
Kube-Knots: Resource Harvesting through Dynamic Container
Orchestration in GPU-based Datacenters

Prashanth Thinakaran1, Jashwant Raj Gunasekaran1, Bikash Sharma2,
Mahmut Taylan Kandemir1 and Chita R. Das1

1The Pennsylvania State University 2Facebook, Inc.

Abstract—Compute heterogeneity is increasingly gaining
prominence in modern datacenters due to the addition of ac-
celerators like GPUs and FPGAs. We observe that datacenter
schedulers are agnostic of these emerging accelerators, especially
their resource utilization footprints, and thus, not well equipped
to dynamically provision them based on the application needs.
We observe that the state-of-the-art datacenter schedulers fail
to provide fine-grained resource guarantees for latency-sensitive
tasks that are GPU-bound. Specifically for GPUs, this results
in resource fragmentation and interference leading to poor uti-
lization of allocated GPU resources. Furthermore, GPUs exhibit
highly linear energy efficiency with respect to utilization and
hence proactive management of these resources is essential to
keep the operational costs low while ensuring the end-to-end
Quality of Service (QoS) in case of user-facing queries.

Towards addressing the GPU orchestration problem, we build
Knots, a GPU-aware resource orchestration layer and integrate
it with the Kubernetes container orchestrator to build Kube-
Knots. Kube-Knots can dynamically harvest spare compute cycles
through dynamic container orchestration enabling co-location of
latency-critical and batch workloads together while improving
the overall resource utilization. We design and evaluate two
GPU-based scheduling techniques to schedule datacenter-scale
workloads through Kube-Knots on a ten node GPU cluster.
Our proposed Correlation Based Prediction (CBP) and Peak
Prediction (PP) schemes together improves both average and 99th

percentile cluster-wide GPU utilization by up to 80% in case of
HPC workloads. In addition, CBP+PP improves the average job
completion times (JCT) of deep learning workloads by up to
36% when compared to state-of-the-art schedulers. This leads to
33% cluster-wide energy savings on an average for three different
workloads compared to state-of-the-art GPU-agnostic schedulers.
Further, the proposed PP scheduler guarantees the end-to-end
QoS for latency-critical queries by reducing QoS violations by
up to 53% when compared to state-of-the-art GPU schedulers.

I. INTRODUCTION

Modern data centers are being provisioned with compute
accelerators such as GPUs and FPGAs to catch up with the
workload performance demands and reduce the Total Cost of
Ownership (TCO) [1]–[3]. By 2021, traffic within hyperscale
datacenters is expected to quadruple with 94% of workloads
moving into the cloud according to Cisco’s global cloud
index [4]. Based on the nature of the application, it can either
benefit from the high throughput of GPUs or the low latency
present in FPGAs, TPUs [5], [6], and custom ASICS [7]–[11].
This trend is also evident as public cloud service providers like
Amazon [12] and Microsoft [13] have started offering GPU
and FPGA-based infrastructure services.

In recent years, GPUs in particular have gained prominence
due to the increasing computational demands of Deep Learning
workloads. This includes both user-facing inference queries
and batch-style model training of deep neural networks. With
the increase in such workloads [4], [14], [15], public clouds
have provisioned GPU resources at the scale of thousands of
nodes in datacenters. Since GPUs are relatively new to the
cloud stack, support for efficient GPU management lacks, as
state-of-the-art cluster resource orchestrators [16], [17] treat
GPUs only as a specific resource constraint while ignoring its
unique characteristics and application properties.

In this paper, we address the issues at the cluster-level
resource management layer. We notice that the cluster-level
orchestration policies are heavily tuned for CPU-based clusters
treating GPUs as a constraint for admission control. They do
not harness the GPU’s capability in full, leading to spare GPU
cycles and poor utilization due to resource fragmentation. This
is typically due to static provisioning of GPU resources. GPU
containers earmark and hog the resources such as GPU memory
to ensure crash-free executions of containers. In order to
curb this, we propose Kube-Knots which dynamically harvests
the spare compute cycles by resizing the containers. Further,
we also show how GPU-specific management policies could
guarantee the QoS of latency-sensitive queries while improving
the cluster-wide GPU utilization leading to energy savings.

State-of-the-art resource orchestrators such as Kubernetes
[16] and Mesos [17] perform GPU utilization-agnostic uniform
scheduling, which statically assigns the GPU resources to the
applications. The scheduled containers/pods1 access the GPUs
via PCIe pass-through, which lets the guest applications to have
complete access to GPU resource bypassing the hypervisor.
Hence, none of the hypervisor-level resource management
policies such as fairness, utilization, etc., could be incorporated
across GPUs where multiple tenants could share the same
GPU resource in case of public datacenter. Further, Kubernetes
supports dynamic orchestration by performing node affinity, pod
affinity, and pod preemption in the case of CPUs. However, with
respect to GPUs, pods have exclusive access to the device until
completion and they cannot be preempted by the hypervisor.
Based on this observation, we identify three specific problems
pertaining to GPU-specific resource management.

1We use the terms (Google’s) pod and container interchangeably.

978-1-7281-4734-5/19/$31.00 c©2019 IEEE

Authorized licensed use limited to: Penn State University. Downloaded on July 12,2020 at 19:14:22 UTC from IEEE Xplore. Restrictions apply.

• Context Switches in GPUs - CPUs seamlessly context-
switch across applications while ensuring SLOs (Service
Level Objectives)/fairness. Modern CPU caches are virtually-
indexed physically-tagged (VIPT), whereas GPUs are usu-
ally VIVT. Therefore, GPU caches are flushed after every
preemption/context-switch. Moreover, GPU contexts are orders
of magnitude larger than CPUs, leading to higher context-switch
overheads. Although GPU containers can be made preemptible
by time-sharing, preemption comes with high overheads which
violates the SLO of latency-sensitive applications.
• Utilization agnostic GPU scheduling - Today’s datacenter
resource orchestrators treat GPU’s as a hardware constraint
and are agnostic of GPU utilization metrics. The QoS (Quality
of Service) of latency sensitive queries are difficult to guar-
antee without knowing the system state due to performance
interference [18]–[20], especially in the case of multi-tenancy.
• Energy proportionality - GPUs have linear performance
per watt scaling, which implies that the maximum energy
efficiency can be achieved only when GPUs are 100% utilized,
unlike CPUs [21], as seen in Figure 1. It is crucial for a
scheduler to fully pack and utilize the GPUs. While the CPUs
peak efficiency is at 60-80% and pushing them beyond yield
marginal returns due to hyper-threading issues.

To overcome these limitations, we propose Kube-Knots,2

which enables GPU utilization-aware orchestration along with
QoS-aware container scheduling policies. Towards this end,
we design a runtime system Knots that aggregates real-time
GPU cluster utilization metrics [22] which is leveraged by
our proposed Peak Prediction (PP) scheduler. PP scheduler
performs safe co-locations through GPU spare cycle harvesting
by dynamically resizing the containers. This is in contrast
to the state-of-the-art GPU scheduling techniques that focus
on only one type of application such as Distributed Deep
Neural Network training (DDNN) [14], [23]–[27]. In addition,
Kube-Knots performs QoS-aware container co-locations on
GPUs at the cluster-level without a priori knowledge of
incoming applications. This is in contrast to prior node-
level techniques [28]–[31] which require prior profiling of
applications. We make the following contributions:

1) We build Knots, a runtime system which aggregates the
node-level GPU resource utilization metrics. This informa-
tion is leveraged by the Kubernetes at the cluster-level to
monitor the real-time GPU utilization at every node.

2) We design datacenter representative GPU cluster workloads
to evaluate our proposed schedulers on a real-system with
multi-node GPU cluster orchestrated by Kube-Knots.

3) We build two schedulers on top of Resource Agnostic (Res-
Ag) orchestration namely, Correlation Based Prediction
(CBP), and Peak Prediction (PP) that leverages cluster-
wide GPU utilization metrics aggregated from Kube-Knots.

4) We compare the CBP+PP based scheduler along with the
state-of-the-art schedulers to schedule DNN workloads and

2Google’s Kubernetes means helmsman or captain of the ship managing
multiple containers. In Kubernetes, Knots orchestrates the scheduling speed of
the accelerated containers.

show that utilization-aware application resizing and SLO-
aware scheduling leads to improved JCTs of DNN tasks.

In summary, our proposed CBP and PP schedulers leverages
the real-time GPU usage correlation metrics through spare cycle
harvesting to perform safe pod co-locations ensuring crash-free
dynamic container resizing on GPUs. CBP along with PP
scheduler can guarantee the end-to-end QoS of latency critical
queries by predicting the incoming load through ARIMA [32]
based time-series forecasting for GPU-aware scheduling.

II. BACKGROUND AND MOTIVATION

Traditional resource schedulers for CPU-based datacenters
improve the overall utilization by virtualization. However,
General Purpose GPUs (GPGPUs)3 pose unique challenges
in virtualization. Hence, public cloud offerings like AWS do
not support virtualization of GPGPUs and FPGAs. But in the
case of private datacenters, to improve the GPGPU utilization,
time-sharing of the GPU compute cores (SMs) and space-
sharing of the memory is enabled. In this section, we discuss
the properties unique to GPUs and potential implications of
sharing and virtualization leading to QoS violations.

