Exact and Efficient Polyhedral Envelope Containment Check

BOLUN WANG, Beihang University, China and New York University, USA

TESEO SCHNEIDER, New York University, USA
YIXIN HU, New York University, USA

MARCO ATTENE, Italian National Research Council, Italy

DANIELE PANOZZO, New York University, USA

We introduce a new technique to check containment of a triangle within an
envelope built around a given triangle mesh. While existing methods con-
servatively check containment within a Euclidean envelope, our approach
makes use of a non-Euclidean envelope where containment can be checked
both exactly and efficiently. Exactness is crucial to address major robustness
issues in existing geometry processing algorithms, which we demonstrate
by integrating our technique in two surface triangle remeshing algorithms
and a volumetric tetrahedral meshing algorithm. We provide a quantitative
comparison of our method and alternative algorithms, showing that our
solution, in addition to being exact, is also more efficient. Indeed, while
containment within large envelopes can be checked in a comparable time,
we show that our algorithm outperforms alternative methods when the
envelope becomes thin.

ACM Reference Format:

Bolun Wang, Teseo Schneider, Yixin Hu, Marco Attene, and Daniele Panozzo.
2020. Exact and Efficient Polyhedral Envelope Containment Check. ACM
Trans. Graph. 39, 4, Article 1 (July 2020), 14 pages. https://doi.org/10.1145/
3386569.3392426

1 INTRODUCTION

The computation of distances between surfaces is a basic building
block in geometry processing. In particular, the computation of the
Hausdorff distance between an individual triangle 7~ and a triangle
mesh M is often used by meshing and remeshing algorithms (e.g.,
[Cheng et al. 2019; Hu et al. 2020, 2018]) to ensure geometric preser-
vation up to a small distance €. This distance allows algorithms to
smooth out small details, fill small gaps, remove noise, and perform
other operations to generate a high quality mesh, while at the same
time bounding the geometrical approximation error. This bound
is used, for example, in graphics applications to ensure sub pixels
accuracy, or in finite element analysis to bound the error on the
solution.

The Euclidean e-envelope is the space of all points whose L?
distance from a reference surface is less than e (Figure 2). While
checking if a point is contained within the envelope is a simple task,

Authors’ addresses: Bolun Wang, Beihang University, China, New York University,
USA, wangbolun@buaa.edu.cn; Teseo Schneider, New York University, USA, teseo.
schneider@nyu.edu; Yixin Hu, New York University, USA, yixin.hu@nyu.edu; Marco
Attene, Italian National Research Council, Italy, marco.attene@ge.imati.cnr.it; Daniele
Panozzo, New York University, USA, panozzo@nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

0730-0301/2020/7-ART1 $15.00

https://doi.org/10.1145/3386569.3392426

Fig. 1. Our method exactly detects if a triangle is inside (green) or outside
(red) of an envelope (glass shell) of a bunny model (bronze).

checking if an edge or triangle is contained within the envelope is a
challenging problem, despite its apparent simplicity.

Many existing algorithms in the literature perform this operation
inexactly (e.g. by sampling the triangles), whereas just a few can be
implemented exactly. A major limitation of inexact checks is that the
running time (and memory usage) depends on €: a thinner envelope
will require more computations (e.g., more sampling points, larger
number of refinements) to compensate for inaccuracy. This fact
makes inexact checks impracticable (in terms of both memory and
running time) for thin envelopes (Figure 23).

Additionally, while an inexact check is sufficient for certain appli-
cations, we discovered that it is problematic when used for remesh-
ing. Remeshing algorithms use the envelope check during local
operations, preventing any operation that will move the tracked
surface outside of the envelope. Thus, these algorithms are based
on a strong invariant as they assume that all the triangles remain
inside the envelope. An inexact check leads to a subtle, yet major,
problem: a valid triangle, “completely contained” within the enve-
lope according to the inaccurate check, might be subdivided during
the remeshing and, while its subtriangles are supposed to be in
the envelope by construction, an actual check could reveal them

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392426
https://doi.org/10.1145/3386569.3392426
https://doi.org/10.1145/3386569.3392426

1:2 +« Wang, B.etal

Fig. 2. A 2D curve in black (kangaroo shape) and its e-envelope in blue.

S G

Fig. 3. Inexact checks may break algorithmic invariants in remeshing al-
gorithms (e.g. triangles are inside the envelope at any stage). In this 2D
example, a segment is declared to be inside if, after having sampled it, all
its sample points are inside. This inexact check states that segment [p, q]
is inside (left), and the algorithm assumes that any of its sub-segments is
also inside. For example, the algorithm may split [p, ¢] at its midpoint s
(right) with no need to further check. However, the subsegment [s, g is now
outside even according to the inexact check, and this puts the algorithm
in an inconsistent state as its invariant is violated. In the best case the
algorithm may detect it, but the the [s, g] would remain locked and cause
over-refinement.

as outside. In the best case, if the algorithm does not crash due to
a violation of its invariant, these triangles are locked in place and
practically block mesh optimization in its surroundings, typically
leading to over-refinement (Figure 22). We refer to Figure 3 and
Appendix A for more details.

We note that it would be possible to adapt existing meshing algo-
rithms to be robust with a non-exact envelope, but this will require
changes on the application side, increasing the implementation com-
plexity of the application. For instance, one can modify remeshing
algorithms to unlock problematic triangles using heuristics. Tackling
the low-level problem of envelope checking exactly concentrates the
critical code in one place, which is easier to verify, thus downstream
applications will not have to handle inconsistencies in the check,
making them simpler to implement and more robust. While we see
benefits in both approaches (the former one might lead to higher
efficiency for a specific application, while the latter is more widely
usable), we favor the second one since our long term goals is to
have a broad range of robust geometric algorithms directly usable
in different applications, without having to adapt the applications
to handle special cases. Section 6 shows several applications of our
method, where the integration is seamless.

Though a few methods exist that can be implemented exactly,
such an exact implementation would require the use of arbitrary
precision arithmetic that makes these methods too slow for most
practical applications.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Fig. 4. 2D example of Minkowski polyhedral envelope # (in blue, right)
of a 2D curve (in black, left) constructed by sweeping a square along the
boundary of the curve.

Memory (Gb)

100 1000 10k 1000 10k 100k

100k . 100
Number of triangles

Fig. 5. Memory (left) and time (right) required to build a Minkowsky poly-
hedral envelope using CGAL. We start from a simple mesh with 78 triangles
and refine it using Loop subdivision to create a sequence of increasingly
dense meshes (top).

To avoid inaccuracy and performance loss at thin envelopes, we
propose to design a predicate to check exactly if a triangle is con-
tained within a polyhedral envelope %P, that is by itself contained
within the e-envelope. In this way, we obtain a conservative check
ensuring the desired geometric tolerance, but we avoid the perfor-
mance and locking problems.

This formulation has a simple, but impractical, exact solution: we
can build the polyhedral envelope as the Minkowsky sum of a cube
and the given triangle mesh using rational coordinates [Hachen-
berger 2009] (Figure 4), and check containment by computing inter-
sections of the triangles with the discrete envelope. Unfortunately
this approach does not scale well with the size of the mesh, and be-
comes unpractical (Figure 5) in terms of both construction time and
memory usage for meshes with a few tens of thousand of triangles.

Our approach (Section 3) represents the polyhedral envelope P
implicitly, sidestepping the onerous explicit construction, while still
providing an exact evaluation using novel and efficient geometric
predicates implemented using arithmetic filtering and floating point
expansions to provide high performances. More precisely, P is rep-
resented as the union of a set of convex polyhedra, one for each
triangle of M, defined implicitly by a collection of half-spaces. To
check for containment of the query triangle 7, we first check for
intersections with each individual polyhedron, and then efficiently
compute the union by implicitly checking for containment of the
intersections. The resulting algorithm is exact, enabling us to de-
sign different polyhedral envelopes depending on the application,

and it is efficient, being comparable (and even much faster for thin
envelopes) with inexact state of the art methods.

We quantitatively evaluate our algorithm and compare it with
alternatives on a large set of benchmark problems (Section 5). We
also integrate it with two surface remeshing algorithms [Cheng
et al. 2019] and QSlim [Garland and Heckbert 1997] (Section 6.1)
and a tetrahedral meshing algorithm [Hu et al. 2020] (Section 6.2),
to show how it performs in real applications, and to demonstrate
the benefits of replacing a conservative envelope check with our
exact version. The reference implementation, the data, and the
scripts to reproduce the results in the paper are provided in the
additional material and are released as an open-source project
https://github.com/wangbolun300/fast-envelope.

2 RELATED WORK

We first review the state of the art algorithms for envelope con-
tainment checks (Section 2.1). We then briefly summarize methods
solving a closely related task, the minimization of the distance be-
tween two meshes (Section 2.2). Finally, we review applications
requiring envelopes (Section 2.3) and the geometric predicate con-
structions used in our algorithm (Section 2.4).

2.1 Envelope for Geometric Error Checks

Previous works use an implicit or explicit envelope for geometry
preservation during the shape approximation process.

