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Fig. 1. The cells of a quadrilateral mesh are optimized to become quasi-rhombic; then material properties (variable Young’s moduli and Poisson’s ratio) are
assigned to the cells. The assigned material properties are used to evaluate the geometric parameters of a tileable microstructure, encoded with a smooth

spline map.

New fabrication technologies have significantly decreased the cost of fabri-
cation of shapes with highly complex geometric structure. One important
application of complex fine-scale geometric structures is to create variable
effective elastic material properties in shapes manufactured from a single
material. Modification of material properties has a variety of uses, from
aerospace applications to soft robotics and prosthetic devices. Due to its
scalability and effectiveness, an increasingly common approach to creat-
ing spatially varying materials is to partition a shape into cells and use a
parametric family of small-scale geometric structures with known effective
properties to fill the cells.

We propose a new approach to solving this problem for extruded, planar mi-
crostructures. Differently from existing methods for two-scale optimization
based on regular grids with square periodic cells, which cannot conform
to an arbitrary boundary, we introduce cell decompositions consisting of
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(nearly) rhombic cells. These meshes have far greater flexibility than those
with square cells in terms of approximating arbitrary shapes, and, at the
same time, have a number of properties simplifying small-scale structure
construction. Our main contributions include a new family of 2D cell geom-
etry structures, explicitly parameterized by their effective Young’s moduli
E, Poisson’s ratios v, and rhombic angle o with the geometry parameters
expressed directly as smooth spline functions of E, v, and «. This family
leads to smooth transitions between the tiles and can handle a broad range
of rhombic cell shapes. We introduce a complete material design pipeline
based on this microstructure family, composed of an algorithm to generate
rhombic tessellation from quadrilateral meshes and an algorithm to synthe-
size the microstructure geometry. We fabricated a number of models and
experimentally demonstrated how our method, in combination with material
optimization, can be used to achieve the desired deformation behavior.
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1 INTRODUCTION

Advances in fabrication of highly complex geometry using additive
manufacturing and other technologies resulted in new opportunities
for shape design. In particular, small-scale, topologically and geo-
metrically complex structures make it possible to achieve variable
effective material properties using a single material for fabrication,
including material properties not easily obtained by other means
(such as negative Poisson’s ratio) or material properties needed
for precise control of deformation behavior of a shape. Realizing
the potential of microstructures requires automatic generation and
high-level control of the geometry, absent from commonly used
geometric modeling tools.

A variety of approaches were developed for generating small-scale
structures. Global methods, like topology optimization, are flexible
but require very expensive computations to obtain high-quality
results for fine-scale structures (cf. [Aage et al. 2017]). Other ap-
proaches partition the problem into different scales, using a variety
of methods to generate a small-scale structure locally from a coarse-
scale assignment of spatially-varying target properties. In this paper
we present a method for design of small-scale structure families
supporting an approach of the second type; specifically,

e Partition an input shape into quadrilateral cells, possibly with
irregular connectivity; each cell is assigned target elastic prop-
erties;

e Assign to each cell a geometric microstructure, chosen from a
family of such structures directly parameterized by their effec-
tive elastic properties and cell shapes.

The main goals for the choice of the microstructure family include:
(1) cover a broad range of material properties, (2) be simple enough
for fabrication at a small scale (i.e. avoiding thin features and small
holes), (3) handle a range of cell shapes, (4) be easily tileable without
significant modifications, (5) depend smoothly on the target effective
elasticity tensor to avoid discontinuities in transitioning between
varying material properties, and (6) be efficient to compute to enable
tiling of large lattices.

The question of designing such microstructures is extensively stud-
ied in the literature, although advances in design of practical families
covering large ranges of material properties are more recent. Ex-
isting techniques fall somewhat short of meeting the requirements
above. First, these methods are exclusively based on periodic cell
tilings with squares, regular triangles, or hexagons: only a single
cell shape is used. This restricts the shapes that can be tiled to those
constructed of this single cell type. Other shapes require either cut-
ting cells, or deforming cells; both changes to the cell shape lead
to a significant deviation from the intended deformation behavior
(Section 8).

Most closely related previous work constructs large libraries of
cell geometries [Panetta et al. 2015; Schumacher et al. 2015], with a
separate shape or topology optimization performed for a dense set of
values of material properties (Young’s modulus and Poisson’s ratio
combinations for isotropic materials), and a specific base material.
While this is generally adequate, if variable cell shapes are used,
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the size of the needed library will become prohibitively large (and
still be limited to a discrete set of shapes). Furthermore, a different
set of microstructures needs to be computed if some aspects of
the properties of the base material change. These approaches do
not provide the guarantee of smooth dependence of the resulting
geometry on the material properties, and, as a consequence, a large
number of samples are needed and interpolation between samples
cannot be used.

In this paper, we address these problems for extruded, planar mi-
crostructures, aiming to meet the requirements listed above. The
main aspects of our approach include the following.

e We choose to use rhombic cells, among different classes of
tileable cells, since they have the flexibility to approximate arbi-
trary boundaries and can be connected in arbitrary orientations
while being sufficiently simple to define microstructures for all
members of the family in a compact way.

e We develop a parametric family of structures (Figure 2) com-
pletely described by: (1) Eight geometric parameters, defined
as smooth spline functions P (E, v;a) of material properties
(Young’s modulus E and Poisson’s ratio v in the isotropic case)
and the cell shape parameter (rhombus angle «). (2) The domain
of this parameterization in (E, v) space is defined by three sim-
ple linear constraints £(«) dependent on the angle. This enables
efficient optimization of material properties.

e Our family is tileable, i.e., the structures for adjacent cells con-
nect with little or no modifications. Our tiles have matching
topology and positions in the boundary. In addition, due to the
smoothness of our mapping functions, if the transition of mate-
rials is smooth, the change in the connection region will also be
smooth and almost no difference exists in the shape between
neighboring cells.

e We demonstrate that the set of geometries is universal, i.e., can
be used for any base material (although the ranges of realizable
material properties do change).

e We present an algorithm for optimizing a quadrangulation of
a planar domain to minimize the deviation of quads from the
rhombic shape and demonstrate that this approach yields nearly-
rhombic cells so that our microstructure family can be used.

We will make the data for computing microstructure geometric
parameters, and constructing microstructure geometry from these
parameters, publicly available.

2 RELATED WORK

We build on the foundation of previous work on construction of
microstructure families and mesh quality optimization.

Periodic homogenization. Homogenization is a central tool in our
construction. We use an extension of the FEM-based formulation
used in [Panetta et al. 2017, 2015], which, in turn, goes back to
[Allaire 2002], and is widely used in the literature. [Schumacher
etal. 2018] presents an efficient homogenization approach tailored to
rod structures. In these papers, regular lattices are used. We instead
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Fig. 2. An array of microstructures with Young’s modulus E varying from
0.005 to 0.1 and v varying from -0.15 to 0.5. Top: obtained by pointwise
inverse homogenization of [Panetta et al. 2017]; Bottom: our family.

perform homogenization on a range of rhombic cell shapes, by
transforming the problem to a domain where the cell is square, and
replacing the target tensor with a transformed one. Transformations
of the homogenized material properties when the base material is
changed are considered in [Cherkaev et al. 1992].

Microstructure design and optimization. Many papers consid-
ered different aspects of microstructure design, see e.g., books [Al-
laire 2002; Cherkaev 2000; Cioranescu and Donato 1999; Milton
2002; Torquato 2002], and references in [Schumacher et al. 2015]
and [Panetta et al. 2015], which represent topology and shape opti-
mization approaches to microstructure optimization respectively.
We refer to these methods as pointwise inverse homogenization, as
they construct microstructures separately for each combination of
effective material parameters.

