
The Curious Case of Container Orchestration and Scheduling in
GPU-based Datacenters

Extended Abstract

Prashanth Thinakaran1, Jashwant Raj1, Bikash Sharma2, Mahmut T. Kandemir1 and Chita R. Das1
1Pennsylvania State University, 2Facebook Inc

ABSTRACT
Modern data centers are increasingly being provisioned with com-
pute accelerators such as GPUs, FPGAs and ASIC’s to catch up
with the workload performance demands and reduce the total cost
of ownership (TCO). By 2021, traffic within hyperscale datacen-
ters is expected to quadruple with 94% of workloads moving to
cloud-based datacenters according to Cisco’s global cloud index.
A majority of these workloads include data mining, image pro-
cessing, speech recognition and gaming which uses GPUs for high
throughput computing. This trend is evident as public cloud opera-
tors like Amazon and Microsoft have started to offer GPU-based
infrastructure services in the recent times.

The GPU-bound applications in general, can either be batch or
latency-sensitive. Typically the latency-critical applications sub-
scribe to datacenter resources in the form of queries (e.g. inference
requests from a DNN model). For example, a wearable health mon-
itoring device aggregates several sensor data through a mobile
application. In case of a data anomaly, inference services can be
triggered from the mobile device to the cloud, requesting for a deep
neural network (DNN) model that fits the symptom. Such inference
requests which are GPU bound impose strict Service Level Agree-
ments (SLAs) that is typically set around 150 to 500ms. In contrast
to the regular datacenter batch workloads, these user-facing ap-
plications are typically hosted as services that occur and scale in
short bursts. On the other hand, batch applications are HPC based
compute-bound workloads which are throughput oriented. In a typ-
ical datacenter, these both applications might co-exist on the same
device depends on the orchestration and scheduling policy. With
the expected increase in suchworkloads, this GPU resourcemanage-
ment problem is expected to exacerbate. Hence, GPUs/accelerators
are on the critical path to ensure the performance and meet the
end-to-end latency demands of such queries.

State-of-the-art resource orchestrators are agnostic of GPUs and
their resource utilization footprints, and thus not equipped to dy-
namically orchestrate these accelerator-bound containers. On the
other hand, job schedulers at the datacenter are heavily optimized
and tuned for CPU-based systems. Kubernetes and Mesos by de-
fault does uniform task scheduling which statically assigns the GPU
resources to the applications. The scheduled tasks access the GPUs
via PCIe pass-through which gives the application complete access

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6011-1/18/10.
https://doi.org/10.1145/3267809.3275466

CPU

Task queue

Accelerator memoryMain memory

GPU1

GPU2

GPU4

GPU3

A1

A6 A5 A4

A2 A3A1 A2 A3 PCIe

Figure 1: Application queue on a node with multiple GPUs.

to the GPU as seen in Figure 1. Hence the resource utilization of
the GPU is based on the parallelism of the application which is
scheduled to run on it. In case of CPUs, Kubernetes has support for
dynamic orchestration with the features such as node affinity, pod
affinity, and pod preemption. However, these features cannot be
extended for GPUs. This is because, it neither has the support for
pod preemption nor the ability to query the real-time GPU metrics
such as memory, symmetric multiprocessor (SM) utilization, PCIe
bandwidth, etc. Moreover, the containers often overstate their GPU
resource requirements such as memory, and this leads to severe
resource underutilization which leads to multiple QoS violations be-
cause of queuing delays. We identify that by employing CPU-based
scheduling policies for GPU-bound workloads would fail to yield
high accelerator utilization and lead to poor performance per watt
per query. Motivated by this, we propose a GPU-aware resource
orchestration layer which enables the resource scheduler to take
advantage of the GPUs by knowing their real-time utilization.

We further discuss the ideal scheduler properties for a GPU rich
datacenter and list the challenges in developing such a production-
grade GPU-based datacenter scheduler. Therefore we modify the
well-known Google’s Kubernetes datacenter-level resource orches-
trator by making it GPU-aware by exposing GPU driver APIs. Based
on our observations from Alibaba’s cluster traces and real hardware
GPU cluster experiments, we build Knots, a GPU-aware resource
orchestration layer and integrate it with Kubernetes container or-
chestrator. In addition, we also evaluate three GPU-based schedul-
ing schemes to schedule datacenter representative GPU workload
mixes through Kube-Knots. Evaluations on a ten node GPU cluster
demonstrate that Knots together with our proposed GPU-aware
scheduling scheme improves the cluster-wide GPU utilization while
significantly reducing the cluster-wide power consumption across
three different workload mixes when compared against Kuber-
netes’s default uniform scheduler.

ACKNOWLEDGMENTS
This research was generously supported by several NSF grants
1320478, 1409095, 1629129, 1439021, 1629915, 1439057, 1626251,
1526750 and NSF Chameleon Cloud project CH-819640 for the GPU
cluster infrastructure.

524

https://doi.org/10.1145/3267809.3275466

	Abstract