Implicit Envelope. Implicit methods compute and bound the Haus-
dorff distance [Atallah 1983] from the output boundary to the input
boundary to be smaller than a certain threshold. However, directly
computing the exact Hausdorff distance is expensive [Barton et al.
2010]. To improve efficiency, some methods compute approxima-
tions using surface sampling [Cheng et al. 2019; Cignoni et al. 1996;
Hu et al. 2017]. Those methods sample the surfaces and use point-
to-surface distances to approximate the surface-to-surface distance;
while efficient and simple, this method introduces an approximation
error. Based on this strategy, Hu et al. [2019, 2018] then proposed
a conservative way to check if a triangle is contained within an
envelope with the sampling error compensated. The drawback of
sampling-based methods is that a smaller envelope requires a higher
density of sampling, making them unpractical for small envelopes
(Figure 14). An alternative to the sampling is the derivation of upper
bounds on the Hausdorff distance: Borouchaki and Frey [2005] con-
trols the upper bound of Hausdorff distance in a local region, which
is specifically designed to support local remeshing operations. Tang
et al. [2009] compute both the lower bound and upper bound of
Hausdorff distance between a triangle and a surface and tighten
the bounds by subdividing the query triangle. When a small enve-
lope requires tight bounds, the algorithm needs excessive levels of
subdivision and thus becomes slow.

Explicit Envelope. Explicit envelopes methods compute an enve-
lope shell, a discrete representation of the boundary of the envelope
around the input boundary, and use it to test containment of other
primitives. The envelope shells can be constructed using Minkowski
sums [Kaul and Rossignac 1992], or offsetting [Jung et al. 2003] as a
special case. Cohen et al. [1996] proposed to use the generalization

of surface offset as envelope shell. But this method does not work for
boundaries with self-intersections. Minkowski sums use a solid to
sweep along the boundary of another solid and the occupied volume
of the sweeping path is called swept volume that can be used as an
envelope shell. The swept volume of Minkowski sums can be either
a polygonal superset that is a set of intersected geometries [Ghosh
1993; Kaul and Rossignac 1992], or a Boolean union of the super-
set [Campen and Kobbelt 2010b; Hachenberger 2009]. Building a
polygonal superset only is pretty fast but computing its union could
be several orders of magnitude slower [Campen and Kobbelt 2010b].
The method in [Hachenberger 2009] is costly because it compute the
union of the superset and requires arbitrary precision arithmetics.
Campen and Kobbelt [2010b] proposed a more efficient, but still
exact, algorithm that improves the running time considerably, but
still does not scale to large models. Actually, when using Minkowski
sums for envelope shell, it is not necessary to compute the union of
the supersets.

2.2 Optimization-Based Geometric Error

Some variational methods incorporate geometric errors in their
energies. For example, Frey and Borouchaki [2003] discussed an
a posteriori interpolation error estimate based on the Hessian of
the surface and proposed a new geometric error estimate related to
the local deformation of the surface. Hoppe [1996] evaluates and
minimizes an error involving the distance of each point to the input
boundary when optimizing the vertex positions for a surface mesh
with fixed connectivity. Instead of using point-to-boundary distance,
Garland and Heckbert [1997] proposed plane-based error quadrics
for estimating the geometric error of a processed surface mesh based
on the sum of squared distances of a vertex to its associated planes
(in a mesh a vertex can be seen as the intersection of a set of planes).
Our algorithm can be used as a filtering criterion in the line search
of these methods to ensure a bounded geometric error.

2.3 Applications

The main application of a geometric envelope is bounding geometric
error. Since envelopes can be defined around both 2D curves or 3D
surfaces, they can be used both in 2D and 3D meshing algorithms.
Implicit envelope checks are widely used in surface mesh simplifica-
tion [Borouchaki and Frey 2005; Cignoni et al. 1996], surface mesh
refinement and optimization [Cheng et al. 2019; Hu et al. 2017],
and mesh generation [Fu et al. 2014; Hu et al. 2019, 2018]. Explicit
envelope, while usually more expensive, can be used in the same
application as implicit envelopes [Cohen et al. 1996]. Besides, they
can also be used in applications like [Mandad et al. 2015] that takes
an envelope-shell-like tolerance volume as input and generates an
approximated shape inside this tolerance volume.

2.4 Geometric Predicates

Typical geometric predicates evaluate the sign of a homogeneous
polynomial and give information about the configuration of their
input. E.g., given three points a, b, and ¢ on the Euclidean plane, the
sign of the 2 X 2 determinant |b — a; ¢ — a| tells us whether the three
points are collinear or if they form a left or a right turn. Calculating a
determinant using floating point arithmetic may lead to an incorrect

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

https://github.com/wangbolun300/fast-envelope

1:4 + Wang, B.etal

C2 C3

Stage 2

Fig. 6. Overview of our algorithm: starting from the input triangles soup M, we build our polyhedra envelope P S (first stage), which we use to check if a
query triangle 7 is inside using three checks between vertices, edges, and planes.

sign that, in turn, may easily put an algorithm in an inconsistent
state, cause infinite loops, or even lead to a crash [Li et al. 2005].
Replacing floating point with arbitrary precision numbers [Fousse
et al. 2007] solves the problem, but the slowdown is often unaccept-
able in downstream applications. That is why efficient predicate
implementations use arithmetic filtering [Devillers and Pion 2003]:
the polynomial is evaluated using floating point arithmetic, but we
also estimate a bound for the rounding error. If the magnitude of the
evaluated polynomial is smaller than the error bound, then its sign
is uncertain (i.e. the filter fails), and the predicate is re-evaluated
using arbitrary precision. The idea is that the failure rate is low
enough to make the impact of arbitrary precision acceptable.

The error may be bounded based on the polynomial expression
only (static filtering [Fortune and Van Wyk 1996]), or it may use the
actual values of the input variables (dynamic filtering [Bronnimann
et al. 1998]). For static filters, the error is pre-calculated and the
runtime overhead is extremely low, but the failure rate is relatively
high. Conversely, the error in dynamic filters is computed at each
predicate call, thus leading to a higher overhead, but also to less
failures. In an attempt to couple the advantages of both approaches,
semi-static filtering splits the error in one static component to be
pre-calculated, and one dynamic component that can be quickly
computed at each call [Meyer and Pion 2008]. The approach in
[Shewchuk 1997] falls in this latter category, though its floating
point filtering is adaptively refined before reverting to arbitrary
precision.

Though these approaches are both efficient and exact, correctness
guarantees are lost if the predicate input is affected by an error. Thus,
if intermediate constructions are used by a predicate, state of the
art solutions rely on lazy exact evaluation [Pion and Fabri 2011].
Unfortunately, these solutions are far too slow when compared with
floating point implementations.

Instead of relying on lazy exact evaluation, in this paper we re-
write standard predicates so that, if one of the input points needs
to be derived as a composition of other values, such a derivation
is included in the predicate itself. This allows to keep track of the
roundoff and hence to implement filters enabling an efficient float-
ing point calculation with guarantees. If the floating point filters
fail, we do not directly switch to arbitrary precision (as done, e.g.
in [Shewchuk 1997]). Instead, we re-evaluate the predicate using
interval arithmetic, which reduces the overall need for arbitrary
precision and thus improves performances.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Fig. 7. Example of input triangles (blue) and their corresponding polyhedral
envelope (pink).

3 METHOD

Our algorithm is composed of two stages (Figure 6): (1) convex
polyhedral envelope construction (Section 3.1), and (2) containment
check (Section 3.2). The first stage takes as input a 3D triangle
soup M (i.e., a set of arbitrarily connected, potentially intersecting
triangles with potentially shared vertices), and a user-controlled
envelope size €. It outputs a polyhedral envelope set S, containing
convex polyhedral cells, one for each input triangle. The second
stage takes as input the set S and a query triangle 7, and cal-
culates whether 7 is completely contained in PS exactly. More
precisely, we check if all the points of 7 are in the interior of the
polyhedra, and consider 7~ to be outside if it has points outside or
on the boundary of PS.

The second stage could be realized by explicitly computing the
union of all the convex polyhedra in £S. However this is prohib-
itively costly and unnecessary; our algorithm is able to check for
containment indirectly, without realizing the union of the polyhe-
dra.

The shape of the convex polyhedral envelopes can be changed
depending on the application. For instance, we can generate convex
polyhedra to better approximate the L? envelope (Figure 18) or
have polyhedra with different sizes, leading to adaptive envelopes
(figures 16 and 17), depending on the application requirements.