A. Utilization vs Performance per Watt

The processing elements of CPUs are designed to operate
for an average case load at peak energy efficiency [21] in
terms of performance per watt (PPW). As seen in Figure 1 the
energy efficiency varies at different load scenarios for CPUs
and GPUs. The newer generation CPUs are much more energy
proportional when compared to older architectures. For the
CPU-bound queries, we observe that the peak energy efficiency
at around 60% to 70% core utilization, where the point of peak
efficiency is no longer at peak utilization for CPUs.

N
or

m
al

iz
ed

 E
ne

rg
y

Effi
ci

en
cy

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Device Utilization %

10 20 30 40 50 60 70 80 90 100

GPU Intel-Sandybridge Intel-Westmere

High Energy

Proportionality Zone

Low Energy

Proportionality Zone

Fig. 1: Energy Efficiency (EE) of CPU and GPU at varying resource
utilization %. EE normalized to EE at 100% utilization.

We observe that GPUs are fundamentally different from
CPUs as their energy efficiency has a linear relationship with
respect to their utilization. Therefore, a cluster-level resource
manager needs to consolidate workloads to operate the GPUs
at 100% utilization. However, it is not practical to operate all
the GPUs in a cluster due to diurnal load interval trends. Hence,

3We use GPUs and GPGPUs interchangeably. Although the graphic pipeline
of GPUs can be virtualized while the GPGPUs do not have the support.

Authorized licensed use limited to: Penn State University. Downloaded on July 12,2020 at 19:14:22 UTC from IEEE Xplore. Restrictions apply.

(a) Latency-critical task’s usage metrics

0 20 40 60 80 100
Utilization %

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Max CPU Utilization
Avg CPU Utilization
Max Mem Utilization
Avg Mem Utilization

(b) Average & Maximum core and memory
utilization of containerized services. (c) Long running batch task’s usage metrics

Fig. 2: Alibaba trace analysis of resource utilization of 1300 machines across 12,951 batch jobs & 11,089 containers (12hr period).

the GPU cluster scheduler needs to actively harvest the spare
cycles of GPUs to perform load consolidation while letting
other GPU nodes be in deep sleep state. Therefore, scheduling
policy in terms of utilization should be much more aggressive
when compared to CPUs while ensuring the QoS [33]–[36].

Observation 1: Keeping the GPU utilization high is
essential for high energy efficiency when compared to CPUs.

B. Cluster-level Trace Analysis

In order to obtain high utilization in GPUs, we need to
know the user behavior in terms of resource request and
resource usage trends. To this end, we analyze the open-sourced
Alibaba production datacenter CPU-traces [37]. Cluster-level
GPU traces are not publicly available, to robustly evaluate
our scheduler, we use CPU traces to to gain insights into the
datacenter task arrival trends. We also analyse the characteristics
of both batch and latency-critical jobs along with their actual
resource demands.
• Resource overcommitment - First, jobs tend to overstate
their resource requirements. As observed from Figure 2b,
average CPU and memory utilization is 47% and 76% re-
spectively. Half of the scheduled pods consume less than
45% of the provisioned memory on an average. This is
because over-commitment indirectly helps to ensure the QoS
of such queries by provisioning for the worst (peak) case
leading to overall underutilization of the cluster [38]. In case
of CPUs, virtualization, preemption and fine-grain resource
sharing mitigate the problem, while it becomes a critical design
point factor as the GPU memory (typically 8-16GB) is limited
compared to server-class CPU memory (64-256GB).

Observation 2: Due to varying resource needs of an appli-
cation, instead of provisioning resources for the application’s
worst-case utilization, it is efficient to provision for the average-
case. It is ideal if the scheduler could dynamically provision
and harvest the spare cycles based on the run-time growth of
the application instead of static provisioning.

• Utilization metrics are tightly correlated - Figure 2a plots
the Spearman’s correlation across eight container resource
utilization metrics as a heat map. Equation 1 gives the
correlation score ρ where, di is the difference between the

ranks (ordered in descending i.e, highest value gets rank 1 and
lowest value gets rank 8) of corresponding utilization metrics
in the heatmap and n is the number of observations. Positive
relationship between two metrics is represented by a score
close to +1 and vice-versa.

ρ = 1− 6Σd2i
n(n2 − 1)

(1)

Figure 2c plots the correlation between six utilization
metrics of batch workloads. It is seen that the memory
utilization strongly correlates with the core utilization. Unlike
latency-sensitive queries, the batch applications exhibit strong
correlation (both +ve & -ve) between its utilization metrics.
Mainly the CPU and memory utilization of batch tasks are
positively correlated when compared to latency-sensitive tasks
in Figure 2a. Therefore, its relatively easy to predict the
utilization footprint of batch tasks.

It can also be seen from Figure 2c, there is a significant
relationship between the CPU cores (core util) and the average
system load recorded every 1, 5 and 15 second(s) (load 1,
load 5, load 15) in case of batch tasks. However from
Figure 2a there are no clear correlation indicators to predict
utilization since these tasks are short-lived (few seconds). Thus
the load of datacenter for batch applications could be accurately
predicted by up to 15 seconds ahead and meanwhile the spare
compute and memory could be harvested by dynamically sizing
their containers. This enables co-location of other latency-
sensitive queries waiting in the pending queue which runs for
less than few seconds.
Observation 3: Alibaba traces show that the batch task’s
utilization footprint is fairly predictable and the correlation
across different resource utilization metrics of batch tasks
provides early markers for proactive resource harvesting.

C. Node-level GPU Characterization

We identify the popular production workloads which sub-
scribe to GPUs. The workloads include applications that use
DNN frameworks like Tensorflow, which are hosted as micro-
service deployments inside containers and are shipped via
orchestrators like Kubernetes [16], Mesosphere [39], Docker

Authorized licensed use limited to: Penn State University. Downloaded on July 12,2020 at 19:14:22 UTC from IEEE Xplore. Restrictions apply.

0 80 10
0

14
0

18
0

32
0

34
0

41
0

69
0

0

1

2

3

4

5
B

an
dw

id
th

 (B
yt

es
)

106

Transfer
Receive

0 80 10
0

14
0

18
0

32
0

34
0

41
0

69
0

0

20

40

60

80

100

SM
 U

til
iz

at
io

n
%

0 80 10
0

14
0

18
0

32
0

34
0

41
0

69
0

0

500

1000

1500

2000

2500

M
em

or
y

U
se

d
(M

B
yt

es
)

Fig. 3: GPU Resource consumption of entire Rodinia suite on Nvidia’s
P100 GPU. The grid-lines mark the individual benchmark’s runtime.
(where x-axis is time in milliseconds)

swarm [40], etc. Generally, these deployments are hosted as
services such as object detection, feature extraction, etc. Queries
to these containers arrive in short bursts, and the tasks are short-
lived. For example, the image recognition DNN-based inference
query takes 90ms on an average, on Nvidia P100 [41]. Whereas,
other batch jobs may run for hours on a GPU, such as, HPC
applications, DNN training, etc.

In order to create a datacenter representative workload mix
for GPUs, which consists of both batch jobs and user-facing
queries: (i) we use applications from Rodinia suite [42] for
batch (compute-intensive) workloads and, (ii) we use a mix of
DNN-based inference queries from Djinn and Tonic suite [2]
for user facing queries. We execute the application-mix on a
single GPU node to understand the batch-workload’s resource
demands. We design a load generator for Kube-Knots that
mimics the real-world datacenter. We model the load generator
after the Alibaba datacenter task inter-arrival times. Further
details about the workload are explained in Section III.

1) GPU Batch Workload: Figure 3 plots the GPU resource
consumption over time for the eight different applications,
which were run sequentially. We characterize memory used,
Streaming Multiprocessor (SM) utilization and PCIe bandwidth
which are the three dominant resources for a batch application.
It is observed that in general the resource consumption of
Rodinia is relatively low with a few exceptions over time
without increasing the problem size. From Figure 3, we also
observe that the resource consumption of applications are
highly varying in nature. Hence provisioning for worst-case
utilization would lead to a lot of under-utilization. Further, we
observe that these applications show a very deterministic pattern
of phase changes. For example, typically if an application’s
input PCIe bandwidth activity is high, it is implied that the
compute and memory would follow the same trend in the
next few milliseconds. These subtle utilization cues are picked
up through real-time feedback and leveraged for resource

1 2 4 8 16 32 64 128
Inference Batch Sizes

0

20

40

60

80

100

%
 G

P
U

 M
em

or
y

U
se

d TF
face
imc
key
ner
pos
chk

Fig. 4: Memory footprint of DNN inference queries of Djinn and Tonic
workload suite. TF is the Tensorflow managed memory consumption.

harvesting and dynamic container resizing by Kube-Knots.
Observation 4: A GPU batch application’s utilization

footprint is accurately predictable through correlation markers
and forecasting. Thus, enabling opportunities for resource
harvesting and dynamic container orchestration.