Other examples of topology-optimization based work can be found
in [Bendsge 1989; Bendsge and Sigmund 2003; Chen et al. 2018; Naka-
sone and Silva 2010]. Initially, mostly the problem of identifying
extremal microstructures are considered (i.e., microstructures with
properties at the boundary of the ranges that can be achieved). Re-
cent works, e.g., [Ostanin et al. 2018; Panetta et al. 2015; Schumacher
et al. 2015; Zhu et al. 2017] consider the question of constructing
families spanning a broad range of elastic properties. In particular,
[Ostanin et al. 2018] shows that near-optimal ranges of isotropic
material behaviors can be achieved in 2D with hexagonal and trian-
gular cells and a small number of microstructure parameters. We
discuss the differences from this work in Section 4. [Milton et al.
2017] provides a characterization of achievable elastic tensors in
terms of energies in 2D and 3D.

Most of the works designing microstructure families use an ad hoc
approach to connecting structures corresponding to adjacent cells.
[Garner et al. 2019] takes a more systematic approach for structures
obtained using topology optimization by adding additional terms
to the functional. A recent concurrent work [Martinez et al. 2019]
introduces a metric that can be used to interpolate between a variety
of microstructures on 2D regular grids, allowing to create smooth
variation of material properties similar to our construction (but
limited to regular lattices). [Konakovi¢-Lukovi¢ et al. 2018] uses a
special type of 2D triangular auxetic structure to effect conformal
surface deformations. This method requires domain meshing with
triangles close to regular. Similarly, a recent paper [Malomo et al.
2018] uses 2D spiral microstructures for controlling deformation of
sheets into a target shape. Varying geometric properties of spirals
allows for a restricted control over material properties.

As an alternative to periodic microstructures, [Martinez et al. 2016;
Martinez et al. 2017] construct randomized printable structures
with control over Young’s moduli both for isotropic and anisotropic
target properties, but cannot independently control the Poisson’s
ratio. [Ion et al. 2016, 2019] describe a simple set of small-scale two-
dimensional structures that can be assembled into mechanisms, and
a computational design tool creating this type of mechanisms. While
arange of properties can be obtained by changing the basic structure
parameters their properties are difficult to control precisely.

A number of works apply the two-scale approach in a different way
in 2D, using a simple rectangular cell structure and obtaining a
directional field and scalar fields for geometric parameters defined
on a regular grid. A field-aligned coarse mesh is extracted from the
directional field and then filled with microstructures with param-
eters determined by the scalar fields [Gil-Ureta et al. 2019; Groen
and Sigmund 2017; Groen et al. 2019]. Compared to these works,
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we do not require the mesh cell orientations to be physically mean-
ingful: in our case the effective material distribution and meshing
are independent.

Global topology optimization. In [Aage et al. 2017; Liu et al.
2018; Wu et al. 2016], topology optimization was scaled up to high-
resolution uniform and adaptive 3D grids. [Wu et al. 2018] performs
high-resolution topology optimization with additional constraints
to create an evenly distributed porous small-scale structure min-
imizing compliance for specific loading scenarios. The two-scale
methods based on microstructures can always be combined with
topology optimization to improve efficiency or resolution achievable
in a given time.

Fabrication. [Hollister 2005; Kang 2010; Lin et al. 2004a,b] have
demonstrated fabrication of optimized microstructures in the con-
text of bone scaffold and fusion cage design. [Andreassen et al. 2014;
Biickmann et al. 2012; Greaves et al. 2011; Schwerdtfeger et al. 2011]
have shown the possibility of manufacturing auxetic materials. The
idea of manufacturing objects with spatially varying properties
using tileable structures also appears in [Hiller and Lipson 2009].
[Bickel et al. 2010] designs and fabricates objects satisfying an in-
put deformation by optimizing for the best combination of stacked
layers of their multi-material 3D printer’s base materials. [Skouras
et al. 2013] applies discrete material optimization to achieve desired
deformations of complex characters with actuation, fabricating the
results with multi-material printing.

Fabrication constraints. [Gaynor and Guest 2016; Langelaar 2016;
Qian 2016] have made recent progress in incorporating under-
cut/overhang angle constraints in the topology optimization frame-
work. However, these method enforce the constraints only approxi-
mately, requiring parameter tuning, and add nonlinearities to the
problem that hinder convergence [Gaynor and Guest 2016]. [Panetta
et al. 2015] enforces approximate printability via constraints on the
skeleton defining the structure. In our planar case, there is no need
to impose fabrication constraints other than requiring that the ge-
ometry should stay connected, and the minimal feature size is large
enough for the chosen fabrication process.

Mesh optimization. The optimization of the element shape of
discrete meshes has been studied in many disciplines. In the context
of finite element simulations, the shape is optimized to reduce the
distortion introduced by the geometric map [Brewer et al. 2003;
Livesu et al. 2015]. Similarly, for texture mapping and quadrilateral
meshing applications the distortion of a map from a surface to a
plane is minimized by either evolving a Tutte’s parameterization
[Aigerman et al. 2014; Degener et al. 2003; Fu et al. 2015; Hormann
and Greiner 2000; Kovalsky et al. 2016; Poranne and Lipman 2014;
Sander et al. 2001; Schiiller et al. 2013; Shtengel et al. 2017; Smith
and Schaefer 2015; Sorkine et al. 2002; Zhu et al. 2017] or recovering
from a possibly inverted initial guess [Aigerman and Lipman 2013;
Fu and Liu 2016; Kovalsky et al. 2015; Lipman 2012]. These maps are
also commonly used for mesh deformation applications [Bouaziz
etal. 2012; Sorkine and Alexa 2007], and special constraints are often
used in architectural geometry to generate meshes with planar faces
[Bouaziz et al. 2014; Deuss et al. 2015; Jiang et al. 2015; Poranne et al.
2013; Tang et al. 2014].
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We introduce an algorithm to optimize a quadrilateral mesh to have
rhombic elements, a requirement that, to the best of our knowledge,
has never been studied before. Our algorithm follows the paradigm
introduced in ShapeUp [Bouaziz et al. 2012], alternating the projec-
tion to the space of rhombic shapes and a continuous optimization,
and it relies on the solver introduced in [Rabinovich et al. 2017] to
speed up convergence.

3 PROBLEM FORMULATION AND SOLUTION
OVERVIEW

Problem. Our goal is to approximate a distribution of (potentially
variable) material properties given by a spatially variable symmetric
elasticity 4-tensor C(x) on a two-dimensional polygonal domain
Q, by partitioning it into constant-material cells, and assigning a
microstructure to each cell. We assume that a single base material
with known elastic properties given by the tensor CP2€ is used for
all small-scale geometry.

The geometry of each cell Q is chosen so that its homogenized or
effective elasticity tensor matches that of the assigned material C(Q).

Informally, the effective elasticity tensor can be understood as fol-
lows. If the cell Q were repeated periodically, a block of material con-
sisting of sufficiently large number of such cells would behave as if
it were made of a homogeneous material with elasticity tensor C(Q).
In this work, we focus on isotropic target material distributions,
for which the elasticity tensor is defined by a pair of parameters
M = (E, v), Young’s modulus and Poisson’s ratio.

We focus on isotropic materials since the effective orthotropic elas-
ticity tensors that rhombic cells can produce have principal axes
aligned with the diagonals of the rhombi; while for some purposes
this broader space can still be used, the space of possible materials
becomes mesh-dependent, complicating and restricting material
optimization. In contrast, considering isotropic materials makes the
result much more mesh-independent.