3.1 Stage 1: Convex Polyhedron Creation

There exist several different ways to construct a convex polyhedron
P containing an input triangle while being contained in an L?-
distance envelope. An easy construction is to use a Minkowsky sum
on every input triangle with a approximation of a sphere (Section 5.3
shows an example), however it is slow and might lead to a potentially
high number of faces, depending on the tessellation of the sphere.
We propose a different construction that strives to minimize the
construction cost and the number of faces, since this will reduce

Fig. 8. 3D example of a convex polyhedron P (left) for a single triangle and
its construction on the plane of the triangle. Middle, the case where two
angles are less than 90 degree and one is 90 degree; right, the case that
maximal angle is more than 90 degree.

the complexity of the next phase of the algorithm (Figure 7). Given
a triangle 7 and a distance §, we construct a plane 7g,,, below
7 and a plane 7 above it, so that both the planes are parallel
to 7~ and have distance § from it. Also, we construct three planes
7;iide’ i € {1,2,3}, each orthogonal to 7~ and parallel at distance &
to one of its edges. Toors Teeil @and the Tg4e’s collectively bound a
triangular prism containing 7. Though the prism contains 7, some
of its points may be arbitrarily far from the triangle (e.g., when
one of the angles of 7 may become acute). To avoid this problem
and ensure a distance bound, for any acute vertex of 7~ we cut the
prism using an additional plane at distance § from the vertex and
orthogonal to the line £ connecting the vertex and the triangle’s
barycenter (Figure 8). This construction can be avoided when the
angle becomes obtuse, since the distance is bounded in any case.

PROPOSITION 3.1. The polyhedron P obtained by offsetting a tri-
angle T by § = €/V/3 is convex and the distance between any point in
P and the triangle is at most €.

ProoF. P is convex because it is the intersection of half-spaces.

To show that the distance is bounded, we define w to be the
maximum distance between the triangle and % in the plane of the
triangle; then the actual maximum distance (in 3D) is d = Vo? + §2
(Figure 9, left) which we will show that, for § = €/ V3, is smaller
than e.

The maximum distance o is attained from the vertices of 7~ and
. For every vertex we have two cases: the angle acute or right, or
obtuse.

When the angle is acute (or right), the position of the orthogonal
plane to ¢ depends on the barycenter of the triangle. The position
of ¢ that maximizes w is obtained in the limit when the barycenter
is on one of the edges, that is when the line ¢ is one of the two
edges (Figure 9, right). In this case @ = V28 which implies that
d = V262 + 62 = ¢ (Figure 9 middle).

For any angle larger than 90 degrees, the intersection point be-
comes closer (and § in the limit) and therefore the distance shorter.

O

Note that, while this construction ensures that a query triangle
is within an e-distance from the triangle soup M, for large “flat”
regions the check is conservative and the query triangle will leave
the envelope for any distance greater than §. For the example in
Figure 18 the ratio between the volume of our envelope and the
volume of an Euclidean L? envelope is approximately V3.

Fig. 9. lllustration for the bound on maximum distance. The dashed circle
are at § from the input triangle (in gray) creating the blue envelope. The
red lines represent the maximum distance in the plane.

0.004
-—0urs
2 0.003
by Boolean
% 0.002
-
g
& 0.001
0 — T
102 103 104 10°

Number of triangles

Fig. 10. Plot of query time versus number of faces for the model in Figure 5
using an envelope realized with the Boolean union of polyhedra and our
method. Note that the explicit construction of the envelope is very expensive:
3 hours for 312 faces, 14 hours for 1248 faces faces. Our method avoids the
explicit construction and it is faster at query time.

3.2 Stage 2: Envelope Check

Equipped with the envelope S, composed of the union of open
convex polyhedra, one for each triangle of the input mesh, we can
now present the algorithm to check for containment. We first de-
scribe our method assuming the use of exact arithmetic, then discuss
the challenges of implementing it using floating point arithmetic,
and finally we illustrate our efficient exact solution. Our algorithm
requires two novel geometric predicates, which we detail in Sec-
tion 4.

Algorithm Overview. Since our envelope S is defined as the
Boolean union of individual convex polyhedra P, a triangle 7 is
contained within P8 if the Boolean subtraction of £S from 7 is
empty:

TAN(PLUP2U...UPy) =0.
This remark leads to a possible simple solution of our problem:
compute the union of P; as a valid mesh and check if 7~ is contained
within. This naive approach suffers from similar limitations as an
explicit Minkowsky sum (Figure 5): the construction of the envelope
is extremely slow and computing containement in an exact Boolean
union is also expensive (Figure 10).

To avoid the computation of the explicit union, we can rewrite
this expression as

TA\PI\P2\...\Pn=0, 1)
which leads to a simple algorithm. Starting from 7, sequentially
carve out the parts overlapping with any polyhedron #; until you

either have the empty set (and thus 7™ is contained in £S) or you
“run out” of polyhedra (and thus 7 is not contained in £S).

Floating Point Challenges. Implementing this algorithm using
rational numbers (or infinite precision arithmetic) is straightforward

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:6 + Wang, B.etal

but has impractical runtime since every subtraction might double
the size of the rational numbers used to store the coordinates, since
the output of an operation is the input of the next (see inset).

We thus design an equivalent version of
this algorithm tailored to avoiding cascading
operations and implementable exactly using
floating point arithmetic. While some of our
algorithmic choices in the following section
might seem exotic at a first glance, they are he
actually necessary to ensure both efficiency and exactness. In par-
ticular there are two tasks in the algorithm that are challenging to
solve with floating point computations:

e If a polyhedron % has a facet with more than three vertices
represented in floating-point coordinates, they will likely
not be exactly coplanar, which might make the polyhedra
concave [Si and Shewchuk 2014]. To avoid this problem, we
propose to never realize P explicitly. Instead, we represent
% as an intersection of half-spaces, each defined by three
non-collinear points.

e The intersection between a triangle 7 and the boundary 6%
of a convex polyhedron £ will usually not lie on P or 7~
because of rounding (Appendix B). This is problematic, since
the intersection might be randomly either inside or outside
P. To prevent this problem, we introduce a custom predicate
that avoids representing the intersection explicitly, exploiting
the fact that # is defined as an intersection of half-spaces
(sections 3.2.2 and 3.2.3).

Efficient Implementation. Our algorithm is summarized in List-
ing 1 and Figure 6 (Stage 2), and is based on the following theorem:

THEOREM 3.2. A triangle T is contained within PS (or equivalently
Equation (1) holds) if and only if the following three conditions are
true:

C1 the vertices v; of T are inside PS,

C2 the intersection point of the edges e; of T~ with any facet of any
polyhedron P € PS is contained in at least another polyhedron
P* = P, with P* € PS,

C3 for any pair of facets Fl o, (Pi and Pj might be the same)

the intersection point ‘T n Fl n F;g‘ is contained in at least

another polyhedron P* with P* # P, P* # Pj, and P* €
PS.

Proor. One direction of the implication is trivial, if 7~ is inside
the envelope, any point p € 7™ is also inside. In particular its vertices
(C1), the intersections of its edges with the facets of # (C2), or its
intersections with two facets (C3).

The second direction can be proven by contradiction; let C1, C2,
and C3 be true and assume that 7 is outside the envelope, that is
there exists a point ¢ € 7 not in PS.

Let us assume that q is one of the three vertices v1,v3,v3 of T;
this contradicts C1.

We now assume that ¢ € e; (the other edges follow by re-
enumeration), where e; is the open edge connecting v and v;.
Because of C1, there exists a polyhedron £* that contains v. If
P* contains also v, (Figure 11 (a)), since P* is convex, the whole

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Vg Vo ,7)** U o ’
y e\ T ol)
T 7 _ e
1 vy 1

(@ (b) (© (d

Fig. 11. Explanation of the different stages of the proof of Theorem 3.2

edge e; is contained in * which contradicts the assumption. In
the other case, vy ¢ P*, there exists a point v* # v (since P*
is an open polyhedron) which is the intersection between e; and
P*.If q € (v1,v*), it contradicts the assumption (Figure 11 (b)).
In the other case, g € [v*,v3), because of C2 there exists another
polyhedron £** that contains v* and, since P** is open, the in-
tersection v** between P** and e; is different from »* Figure 11
(c)). In other words q € (v**, v3); we now repeat the reasoning
for this new interval and shows that ¢ ¢ e; since the number of
polyhedra in PS8 is finite, which contradicts q € e;.

The last case is that q is in the open triangle. We first remark that
the result of the previous proof is a set S (blue in Figure 11 (d)) of
polyhedra covering the edges of 7" and if ¢ € § it contradicts the
assumption. Thus, let ¢ € 7\ S; the boundary of S is a polygon
(highlighted in Figure 11 (d)) whose vertices results as the inter-
section between two faces of polyhedra in P. Any vertex of this
polygon, from C3, is strictly inside another polyhedron P’. If P’
covers the whole polyhedron it contradicts the assumption. In the
other case, it will shrink the area of 7\ S since it is open and will
generate new points. We repeat this reasoning a finite number of
time (since the set S is finite) which implies that the area of the
polygon can only be zero and therefore q ¢ 7, which contradicts
the assumption. O

The algorithm and corresponding theorem have been designed
to enable efficient verification using floating point predicates. We
describe the algorithm first, and postpone the details of the imple-
mentation of the predicates to Section 4, but it is important to note
now that this algorithm never explicitly requires divisions in the
constructions, which is a mandatory requirement to derive filters
using [Meyer and Pion 2008] and to exactly evaluate the predicates
using floating point expansions.