2) GPU User-Facing Queries: The Djinn and Tonic bench-
mark uses Tensorflow (TF) as the DNN-framework for execut-
ing ML queries. TF also manages the execution flow of the
queries that run inside the GPU. By default, TF earmarks the
entire GPU memory despite actual workload demands. The TF
runtime is designed to make this a default choice [43] because
GPUs are assumed to run a single context at a given time
and are not designed for multi-tenant/application scenarios.
However, in case of public datacenters, to keep the costs low,
it is ideal to share the GPUs. This is because the individual
application/tenant utilization is generally low.

Figure 4 shows the maximum memory consumption of
different machine learning inferences. For most of the single
inference queries, the memory consumption is less than 10%.
We batched these queries up to 128 queries per batch request.
However, the majority of the inferences even with batching
consume less than 50% of the device memory presenting an
opportunity to be co-located along batch applications. However,
the same queries are run using TF, they consume 99% of the
GPU memory causing severe internal memory fragmentation.
Although, this could have been avoided by exposing the TF
APIs to the scheduler.

Observation 5: To enforce a cluster-level scheduling policy,
it is essential to expose the framework APIs to the cluster
scheduler to avoid GPU memory fragmentation along with
real-time utilization metrics.

III. WORKLOAD MODELING

Accelerators like GPUs in production datacenters are rel-
atively recent, we wanted to faithfully capture the dynamics
of applications that would be representative of a production
datacenter load. We capture the inter-arrival pattern of tasks in
the Alibaba datacenter traces [37] along with the task resource
constraints as discussed in Section II. Using the arrival rate
of incoming jobs to the Alibaba datacenter, we schedule a
mix of batch and interactive GPU jobs to our ten node cluster.
This mix is determined by a fixed cut-off based on the Pareto

Authorized licensed use limited to: Penn State University. Downloaded on July 12,2020 at 19:14:22 UTC from IEEE Xplore. Restrictions apply.

Power
SM Util

Mem Util
Tx-RxB/W

P100

P100

M40

V100

K80

Ti
m

e
Se

rie
s

D
B

Query every
heartbeat

Docker Image Repository

U
til

iz
at

io
n

Ag
gr

eg
at

or

H
et

er
og

en
ou

s
G

PU
-

ba
se

d
cl

us
te

r

Kubernetes
Head-node

Knots
GPU Monitor

Container Resource Usage Profiles

Orchestrate
Containers

G
PU

-a
w

ar
e

 O
rc

he
st

ra
to

r

Fig. 5: Kube-Knots GPU orchestrator design.
Batch workloads from Rodinia suite Latency critical Load COV

App-Mix-1 leukocyte heartwall particlefilter mummergpu face,key HIGH LOW
App-Mix-2 pathfinder lud kmeans streamcluster chl,ner,pos MED MED
App-Mix-3 particlefilter streamcluster lud myocyte imc,face LOW HIGH

TABLE I: GPU load and covariance for cluster workload suite mixed
with batch jobs and latency critical ML inference queries.

principle [44] where 80% jobs consume only 20% of the
datacenter resources as they are short-lived tasks and the rest
are the long-running batch jobs.

A. Representative GPU workload

We choose eight scientific applications from the Rodinia
benchmark suite [42] to represent the batch jobs. For short-lived
tasks, we use a mix of DNN-based inference queries (speech,
text, and image) from Djinn and Tonic workload suite [2]
(From Table I4). Based on the resource usage trend in the
Alibaba traces, we categorize the application-mix and associate
it with three different bins based on the load and covariance
as seen in the Table I.

B. Application-mix Analysis

To schedule these workloads onto the GPU nodes, we use the
Kubernetes’s uniform scheduler to schedule containers. GPU
sharing is disabled by default in Kubernetes as it complicates
the scheduler-level performance/QoS guarantees and to ensure
fairness across different co-scheduled applications. To set a fair
baseline, we enable GPU sharing across multiple applications
and we call this as GPU-agnostic scheduler and set it as
our baseline scheduler for comparison. Note that the GPU
compute is time-shared while the memory is space-shared.
Therefore, scheduler can pack multiple containers on GPUs
through periodic resource harvesting by resizing the containers.

We create an experimental setup as shown in Table I and
evaluate our baseline GPU-agnostic (Res-Ag) scheduler. We
schedule all three app-mixes and plot the 50th, 90th, 99th

percentile GPU utilization along with maximum utilization of
individual GPUs as seen in Figure 6. We observe in app-mix-1
(in Figure 6a) the median is much closer to 90th/99th percentile

4The abbreviations for application names can be found in [2]

utilization when compared to app-mix-3 (in Figure 6c). This
implies that the sustained load in case app-mix-1 is higher
than app-mix-3, as we classified in Table I. On the other hand,
app-mix-2 in Figure 6b has the 50th to 99th percentile evenly
spaced. This also correlates to the classification we make for
app-mix-2 in Table I (medium and steady load).

It is evident that, the applications have varying resource
needs throughout their lifetime. Also, the applications always
overstate their resource requirements by provisioning for peak
utilization (also seen in Figure 3). This leads to under-utilization
and queuing delays resulting in poor energy efficiency and
significant QoS violations. An efficient GPU scheduler would
leverage this dynamic workload behavior resulting in improved
utilization and energy efficiency.

C. Utilization Variance Across GPU Nodes

We look into the variability of GPU node utilization for these
three different application mixes through a statistical metric
called Coefficient Of Variation (COV). COV is measured by
the ratio of standard deviation σ and mean µ. An application-
mix with low COV≤1 denotes consistent nature of its load
in terms of GPU utilization, making it easier to guarantee the
performance of the pods to be scheduled in future and vice-
versa. Further, co-locating a pod in a heavy-tailed distribution
(COV>1) case would lead to application interference(noisy-
neighbor) and severe capacity violations.

We sort the COV for all GPU nodes within an application
mix and show it in Figure 7. We observe that the COV is
less than 1 for both app-mix-1 and app-mix-2. Therefore, it
is easier to predict and guarantee while scheduling in those
scenarios. In case of app-mix-3, the COV is greater than 1, and
on top these applications have very low resource consumption.
However, if the scheduler is agnostic to the real-time utilization
of GPUs, it will lead to co-location that results in heavy-tail
distribution (e.g, time quantum 410-690 in Figure 3) resulting in
capacity failures. Hence it is important for a GPU orchestrator
to provision for an application while considering the real-time
GPU utilization metrics.

IV. KUBE-KNOTS DESIGN AND INTEGRATION

In this Section, firstly, we discuss the design of Knots frame-
work which serves as a real-time utilization metrics aggregator
at the head-node. The data collected by Knots is critical to
perform GPU-aware scheduling. Secondly, we the describe the
design of GPU-aware resource harvesting schedulers we built
using the Kube-Knots orchestration framework.

A. Knots Design

Knots is designed to collect and log the real-time GPU
utilization metrics through pyNVML [45]. pyNVML is a
python-based API library that exposes utilization metrics to
the node-level aggregator. As shown in Figure 5, we log
the following five GPU metrics in real-time: (i) streaming
multiprocessor (SM) utilization, (ii) memory utilization, (iii)
power consumption, (iv) transfer bandwidth and, (v) receive
bandwidth. These metrics are pushed to a node-level time-series

Authorized licensed use limited to: Penn State University. Downloaded on July 12,2020 at 19:14:22 UTC from IEEE Xplore. Restrictions apply.

1 2 3 4 5 6 7 8 9 10
GPU Node id

0

10

20

30

40

50

60

70

80

90

100
G

P
U

 U
ti

li
za

ti
o
n

(%
)

50 %le 90 %le 99 %le Max

(a) Application-Mix-1

1 2 3 4 5 6 7 8 9 10
GPU Node id

0

10

20

30

40

50

60

70

80

90

100

G
P

U
 U

ti
li
za

ti
o
n

(%
)

50 %le 90 %le 99 %le Max

(b) Application-Mix-2

1 2 3 4 5 6 7 8 9 10
GPU Node id

0

10

20

30

40

50

60

70

80

90

100

G
P

U
 U

ti
li
za

ti
o
n

(%
)

50 %le 90 %le 99 %le Max

(c) Application-Mix-3

Fig. 6: 50/90/99th percentile & maximum GPU utilization for different application mixes scheduled using GPU-agnostic scheduler.

1 2 3 4 5 6 7 8 9 10

GPU Node id (sorted)

0.0

0.5

1.0

C
o
e
ff

ic
ie

n
t

o
f

V
a
ri

a
n

c
e

COV < 1

(a) App-Mix-1

1 2 3 4 5 6 7 8 9 10

GPU Node id (sorted)

0.0

0.5

1.0

C
o
e
ff

ic
ie

n
t

o
f

V
a
ri

a
n

c
e

COV < 1

(b) App-Mix-2

1 2 3 4 5 6 7 8 9 10

GPU Node id (sorted)

0.0

0.5

1.0

C
o
e
ff

ic
ie

n
t

o
f

V
a
ri

a
n

c
e

COV > 1

(c) App-Mix-3
Fig. 7: Coefficient of Variance across three Application-Mix.

database IDB (Influx-DB) [46]. Knots from the head-node can
query the GPU nodes for utilization data via the aggregator
which is further explained in detail in Section IV.