As mentioned in Section 1, our goal is to design the geometry in
individual cells to have the following properties: (1) cover a broad
range of material properties, (2) be simple enough for fabrication at
small scale (i.e. avoiding thin features and small holes), (3) handle a
range of cell shapes, (4) be easily tilable without significant modifi-
cations, (5) depend smoothly on the target effective elasticity tensor
to avoid discontinuities in transitioning between varying material
properties, and (6) be efficient to compute to enable tiling of large
lattices.
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Fig. 3. Parameters defining our elementary cell geometry: 4 displacement
parameters (two nodes 3,4 have only one free displacement and the node 1
is fixed, due to symmetry), and 4 radii, one per node. The displacements are
specified in barycentric coordinates with respect to the triangle OAB.



Notation. We use rhombic cells R and a specific parametric cell
geometry structure, which respects the two reflection symmetries
of the rhombus. The shape of the rhombic cell is described by a
single parameter, ¢ < /2, the smaller angle of the rhombus.

The geometry of each cell is defined by a vector of parameters
p € R", n = 8, (Figure 3); the geometry is generated from parameter
values using a 2D version of the method of [Panetta et al. 2017],
described in Appendix A. The reasons for this choice are summa-
rized in Section 4. We assume that for each parameter a range
[p;"i", p"%*] is provided. The n-dimensional box of admissible pa-
rameter values is denoted By. In particular, for any choice of param-
eters, the resulting homogenized elasticity tensor is orthotropic, and
completely determined by four components, e.g., Young’s moduli E1,
E, along two directions, shear modulus G, and one of two Poisson’s
ratios vy2.

The function H(p; @) : B, — R*, the homogenization function,
computes the effective elasticity tensor components of a cell with
angle o from its geometry parameters. We describe a way to compute
this function on arbitrary parallelogram cells, including rhombic, in
Section 5. We use Hg(p) and H, (p) to denote the Young’s modulus
and Poisson’s ratio corresponding to H(p) when it is isotropic.

Solution overview. Our approach is composed of two main com-
ponents:

e We construct a parametric family of cell structures solving the
inverse homogenization problem for a range D(a) C H(Bp;a)
of material properties (E,v) € D(«), where E is the Young’s
modulus and v is the Poisson’s ratio, for a range of cell an-
gles @, [@min, 7/2]. This family is described by the material-to-
geometry map P (E, v;a) : D(a) — BP.

e We optimize a quadrangulation to obtain quasi-rhombic cells,
so that the map P (E, v, ) can be used to fill in the small-scale
geometry.

The difficulty of the problem of inverse homogenization is due to
several factors. The homogenization map H(p) is straightforward,
but expensive, to compute, because it requires several finite-element
solves as a part of its computation. More fundamentally, for a fixed «,
we need to invertthemap H: B, € R" — R* on a two-dimensional
subspace Iso ¢ R* of isotropic materials. This is challenging, since
the inverse is far from unique. Last but not least, the map depends on
the base material properties CP%¢_ in addition to the homogenized
parameters and cell geometry.

We introduce a novel, smooth, closed form material-to-geometry
map P (E, v; &, C?25¢) covering a broad range of material properties
and rhombus angles «, that can be used for an arbitrary isotropic
base material with tensor C*2%¢. This map is uniquely determined
by selecting a suitable four-dimensional subspace of the geometric
parameter space R", and can be represented in a very compact form
by a set of 3D spline.

In the next sections, we discuss our choice of cell shape (Section 4),
review homogenization (Section 5) and show how it can be extended

to rhombic cells. Then we explain how we solve the inverse homog-
enization problem (Section 6), and how to compute a tiling with
quasi-rhombic cells (Section 7).

4 CHOICE OF CELL SHAPE AND STRUCTURE

The choice of cell structure (i.e., topology of small-scale geometry,
and parameters defining the geometry) is not unique: many choices
may have similar behavior. We outline the heuristics we have used
to select our structure for quadrilateral cells and briefly compare to
alternatives.

Our choice of structure follows the general procedure outlined in
[Panetta et al. 2015], applied to planar square cells. On the one hand,
we want to minimize the number of parameters and topological
complexity of the structure, as complex cells are difficult or impos-
sible to manufacture. On the other hand, we want to maximize the
coverage that can be achieved by the structure, that is, the range of
material properties (E, v). To obtain a rough prediction of coverage,
we run a coarse sampling of geometric parameter space, evaluat-
ing the material parameters for each sample. In these sweeps, we
enforce square symmetry (Figure 5), so that the resulting elastic
tensor has only three free parameters (E, v, G), and we look at the
coverage we get in the projection to the (E, v) plane as an indicator
of what one can expect for inverse homogenization.

Among simplest topology patterns, the specific one we have chosen
has the largest area covered. Expanding this area requires increas-
ingly complex topology which negatively affects manufacturability.

|

Fig. 4. We consider structures consisting of edges of the graph depicted
on the left, with degrees of freedom consisting of radii at nodes and node
displacements. Right: several examples of structures with few edges/simple

topology.

Fig. 5. Coverage in (E, v) space for three cell structures, with smaller and
larger coverage.

Choice of cell shape. As we would like to partition arbitrary
shapes into cells, using square cells is not possible: in general, we
cannot conform to an arbitrary boundary without introducing cells
of other shapes. At the same time, the cells need to be close to
periodically tileable, i.e., if we use quadrilateral cells, close to paral-
lelograms. Parallelograms have only central symmetry, which does
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not restrict the possible homogenized (averaged) elasticity tensors
much; on the other hand, rhombic cells have two reflectional sym-
metries with respect to diagonals, and, as a result (Section 6), its
elasticity tensor is orthotropic, as long as the small-scale geometry
satisfies the same constraint. This considerably simplifies the con-
struction of the material-to-geometry properties map, by decreasing
the dimension of the space of possible materials.

As an alternative, regular triangular and hexagonal cells as shown
in [Ostanin et al. 2018] can span a large range of material properties,
and have an important advantage of being isotropic by construc-
tion, i.e., any geometry can be used on a cell as long as it has the
symmetries of the cell (regular triangle or regular hexagon). While
this significantly simplifies the problem of constructing geometries
with target properties for regular cells, using distorted triangular or
hexagonal cells as we need to tile an arbitrary shape, nullifies this
advantage.

For triangular cells, we can enforce an additional symmetry by re-
quiring the cells to be isosceles; in a periodic tiling, this is equivalent
to using rhombic cells. At the same time, triangular cells are more
restrictive in terms of choosing structure topology, if it needs to
have the symmetry of the regular triangle. Finally, and perhaps most
importantly, due to non-existence of regular tetrahedral tilings in
3D, methods based on quadrilateral tilings generalize better to 3D.
For these, reasons, we choose rhombic cells.

To define the actual microstructure geometry, we use an implicit
function parametrized by an edge skeleton vertices and radii, using
the method of [Panetta et al. 2017], This method, on the one hand,
allows for explicit control of topology through the skeleton connec-
tivity, on the other hand, allows for merges of parts of the structure
when these run into each other due to parameter choices, which is
critical for robustness of the optimization process.

5 HOMOGENIZATION AND SHAPE OPTIMIZATION

We briefly review the standard homogenized tensor computation
on square cells and show how it extends to rhombic cells. We also
discuss how the inverse homogenization problem can be solved
using optimization.

5.1 Homogenization and shape optimization on square
cells

Our formulation follows [Panetta et al. 2015]. Suppose that a planar
domain Q is tiled by identical square cells Q, each with the same
microstructure . At a large scale, we can consider averaged defor-
mations: in the limit of infinitesimal cells, these deformations can be
viewed as linear on each cell, and the actual deformation as a sum
of the averaged one and a local fluctuation on the cell. The averaged
deformation is the elastic deformation when the solid Q is viewed
as a completely filled volume with variable material properties de-
fined by cell small-scale geometry, in the limit of zero cell size. The
averaged deformation u satisfies the macroscopic elasticity equation

-V-[C:e(w)]=f inQ (1)
where the elasticity tensor C is the effective elasticity 4-tensor with

entries éijkl and the ¢(u) := % (Vu+(Vu)T) is the linearized Cauchy
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strain tensor of the averaged deformation. The colon notation is
used for contraction over the last two indices: A : B = A; jx; By, in
the Einstein summation notation.