Our algorithm requires checking the three conditions in Theorem
3.2 (sections 3.2.1, 3.2.2, and 3.2.3), the first can be realized using
standard orientation predicates, while the other two will require cus-
tom predicates to guarantee correctness. We propose two versions
of the algorithm. The first is a direct implementation of Theorem
3.2 (Listing 1), which is simple but computes many unnecessary
implicit intersection points. The second is an accelerated version
that discards unnecessary intersection tests (Section 3.2.4). Both
algorithms are exact and they rely on three subroutines to verify if
the three conditions of Theorem 3.2 hold for a given triangle and
envelope, which we describe in the next section. We will discuss
timings in more details in Section 5 but, as a reference, a naive im-
plementation of the first algorithm using rational numbers is 100x
slower than using our predicates, and it is 10 000x slower than the
second version of our algorithm.

Listing 1. Overview of the three stages of our envelope check algorithm.

envelope_check (7, PS)
(1) v; is contained in one of the PS8, Section3.2.1
for (i =1, 2, 3)
out = point_out(v;, PS)
if (out == OUT) return OUT

(2) triangle edge intersection with Fp, Section3.2.2
for (P € PS)
for (Fp € P)
for (i =1, 2, 3)
out = edge_plane_out(e;, Fp, PS\P)
if (out == OUT) return OUT

(3) intersection of 7, Fyl,,. and Fgﬂ Section 3.2.3
i j
for (P;, Pj € PS)
for (Fj, € ;. 2 € P))
out = plane_plane_tri_out (7, F;,_, F;,"_, PS\(P:UP)))
z J
if (out == OUT) return OUT

return IN

3.2.1 C1: Point in Polyhedra. A vertex v; of T is inside P € PS if
v; is inside all the halfspaces that define # or, equivalently, if v; is
below all the oriented planes Fp that define these halfspaces. Since
the planes Fp are encoded as a triplet of points (af, b, cp), deter-
mining whether ; is in P reduces to evaluating a orient3d(v;, ar,
br, cr) predicate for each plane. Standard efficient implementations
exist to exactly evaluate this predicate [Lévy 2019; Shewchuk 1997],
and are sufficient to evaluate condition C1 (see Listing 2).

Listing 2. Overview of our point check, condition C1.
point_out(v;, PS)

for (P € PS)
counter = 0
for (Fp € P)
ori = orient3d(v;, Fp)
if (ori == IN) counter++
if the point is inside for all faces of P
we found it
if (counter == ||P||) return IN
return OUT

322 C2:Implicit Edge Facet Check. A trivial way to evaluate our
second condition could be explicitly computing the intersection
point p and then using the approach described in Section 3.2.1.
Unfortunately, this approach is not exact: the coordinates of p are
not necessarily representable using floating point numbers, and the
rounding error may be sufficiently large to make standard predicates
return a wrong result (Appendix B).

We thus propose, instead of computing p as an explicit intersec-
tion of an edge and a facet, to represent it implicitly as a set of
five points, r and s defining the edge, and ¢, u, v defining the facet.
We call such an implicit point an LPI point, short for Line-Plane
Intersection.

This change in perspective requires implementing a new 3D
orientation predicate. Instead of using the coordinates of p to define
it, we use the coordinates of the five points generating it. Thus, the
input to our custom orient3d_LPI predicate (Section 4.1) is made
of eight points, five defining the LPI point plus three defining the

reference plane. To check for condition C2, we iterate over all the
polyhedra and check the orientation of their planes with respect to
the implicit intersection, Listing 3. Note that orient3d_LPI does
not enforce that the point p is between r and s. This additional
check may be simply implemented using traditional orientation
predicates: p is in the segment if # and s lie on opposite sides of the
plane spanned by ¢, u, v.

Listing 3. Overview of our implicit edge facet check, condition C2.
edge_plane_out(e;, Fp, PS’)
check if the endpoints are on opposite sides
of plane Fp and not on the plane
oril = orient3d(v,1, Fp)
i
ori2 = orient3d (v, Fp)
i
if (oril == ori2 or oril == ON or ori2 == ON)
return SKIP

for (P € PS’)

counter = 0

for (Fpr € P)
ori = orient3d_LPI(e;, Fp, Fpr)
if (ori == IN) counter++
if the point is inside for all faces of #’
we found it

if (counter == ||P’]|) return IN

in the other case
we continue searching for another polyhedron

return OUT

Evaluating our custom predicates amounts to calculate the sign
of homogeneous polynomials, where we exploit state of the art tools
to derive tight semi-static filters [Meyer and Pion 2008] for their
floating point evaluation. When the semi-static filter fails, we re-
evaluate the polynomial using interval arithmetic [Bréonnimann et al.
1998]. If the resulting interval contains the zero (i.e., the dynamic
filter fails) we evaluate the polynomial exactly using floating point
expansions [Joldes et al. 2016]. For the sake of clarity, we postpone
the description of these steps to Section 4.

3.23 C3 Implicit Triangle Facet-Facet Check. This algorithm is sim-
ilar to the segment plane intersection, but a Three-Planes Inter-
section (TPI) point is defined by three triplets of points, one for
each plane. Our orient3d_TPI predicate uses the coordinates of
twelve points, nine defining the TPI points (i.e., the three triplets)
plus three defining the reference plane (Section 4.2). As for the line
case, the predicate does not check for the intersection point p being
inside the triangle. These check can be easily done with a series of
orient3d_TPI with planes passing trough the edges of 77, Listing 4.
We use this new predicate to check for condition C3. As for the line
case, we implement semi-static filters with interval arithmetic and
floating point expansions (Section 4).

Listing 4. Overview of our implicit facet facet triangle check, condition C3.

plane_plane_tri_out (7, Fylai’ Fq’,’j’_, PS’)

q = a point not on the plane of 7

counter = 0
for (i =1, 2, 3)
F; = plane passing trough v;, vj11, and g
ori = orient3d_TPI(7, F;,i, F;,"_, F;)
J

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:8 + Wang, B.etal

if (ori == IN) counter++
if (counter # 3) return SKIP

for (P € PS’)
counter = 0
for (Fpr € P')
P s 1 m ,
ori = orient3d_TPI(7, F?i’ F”j’ Fpr)

if (ori == IN) counter++
if the point is inside for all faces of P’
we found it
if (counter == ||#’||) return IN
in the other case
we continue searching for another polyhedron
return OUT

3.2.4 Acceleration. To reduce the running time of our algorithm
we designed three strategies to limit the number of intersection
calculations to only those which are really necessary. On average
the three strategies give us 100x speedup.

In the first strategy, we filter the polyhedra intersecting triangle
7 using a conservative axis aligned bounding box tree [Lévy 2019].
This simple pass is extremely cheap and allows to prune unnecessary
computations.

The second strategy consists of further removing unnecessary
polyhedra using floating point arithmetic only, with no switch to
interval or expansion arithmetic. After having checked condition
C1 for the three vertices of the triangle, we may have three possi-
ble cases: (1) at least one vertex is not in PS; (2) there exists one
P € PS8 that contains all the three vertices; (3) the three vertices
are all in PS8, but in different Ps. In the first (resp. second) case,
we simply stop the algorithm as the triangle is outside (resp. in-
side) the envelope. In the third case, the triangle must necessarily
intersect the facets of polyhedra in £S. All the polyhedra that do
not have intersecting facets can be safely rejected. When checking
for intersections, we use our predicates and reject polyhedra only
if all the filters provide a guaranteed answer, that is we conserva-
tively keep the pair in case of doubt.. This conservative filtering
reduces the number of polyhedra by 30% from the rough selection
coming from the bounding boxes, with negligible cost, since all the
checks are done in floating-point only. In addition of reducing the
number of polyhedra to be checked, it also provides with the list of
possibly intersected facets for every polyhedron, which we use in
our algorithm. Specifically, when computing C2 and C3, we only
iterate over possibly intersecting facets instead of all facets. We also
observe that the intersecting facets are the ones “deciding” if the
triangle is outside. In other words, when the triangle leaves the
envelope it intersects one of the facets of a polyhedron. Using this
observation, we change the order in which we check for orientation
in the inner loop. That is, we compute the orientation of the implicit
intersection point first against intersecting faces since they are the
more likely to decide that the point is outside.

The third strategy is inspired from the proof of Theorem 3.2: we
use a covering strategy to reduce the number of points generated
and checked (Figure 12). We incrementally construct a covering set
C. We start from a polyhedron ¢ containing one of the vertices of

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Edge Covering

Triangle Covering

Fig. 12. Covering of a triangle by incrementally constructing the covering
C (in blue), represented by the gray triangle. We start by selecting one poly-
hedron (in red), and generate its intersection points with 7. We classify the
points into covered in C (red) and new points (yellow). For every uncovered
point (yellow) we search for a polyhedron in £S (red in the second image)
that covers it and insert it into C. We proceed until all edges are covered
(top row), that is all new intersection points are covered in C (gray or red).
We follow the same strategy for covering the interior, bottom row.