Based on the desired prediction accuracy, the quality of
scheduling is determined by the frequency at which Knots
queries the IDB. We call this as heart-beat interval which is
a crucial factor in determining the placement quality of the
scheduler. From Section II-C2, we know that pods could be
dynamically resized by predicting the memory consumption
using the metrics like I/O bandwidth and SM Util, which Knots
leverages for compaction of pods.

B. Resource agnostic sharing

We enable scheduling of multiple containers (pods) on a
single GPU by modifying the Nvidia’s k8s-device-plugin [47]
for Kubernetes. The GPU-compute is time-shared while the
memory is space-shared. We used first fit decreasing order bin-
packing algorithm to pack the pods on the GPU which greatly
improves the average GPU utilization and job turnaround times.
The three application mixes shown in Table I are scheduled
using baseline GPU-agnostic (Res-Ag) scheduler.

Figure 6 shows the utilization of each of the ten GPU
nodes. Res-Ag scheduler is actually better in cases where
the utilization is already high (for instance application-mix-1
from Figure 6a). GPU-sharing satisfies the Observations 1 &
3 which is maximizing the utilization by enabling resource
sharing and keeping the utilization high for energy efficiency
respectively. However, it fails to consider the GPU metrics such
as free memory and queue length. This leads to severe QoS
and capacity violations leading to pod crashes (discussed in
Observation 2). When GPU sharing is enabled, it is important
that the cluster-wide resource scheduler should consider the
real-time GPU utilization to safely schedule and co-locate the
containers (pods) which lead to our next scheme.

C. Correlation Based Provisioning

Following the observations made from Alibaba cluster traces,
in order to make effective scheduling decisions, the correlation
between the utilization metrics must be used for proactive
application placement, especially when GPU sharing is enabled.
Since Knots leverages the utilization aggregator to collect
the real-time utilization statistics from each GPU nodes, the
scheduler can leverage this information to predict whether
the pods can be co-located. For example, two pods positively
correlated for GPU memory is scheduled to different GPU
nodes as the pods have a high probability of memory capacity
violations when co-located.

Further, such capacity violations can also lead to container
crashing and relaunching. Although the relaunch latency is
typically in the order of few seconds, the tasks when relaunched
cannot be prioritized over tasks of other pods that are already
ahead on the queue. In this case, this particular heavy tailed
task affects the overall job completion times.

As observed in Figure 3, all the representative GPU batch
workloads on an average have stable resource usage for most of
their execution except for the times when the resource demand
surges. Specifically, SM utilization has a 90x difference between
its median and peak. Similarly, bandwidth utilization differs
by 400x between the median and peak. The application uses
the whole allocated capacity only for 6% of the total execution
time, but it is always provisioned for the peak utilization
case. This leads to resource fragmentation and underutilization.
This issue could be fixed by harvesting the memory back
from the pods by resizing them to co-locate with another
pending pod. For example, if two uncorrelated applications are
containerized as pods and placed individually, they have an
X% probability of failure. Whereas if they are co-located, they
have a probability of failing together, which is 1− (1−X)2.
Hence, provisioning based on an average usage and packing
uncorrelated applications together can lead to potential savings
over Res-Ag scheduling. We call this scheme correlation based
prediction (CBP) which resizes the uncorrelated pods for
efficient packing on GPUs.

However, not all over-subscribing pods are suitable can-
didates for resizing. As seen from Observation 4, we only
resize the pods of batch applications with suitable correlation
metrics. After harvesting the spare memory the latency-sensitive

Authorized licensed use limited to: Penn State University. Downloaded on July 12,2020 at 19:14:22 UTC from IEEE Xplore. Restrictions apply.

tasks are co-located along with the batch-tasks. In doing
so, CBP ensures crash-free co-location. CBP scheduler takes
O(N2d) to find the optimal placement where N is the number
of pending pods and d being the time-series window size
which is a crucial configuration parameter that determines the
scheduling accuracy. CBP scheduler bin packs the uncorrelated
applications together by resizing their respective pods for
a common case (80th percentile consumption) than for the
maximum case. We provision for 80th percentile based on the
first principle observed from Figure 2b, since the maximum
memory utilization for almost all the containers do not exceed
more than 80% of the provisioned memory. Further, aggressive
provisioning (Viz. 50th, 60th, etc.) lead to constant resizing
which affects the docker performance at scale. CBP is based
on our observations that the probability of all co-located pods
reaching their peak resource consumption at the same time is
very low. Thus, CBP is aware of both utilization and the pod’s
correlation metrics such as memory, SM load and bandwidth.

We notice that the GPUs are still being underutilized
due to static provisioning of CBP. This is due to the inter-
arrival pattern of pods, since there are not enough negatively
correlating pods to co-locate which results in a skewed schedule
order. This indirectly restricts the potential number of GPU
nodes to schedule the pods and results in increased queue
waiting times for the pending pods which are positively
correlating. The average pod waiting time worsens especially
in case of heavily loaded application-mix. Pod affinities would
further restrict scheduling options for correlating pods. This
leads us to our next scheme that attempts to co-locate two
positively correlated pods in the same node by predicting the
peak resource demand phases of the scheduled pods.

D. Peak Prediction Scheduler

Peak Prediction scheduler is built on top of CBP to further
exploit the temporal nature of peak resource consumption
within an application. This allows PP to schedule two positively
correlating pods to the same GPU as they may not contend
for the resource at the same time. This is due to the fact that
a GPU application goes through several phase changes during
its course of execution. For instance, a DNN instance query
first loads the inference weights from the host which results in
peak input bandwidth consumption, this is followed by the next
phase of the application that is the compute/memory intensive
phase. This trend is also very evident in batch workloads as
seen in Figure 3. Thus, the peak bandwidth consumption of an
application is an early indicator of subsequent compute and
memory peaks. Likewise, within an application, the consecutive
peak resource demand trends can be predicted using the auto-
correlation function given in Equation 2, rk being the auto-
correlation value where Yi is the utilization measurement at a
given time, Ȳ is the moving average of Y, and n is the total
number of events record at a time window T.

rk =
Σn−k

i=1 (Yi − Ȳ)(Yi+k − Ȳ)

Σn
i=1(Yi − Ȳ)

2 (2)

Algorithm 1 CBP + Peak Prediction Scheduler

for gpu node in ∀all gpu nodes do
if isActive(QUERY(gpu node)) then

All Active GPUs.append(gpu node)

Node List← Sort by Free Memory(All Active GPUs)
Pending Apps← Sort Apps by Memory Size(Apps)
Harvest Resource← Docker Resize(Node List,Pend Apps)
Selected Node← Head(Node list)
for App in Pend Apps do

SCHEDULE(app,Selected Node)

procedure QUERY(GPU node)
node stats mem← query db(gpu node.memory)
node stats sm← query db(gpu node.sm)
node stats tx← query db(gpu node.tx band)
node stats rx← query db(gpu node.rx band)
node stats ← node stats mem + node stats sm +

node stats bw
return node stats

procedure SCHEDULE(App, Selected Node)
if Can Co-locate(COV,App,Selected Node) then

Ship Container(App,Selected Node)
else

if AutoCorrelation(node.memory) then . Eqn 2
pred free mem← ARIMA(node.mem)
if pred mem ≥ App.memory then

Schedule(app)
else

Schedule(App,Head→Next(Node list)

The current utilization metrics can be further forecast to
predict the future GPU utilization using non-seasonal Auto-
Regressive Integrated Moving Average(ARIMA). We quantita-
tively analyzed the mean-squared-error and profiling overheads
of different regression models such as linear-regression, random
forest, SGD, automatic relevance determination, Theil-Sen, and
multi-layer perceptron. Due to space constraints, we could
not discuss the accuracy/runtime costs of these models. Our
sliding-window (five-seconds) consists of few data points, and
therefore, a statistical model such as ARIMA works with good
accuracy. Other complex models do not improve much due to
limited real-time training data.

The interval between two consecutive peak resource con-
sumption of a particular resource could be determined by the
auto-correlation factor. If the auto-correlation value of a series
(i.e., memory utilization) is zero or negative then it shows
that (i) the input time-series data is limited or (ii) the trend
is not strong enough to predict a positive correlation. In case
of correlation value being greater than 0, we use first-order
ARIMA to forecast the utilization of the GPU for the next
one second as given in Equation 3 below which is a moving
window based linear regression where Ŷ pred is a predicted
utilization value from previous utilization time-series Yt−1,
where φ is the slope of the line and µ is the intercept.

Authorized licensed use limited to: Penn State University. Downloaded on July 12,2020 at 19:14:22 UTC from IEEE Xplore. Restrictions apply.

Ŷpred = µ+ φ1Yt−1 (3)

Note that, the correlation between consecutive peak resource
consumption is a better indicator than the correlation across
complete runtime of the application. Also, forecasting the
GPU utilization enables the system scheduler to predict the
performance better and guarantee the QoS of the application
which would be scheduled to that particular GPU node. The
peak prediction scheme identifies the set of pods that attains
peak consumption of a resource at the same time and schedules
them to different GPU nodes.