Fig. 6. A tiling of a domain Q with base cell Y having geometry w [Panetta
et al. 2015].

On a single cell, in the limit of zero cell size in a periodic tiling,
we can view elastic deformations as having a constant averaged
strain (1) and a periodic “microscopic fluctuation” component w,
having zero average strain by periodicity. We consider fluctuations
w for three constant average strains forming a basis for all possible
11 = e;®e1, €% = eyQey, and e!? = e Qe +es@e;.
Then the expressions for the components of C, are given by [Panetta
et al. 2017]:

constant strains e

= 1
Cijkl = 1o1 /w Cpise [e(wrh) + e pg dx. @)

To obtain the microscopic fluctuation term, the force balance equa-
tion in the cell Q is solved for each of the three basis strains:

_v. (cbﬂse : [e(whb) + ekl ]) -0 inow, (3a)
A (cbase : [e(whb) + ekl ]) -0 onow\dQ,  (3b)
wkl (x) Q-periodic, (3¢)

/w wkl(x) dx = 0. (3d)

Inverse homogenization and shape derivatives. The concep-
tually straightforward, but technically difficult, way to solve the
inverse homogenization problem for a given target tensor C* is by
shape optimization, i.e. by varying the geometry w using shape
parameters p as variables to minimize a functional. In the case of
inverse homogenization, the functional penalizes the difference of
the homogenized elasticity tensor and the target C*:

J(p) = IC(p) = C*|I* + wE"*8 (p), @
with the norm taken to be e.g., the Frobenius norm. A combination
of regularizing terms can be used as E"®8, the most common being
the volume of the structure defined by p and the proximity to the
initial solution [Panetta et al. 2017, 2015].

Unfortunately, due to non-uniqueness of the solution, resulting ge-
ometry parameters typically do not depend smoothly on the input
material properties which has a number of negative consequences.
We compare direct pointwise optimization to our approach in Sec-
tion 8.



To minimize the functional (4) efficiently, we need derivatives of J(p)
with respect to the geometry parameters p. Note that this requires
differentiating C(p); the computation of C requires solving elasticity
PDEs on a domain depending on p. This type of derivatives are called
shape derivatives; these are computed by solving an adjoint PDE,
which in our case is identical to elasticity, but with redefined volume
forces. The details of the computation can be found in [Panetta et al.
2017].

Discretization. To solve the PDEs (3), as well as similar equations
needed for shape derivative computation, we use a standard FEM dis-
cretization. The domain is remeshed at each iteration using march-
ing squares to extract the boundary and Triangle [Shewchuk 1996]
to mesh the domain.

We discretize the cell problems with quadratic triangle elements,
which we found essential for accurate stress and homogenized ten-
sor evaluation. We use straight-edged elements (subparametric FEM)
for representing the geometry to simplify meshing and the shape
derivative formulas (edge nodes are placed at the edge midpoints).

In our experiments, running 2D homogenization usually took under
1s for meshes with an order of 4000 vertices. The mesh resolution
(and hence the number of vertices) is determined by the maximal tri-
angle area constraint (flag -a in Triangle) and the marching squares
grid size (used to compute the boundary polygon), which we chose
to be 5 x 10™* and 256 respectively for most of our experiments.
Figure 7 shows an example of the resolution we used.

Fig. 7. Left: An example of the cell geometry discretization. Right: fluctua-
tion strain norm obtained from (3) for the constant strain e!!.

5.2 Deformed structure homogenization

Computing the homogenization map H(p) is the essential step in
our process for obtaining a parametric family of structures. We use
a modification of the standard homogenization method on square
cells to handle arbitrary rhombi. Homogenization for an arbitrary
rhombic cell (more generally parallelogram) can be transformed to
homogenization on a square cell by a change of basis for elasticity
tensors CP5¢ and C.

Suppose we have a cell R (thombus with unit sides) and we want
to write all our equations on a domain Q (unit square). Let F be the
affine map Q — R and let its inverse be G.

PROPOSITION 1. Let (e, e2) be a nonorthogonal basis aligned with the
sides of R; in this coordinate system, the domain is a unit square, i.e.,
the map F maps (e1, e2) to the unit coordinate vectors. If displacements
u satisfy the elasticity equation on domain R, =V - [C : e(u)] = f, then
ifa and f are the displacements and forces expressed in the coordinate
system (e1, e2), they satisfy the elasticity equation

—V-[C:e(i)] =f, (5)
where the transformed tensor C' components are given by
Cz{jkl = GpqujGrstleqrs~ (6)

The proposition is verified directly by the change of variables in (1)
and (3).

Note that the components of C can be expressed in terms of the
components of C” using the inverse relation:

Cijkl = FpinjFrszlC[/)qrs' (7)

This observation applies both to the microscopic equation on the
domain in R filled with the base material, as well as to the homog-
enized equation. This leads to the following 3-step procedure for
determining the homogenized properties of a rhombic cell:

o Transform the base material tensor CP5€ to the coordinate sys-
tem (eq, e2) using (6).

e Compute the homogenized tensor C’ on Q, as described in Sec-
tion 5.1.

o Transform C back to the original coordinate system, using (7).

This allows us to solve the forward problem: given the geometry in
a rhombic cell, compute the homogenized elasticity tensor. As the
problem is reduced to square-cell problems, shape derivatives are
computed exactly in the same way, and the problem is discretized
using the same approach.

We describe our solution to the inverse problem in the next section.

6 MATERIAL-TO-GEOMETRY MAP CONSTRUCTION

In this section, we explain the steps for constructing a map £ from
isotropic material parameters to geometry parameters. We assume
in most of the exposition that chase s fived, and show how this
assumption can be removed in Section 6.3. We use E = 1and v =0
for the base material, but the specific choice does not matter.

6.1 Orthotropy

The fact that the rhombic cells always have orthotropic elasticity
tensor is of critical importance in our construction, since it deter-
mines the dimension of the image of H(p, «). We consider this fact
in more detail and define the measures of deviation from isotropy
tailored for orthotropic materials.

The rhombus has two reflection symmetries with respect to its
diagonals, and we consider geometries that by construction have the
same symmetries. This means that the periodic structure obtained
by repeating the elementary cell R is invariant with respect to these
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two transformations. As a consequence, the elasticity tensor C is
also invariant with respect to these transformations. This implies
orthotropy:

PROPOSITION 2. [Love 1944] If an elasticity tensor is invariant with
respect to reflections about two orthogonal axes, then it is orthotropic
with respect to these axes and in the coordinate system aligned with
these axes has the form (in Voigt notation)

Ci1 Ciz O
Ciz2 C2 O 8)
0 0 Cs3

This means, in particular, that only two additional constraints need
to be satisfied to obtain an isotropic elastic tensor:

C11 =Co2; 2C33=(C11+C22)/2~-C12 )

We use two anisotropy measures, corresponding to these two con-
straints:
_|C11 = Co
max(Ciy, Cz2)

_ 1(C11 +Ca2) /2 = Ciz = 2C53 (10)
max(C1,C2,C33)

We note that principal directions of the tensor are exactly the diag-
onals of the rhombus, so cannot be set independently of the mesh
directions.

6.2 Map construction for @ = 7/2 (squares)

Recall that the material-to-geometry map P (E, v; @) for a given «, is
not uniquely defined; we describe a simple way to obtain a unique
initial map on a smaller initial domain D(«), for @ = /2, which
we then expand. For clarity, we drop the dependence on « in this
section.

We explain the general form of construction, to clarify how it can
be used for other types of structures (e.g., 3D), and explain how it
applies in the specific case of planar rhombic structures. Recall that
p = 8 is the number of geometric parameters and we denote m = 4
the number of material parameters for 2D orthotropic materials.