T, which we obtain from the check of C1, and add it to C. Then,
we proceed by looking for a polyhedron P* # P¢ containing the
intersection points q; between P¢ and the triangle’s edges. The
key ingredient is to first search for £* in C and then search in
PS.If P* € C, it means that g; is already covered and there is no
need for generating new intersection points (between P* and the
edge of 7). In the other case (P* ¢ C), q; is a new intersection,
therefore we add P* to C and proceed with the new intersection
points between P* and the edge. The algorithm terminates when
either one of the intersections is outside or when any new point is
contained in C. This strategy incrementally builds a covering of the
edges of 7~ while limiting the number of new intersection points,
since any polyhedron in C never generates new points. Once the
edges are covered, we follow a similar strategy for covering the
interior of 7.

4 PREDICATES

To simplify the notations, we assume that the vectors are row vectors.
We denote by the subscript x, y, and z the three components of
vectors. We denote by X the cross product between two vectors and
by - the dot product.

4.1 orient3d_LPI

To be able to build the predicates we first observe that the point p is
the result of the intersection of a plane and a line (i.e., a facet against
a triangle edge), whose numerical error cannot be bounded when
computed using floating point arithmetic. However for building the
predicate we are only interested to evaluate the sign of a polynomial,
and its numerical inaccuracy can be bounded. Note, to be able to
bound the inaccuracy we need to reformulate the predicate avoiding
divisions.

Let r and s be two points defining a straight line £. Also, let ¢,
u, v be three points defining a plane £, and a, b, ¢ be three points
defining a reference plane. Assuming that £ and # intersect at a
single point p, orient3d_LPI(r,s,t,u, v, a, b, c) is the sign of the
volume of tetrahedron (p, a, b, ¢).

The intersection point p is

o r—t r—s
p=r+—(s—r), wherea=|u—t|andf =|u—t|.
p v—t v—t

If § = 0, p is undefined (i.e., £ and P do not intersect at a single
point). Otherwise, orient3d(p, a, b, ¢) is:

pr +as —ar — fc
pa - pe
pb - pe
Note that this expression uses input values only (i.e., the inter-
mediate construction p is not part of the expression). Furthermore,
its sign can be obtained by composing the sign of §, which is a
homogeneous polynomial, with the sign of

-c¢ 1 ﬂp_ﬁc
O(p,a,b,c):a—c=_3ﬁa_ﬁc =3
b-c P lpp-p F

pr +as —ar — fc

pa - pe

Bb - pe
which is another homogeneous polynomial. To summarize, the sign
(and therefore the result) of our predicate is

0*(p,a,b,c) = f°O(p, a,b,c) =

—sign(0*) forf <0

sign(0) = {sign(O*)

otherwise -
The semi-static filter, as calculated by [Meyer and Pion 2008], for
the polynomial expression of f is

£p = 5.1107127829973299 1071 51 5,53

61 = max{|rx — sx|, [ux = tx|, [ox = tx|}
82 = max{|ry — syl luy — tyl, lvy — ty|}
03 =max{|rz = sz|, luz — tz|, l[vz — tz[}.

This means that, if § is calculated using default floating point
arithmetic, its sign is guaranteed to be correct if its absolute value
is greater than £5. Otherwise the filter fails.

Similarly, the semi-static filter for O* is

£0 = 1.3865993466947057 10713815583 6485 56
S

82 = max{|ry = syl, luy — tyl, vy — tyl, |ry — tyl}

83 = max{|rz = sz|, luz — tz|, [vz = tz|, Irz — tz|}

max{|rx = sx|, lux = tx|, [Ux = tx|, [rx — x|}

84 = max{|rx = sx|, [bx —cx|, lax —cx|, |rx —ex|}
85 = max{|ry = syl, by — cyl, lay — cyl, [ry —cyl}

86 = max{|rz = sz|, |bz — cz|, laz — cz |, |rz — cz|}.

If both the filters succeed, we simply compose the sign of
and O* to return the value of the predicate. If any of them fails,
we re-evaluate the expression using interval arithmetic. To keep
our code self-contained, we implemented our custom interval
number type, but any interval type provided by existing libraries
(e.g., Boost [Schling 2011] or CGAL [Hemmer et al. 2019]) can be
used.

When using interval arithmetic, both § and O* will be computed
and represented as intervals. If any of them contains the zero, their
sign is ambiguous (i.e., the filter fails) and we re-evaluate the ex-
pression using floating point expansions. Even in this case, we
implemented our own custom expansion number type, but any ex-
isting implementations can be used (e.g., the expansion_nt type

provided by Geogram [Lévy 2019]). Since precision is arbitrary, this
last evaluation is error free and the sign is guaranteed to be correct.

4.2 orient3d_TPI

Letv;, w;, and u;, i = 1, 2,3 be three triplets of non-collinear points
that define three planes P, Py, Py, respectively. As for the line
case let q;, i = 1,2, 3, be three points defining a reference plane. Let
us assume that Py, Py, Py intersect at a single point p then

orient3D_TPI(v1, vy, U3, W1, Wa, W3, U1, U2, U3, 41, 45, q3)

is the sign of the volume of tetrahedron (p, ¢, g5, q3).
Let
ny = (vz —v1) X (v3 — v3)
ny = (w2 —wi1) X (w3 — wy)

ny = (uz —uy) X (u3 — uz)

and
po nouy nvz noux Po novz nux noy po
Ny = [Pw nwy nwz|, ny = |nwx Pw nwz|, Nz = |Pwx nwy Pw
Pu nuy nuz Nux Pu nux nuy Pu
with
Pov =Ny " V1, Pw = Dy * W1, andpu =1y -uj.
Then
T
1 nx ny
p=-n with n=|ny and f = [n.|.
nz ny

If f = 0, p is undefined. Otherwise, orient3d(p, g, g5, q3) is:

P—9q; pp - Pas n-fqs
0(p.q1.92.93) = |91 — 93| = ﬁ Ba1 — Bqs| = ’[g Ba1 — Bas
q9; — 43 Ba; — Bas Bq, — Bqs

As for the LPI case, this expression uses input values only and its
sign can be obtained by composing the sign of with the sign of

n-fq
0" (p.91:92:93) = ﬁSO(P"hJIz»%) =169, — Pqs
B4, — P43
Again, the final answer follows from
—sign(0*) f 0
sign(0) = '31gn() forf <. .
sign(O*) otherwise

The semi-static filter, as calculated by [Meyer and Pion 2008], for
the polynomial expression of f is

£p = 8.8881169117764924 1071451 5,83 64 5556

81 = max{|vax — Vx|, [U3x — Vx|, [wWax — wix |, [w3x — wax |}
S = max{|v2y - 'Uly|s |U3y — D2y [, ‘WZy - W1y|s |W3y — W2y [}
83 = max{|vzz — V1], [Vsz — V2zl, [W2z — Wizl [wsz — waz|}
Sy = max{|uzx — uix|, lusx — uzx |, [wax — wix |, [wsx — wax |}
85 = max{|uzy — u1y |, [usy — uzyl, Iway — wiyl, |wsy — way |}

86 = max{|uzz —uiz|, lusz — uzz |, |waz — wizl, |wsz — woz|}

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:10 « Wang, B.etal

while the semi-static filter for the polynomial expression of O* is

£0 = 3.4025182954957945 1071251 8,85 8485569755

&1 = max{|vax — vix |, [v3x — vax |, Ax}

&y = maX“UZy ~ U1y |, "UBy — 2y ls Ay}

93 = max{|vzz — viz|, [v3z — v2z| Az}

84 = max{51, 52}

85 = max{8z, 53}

86 = max{Adx, |q1x — g3x |, |92x — g3x |}

&7 = max{Ax,)Ly, Az ‘qu ~ 93y I, |q2y - q3y|}

98 = max{lqiy — g3yl lg2y — @3yl 191z — @3z |, |92z — @3z 1}
Ax = max{|wax — wix |, [Wsx — wax |, luzx — t1x |, [usx — uax |}
Ay = maX“WZy ~ Wiy I, |W3y — W2y I, ‘uZy - u1y|9 ‘u3y — Uzy [}

Az = max{|wzz — wizl, [wsz — wazl, [uzz — w1z, lusz —uzz |}

We observe that Campen and Kobbelt [Campen and Kobbelt
2010a] use the filtered predicates proposed in [Bernstein and Fussell
2009] to exactly determine the position of a TPI point with respect
to a reference plane. This is similar to what we do, but with a fun-
damental difference: in their approach, each plane is represented by
the four coefficients of its implicit equation, while we use a vertex
triplet. This requires a conversion, which in [Bernstein and Fussell
2009] is not exact and requires repairing, whereas in [Campen and
Kobbelt 2010a] is made exact by first splitting long edges. The latter
approach has a twofold disadvantage as it introduces new construc-
tions (the splitting points must be calculated, with potential inaccu-
racy) and increases the size of the input (in particular for models
with large edge length variation). In contrast, our orient3d_TPI
operates directly on the input values, and it guarantees exactness
without requiring any modification.