Algorithm 1 captures the workflow of the scheduler, where
for all the active GPU nodes in the datacenter excluding the
GPUs which are in deep sleep power state, the utilization for
the past five seconds is queried from the respective Influx-
DB databases. This time-series interval window determines the
prediction accuracy. The utilization aggregator in the head-node
sorts the nodes by free memory available for the most recent
timestamp. The schedule order of pending pods is sorted based
first fit decreasing order of pod’s requested memory and resized
for 80th percentile memory consumption. The Select_Node
function analyzes the correlation in case of CBP and schedules
to the Selected_Node in case of the correlation value is
less than 0.5. In the case of PP, auto-correlation function is used
on the utilization time-series data for a particular metric of the
selected node. This is used to look for a trend, which predicts a
possibility of an impending peak resource consumption to occur
through ARIMA. Subsequently leading to schedule on the next
available node in the list by repeating the same admission
checks. Once the node is selected, the pod is shipped to the
node using Kubernetes’s python-based client API call.

V. EVALUATION METHODOLOGY

A. Hardware

We use Dell PowerEdge R730 eleven node cluster where
ten worker nodes have P100 GPUs with Intel Xeon CPU host
along with a CPU-only head-node. The details of the single
node hardware configuration are listed in the Table II. We use
Kubernetes as the resource orchestrator and its default uniform
scheduler as a baseline in our experiments.
• Worker node - At every GPU worker node, there is a node-
level resource monitor that uses python based API library,
pyNVML [45] to query the GPU for every heartbeat interval.
The query returns all the five utilization metrics namely, SM,
memory, power, transfer and receive bandwidth. These metrics
are logged as time-series data into the Influx-DB in their nodes.
• Head node - The configuration is similar to that in Table II,
with an exception that it does not have a GPU. Next, the
utilization aggregator on the head node queries the real-time
GPU utilization from the Influx-DB. The frequency of querying
interval is set to 1ms (justified in Section VI-D). The frequency
of data logging (heartbeat) can be varied at the discretion of
the utilization aggregator as seen in Figure 5.

Hardware Configuration
CPU Xeon E5-2670
Cores 12x2(threads)
Clock 2.3 Ghz
DRAM 192 GB
GPU P100(16GB)

TABLE II: Hardware config.

Software Version
Kubernetes 1.9.3
NvidiaDocker 2.0
pyNVML 7.352.0
InFluxDB 1.4.2
CUDA 8.0.61
Tensorflow 1.8

TABLE III: Software config.

B. Container Configuration

The software setup and configuration is given in Table III.
Both the batch and user-facing applications are containerized
as pods in Kubernetes. When the query is scheduled for the
first time to a GPU node, the dependent docker layers such as
Tensorflow is downloaded from a repository. The subsequent
queries using the same image do not incur this cold-start
latency. However, data transfer latency from storage nodes to
CPU memory and subsequently to GPU is accounted for in our
experiments. PP scheduler leverages the Nvidia-docker system
commands to resize the GPU containers dynamically.

Recall from Section II that, for batch applications we used
Rodinia [42], HPC workload suite. Similarly, for latency critical
workloads, we used Djinn & Tonic workload suite [2] which
has several DNN inference queries using TF on GPUs through
Keras libraries for execution. These models are containerized
and made publicly available at DockerHub [48]. We configured
TF’s GPU configuration knobs to allow incremental memory
growth for the DNN inference queries. We capture the inter-
arrival pattern of the Alibaba trace which is representative of the
datacenter workload. We incorporate this inter-arrival pattern
in our launch sequence of jobs. The job sequence comprises
of a bin of application-mixes (refer Table I).

C. Simulator setup for DNN Tasks

We build CBP+PP on top of the discrete-time simulator [49]
to compare Kube-Knots with other state-of-the-art schedulers
such as Tiresias, Gandiva, etc,. We generate an experimental
workload of 520 DL Training (DLT) and 1400 DL Inference
(DLI) tasks. The job requirements of DLT of various DNN
metrics is modeled after Tiresias [50], while the distribution of
DLT and DLI tasks is based on the app-mixes given in Table
I. Execution time of these DLT tasks ranges from few minutes
to few hours depending on the model and training rounds,
while the DLI tasks are in the order of few milliseconds to
seconds. The input to the simulator is modeled using the inter-
arrival times in the Alibaba job arrival traces (12hr period).
The simulated cluster configuration includes 32 nodes with
each node having 8 GPUs, 40 CPU cores, and 256GB memory.

VI. RESULTS AND ANALYSIS

In this section, we evaluate the different GPU-based schedul-
ing schemes for four major criteria: (i) Cluster-wide utilization,
(ii) QoS violations, (iii) Power, (iv) Accuracy of prediction,
and (v) Job Completion Times (JCT) and QoS comparison for
Deep Learning Training (DLT) and Inference (DLI) Tasks.

A. Cluster-wide GPU Utilization

Building upon the GPU-agnostic scheduling (shown in
Figure 6), we propose two scheduling schemes: (i) CBP and

Authorized licensed use limited to: Penn State University. Downloaded on July 12,2020 at 19:14:22 UTC from IEEE Xplore. Restrictions apply.

1 2 3 4 5 6 7 8 9 10
GPU Node id

0

10

20

30

40

50

60

70

80

90

100
G

P
U

 U
ti

li
za

ti
o
n

(%
)

50 %le 90 %le 99 %le Max

(a) Application-Mix-1

1 2 3 4 5 6 7 8 9 10
GPU Node id

0

10

20

30

40

50

60

70

80

90

100

G
P

U
 U

ti
li
za

ti
o
n

(%
)

50 %le 90 %le 99 %le Max

(b) Application-Mix-2

1 2 3 4 5 6 7 8 9 10
GPU Node id

0

10

20

30

40

50

60

70

80

90

100

G
P

U
 U

ti
li
za

ti
o
n

(%
)

50 %le 90 %le 99 %le Max

(c) Application-Mix-3

Fig. 8: 50/90/99th percentile & maximum utilization of GPUs for App-Mixes scheduled using Peak Prediction Scheme.

50%le 90%le 99%le Max
Cluster Utilization Percentile
0

20
40
60
80

100

G
PU

 U
ti

liz
at

io
n(

%
) PP CBP Res-Ag

(a) App-Mix-1

50%le 90%le 99%le Max
Cluster Utilization Percentile
0

20
40
60
80

100

G
PU

 U
ti

liz
at

io
n(

%
) PP CBP Res-Ag

(b) App-Mix-2

50%le 90%le 99%le Max
Cluster Utilization Percentile
0

20
40
60
80

100

G
PU

 U
ti

liz
at

io
n(

%
) PP CBP Res-Ag

(c) App-Mix-3
Fig. 9: Cluster-wide GPU utilization improvements.

(ii) PP. In Figure 8, we plot the utilization improvements of
each of the ten GPU nodes for all the three app-mixes using
the PP scheduler. The PP scheduler improves the utilization in
all the three app-mixes by an average of 62%. Especially in
app-mix 2 and app-mix 3, where the utilization is medium and
low respectively, the PP scheme does an effective consolidation
of workloads using a minimal number of GPUs as possible.
As seen in Figure 8c, GPU nodes 1, 4, 8, and 10 are minimally
used as the scheduler effectively consolidated all the low
demand workloads to a minimum number of active GPUs
as possible. This consolidation shows that, PP leverages the
real-time utilization along with utilization forecasting before
making any scheduling decisions.

Figure 9 plots the overall GPU utilization improvements for
all three app-mixes for median and tail percentiles. It can be
noted that the PP scheme consistently improved the overall
GPU utilization in all low, medium and high application-mix
cases. For example, PP in app-mix-1 improves by 80% for
both median and tail percentiles when compared with Res-Ag
scheduler. The improvements are also consistent in the other
two app mixes when compared to Res-Ag scheduler improving
median and peak utilization by up to 60% and 45% respectively.

B. QoS of latency critical workloads

QoS violation threshold for latency-sensitive applications
is typically set around 150 milliseconds [51]. We show in
Figure 10a that the baseline scheduler violated QoS by 18% on
average even though the applications are not co-located together.
This is because of head-of-the-line (HOL) blocking of batch
tasks resulting in queuing delays, when the query is sent to a
busy GPU node. The Res-Ag performs worse than the baseline
and violating by up to 10% (app-mix-3) and 53% (app-mix-1).
On the contrary, CBP and PP have almost no violations in all
three app-mixes (<1%). This is because they are aware of real-
time GPU utilization and provision the container memory for 80

1 2 3
Application Mix id

0

100

200

300

400

500

A
v
g

 Q
o
S

 v
io

la
ti

o
n

s
 p

e
r

k
il
o
 i
n

fe
re

n
c
e
s

Res-Ag CBP PP Uniform

(a) Average QoS violations per
1000 (kilo) inference queries.

1000 500 100 10 1 0.1
Heartbeat Interval (ms)

0

20

40

60

80

100

P
re

d
ic

ti
o
n

 A
cc

u
ra

cy
 %

CBP+PP
Theil-Sen
SGD
MLP

(b) Prediction accuracy for vary-
ing heartbeat intervals in ms.