We start with the homogenization map H : B, — R™, p > m.In
general, a p — m-dimensional submanifold of By, is mapped to each
orthotropic elasticity tensor in H(Bp). Iso corresponds to the set
of possible isotropic materials in the space of material parameters
R™, e.g., it is defined by equations a; = 0 and az = 0 for orthotropic
materials.

Our key idea is to restrict H to a carefully chosen m-dimensional
affine subspace V c RP, for which H has large coverage, ie. H(V N
Bp) N Iso, the set of isotropic material properties covered by ge-
ometries in V, is not too far from H(Bp) N Iso. We refer to V as the
transversal subspace.

H’ : V — R™, the restriction of H to V, is locally injective near all
points where it is non-degenerate.

The map p™° : D = H (Bp) — RP, canbe constructed by inverting

H’ as described below, and its restriction to isotropic materials
Iso N D yields the desired material-to-geometry map p. Note that if

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

P,

r v - H(B,)

P

Fig. 8. Transversal subspace V illustrated for the simplified case of a 3-
parametric structure and 2-dimensional property space (E, v) (In our con-
struction, we consider spaces that are 8 and 4-dimensional respectively).
The curved surfaces are isosurfaces of E(p). The map H, restricted to V, is
bijective.

non-isotropic orthotropic materials are desired, this map also can
be used to compute these.

As the H(p) depends on p smoothly, almost everywhere we expect
P (E, v) to be smooth as well: the only places where a jump is possi-
ble is in the areas where the the differential of H(p) is degenerate,
or at the boundary of H(Bp), which naturally defines the domain D
for P(E, v). In practice, we have not observed the degeneracies of
P (E, v) for the shape and material parameter ranges that we have
considered, and the smooth approximation we obtain matches the
samples closely.

Defining the transversal subspace V. We start with identifying a
m-dimensional affine subspace containing a large range of geometric
configurations with isotropic elasticity tensor, i.e., has large isotropic
coverage. A direct approach to this would be to sample H sufficiently
densely on By, select points for which the anisotropy measures a;
and ay are small, and fit an m-dimensional hyperplane to this set,
e.g., via PCA. Unfortunately, densely sampling the p-dimensional set
(even for p = 8) is prohibitively expensive, as each evaluation of H
requires meshing and solving three elasticity problems at sufficiently
high resolution.

By considering a coarse sampling of By, we experimentally observed
that, for our setting, B, contains an axis-aligned hyperplane subset
of dimension p’, p > p’ > m, which has good coverage. Intuitively,
this corresponds to fixing the geometry parameters that can be
fixed without decreasing the range of material properties; we refer
to these as redundant. This reduction leads to a practical two-stage
algorithm: first, remove the redundant parameters that have the
least effect on coverage. Once no dimensions can be dropped, use
denser sampling and PCA for the final reduction to m dimensions. In
our case, p” = 5, so only one extra dimension needs to be eliminated.

Next, we discuss these two steps in greater detail:

(1) Finding redundant parameters. We compute a coarse regular
grid sampling ¢/ = H(p’) of the full homogenization map H :
Bp — Rm._ Each geometric parameter p’ is uniformly sampled
atvalues ¢, k = 1...n;. In our case, a total of 540k data points
were collected (see more information in Appendix B). Then



we extract a subset of p/ with the deviation from anisotropy
sufficiently small (in our case 0.005 for both a; and az). Consider
slices 7;; consisting of all samples p/ with a fixed value of
p{ = c;c: by direct check of the coverage area of each slice,
we identify the geometric parameters i for which there is a k
such that coverage of ;1 is close to complete coverage, i.e., the
coverage area obtained with the initial sweep, where we use all
parameters as variables. Figure 9 shows the observed coverage
for a sequence of expanding sets of fixed parameters.

For the rhombic structures, we observe that the offset parame-
ters p1, p2, and the thickness parameter ps all have such values
c;( (0.5, 0.25, and 0.3 respectively). This is a particularly conve-
nient set of parameters to fix, since this allows us to merge cells
perfectly as the radius on the boundary is fixed and thus the
same for all cells. Fixing p1, p2, and ps reduces the dimension

0.6
0.5
0.4
E03}
0.2

0.1+

Fig. 9. Material properties coverage for the subset of samples of By, with
constant values of p; and p; fixed (6D space, samples shown in green),
P1, P2, ps fixed (5D space, samples shown in blue) and V (4D space, shown
in red), compared to the full set of samples p;, shown in purple.

of the geometry space to just 5, leading to a 5D affine subspace
V3D It remains to reduce the dimension by 1.

(2

~

Reduce to m dimensions by PCA. The restriction of the map H
to V’ N By, where V' is the p’-dimensional subspace obtained
by dropping dimensions, can be sampled much more densely
(we use 15 samples per dimension for 5-dimensional V’). To
obtain the m-dimensional transversal space V, we approximate
H(p) with a linear map on By: H(p) ~ Qp + Hy, where Q is
a m X p’ matrix, and p is obtained from p by discarding the
fixed coordinates. We compute Q and Hy using PCA. Let W be
the matrix spanning the nullspace of Q, i.e., QW = 0, and W
has dimension p’ X (p’ — m) and maximal rank. For all points
p + Wu, where u is (p’ — m)-dimensional, the value of the map
is constant. Then the condition WT (5 — po) = WIp+co = 0,
where Py is a point in V’, defines an m-dimensional subspace

V c V’, perpendicular to the constant-value affine spaces, on
which Qp+Hj is one-to-one. For rhombic structures, we obtain
p’ —m =1, and W has dimensions p’ X 1, i.e., it is a vector in
this case. W is approximated well by a vector with nonzero
components v3 = 1 and v7 = 1, and with ¢y = —0.82.

This gives us a complete description of V. = {p|p; = 0.5,p2 =
0.25, p5 = 0.3, pg = 0.82 — ps}. Geometrically, V is described as the
space of structures where node 2 is fixed at the default position at
barycentric coordinates (0.5, 0.5, 0), the radius of node 1 connecting
the cell to other cells is fixed at 0.3, and the radius and displacement
of node 4 are related linearly.

Inverse of H’ on the isotropic subspace. First, we construct a
piecewise-linear interpolant of the samples of H’. The map H’ is
defined as the restriction of H to V N B,. We sample H' on a regular
grid in V. For the rhombic structure, we use ps3, p4, ps, ps as coordi-
nates for sampling. We sample at the points of the grid q; = (Ej, vj)
contained inside Bp.

As samples ¢/ are on a regular m-dimensional grid, they form mD
cubes, which we then subdivide into m-simplices. We discard all
simplices with one of the two possible orientations (as H’ is not
guaranteed to be injective everywhere, simplices may have both ori-
entations; we choose the predominant orientation to be the “correct”
one). The map is defined by linear interpolation on each simplex.

For each sample q on a regular 2D grid of samples in Iso, we search
for m-simplex Sy in V, such that H(Sy) contains q. While the sim-
plices found in this way may be not unique, in practice we do not
observe this problem. The value of (q) is obtained by interpolating
the values of p at the corners of each simplex S,. Finally, we fit a
B-spline to the sampled values of ¢ with Laplacian regularization.
We use 20 X 20 control points for rhombic structures.

Increasing coverage of the material-to-geometry map. Con-
straining the map H to V makes the map invertible, and we observe
the inverse to be smooth. However, this also restricts the coverage,
as the inverse image H™!(Iso N H(Bp)) in By is not necessarily con-
tained in V. We can expand the range by the following procedure
using optimization-based inverse homogenization, similar to [Zhu
et al. 2017].