5 RESULTS

Our algorithm is implemented in C++ and uses Eigen [Guennebaud
et al. 2010] for the linear algebra routines and Geogram [Lévy 2019]
for the standard orientation predicates. We run our experiments
on cluster nodes with a Xeon E5-2690v4 2.6GHz, limiting every
job running time to 24 hours and maximum memory to 8GB. The
reference implementation is open-source and available on GitHub:
https://github.com/wangbolun300/fast-envelope.

5.1 Comparison with Inexact Methods

We perform a large-scale comparison of our method with two inex-
act methods: the sampling approach used in [Hu et al. 2020, 2018]
and the Hausdorff bound (abbreviated as HB from now on) proposed
in [Tang et al. 2009]. While the sampling approach is inherently
approximate, the latter could be made exact by using rational num-
bers, but with an impractical running time. For this comparison we
used a floating point reimplementation [Martin Skrodzki 2019].

Datasets. We run our algorithm on the Thingil0k dataset [Zhou
and Jacobson 2016], which contains 10 000 real-world surface trian-
gle meshes, and generated two sets of queries for each model. While
our algorithm processed our benchmark on all models in less than
24 hours, there are 205 models where either HB or sampling run out
of time. For fairness, we present all the statistics excluding them.

(1) QSlim. We modify the QSlim [Garland and Heckbert 1997]
algorithm to stay within an envelope: we prevent any collapse

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

e=1073 e=10"% e=10"°
1% 1% 1%
. Ours Ours Ours
B o ——Sampling % —Sampling &% ——1Sampling
o
a0 HB HB HB| g
g & % 2 =
s N\ &
8
o) i Y v
[J Ul Y
. AU . N) g N
1e7 1e6 1e-5 le-d le-3 1e-2 Te-1 1 10 ~le7 le6 1o le-d le3 le-2 led 1 10 le7 1e:6 o5 le-d le3 le2 el 1 10
Time (s,
1% 1% 1%
. ‘ Ours ‘ Ours Ours
B o i Sampling s» ‘ Sampling % Sampling
& HB HB HB =
£ B
E =
3] 2 &
S s —{H A 3 3
S: j \ . Y
oL o V _ Y <N
1e7 166 1e5 le-d le3 le2 fel 1 10 167 1e6 1e-5 led le-3 le2 le-l 1 10 1e7 1e-6 le5 le-d le3 le-2 lel 1 10
Time (s
10% 10% 10%
. Ours Ours Ours
B o Sampling s% Sampling s% Sampling
gﬂ HB HB HB g
g 1 5% 5% =
g i]
= 2% o 20% N 2% L
I~ ! / i MYy
o s i3 oo AN,
lTe3 te2 let 1 0 “les le2 le1 T 0 °Tes te2 et T 10
Memory (Gb)
40 0% 40
. Ours Ours Ours
B -Sampling ~Sampling -Sampling
]
& HB HB HB =
g 20 20% 20% B
g €
=
~
A T
o { i 107 TV

ik o = o
le3 1e-2 lel 1 10 1e3 e 10 1e3 1e-2 lel 1 10

1 ('Z le-1 1
Memory (Gb)

Fig. 13. Log histogram of the the average query time and peak memory
of sampling, HB, and our method over the Thingi10k dataset for different
envelope sizes and different dataset.

that move the mesh outside the envelope and recorded all
queries (Section 6.1).

(2) TetWild. We run the Tetwild [Hu et al. 2020, 2018] meshing
algorithm and recorded the first 100k queries.

In both cases, the queries are used to validate the local operations
inside the algorithm, to ensure that the output surface does not
leave the envelope.

Envelope Size. For every method we use an envelope size € pro-
portional to the diagonal of the bounding box of the model and one
that ensures (up to floating point arithmetic for the other two meth-
ods) that the query triangles are inside the L? envelope. Differently
from using an explicit Minkowsky envelope (Figure 5), these three
methods have a fast initialization (which is also amortized by the
query time): Our average initialization time is 0.03 seconds, 0.004s
for sampling, and 0.04s for HB, respectively. For large models our
initialization can go up to 1.2s, compared to 3s and 0.2s for HB and
sampling.

Large Dataset. In Figure 13 top, we compare the running time on
both datasets for the three methods. For large envelopes, sampling
is the fastest method, while both our algorithm and HB have similar
performance. As the envelope shrinks, the performances of our
method remains similar, while sampling and HB become slower.

In Figure 13, bottom shows the peak memory comparison. Our
method has the overhead of storing the polyhedra and some local
result to improve efficiency in addition to the search tree. There-
fore our memory consumption is similar to the other two methods
(maximum on the dataset of 1.44Gb versus 0.46Gb for sampling and

https://github.com/wangbolun300/fast-envelope

Average time Peak memory

Peak memory (Gb)

Fig. 14. Average query time and peak memory on one model (rendered)
for increasingly smaller envelope for the sampling, HB, and our method, in
log-log.

1.91Gb for HB) and the trend is the same. As for the other method,
the memory consumption depends only on the input mesh and not
on the actual envelope size.

Small Envelope. Traditional envelope checks suffer in presence of
thin envelopes. To measure this effect we consider a single model
and vary the envelope size: in the experiment in Figure 14 we gen-
erated queries using TetWild with increasingly smaller envelope.
Our method has similar running time independently from €; the
sampling method increases exponentially making it impossible to
use for € < 107%; the HB method performs better than sampling but
it also slows down for small envelopes.

We report the maximal memory usage for all methods in Figure 14.
We observe that our method and sampling have similar requirements
since they both store a spatial index of the input mesh, making the
memory independent from the envelope size. In contrast HB requires
more memory as the envelope shrinks since a smaller envelope leads
to additional refinement steps.

Hausdorff. One of the limitations of the HB method is that the
running time depends on the relative position of the query triangle
and of the envelope. If its vertices are close to the envelope it would
require several levels of refinement to sufficiently shrink the lower
and upper bound. Figure 15 shows the average query time for differ-
ent queries computed for two similar models. We see that the query
time of our method is stable, leading to timings mostly independent
from the query, while the HB method has large variation.

Summary. Overall, our approach has similar performances (in
terms of both running time and memory consumption) as sampling
and HB for large envelopes, while it is superior in the other cases.
In addition to the performance benefits (and their invariance to
envelope size), the exactness of our method is an important property
in applications, as we will demonstrate in Section 6.

5.2 Adaptive Envelope

An additional feature of our approach, is that it is straightforward
to have an envelope of varying size. This is a useful feature for

HB Ours Ratio 10
maxHB 258e-1 3.68¢-3 70 S
max Ours 7.76e-2 2.3%-2 3 o
min HB 7.26e-6 7.65e-6 1 T oo
min Ours 1.06e-3 3.93e-6 269 E
avg 852-3 456e-4 19 & oo Hi
std 148e-2 6.0le-4 25 I I I 1 I 1 I 11
o 0.05 0.1 0.15 0.2 0.25
time for each query (s)
100
HB Ours Ratio 10 " HB
maxHB 220e-2 6.5%-4 33 S urs
max Ours 4.44e-3 2.50e-3 2 o
min HB 6.55e-6 7.92e-6 1 g "
min Ours 1.29e-5 3.24e-6 4 E 001
avg 4.15e-4 1.90e-4 2 A~
std 6.28e-4 1.44e-4 4 0.001 ¥

time for each query (s)

Fig. 15. Average over 100 runs of the query time for two similar models.
The table shows the statistics for 30 000 queries. The first 4 rows shows the
performances for the slowest/fastest query for the two different methods;

for instance the first row shows the time for the slowest query for HB (2.58e-
1) versus ours (3.68e-3). The histograms show the distribution of query time
for the two methods. The #F of the top model is 3404, the #F of the bottom
model is 3430.

e=1073 adaptive e

time = 28.17s time = 119.12s time = 50.00s
#T=13219 #T=187 187 #T=24605

Fig. 16. Example of a model where the default envelope merges two input
spheres, left. This can be fixed by globally shrinking the envelope (middle),
or using an adaptive envelope, right.

controlling the deviation from the input surface during meshing.
For instance, if two features are close, the remeshing algorithm could
merge them (Figure 16, left) changing the number of component or
topology of the output mesh. An easy solution would be to globally
shrink the envelope, however this leads to higher running times
and creates an unnecessarily fine surface everywhere (Figure 16,
middle). Using an adaptive envelope one can have both: coarse mesh
far from critical areas, and finer mesh where feature preservation is
required (Figure 16, right), while keeping a reasonable running time.
An adaptive envelope allows also to selectively preserve different
features (Figure 17). On the top part of the rocket we can shrink the
envelope to maintain the sharp features, while allowing the bottom
part to be coarser.

5.3 Different Polyhedra

As mentioned in Section 3 our method requires only a set of convex
polyhedra. For efficiency reasons we propose to use seven/eight

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:12 « Wang, B.etal

e=10"3 adaptive envelope e=310"%
time = 1hr 55min time = 2hr 6min time = 7hr 50min
#T=133 206 #T=177176 #T=651939

Fig. 17. Left: example of a model meshed using uniform e = 1073. Middle:
using an adaptive envelope with € = 3107* for the top part of the rocket
to preserve the features, while on the bottom part uses € = 1073 to remove
them. Right: meshing everything with € = 3107 still preserves the features,
but requires ~ 4x more faces.

