008. Label propagation through linear neighborhoods. IEEE Trans. Knowl. Data Eng. 20, 55–67.
Wang, Y., Jiang, Y., Wu, Y., Zhou, Z.H., 2011. Spectral clustering on multiple manifolds. IEEE Trans. Neural Netw. 22, 1149–1161.
Zelnik-Manor, L., Perona, P., 2004. Self-tuning spectral clustering. In: NIPS, pp. 1601–1608.
Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B., 2003. Learning with local and global consistency. In: NIPS, pp. 321–328.
Zhou, X., Belkin, M., 2011. Semi-supervised learning by higher order regularization. In: International Conference on Artificial Intelligence and Statistics,

vol. 15, pp. 892–900.
Zhu, X., 2007. Semi-Supervised Learning Literature Survey. Technical Report 1530. Computer Sciences, U. of Wisconsin–Madison.
Zhu, X., Ghahramani, Z., Lafferty, J., 2003. Semi-supervised learning using Gaussian fields and harmonic functions. In: ICML, pp. 912–919.
Zhu, X., Goldberg, A.B., 2009. Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 3, 1–130.

http://refhub.elsevier.com/S0167-8396(20)30051-0/bibE044750F32596165735618D8A74A54C5s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibE044750F32596165735618D8A74A54C5s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib173E05EF86B78532674FA9508480D65Fs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib4C198BF7252B5DBAA7DDF50EB78C683Es1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib3EC1F31CBEEAECF58D54F481EEF1A32Ds1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib1D2544ADB6BB6D61F39093E91F2DEF2Cs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibDFE8E6BDFACB3D7C4E387EB7787D7230s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibDFE8E6BDFACB3D7C4E387EB7787D7230s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibD5C5680433671182189AC2AEA101961Fs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibE99D3C3F849C257FB8F44E3D705FE016s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibC0D2FA767B09DA6F3C98BC1D682404DAs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibC0D2FA767B09DA6F3C98BC1D682404DAs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib6128954C8223F5D8D67CDA49A69079A6s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib7CCDBC1B353FB9340ADE44DC2EC6F8CAs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib0F4696B71BC34B95683F70A9E118F1E8s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibB8BC9727D3A5D3E6401309F58D057890s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bibF28C7A21B4D19A6DF7A995A84C192E60s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib988826A8C5142DB484A402756654E77Fs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib988826A8C5142DB484A402756654E77Fs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib7399C24314A63B3756282F6AB5959E00s1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib77548AEEA2D02B17496197203373BEFDs1
http://refhub.elsevier.com/S0167-8396(20)30051-0/bib8DD4946EBF8DA3A4F184CF6385A23A0As1

	Laplacian-optimized diffusion for semi-supervised learning
	1 Introduction
	1.1 Semi-supervised learning
	1.2 Graph-based approaches to SSL
	1.3 Contributions

	2 Review of graph-based SSL methods
	2.1 Notations
	2.2 Harmonic Gaussian fields
	2.3 Learning with local and global consistency
	2.4 Linear neighborhood propagation
	2.5 Measure-based classifiers
	2.6 Learning with weight optimization
	2.7 Discussion

	3 Our Laplacian-optimized classifier
	3.1 Notations
	3.2 Parameterization of the Laplacian
	3.3 Normalized Laplacian
	3.4 Variational classification principle
	3.5 Optimality conditions
	3.6 Optimization
	3.7 Implementation details
	3.8 Discussion

	4 Results and comparisons
	4.1 SSL methods
	4.2 Datasets
	4.3 Measuring accuracy
	4.4 Varying number of input labels
	4.5 Varying dataset sizes
	4.6 Further evaluation of our approach

	5 Conclusions
	Acknowledgements
	References