For each regular-grid sample point g; in (Iso), for which P (g;) is
not defined, but which is adjacent to a point g, where % is defined,
we initialize the shape optimization for the functional (4) using the
spline approximation to #* obtained above evaluated at g;. Then we
optimize using all 8 geometry parameters as variables (and not only
the 4 independent variables used in the sampling procedure), thus
taking the value of P (g;) out of V. If the optimization converges
to a value sufficiently close, using a tolerance of 0.005 for Poisson’s
ratio and 0.001 for Young’s modulus, we include the additional point
in the set, and refit the splines to the new set of points.

We note that, in principle, this process may suffer from the same
flaws as the original inverse homogenization of [Panetta et al. 2015]
(cf. Figure 10) as the map P (E, v; ) may become non-smooth for
lower values of @. However, the procedure defined above prevents
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this from happening, and the map P (E, v; amin) remains smooth
(Figure 18).

Fig. 10. Plots of parameters p; and p4 for pointwise inverse homogenization.
Note the lack of smoothness; other parameters also have a varying degree
of noise. The color in the charts represents the geometric parameter value,
varying from blue to red.

Y =0.014 Y =0.018 Y =0.022

Fig. 11. Changes of geometry as a result of small changes in Young’s modu-
lus Top: obtained by pointwise inverse homogenization [Panetta et al. 2017];
Bottom: our family.

0.35 0.35
« initial + expanded
0.3 03 * initial

0.25

" M,,,,,i.!;ll‘l“l(lhs - ...o,umlllﬂ””“l]]lm

Fig. 12. Expanding the initial material-to-geometry map coverage. Left:
original coverage; Right: expanded coverage.

o

o

Bounds for the domains D(«). For applications using optimiza-
tion of material properties on a partitioned domain (Section 8), it
is useful to ensure that the values used in the optimization stay
within the coverage zone of the material-to-geometry function p.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

To keep these constraints efficient, we approximate the coverage
area by a convex polygon bounded by a set of a maximum of 6 lines:
2 horizontal lines defining minimum and maximum Young’s mod-
ulus Epin and Epax, 2 vertical lines for minimum and maximum
Poisson’s ratio vin and vimax, and 2 additional slanted lines, s; and
sr, that allow for larger non-rectangular domains (see Figure 13).

/ N
~ N

Fig. 13. Lines defining the shape of our convex domain.

The lines are defined to maximize a weighted sum of the area and the
height (maximum Young’s modulus) of the convex polygon while
keeping it completely inscribed in the domain coverage region.
Below, we explain this process in more detail.

In our coverage data, we first identify two sets of points on the
boundary of our covered area. For each value of Young’s modulus,
the minimum achieved Poisson’s ratio is added to Bj, while the
maximum should be in B,. Then, we iteratively run the following
two steps, trying different values for lines vmin, Vmax> Emin and
Enax at each time:

(1) Filtering. We filter out boundary points in B; and B, that are out-
side the square defined by vmin, Vmax, Emin and Epax, creating
new boundary sets B and B;.

(2) Optimization. We optimize the slanted lines as follows. We create
one linear constraint for each boundary point b in B; (resp. By),
making sure that slanted line s; (resp. s,) is to the right (resp. left)
of b. After building our constraint matrix, we run the fmincon()
solver in MATLAB to optimize our objective function (composed
of area and height of the convex domain) given our new linear
constraints.

At the end, the objective function values obtained for all iterations
are compared and we select the 6 lines corresponding to the best
value achieved. In our own case, we decided to fix minimum and
maximum Young’s modulus (Enin and Epmgx) to 0.005 and 0.32, due
to our observed coverage. However, we tried multiple values for
maximum and minimum Poisson’s ratio (Vmin, Vmax)- Notice that
these values can also be chosen according to the application.

6.3 Arbitrary angles and base materials

We extend the map to all angles in the range [amin, 7/2]. We use
Qmin = 7/4 since the coverage becomes very small below this value.
In our experiments, the range [/4, /2] proved to be sufficient, as,
after quad optimization, the minimum angle for quads was larger
than /4. It is however possible that for complex geometries smaller
angles are needed.
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Fig. 14. Domain coverage for a = /2, with approximating linear bounds.
Left: resulting polygon when restricting minimum and maximum Young’s
modulus to 0.01 and 0.1; Right: convex polygon (in yellow) when Young’s
modulus minimum and maximum values are unlimited. We show a com-
parison with the bounds in the constrained case (in red). Depending on
the Young’s modulus range the application needs, a different polygon may
be obtained in the optimization. If the application requires larger stiffness
values, the polygon on the right should be preferred. On the other hand, if
a larger range on Poisson’s ratio values is needed, the polygon in red is a
better option.

We perform the extension incrementally for a sequence of angles
a; = /2 —id, where d = 1.25°. Using the geometric parameters
for a;_1 as a starting point, we use shape optimization to obtain a
point for the same target value (E, v) but for «;, with a regularization
term ||p — pol|? penalizing deviation from the initial value of each
parameter, where p and pg represent the current and the initial
parameter values during the optimization, respectively.

Once the whole range of angles is covered, we fit a 3D spline in
variables (E, v, a) to the whole set of points. The resulting change
of geometry parameters as a function of « is smooth (Figure 15).

For spline fitting, we use least-squares on the whole cube. An extra
regularization term, the Laplacian of the function at grid points, is
added in the cost, which promotes smoothness and eliminates the
null space corresponding to the regions with a few or no data points.

Complete map description. The final map # is defined as:

e a 3D uniform spline approximation on a 12 X 12 X 12 grid of 8
geometric parameters, for a total of 8 X 123 coefficients;

o a 1D splines in « for each of the coefficients defining the lines of
the convex polygon approximating the domain coverage region
D(a).

The complete description of the map is relatively compact, requiring
less than 14k coefficients. The plots for the eight components are
shown in Figure 17 for @ = n/2, while Figure 18 shows plots for
two of the parameter when a = x/4. In addition, Figure 11 illus-
trates (non-)smoothness of the map obtained by pointwise shape
optimization, compared to our map, for small changes of E and v
for three choices of (E, v).

Change of the base material. In principle, we would need to
compute a new map P each time the base material changes, as the
homogenization map H depends on the choice of material. However,
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Fig. 15. Dependence of the geometry parameters p on the angle, for E =
0.076 and v = 0.263 (using base material E = 1, v = 0).

two observations show that C for any base material (E’, v’) can be
obtained from a base material (E, v) by a simple transformation.

0.7 0.7

v=00,E=10 v=03,E=20

Fig. 16. Left: coverage for v = 0, E = 1. Right: coverage for v = 0.3, E = 2.

The first simple observation is that the expressions for the com-
ponents of C and the solution for (3) depend linearly on the base
elastic tensor CP3¢ i e., if the base Young’s modulus E is replaced

with sE, the homogenized one E¥ becomes sEX.

The less trivial part are the changes due to changes in the Poisson’s
ratio. Fortunately, if v is replaced with v/, the new homogenized
elasticity tensor C’ is characterized by the CLM theorem, a corollary
of which for isotropic materials can be formulated as follows.

THEOREM 6.1. [Cherkaev et al. 1992] Suppose a periodic 2D medium
with holes is filled with material with Young’s modulus E and Poisson’s
ratio v, and the effective (homogenized) properties of this medium are
Ep and vy Suppose v is replaced with v’. Then the effective Young’s
modulus is preserved, and the Poisson’s ratio changes as

En

’ ’
Vp =V — (Vv —V .
H H ( )Eb

This immediately leads to the change of variables in the function
H(E, v) that corresponds to the change of base material properties
(E.v) = (E',v'):

B, -2

H — E H> ( )
11

Vo= _(V_V/)E,E_H/E:V _(V_v')E_H

H™H E’ E’
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0

Fig. 17. Plots of parameters p; . .. pg as functions of (E, v) for & = /2. The
color of the surface corresponds to parameter values.