0.004

0.002

Average query time (s)

~ ’ ™ ™ D
Initialization polyhedra

Fig. 18. Example of a simple mesh with different approximation of the true
L? envelope. As we increase the number of facets of every polyhedron, the
approximation becomes better at the expense of running time. The dashed
line shows the query time using our polyhedral envelope.

planes (Section 3.1) with the downside of having a “rough” approx-
imation of an Euclidean L2 envelope. We can lift this limitation,
at the expense of running time, by constructing a polyhedron per
triangle which is closer and closer to the Euclidean envelope. In
Figure 18 we use the Minkowsky sum between every triangle and
differently dense approximations of a sphere. This produces, in the
limit, an Euclidean envelope, however the cost per query increases
as the polyhedra have more faces.

6 APPLICATIONS

We selected two testbed geometry processing applications to evalu-
ate the performance of our algorithm in practical scenarios: surface
remeshing (Section 6.1) and tetrahedralization (Section 6.2). We se-
lected these two applications since they heavily rely on the envelope

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

#F =101024 #F = 271258
Input mesh Hausdorff #F = 115106 Hausdorff #F = 258 784
#F = 8618 sampling Ours 169.91s sampling Ours 395.90s
119.28s 535.47s

Fig. 19. Example of usage of our envelope in the method in [Cheng et al.
2019]. For two envelopes: 3e-3 (2nd and 3rd) and 2e-3 (4th and 5th).

T
#F = 2680
Ours 13.02s
i X
i

#F = 9850

Ours 5.84s

J

Input mesh
#F = 11652

>

\iuuuw“

‘ H\N\\mnmm I
#F = 8622

Sampling 64.17s

HB 100.82s

Fig. 20. Example of usage of our envelope in the method in [Garland and
Heckbert 1997]. For two envelopes: 1e-3 (up) and 1e-4 (down).

check and provide open-source implementations, which allowed
us to keep the original algorithm untouched and only replace the
envelope containment check.

6.1 Surface Remeshing

We use two surface remeshing algorithms to test our envelope
and compare it with alternatives: the remeshing method proposed
in [Cheng et al. 2019] and a modified version of the QSlim [Garland
and Heckbert 1997] algorithm.

[Cheng et al. 2019]. For the algorithm proposed in [Cheng et al.
2019] we use an envelope of 3e-3 and 2e-3 (Figure 19). The original
implementation of [Cheng et al. 2019] uses a different sampling
strategy based on Metro [Cignoni et al. 1998], which we replace with
ours. For the larger envelope, our method has similar performance as
Metro (which uses sampling) but provides guarantees that the final
surface stays inside the envelope. When we shrink it, our method
becomes faster since it avoids “locking” artefacts. We observed that
the high running time for the sampling is caused by an additional
remeshing step required to “push back” the mesh in the envelope.
We note that both methods produce surfaces with similar quality.

QSlim. The QSlim algorithm is modified to guarantee an output
within the envelope by: (1) rejecting operations moving triangles
outside of the envelope, (2) always collapsing edges to one of their
endpoints, and (3) stopping the algorithm when no valid edge col-
lapse operation is left. We compare three ways of envelope contain-
ment check (Figure 20): the sampling method in [Hu et al. 2018],
HB method in [Tang et al. 2009] and our envelope check, both us-
ing different envelope thickness of 1073 and 10™%. We note that, as
visible in Figure 20, our method generates slightly denser meshes
than HB or sampling since our envelope is thinner (due to the more
conservative check).

e=1073 e=10"*
10% 10%
Ours Ours
g 8% Sampling 8% Sampting
o
on
i<
2 5% 5%
8
3
= a0 2% ‘
‘ |
0% 0%

le-5 le-4 1le-3 1le-2 le-1 1 10 1e2 1le-5 1le-4 1le-3 le-2 le-1 1 10 1e2
Running time (

Fig. 21. Log plot of tetrahedralization of 2000 models using our method
compared with sampling for with two stages for different envelopes.

Input Surface

Sampling #T=895518 Ours #T=50781

Fig. 22. Example a model (left) tetrahedralized where the inexact envelope
(middle) triggers overrefinement (this effect can be removed using an inexact
3-stage envelope check). The problems completely disappears by using our
envelope check.

6.2 Volumetric Meshing

We also integrated our envelope check in the FTETWILD algorithm [Hu
et al. 2020] and compared the running time on the dataset used in
Section 5 (Figure 21). We note that FTETWILD uses the multi-stage
envelope check introduced in [Hu et al. 2018, Section 3.4] to com-
pensate for the inexactness of the containment check. This proce-
dure mitigates the locking effect but could still trigger unnecessary
mesh refinements (Figure 22). Using our exact envelope check this
heuristic becomes unnecessary (Figure 22) providing robustness
and improving the output quality.

There is no algorithmic limitation in using small envelope sizes
with FTETWILD, which would be actually desirable to reproduce the
input boundary with high geometric fidelity. However, the envelope
check done with sampling becomes prohibitively expensive when
the envelope thickness is thinner than 107%, making the algorithm
impractical. Our approach solves this problem, having a running
time mostly invariant to the envelope thickness (Figure 14). We
show a series of tetrahedral meshes in Figure 23, using envelope of
thickness varying from 1072 to 10~8. While the cost of the queries
stays constant, the running time of the algorithm changes due to
the different density of the result. The denser results obtained with
a thinner envelope ensure that the final meshes preserve accurately
the geometric details of the input.

Time (s)
#

€=10"°

e=10"8 e=10"" €=10""
Ours: 8.64s Ours: 8.34s Ours: 8.39s Ours: 1.41s
Sampling: >24h Sampling: >24h Sampling 54.90s Sampling 0.64s

Fig. 23. Example of tetrahedral mesh for increasingly smaller envelope. The
plots show the running time (left) and the number of tetrahedra (right) of
our output meshes.

7 CONCLUDING REMARKS

We introduced a novel algorithm to exactly check for containment of
a triangle inside the union of convex polyhedra. We integrated our
algorithm in two remeshing applications and demonstrated that it
avoids overrefinement, while at the same time allowing to use much
smaller envelope sizes which lead to more geometrically accurate
outputs.

While not important for remeshing applications, a limitation of
our method is that it cannot directly check for containment in a L?
envelope. While we can approximate the L? envelope with denser
polyhedral approximations to increase accuracy, this negatively
affects the runtime.

We believe that our contribution will become a useful tool in
many geometry processing applications, and that our LPI and TPI
predicates might find applications in other domains such as exact
continuous collision detection. We plan to release an open-source
reference implementation of both the predicates and our algorithm
to foster adoption of our technique.

ACKNOWLEDGMENTS

This work was supported in part through the NYU IT High Perfor-
mance Computing resources, services, and staff expertise. This work
was partially supported by the NSF CAREER award under Grant No.
1652515, the NSF grants OAC-1835712, OIA-1937043, CHS-1908767,
CHS-1901091, National Key Research and Development Program of
China No. 2018YFB1107402, EU ERC Advanced Grant CHANGE No.
694515, a gift from Adobe Research, a gift from nTopology, and a
gift from Advanced Micro Devices, Inc.

REFERENCES

Mikhail J. Atallah. 1983. A Linear Time Algorithm for the Hausdorff Distance Between
Convex Polygons. Inf. Process. Lett. 17 (1983), 207-209.

Michael Barton, Iddo Hanniel, Gershon Elber, and Myung-Soo Kim. 2010. Precise Haus-
dorff distance computation between polygonal meshes. Computer Aided Geometric
Design 27, 8 (2010), 580 — 591. Advances in Applied Geometry.

Gilbert Bernstein and Don Fussell. 2009. Fast, Exact, Linear Booleans. In Proceedings
of the Symposium on Geometry Processing (SGP 4AZ09). Eurographics Association,
Goslar, DEU, 12692A$1278.

H. Borouchaki and P. J. Frey. 2005. Simplification of surface mesh using Hausdorff
envelope.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:14 « Wang, B.etal

Hervé Bronnimann, Christoph Burnikel, and Sylvain Pion. 1998. Interval Arithmetic
Yields Efficient Dynamic Filters for Computational Geometry. In Proceedings of the
Fourteenth Annual Symposium on Computational Geometry (SCG °98). ACM, New
York, NY, USA, 165-174.

Marcel Campen and Leif Kobbelt. 2010a. Exact and Robust (Self-)Intersections for
Polygonal Meshes. Comput. Graph. Forum 29 (05 2010), 397-406.

Marcel Campen and Leif Kobbelt. 2010b. Polygonal Boundary Evaluation of Minkowski
Sums and Swept Volumes. Computer Graphics Forum 29, 5 (2010), 1613-1622.

Xiao-Xiang Cheng, Xiao-Ming Fu, Chi Zhang, and Shuangming Chai. 2019. Practical
error-bounded remeshing by adaptive refinement. Computers & Graphics 82 (2019),
163 - 173.

Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. 1996. Metro: Measuring Error
on Simplified Surfaces. Technical Report. Paris, France, France.