Fig. 10: QoS guarantees and Accuracy of PP Scheduler.

1 2 3
Application Mix id

0.0

0.25

0.5

0.75

1.0

N
o
rm

a
li
ze

d
 C

lu
s
te

r
P

o
w

e
r Res-Ag CBP PP Uniform

(a) Normalized power compar-
isons across four schedulers.

Active GPU ids

1 2 3 4 5 6 7 8 9 10 Acti
ve

 GPU id
s

1 2 3 4 5 6 7 8 910

CO
V

of
 C

lu
st

er
 L

oa
d

0

0.05

0.1

0.15

(b) COV of SM-Load using
CBP+PP for App-Mix-1.

Fig. 11: Cluster-wide Power savings and Load balancing.

percentile utilization while guaranteeing the QoS via ARIMA
forecasting. Note that, we also co-locate the latency sensitive
jobs along with the batch jobs without affecting their QoS.
PP achieves this by predicting the inter and intra-application
correlation for utilization and, at the same time by leveraging
Knots real-time data, it can forecast the future GPU utilization.

Figure 11b plots the pair-wise COV of GPU cluster loads.
The lower diagonal values are omitted for the sake of clarity.
It can be observed that the COV of loads across different
GPU nodes ranges within 0 to 0.2 when compared to the
COV in Figure 7a which ranges from 0.1 to 0.7. Hence, PP
performs efficient load balancing even in the case of high-load
scenarios such as app-mix-1 along with consolidation in the
case of highly sporadic low-load scenarios such as app-mix-3.
The results for other app-mixes are also similar to this due
to harvesting and consolidation. Thus, CBP along with PP
ensures the load balancing in the case of peak load scenarios
at the same time minimizing the total number of active GPUs
for energy efficiency in the case of low load scenarios.

Authorized licensed use limited to: Penn State University. Downloaded on July 12,2020 at 19:14:22 UTC from IEEE Xplore. Restrictions apply.

C. Energy efficiency

Figure 11a plots the overall power consumed by the different
schedulers, where Res-Ag consumes the least power on an
average (33%) while PP scheme consumes the second least
power (43%). Note that, while Res-Ag optimizes for power it
also violates QoS for almost 53% of the requests as discussed
in section VI-B. On the other hand, the PP scheduler only
consumes 10% more power than Res-Ag while guaranteeing
minimal QoS violations due to that fact that PP scheduler
attempts to pack only active GPUs but it ensures that two pods
do not peak for resource consumption at the same time. The
CBP policy consumes more power than both Res-Ag and PP
schemes by 25% and 15% respectively, although being similar
to PP scheme in terms of QoS violations. This emphasizes the
importance of predicting the peak resource consumption of
pods on top of the correlation metrics. The energy savings of
CBP+PP schemes are also due to consolidating the queries in
active GPUs in case of low load while letting the other GPUs
be in minimum idle power consumption (p_state 12).

D. Accuracy of the Peak Predictor

In the case of CBP+PP scheduler, d is the frequency at which
the utilization aggregator at head-node is querying the worker
nodes for GPU utilization that forms our time-series data. We
vary the frequency at which we query the GPUs to predict the
peak resource usage. As seen in Figure 10b, CBP+PP improves
its accuracy from 36% to 84% when the sampling interval for
querying utilization is varied from 1000ms to 1ms, beyond
which the prediction accuracy drops. Hence for the maximum
prediction accuracy, we set the utilization aggregator to query
the GPU nodes every 1ms. The overhead for querying the GPU
at every 1ms interval does not affect the pod’s performance.

We also have analyzed the accuracy of other complex ML
models (SGD, Theil-Sen, and multi-layer perceptron (MLP))
for utilization estimation as shown in Figure 10b. They all
are in the accuracy range that is similar or worse despite
their high run-time complexity when compared to ARIMA
based CBP+PP. This is mainly due to the limited training set
size (5s) during the run-time. Further, increasing the heartbeat
frequency beyond 1ms lead to poor utilization estimations due
to over-fitting of the model from the training data.

E. Job Completion Time (JCT) for Deep Learning Workload

We compare the JCT of CBP+PP scheduler along with the
other state-of-the-art DLT task schedulers (Gandiva [23], Tire-
sias [50]) using the experimental setup discussed in Section V-C.
As observed from the Figure 12a, CBP+PP can effectively
schedule by up to 60% of the jobs in the workload suite by
significantly avoiding delays due to queuing, preemption, and
migration of tasks. These jobs are predominately composed of
Inference tasks. In case of DLT tasks, the application-aware
schedulers (Gandiva and Tiresias) can effectively optimize

0 5 10 15 20 25 30
Job Completion Time (Hours)

0

20

40

60

80

100

Fr
ac

tio
n

of
 J

ob
s

Tiresias
Res-Ag
Gandiva
CBP+PP

(a) Job completion time comparison
shown in hours for App-Mix-1.

1 2 3
Application Mix id

0

10

20

30

40

50

A
vg

 Q
oS

 v
io

la
tio

ns
 /

H
r

Res-Ag
Gandiva

Tiresias
CBP+PP

(b) Average QoS violations of
DL inference queries per hour.

Fig. 12: Comparison of CBP+PP across different DLT Schedulers.

for model convergence through suspend-and-resume based
opportunistic scheduling policy and Least Attained Service
(LAS) seem to perform well. Tiresias, especially, is able to
achieve better JCT at 99% which are predominantly of DLT
jobs. However, this comes at a cost of multiple SLO violations
of DLI jobs due to task migrations, preemptions, and HOL
blocking of these latency-sensitive tasks.

The quantitative breakdown of JCT is given in Table IV,
where CBP+PP performs 1.3× and 1.11× better than Gandiva
and Tiresias respectively in terms of median JCT. This is
due to SLO-aware scheduling of latency-sensitive DLI tasks.
Further, during peak resource demands the PP scheduler ensures
crash-free resizing of the DLT workloads by predicting the
peak-utilization (mini-batch training phases) to accommodate
DLI tasks. In the case of average JCT, CBP+PP performs
1.36× better than Gandiva as the latter performs trial-and-error
task placement leading to severe HOL blocking of small tasks.
However, in the case of Tiresias, the average JCT improvements
are marginal as LAS prioritizes for small DLT jobs by reducing
the queuing delays. One of the main advantages of CBP+PP
comes from the real-time utilization of the cluster, as it can
perform colocations without preemption or HOL blocking.

Scheduler Average Median 99%
Resource-Agnostic 1.63× 1.67× 1.47×
Gandiva 1.36× 1.30× 1.11×
Tiresias 1.07× 1.11× 0.91×

TABLE IV: JCT improvements across different Schedulers for DL-
workloads normalized by CBP+PP scheduler.

Figure 12b shows the average QoS violations per hour
(12hr trace). Depending on the DNN model, inference queries
running on GPUs can be in the order of 10 to 50 ms. However,
during peak GPU resource demands, these tasks incur severe
queuing delay due to HOL blocking in the case of Gandiva. To
mitigate this, it performs job migrations that incur latency up
to few seconds affecting the QoS. However, Tiresias mitigates
this delay by performing job-preemptions to prioritize other
short jobs ensuring QoS during resource demand surges. As
seen from the Figure 12b, in case of app-mix-1, Gandiva and
Tiresias incur on an average up to 33% and 17% SLO violations
when compared to CBP+PP, which schedules them on FCFS
basis without any queuing delays or preemptions. Therefore,
CBP+PP along with Kube-Knots can perform application-
agnostic placement and scheduling of DNN workloads by
improving the overall JCT while guaranteeing the QoS.

Authorized licensed use limited to: Penn State University. Downloaded on July 12,2020 at 19:14:22 UTC from IEEE Xplore. Restrictions apply.