Discussion of alternative approaches. The closest works on 2D
microstructures are [Ostanin et al. 2018] and [Martinez et al. 2019],
which introduce low-parametric families of structures. However,
both approaches are limited to regular grids in a profound way:
they rely on symmetries of triangular/hexagonal grids to produce
isotropic effective properties, a requirement that is lost on deformed
lattices with fewer symmetries.

Regular quad/hex grids are used by topology optimization-based
methods [Schumacher et al. 2015; Zhu et al. 2017], and in the family
of structured proposed in [Panetta et al. 2017, 2015]. While these
methods could be adapted to rhombic tiles by applying a bilinear
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Fig. 18. Plots of parameters for @ = 7 /4. The color of the surface corre-
sponds to the parameter values.

map to their structures, this construction introduces large errors
(see Section 8 for more details).

Our construction is based on the optimization techniques introduced
in [Panetta et al. 2017, 2015], by addressing two of their limitations:
(1) we lift the regular lattice cell assumption (for the 2D planar
case), directly targeting rhombic tiles and (2) we address the lack of
smoothness of P (cf. Figures 17 and 11).

7 QUAD MESH OPTIMIZATION

We tessellate the polygonal domain Q into (nearly-)rhombic ele-
ments by starting with a quadrangulation of Q and optimizing the
shape of its cells.

Quad mesh generation. Our algorithm can be applied to any pla-
nar quadrilateral mesh: for the examples in the paper, we used a
combination of meshes automatically generated using the Integer
Grid Maps algorithm [Bommes et al. 2013] (Figure 34, disk), Pattern-
Based Quadrangulation [Takayama et al. 2014] (Figure 34, bar), and
manually designed using Blender (Figure 34, pliers, ghost). Gener-
ally, denser meshes are easier to optimize for our algorithm since
they have more degrees of freedom.

Quad to rhombi projection. Our algorithm uses an alternating
optimization inspired by ShapeUp [Bouaziz et al. 2012]: we compute

I3

a target rhombic shape for each quad (see inset), and
then optimize the vertex positions to match the target
shape of each element in least-squares sense. To ob-
tain the ideal rhombic shape R for a quad F, we fit a
linear transformation T of a canonical unit square Q
(a parallelogram) to F, after translating its barycenter to the origin:

: T 112
meZiufz Tqill, (12)

where f; and g; are the vertices of F and Q respectively. Letting
Ot be the smaller angle of the parallelogram, we define the unit
target rhombic shape R, as the rhombus with unit length edges
and minimal angle max(0r, 0,), where 0,, is the smallest angle
covered by our parameter sweep (45 degrees). Capping the minimal
angle pushes the optimization toward rhombic shapes within the
reachable range of our parametric family. The scaled target rhombic



Fig. 19. A quadrilateral mesh (left) is optimized with (right) and without
(middle) the boundary term. The shape of the eyes and the mouth is lost
in the middle image, while it is preserved on the right. The color for each
quad maps to a (the minimum angle of the cell).

shape R is computed by translating (by a vector t) and scaling (by a
diagonal matrix A) Ry, to best fit the quad F:

min i —Ari —t 2, 13
i leﬁ it (13)

where r; and f; are the vectors of vertices of R, and F respectively.

Exponential rhombic distortion energy. Equipped with a target
reference for each quad, we define a distortion energy by penalizing
the deviation of each element from its ideal rhombic shape using
the symmetric Dirichlet energy [Smith and Schaefer 2015]:

DUr) = oli7 + 175 17

where Jr is the Jacobian of the bilinear map mapping F to its target
rhombic shape R. Ideally, we would like to minimize the Lo, norm
of the distortion integrated over the entire domain Q, which is
however a challenging problem to solve numerically. We opt for
an approximation, using a continuation approach [Rabinovich et al.
2017] minimizing the following exponential energy for increasing
values of s:

Ep(x) = Z AgesPU) (14)

QeQ

where A is the area of the quad Q.

Boundary projection. Without additional constraints, minimizing
(14) would change the shape of the boundary of Q (Figure 19). We
add a penalty term to avoid changes to the boundary, while allowing
nodes to slide on it:

2
Eo(xy) = > lxi - il (15)
x;€9Q
where x; are the coordinates of a boundary vertex of a point on the

boundary of the quad mesh, and y; = ®(x;) is the closest point on
the boundary of Q.

Optimization. We create a rhombic mesh by minimizing the com-
bined energy:

E(x) = (1= HEp(x) + AE5(x, D(x)), (16)
with A = 10000 a weight balancing the two terms. We use the solver
proposed in [Rabinovich et al. 2017] to find vertex positions mini-

mizing eq. (16). This solver uses a local/global optimization strategy
in order to minimize eq. (16). In the local step, the target rhombi

1:13

are rotated to minimize E g (x) (eq. (4) in [Rabinovich et al. 2017]),
and we compute yf.‘ = <I>(x1].<), the projection on the boundary 9Q
for border vertices after iteration k. In the global step, the Jacobian

Jo in Eg is replaced by ](S = ]Q(xk), Ea(x, ®(x)) is replaced by

E(x, %), and E is minimized wrt x.

8 EVALUATION AND EXAMPLES

In this section, we explore the advantages of our approach, compared
to "naive" application of existing techniques, and its limitations.
Specifically, we explore the following features of our method:

o the use of boundary-aligned, irregular quad meshes instead of
regular grids with cut cells;

o the optimization of the cell geometry structure taking cell shape
into account, compared to remapping geometry optimized for
square cells;

e continuous dependence of geometric parameters on material
parameters, compared to pointwise inverse homogenization
used in previous work;

o mesh independence and the effects of deviation from rhombicity
on the accuracy of the method.

Finally, we show how our method handles a number of test problems.
Many of the comparisons are performed on models with variable
material properties generated using material optimization, as in
[Panetta et al. 2015]. Specifically, the deformation on one part of
the boundary is given, and the material properties for interior cells
are optimized to obtain a user-defined target deformation on an
other part of the boundary. For example, we use a plier shape for
several examples; the prescribed deformation moves the handles
together, and the target deformation moves the jaws together. In
the optimization, the cells of the mesh are used as finite elements
with constant material properties.

Comparison with regular grids with cut cells. The simplest ap-
proach that allows one to use existing techniques with microstruc-
tures optimized for squares is to overlay a regular grid on the ge-
ometry of the shape and remove parts of the cells outside the input
shape boundary. We used a regular grid with square side length
equal to the average edge length of our rhombic geometry to obtain
approximately the same number of cells. The material optimiza-
tion was performed with the same boundary conditions and target
deformations but for each mesh separately (cut regular grid vs rhom-
bic cells), rather than, e.g., interpolating target material properties
from one mesh to the other. For the purposes of FEM simulation
used in the material optimization, cut cells are triangulated. In both
cases we assign the geometry for each cell based on the computed
material. As an additional step for the regular cell grid, we crop
the final fine-scale geometry using the original object’s boundary.
We run the deformation simulation on full fine-scale geometry for
comparison. Figure 20 shows an example with significant deforma-
tions compared to the ground truth. We note that one feature of
our method, the continuous dependence of geometric parameters
on material parameters remains useful even for objects that can be
meshed with regular grids, and improves accuracy.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.
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Fig. 20. Top left: example of a cropped regular grid of perfect square cells.
Top right: deformation using the model produced with square grid as shown
on the left. Bottom: result using our new method.

To experiment with higher resolution quad meshes, we applied
one level refinement on each of the two configurations shown in
Figure 20, keeping the same material distribution. The result is
presented in Figure 21. For both methods, the error is reduced,
although it is still considerably higher when using regular grids with
cut cells. Notice, however, that (although being a valid experiment)
refinement is not a very practical solution in real world scenarios
since most fabrication technologies have resolution limitations.