P. Cignoni, C. Rocchini, and R. Scopigno. 1998. Metro: measuring error on simplified
surfaces. Computer Graphics Forum 17, 2 (1998), 167-174.

Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, Greg Turk, Hans Weber, Pankaj
Agarwal, Frederick Brooks, and William Wright. 1996. Simplification Envelopes.
In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH 4AZ96). Association for Computing Machinery, New York,
NY, USA, 119aAS128.

Olivier Devillers and Sylvain Pion. 2003. Efficient exact geometric predicates for
Delaunay triangulations. In Procs. of 5th Workshop Algorithm Eng. Exper. 37-44.
Steven Fortune and Christopher J. Van Wyk. 1996. Static Analysis Yields Efficient Exact
Integer Arithmetic for Computational Geometry. ACM Trans. Graph. 15, 3 (July

1996), 223-248.

Laurent Fousse, Guillaume Hanrot, Vincent Lefévre, Patrick Pélissier, and Paul Zim-
mermann. 2007. MPFR: A Multiple-precision Binary Floating-point Library with
Correct Rounding. ACM Trans. Math. Softw. 33, 2, Article 13 (June 2007).

P. J. Frey and H. Borouchaki. 2003. Surface meshing using a geometric error estimate.
Internat. J. Numer. Methods Engrg. 58, 2 (2003), 227-245.

Xiao-Ming Fu, Yang Liu, John Snyder, and Baining Guo. 2014. Anisotropic Simplicial
Meshing Using Local Convex Functions. IEEE Transactions on Visualization and
Computer Graphics (June 2014), 95-106.

Michael Garland and Paul S. Heckbert. 1997. Surface Simplification Using Quadric Error
Metrics. In Proceedings of the 24th Annual Conference on Computer Graphics and
Interactive Techniques (SSIGGRAPH 4AZ97). ACM Press/Addison-Wesley Publishing
Co., USA, 2092A$216.

Pijush K. Ghosh. 1993. A unified computational framework for Minkowski operations.
Computers & Graphics 17, 4 (1993), 357 — 378.

Gaél Guennebaud, Benoit Jacob, et al. 2010. Eigen v3.

Peter Hachenberger. 2009. Exact Minkowksi Sums of Polyhedra andAaExact and A4Ef-
ficient Decomposition of Polyhedra into Convex Pieces. Algorithmica 55, 2 (01 Oct
2009), 329-345.

Michael Hemmer, Susan Hert, Sylvain Pion, and Stefan Schirra. 2019. Number Types.
In CGAL User and Reference Manual (5.0 ed.). CGAL Editorial Board. https://doc.
cgal.org/5.0/Manual/packages.html#PkgNumberTypes

Hugues Hoppe. 1996. Progressive Meshes. Association for Computing Machinery, Inc.,
24.

K. Hu, D. Yan, D. Bommes, P. Alliez, and B. Benes. 2017. Error-Bounded and Feature
Preserving Surface Remeshing with Minimal Angle Improvement. IEEE Transactions
on Visualization and Computer Graphics 23, 12 (Dec 2017), 2560-2573.

Yixin Hu, Teseo Schneider, Xifeng Gao, Qingnan Zhou, Alec Jacobson, Denis Zorin,
and Daniele Panozzo. 2019. TriWild: Robust Triangulation with Curve Constraints.
ACM Trans. Graph. 38, 4, Article 52 (July 2019), 15 pages.

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast
Tetrahedral Meshing in the Wild. ACM Trans. Graph. 39, 4 (July 2020).

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July
2018), 14 pages.

Mioara Joldes, Olivier Marty, Jean-Michel Muller, and Valentina Popescu. 2016. Arith-
metic Algorithms for Extended Precision Using Floating-Point Expansions. IEEE
TRANSACTIONS ON COMPUTERS 65, 4 (April 2016), 1197-1210.

Wonhyung Jung, Hayong Shin, and Byoung Kyu Choi. 2003. Self-intersection Removal
in Triangular Mesh Offsetting.

Anil Kaul and Jarek Rossignac. 1992. Solid-interpolating deformations: Construction
and animation of PIPs. Computers & Graphics 16, 1 (1992), 107 - 115.

Bruno Lévy. 2019. Geogram. http://alice.loria.fr/index.php/software/4-library/75-
geogram.html.

C. Li, S. Pion, and C.K. Yap. 2005. Recent progress in exact geometric computation.
The Journal of Logic and Algebraic Programming 64, 1 (2005), 85 — 111. Practical
development of exact real number computation.

Manish Mandad, David Cohen-Steiner, and Pierre Alliez. 2015. Isotopic Approximation
Within a Tolerance Volume. ACM Trans. Graph. 34, 4, Article 64 (July 2015), 12 pages.

S. Loriot Martin Skrodzki. 2019. https://github.com/martinskrodzki/cgal

Andreas Meyer and Sylvain Pion. 2008. FPG: A code generator for fast and certified
geometric predicates. In Real Numbers and Computers. 47-60.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Sylvain Pion and Andreas Fabri. 2011. A generic lazy evaluation scheme for exact
geometric computations. Science of Computer Programming 76, 4 (2011), 307 — 323.
Special issue on library-centric software design (LCSD 2006).

Boris Schling. 2011. The Boost C++ Libraries. XML Press.

Jonathan Richard Shewchuk. 1997. Adaptive precision floating-point arithmetic and
fast robust geometric predicates. Discrete & Computational Geometry 18, 3 (1997),
305-363.

Hang Si and Jonathan Richard Shewchuk. 2014. Incrementally constructing and up-
dating constrained Delaunay tetrahedralizations with finite-precision coordinates.
Engineering with Computers 30, 2 (2014), 253-269.

Min Tang, Minkyoung Lee, and Young J. Kim. 2009. Interactive Hausdorff Distance Com-
putation for General Polygonal Models. In ACM SIGGRAPH 2009 Papers (SSGGRAPH
’09). ACM, New York, NY, USA, Article 74, 9 pages.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10, 000 3D-Printing
Models. CoRR abs/1605.04797 (2016). arXiv:1605.04797

A EXAMPLE OF REMESHING OPERATIONS LOCKED BY
SAMPLING

During a remeshing process, both geometry and local connectivity
may change to reach the objective of the algorithm. While doing this,
keeping the triangle count as low as possible is a desirable feature.
With reference to the 2D example in Figure 3: imagine that segment
[, q] was introduced by previous remeshing steps while verifying
that is contained within the envelope. This check was performed
using the sampling approach: since its two vertices (black) and
sample points (red) are all inside the envelope (blue), the segment
was declared to be inside. At this point, the objective function of the
remeshing algorithm requires that the segment [p, q] is refined. To
do so, the segment is split at its midpoint s. Since this operation does
not change the geometry of [p, q], the two resulting subsegments
are assumed to be in the envelope without check. Now, imagine
that the remeshing objective can be reached by slightly moving
point q to a different position. Unfortunately, after such a move the
check reveals that [s, g] is outside the envelope because the yellow
point is outside. Thus, the movement is prevented and replaced by a
refinement. The segment is split again, another movement may not
take place for the same reason, and another split occurs, and so on.

B EXAMPLE OF A NUMERICAL ISSUE IN LINE-PLANE
INTERSECTION

Consider the following five points defined by their Cartesian coor-
dinates:

a=(0,0,0), b=(1,1,1),

r=(1,0,0), s=(0,1,0), and ¢ =(0,0,1).

Let L be the straight line passing by a and b, and let # be the plane
spanned by r, s and ¢. The Cartesian coordinates of the intersection
point p = L NP are (1/3,1/3,1/3). The value 1/3 has a repeating
binary representation hence, when encoded as a floating point num-
ber, it must be necessarily truncated. Even if the truncation error is
extremely small, the resulting value 0.333333... is smaller than the
actual value. That is why the predicate orient3d(p, r, s, t) returns 1
instead of 0. Conversely, our predicate orient3d_LPI(a, b,r,s,t)re-
turns zero, which is correct because the intersection point is exactly
on the plane.

https://doc.cgal.org/5.0/Manual/packages.html#PkgNumberTypes
https://doc.cgal.org/5.0/Manual/packages.html#PkgNumberTypes
https://github.com/martinskrodzki/cgal
http://arxiv.org/abs/1605.04797

	Abstract
	1 Introduction
	2 Related Work
	2.1 Envelope for Geometric Error Checks
	2.2 Optimization-Based Geometric Error
	2.3 Applications
	2.4 Geometric Predicates

	3 Method
	3.1 Stage 1: Convex Polyhedron Creation
	3.2 Stage 2: Envelope Check

	4 Predicates
	4.1 orient3d_LPI
	4.2 orient3d_TPI

	5 Results
	5.1 Comparison with Inexact Methods
	5.2 Adaptive Envelope
	5.3 Different Polyhedra

	6 Applications
	6.1 Surface Remeshing
	6.2 Volumetric Meshing

	7 Concluding Remarks
	Acknowledgments
	References
	A Example of Remeshing operations locked by sampling
	B Example of a numerical issue in line-plane intersection