VII. RELATED WORK

GPU-first resource management in datacenters is an emerging
research problem. We have done a comprehensive analysis of
relevant scheduling frameworks, shown in Table V and broadly
classified in to following four categories.
GPU-aware runtime systems: There have been number of
works including Bubble-up [29] and Bubble-flux [52] in
the past addressing CPU utilization aware scheduling. Quite
recently, researchers have proposed runtime changes to the
GPU to enable better scheduling of the GPU tasks either by
predicting task behavior or reordering queued tasks. Ukidave
et al. [31] optimized for workloads which under-utilize the
device memory and bandwidth. Chen et al. [53] proposed
Baymax, a runtime mechanism which does workload batching
and kernel reordering to improve the GPU utilization. Other
techniques such as interference driven resource management
proposed by Phull et al. [54], predicts the interference on
a GPU to do safe co-location of GPU tasks. They do not
consider memory bandwidth contention nor over-commitment
challenges as they assume sequential execution of the GPU
tasks while performing static profiling of applications to ensure
safe co-locations. Most of these approaches aim to increase
utilization of a individual GPU node and do not scale at the
cluster level as they depend on offline training models for
node-level run time prediction [28], [31], [53].
Node-level GPU-aware scheduling: Recent works [55], [56]
have proposed docker-level container sharing solutions. In
this approach, multiple containers can be made to fit in the
same GPU as long as the active working set size of all the
containers are within the GPU physical memory capacity. These
scheduling techniques over-commit resources for individual
containers to ensure crash free execution. This may lead
to severe internal memory fragmentation as we show in
Figure 4. We address this by predicting the resource usage
and dynamically resizing the containers based on the future
resource consumption projections while guaranteeing the QoS.
Distributed GPU scheduling for DNN applications: Dis-
tributed DNN training based applications have started taking
advantage of multiple GPUs in a cluster. There are emerging
schedulers such as Gandiva [23], Optimus [24], and several
other works [25], [26], [57], [58] that focus on prioritizing the
GPU tasks that are critical for the DNN model accuracy in
case of parameter server-based architecture. These schedulers
are designed to cut down on the DNN model exploration time
and do not scale well to other application domains as it needs
domain-specific knowledge and the application progress metrics
(mini-batch completion time). Domain-agnostic scheduling and
consolidation is important in case of a public datacenters with
multiple-tenants sharing the GPUs, they might run a mix of
batch and latency jobs of various application domains and not
just the DLT (Deep Learning Training) jobs. Kube-Knots is
designed to cater multi-faceted GPU applications and does not
require any application-domain knowledge or a priori profiling.
Hardware support for virtualizing GPUs: There has been
extensive work on providing hardware support for GPU

Features B
ay

m
ax

[5
3]

G
an

di
va

[2
3]

O
pt

im
us

[2
4]

M
ys

tic
[3

1]

T i
re

si
as

[5
0]

K
ub

eK
no

ts

Workload consolidation 3 3 3 3 3 3
Application Agnostic 3 7 7 3 7 3

SLO Guarantees 3 7 7 3 7 3
Needs a priori profiling 3 7 7 3 7 7

Application memory resizing 7 7 7 7 7 3
Accelerator power-aware 7 7 7 7 7 3

Application memory resizing 7 7 7 7 7 3
Resource peak prediction 7 7 7 7 7 3

TABLE V: GPU-based scheduling features comparison.

virtualization [59], [60] and preemption [61], [62]. Gupta
et al. [59] implemented a task queue in the hypervisor to allow
virtualization and preemption of GPU tasks. Tanasic et al. [63]
proposed a technique that improves the performance of high
priority processes by enabling preemptive scheduling on GPUs.
Aguilera et al. [64] proposed a technique to guarantee QoS of
high priority tasks by spatially allocating them on more SMs
in a GPU. All these techniques require vendors to add extra
hardware extensions. Our proposed scheduler does not need
any hardware level changes and can be readily deployed in
commercial off-the-shelf datacenters using Kubernetes.

VIII. CONCLUSION

In this paper, we identify several challenges in existing re-
source orchestrators like Kubernetes towards dynamic resource
orchestration for GPU-based datacenters. Motivated by our
observations, we propose Knots, a GPU aware orchestration
layer. Knots along with Kubernetes performs GPU-aware
orchestration. We further evaluate two GPU-based container
scheduling techniques on a ten node GPU-cluster, which
leverages Kube-Knots to harvest the spare GPU resources.
Our proposed Peak Prediction (PP) scheduler, when compared
against the GPU-agnostic scheduler, improves the cluster-wide
GPU utilization by up to 80% for both average and 99th

percentile, through QoS aware workload consolidation leading
to 33% cluster-wide energy savings. Further, our trace-driven
simulations to schedule DNN workloads on a cluster of 256
GPUs showed that the CBP+PP together can improve the
average job completion times by up to 1.36× in the case
of latency-sensitive inference tasks when compared to other
state-of-the-art DNN schedulers. Kube-Knots also reduced the
overall QoS violations of latency sensitive queries by up to
53% when compared to the GPU-agnostic scheduling with
GPU utilization prediction accuracy as high as 84%.

IX. ACKNOWLEDGMENT

We thank our shepherd and the reviewers for their sugges-
tions and valuable comments. We are also indebted to Ram
Srivatsa Kannan, Ashutosh Pattnaik, Cyan Mishra, Vivek Bhasi,
and Prasanna Rengasamy for their insightful comments on
several drafts of this paper. Also, this research is generously
supported by NSF grants #1931531, #1912495, #1908793,
#1763681, #1629129, #1629915 and we thank NSF Chameleon
Cloud project CH-819640 for their generous compute grant.

Authorized licensed use limited to: Penn State University. Downloaded on July 12,2020 at 19:14:22 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim et al., “A
cloud-scale acceleration architecture,” in Microarchitecture (MICRO),
2016 49th Annual IEEE/ACM International Symposium on. IEEE, 2016,
pp. 1–13.

[2] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge,
R. G. Dreslinski, J. Mars, and L. Tang, “Djinn and tonic: Dnn as a
service and its implications for future warehouse scale computers,” in
ACM SIGARCH Computer Architecture News, vol. 43, no. 3. ACM,
2015, pp. 27–40.

[3] J. Gunasekaran, P. Thinakaran, M. T. Kandemir, B. Urgaonkar, G. Kesidis,
and C. R. Das, “Spock: Exploiting serverless functions for slo and
cost aware resource procurement in public cloud,” in 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD). IEEE, 2019.

[4] “Cisco’s Global Cloud Index,” https://www.cisco.com/c/en/
us/solutions/collateral/service-provider/global-cloud-index-gci/
white-paper-c11-738085.html.

[5] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
44th Annual International Symposium on Computer Architecture. ACM,
2017, pp. 1–12.

[6] J. Jeffers and J. Reinders, High performance parallelism pearls volume
two: multicore and many-core programming approaches. Morgan
Kaufmann, 2015.

[7] V. Nagarajan, K. Lakshminarasimhan, A. Sridhar, P. Thinakaran, R. Har-
iharan, V. Srinivasan, R. S. Kannan, and A. Sridharan, “Performance and
energy efficient cache system design: Simultaneous execution of multiple
applications on heterogeneous cores,” in 2013 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). IEEE, 2013, pp. 200–205.

[8] V. Nagarajan, R. Hariharan, V. Srinivasan, R. S. Kannan, P. Thinakaran,
V. Sankaran, B. Vasudevan, R. Mukundrajan, N. C. Nachiappan, A. Srid-
haran et al., “Scoc ip cores for custom built supercomputing nodes,” in
2012 IEEE Computer Society Annual Symposium on VLSI. IEEE, 2012,
pp. 255–260.

[9] V. Nagarajan, V. Srinivasan, R. Kannan, P. Thinakaran, R. Hariharan,
B. Vasudevan, N. C. Nachiappan, K. P. Saravanan, A. Sridharan,
V. Sankaran et al., “Compilation accelerator on silicon,” in 2012 IEEE
Computer Society Annual Symposium on VLSI. IEEE, 2012, pp. 267–
272.

[10] P. V. Rengasamy, H. Zhang, N. Nachiappan, S. Zhao, A. Sivasubrama-
niam, M. T. Kandemir, and C. R. Das, “Characterizing diverse handheld
apps for customized hardware acceleration,” in 2017 IEEE International
Symposium on Workload Characterization (IISWC), Oct 2017, pp. 187–
196.

[11] P. V. Rengasamy, H. Zhang, S. Zhao, N. C. Nachiappan, A. Sivasubrama-
niam, M. T. Kandemir, and C. R. Das, “CritICs Critiquing Criticality in
Mobile Apps,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), Oct 2018, pp. 867–880.

[12] “Amazon EC2 Elastic GPUs,” https://aws.amazon.com/ec2/elastic-gpus/.
[13] “Microsoft VM with GPU,” https://docs.microsoft.com/en-us/azure/

virtual-machines/windows/sizes-gpu.
[14] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and L. Tang,

“Grandslam: Guaranteeing slas for jobs in microservices execution
frameworks,” in Proceedings of the Fourteenth EuroSys Conference
2019, ser. EuroSys ’19. ACM, 2019, pp. 34:1–34:16.

[15] S. Zhao, P. V. Rengasamy, H. Zhang, S. Bhuyan, N. C. Nachiappan,
A. Sivasubramaniam, M. Kandemir, and C. R. Das, “Understanding
energy efficiency in iot app executions,” in 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS). ICDCS, 2019.

[16] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Commun. ACM, vol. 59, no. 5, pp. 50–57, Apr.
2016. [Online]. Available: http://doi.acm.org/10.1145/2890784

[17] “Mesos Scheduler GPU support,” http://mesos.apache.org/documentation/
latest/gpu-support/.

[18] R. S. Kannan, A. Jain, M. A. Laurenzano, L. Tang, and J. Mars, “Proctor:
Detecting and investigating interference in shared datacenters,” in 2018
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2018, pp. 76–86.

[19] R. S. Kannan, “Enabling fairness in cloud computing infrastructures,”
Ph.D. dissertation, University of Michigan, 2019.

[20] R. S. Kannan, M. Laurenzano, J. Ahn, J. Mars, and L. Tang, “Caliper:
Interference estimator for multi-tenant environments sharing architectural
resources,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 16, no. 3, p. 22, 2019.

[21] D. Wong, “Peak efficiency aware scheduling for highly energy propor-
tional servers,” in Computer Architecture (ISCA), 2016 ACM/IEEE 43rd
Annual International Symposium on. IEEE, 2016, pp. 481–492.

[22] P. Thinakaran, J. Raj, B. Sharma, M. T. Kandemir, and C. R. Das,
“The curious case of container orchestration and scheduling in gpu-based
datacenters,” in Proceedings of the ACM Symposium on Cloud Computing,
ser. SoCC ’18. ACM, 2018, pp. 524–524.

[23] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang et al., “Gandiva: introspective
cluster scheduling for deep learning,” in 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), 2018, pp.
595–610.

[24] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient
dynamic resource scheduler for deep learning clusters,” in Proceedings
of the Thirteenth EuroSys Conference. ACM, 2018, p. 3.

[25] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei, P. Xie,
and E. P. Xing, “Poseidon: An efficient communication architecture for
distributed deep learning on gpu clusters,” arXiv preprint, 2017.

[26] S. R. Seelam and Y. Li, “Orchestrating deep learning workloads on
distributed infrastructure,” in Proceedings of the 1st Workshop on
Distributed Infrastructures for Deep Learning. ACM, 2017, pp. 9–
10.

[27] M. Jeon, S. Venkataraman, J. Qian, A. Phanishayee, W. Xiao, and F. Yang,
“Multi-tenant gpu clusters for deep learning workloads: Analysis and
implications,” MSR-TR-2018, Tech. Rep., 2018.

[28] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise qos prediction on non-preemptive accelerators to
improve utilization in warehouse-scale computers,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 2017, pp.
17–32.

[29] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via
sensible co-locations,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-44. New
York, NY, USA: ACM, 2011, pp. 248–259. [Online]. Available:
http://doi.acm.org/10.1145/2155620.2155650

[30] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph: Gpu
scheduling for real-time multi-tasking environments,” in Proc. USENIX
ATC, 2011, pp. 17–30.

[31] Y. Ukidave, X. Li, and D. Kaeli, “Mystic: Predictive scheduling for gpu
based cloud servers using machine learning,” in Parallel and Distributed
Processing Symposium, 2016 IEEE International. IEEE, 2016, pp.
353–362.

[32] “ Auto-Regressive Integrated Moving Average,” http://people.duke.edu/
∼rnau/411arim.htm#arima010.

[33] A. Pattnaik, X. Tang, O. Kayiran, A. Jog, A. Mishra, M. T. Kandemir,
A. Sivasubramaniam, and C. R. Das, “Opportunistic computing in gpu
architectures,” in Proceedings of the 46th International Symposium on
Computer Architecture. ACM, 2019, pp. 210–223.

[34] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir,
O. Mutlu, and C. R. Das, “Scheduling techniques for gpu architectures
with processing-in-memory capabilities,” in Parallel Architecture and
Compilation Techniques (PACT), 2016 International Conference on, 2016,
pp. 31–44.

[35] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari,
“Server workload analysis for power minimization using consolidation,”
in Proceedings of the 2009 Conference on USENIX Annual
Technical Conference, ser. USENIX’09. Berkeley, CA, USA:
USENIX Association, 2009, pp. 28–28. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1855807.1855835

[36] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee,
S. W. Keckler, M. T. Kandemir, and C. R. Das, “Anatomy of gpu
memory system for multi-application execution,” in Proceedings of the
2015 International Symposium on Memory Systems, ser. MEMSYS ’15.
New York, NY, USA: ACM, 2015, pp. 223–234. [Online]. Available:
http://doi.acm.org/10.1145/2818950.2818979

[37] “Alibaba Cluster Trace Data description,” https://github.com/alibaba/
clusterdata.

Authorized licensed use limited to: Penn State University. Downloaded on July 12,2020 at 19:14:22 UTC from IEEE Xplore. Restrictions apply.

[38] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir, and
C. R. Das, “Phoenix: A constraint-aware scheduler for heterogeneous
datacenters,” in 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), June 2017, pp. 977–987.

[39] “Mesosphere description,” https://mesosphere.com/738085.html.
[40] “Docker Swarm description,” https://docs.docker.com/engine/swarm/

swarm-tutorial/.
[41] “GPU-Based Deep Learning Inference,” https://www.nvidia.com/content/

tegra/embedded-systems/pdf/jetson tx1 whitepaper.pdf.
[42] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and

K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. Ieee, 2009, pp. 44–54.

[43] “Memory Growth in TensorFlow,” https://www.tensorflow.org/guide/
using gpu#allowing gpu memory growth.

[44] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analysis,”
in Proceedings of the Third ACM Symposium on Cloud Computing.
ACM, 2012, p. 7.

[45] “Python Bindings for the NVIDIA Management Library,” https://pypi.
python.org/pypi/nvidia-ml-py/4.304.04.

[46] “InfluxDB time series,” https://github.com/influxdata/influxdb.
[47] “Nvidia k8s-device-plugin for Kubernetes,” https://github.com/NVIDIA/

k8s-device-plugin.
[48] “Docker TensorFlow / HPC experiments used in evaluation of kube-knots,”

https://hub.docker.com/r/prashanth5192/gpu.
[49] “Tiresias discrete-time trace-driven simulator,” https://github.com/

SymbioticLab/Tiresias/tree/master/simulator.
[50] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,

and C. Guo, “Tiresias: A gpu cluster manager for distributed deep
learning,” in 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’19), 2019, pp. 485–500.

[51] J. Dean and L. A. Barroso, “The tail at scale,” Commun.
ACM, vol. 56, no. 2, pp. 74–80, Feb. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2408776.2408794

[52] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise online
qos management for increased utilization in warehouse scale computers,”
in Proceedings of the 40th Annual International Symposium on Computer
Architecture, ser. ISCA ’13. New York, NY, USA: ACM, 2013, pp. 607–
618. [Online]. Available: http://doi.acm.org/10.1145/2485922.2485974

[53] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness and
increased utilization for non-preemptive accelerators in warehouse scale
computers,” ACM SIGARCH Computer Architecture News, vol. 44, no. 2,
pp. 681–696, 2016.

[54] R. Phull, C.-H. Li, K. Rao, H. Cadambi, and S. Chakradhar,
“Interference-driven resource management for gpu-based heterogeneous

clusters,” in Proceedings of the 21st International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’12.
New York, NY, USA: ACM, 2012, pp. 109–120. [Online]. Available:
http://doi.acm.org/10.1145/2287076.2287091

[55] J. Gleeson and E. De Lara, “Heterogeneous gpu reallocation,” in 9th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 17),
2017.

[56] D. Kang, T. J. Jun, D. Kim, J. Kim, and D. Kim, “Convgpu: Gpu
management middleware in container based virtualized environment,” in
Cluster Computing (CLUSTER), 2017 IEEE International Conference
on. IEEE, 2017, pp. 301–309.

[57] M. Amaral, J. Polo, D. Carrera, S. Seelam, and M. Steinder, “Topology-
aware gpu scheduling for learning workloads in cloud environments,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2017, p. 17.

[58] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq: quality-driven
scheduling for distributed machine learning,” in Proceedings of the 2017
Symposium on Cloud Computing. ACM, 2017, pp. 390–404.

[59] V. Gupta, K. Schwan, N. Tolia, V. Talwar, and P. Ranganathan, “Pegasus:
Coordinated scheduling for virtualized accelerator-based systems,” in
Proceedings of the 2011 USENIX Conference on USENIX Annual
Technical Conference, ser. USENIXATC’11. Berkeley, CA, USA:
USENIX Association, 2011, pp. 3–3.

[60] C.-H. Hong, I. Spence, and D. S. Nikolopoulos, “Gpu virtualization and
scheduling methods: A comprehensive survey,” ACM Computing Surveys
(CSUR), vol. 50, no. 3, p. 35, 2017.

[61] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative
preemption for multitasking on a shared gpu,” in Proceedings of
the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’15.
New York, NY, USA: ACM, 2015, pp. 593–606. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694346

[62] K. Sajjapongse, X. Wang, and M. Becchi, “A preemption-based runtime
to efficiently schedule multi-process applications on heterogeneous
clusters with gpus,” in Proceedings of the 22Nd International Symposium
on High-performance Parallel and Distributed Computing, ser. HPDC
’13. New York, NY, USA: ACM, 2013, pp. 179–190. [Online].
Available: http://doi.acm.org/10.1145/2462902.2462911

[63] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero,
“Enabling preemptive multiprogramming on gpus,” in Proceeding of the
41st Annual International Symposium on Computer Architecture, ser.
ISCA ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 193–204.

[64] P. Aguilera, K. Morrow, and N. S. Kim, “QoS-aware dynamic resource
allocation for spatial-multitasking GPUs,” in 2014 19th Asia and South

Pacific Design Automation Conference (ASP-DAC), 2014, pp. 726–731.

Authorized licensed use limited to: Penn State University. Downloaded on July 12,2020 at 19:14:22 UTC from IEEE Xplore. Restrictions apply.