Fig. 21. Left: deformation result after one level of quad mesh refinement
when using our new method. Right: result using regular grid with cut cells.

Comparison with remapping square cell structures. In prin-
ciple, the structures obtained for square cells can be directly applied
to rhombic cells, by simply applying a bilinear transformation to
the geometry. Figure 22 shows the effect of not using structures
specialized to set with specific angles: the increase in the error is
substantial.

Comparison with pointwise inverse homogenization. In this
experiment, the same mesh and the same variable material proper-
ties, resulting from optimization, are used with two different ways
of assigning a structure to each cell (Figure 23). The first approach
performs the nearest-neighbor lookup in the database of structures
obtained by pointwise shape optimization [Panetta et al. 2017], the
other using our smooth parametric family # (E, v; @). In both cases,
the structures are mapped to the arbitrary quads of the mesh by a
bilinear map. We observe that the result is closer to the reference
simulation using a variable-material solid. Figure 24 shows that the
E — v space coverage of two methods is close.

Mesh independence. If all cells are assigned the same effective
material properties, the resulting deformation should not change
significantly as we change the domain discretization.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.
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Fig. 22. Middle: non-deformed solid shape. Left: deformation of the struc-
ture using geometry optimized for a = /2 everywhere; the solid shape in
the background shows the reference deformation of a single-material solid.
Right: using correct cell geometry with parameters # («) everywhere. The
microstructure has material parameters E = 0.02 and v = —0.4. Bottom part
is fixed (0 Dirichlet), and on the top part we apply a force parallel to the
slanted side (at an angle of 477/3).

Fig. 23. Left: deformation of an object constructed using a table of structures
obtained using pointwise inverse homogenization as in [Panetta et al. 2017].
Right: deformation of the object constructed using our family, with the
same boundary conditions. The gray shape in the background shows the
ground truth obtained by simulation on a solid quad mesh with materials
assigned per quad.

0.1

0.08

0.06

0.04

Fig. 24. Coverage in (E, v) plane for & = 7/2 obtained by pointwise shape
optimization (blue) in the range E = 0.01...0.1 and v = —0.4...0.9. The
coverage of our family is shown in orange.
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Fig. 25. Top: deformation of a shape with constant assigned materials and
regular connectivity. Bottom: deformation of the same shape, with irregular
mesh connectivity. The deformed pattern (simulated using FEM on a fine
mesh) is compared to the simulated homogeneous mesh with equivalent
material properties (E = 0.05, v = 0.4). In both cases, a uniform vertical load
is applied on the top, while we keep a 0 Dirichlet condition at the bottom.

We performed two experiments to evaluate the effect of changing
the mesh. The first experiment (Figure 25) confirms that the defor-
mations obtained for an irregular mesh on a bar, which requires
different rhombic structures for different cells, are nearly the same
as for a regular mesh with identical structure, optimized for the
same square cell everywhere.

In the second experiment, we study how deviation from rhombic
shape affects the result, when the cell shape is intentionally dis-
torted to be far from rhombic. We create a twisted structure — a
compound cell subdivided into 4 non-square subcells, and compute
the properties of the material composed of such compound cells,
using homogenization on the whole cell. Specifically, starting from
a 4 X 4 square quad mesh on the cell, with each quad assigned
E =0.05, v = 0.0, we gradually rotate the cross formed by the edges
incident at the central vertex of the mesh (5 degrees at a time), and
optimize the shape of the elements of the twisted mesh (keeping the
cross fixed, Figure 26). Figure 27 shows how the Frobenius norm
of the distance between the target elasticity tensor used to obtain
the structure in each subcell and the homogenized elasticity tensor
of the compound cell changes with rotation angle. In the plot, we
also show the error we observe if we use the structure optimized
for @ = n/2 everywhere.

Notice how the error stays stable when we increase the rotation
angle, which is not the case when using only the structures for
a = /2 in all quads. We emphasize that this experiment was in-
tentionally conducted with a very coarse grid of subcells. The error
of our method further decreases for a finer grid: if we subdivide
each quad and placing the same initial structure in all sub-quads
(see Figure 28). For example, for a rotation angle of 10 degrees, we
had an initial error of 0.0123 with our method, while, with one level
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[

Fig. 26. An example of the twisted structure. Left: initial mesh with perfect
squares. Middle: twisted mesh by a rotation r of 20 degrees. Right: final
structure after rotation.
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Fig. 27. Plot of twisting accuracy when the rotation angle r is increased. The
plot shows the Frobenius norm of the distance between the target elasticity
tensor and the actual elasticity tensor obtained by running homogenization
on the compound pattern.
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Fig. 28. Refinement of the twisted structure. Left: one level of quad refine-
ment. Right: two levels of quad refinement.

of refinement, the error is almost halved, decreasing to 0.0069, and
two levels decrease the error to 0.0040.

Non-rhombicity error. In our approach, all cells are approximated
by rhombi for the purposes of computing the cell structure. To study
the effect of deviation of cell shapes from rhombic, we experimented
with a simple example shown in Figure 29. Using a 2 X 2 quad
grid in a compound cell, and starting from 4 perfect squares, we
move the center vertex in the direction of the top-right corner by
an increasing distance d in each axis, which increases the non-
rhombicity of every cell. For each d, the homogenized properties of
the material consisting of compound cells is computed.

We compute then, for each value of d, the rhombic errors of each of
the 4 quads as the sum of the distances from the quad vertices to the
vertices of the closest rhombus (which can be obtained as explained
in Section 7). We also compute the target error as the Frobenius norm
of the difference between the homogenized elasticity tensor for the
compound cell and the target one. Results are shown in Figure 30.
The distance to target material changes smoothly with the total
rhombic error. Moreover, to analyse quantitatively the quality of

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.
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(1,1 [{A)]

Fig. 29. Non-rhombic cell deformation: the center vertex is slowly translated
from (0, 0) to (1,1), increasing non-rhombicity of cells and distance from
the homogenized properties of the target cell to target material properties.
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Fig. 30. Plots of accuracy in non-rhombicity experiment. Left: plot shows
how rhombic error varies when d value is increased. Notice that the change
is almost linear and, as expected, error for Q1 and Q3 are the same. Right:
smooth variation of target error when rhombic error increases. Dots indicate
corresponding error for our example models in Figure 30.

our quad meshes and to show how much damage non-rhombicity
could cause in accuracy, we computed the average rhombic error for
our meshes in Figure 34, normalizing the results with the squared
root of the average area of quads. The resulting numbers for pliers,
ghost, disk and bar models can be seen on the right side of Figure 30.
Notice that these numbers would indicate a low target error.

Scalability. Using the same example shown in Figure 29 with d
fixed at 0.25, we also experimented with the scalability of our so-
lution by running the entire pipeline (quad optimization, material
optimization, material to geometry mapping and final mesh con-
struction) on different levels of refinement on the initial quad mesh.
The result is shown in Figure 31. Notice that our running time scales
linearly with the number of cells of the quad mesh.

Merge error. Once the geometry is defined per cell, it needs to be
merged into a single geometry for the whole object. For our choice
of pattern (but without using our smooth spline fit), adjacent cells
share a single node and the structures of two cells may have different
geometric parameters (radii) assigned to the shared node: these radii
need to be averaged, affecting the properties of cells. In contrast,
with our microstructures family, if the transition of materials is
smooth, the change in radii will also be smooth and almost no
averaging will be required. In fact, for square cells (¢ = 7/2), the
radius at the boundary will always be very close to 0.3 (see Figure 17),
because of the way we fix ps in our map construction, as described
in Section 6.2.
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Fig. 31. Scalability experiment. Left: example of optimized structure with 4
levels of refinement on the initial mesh, which means a final number of 1024
faces. Right: Plot (in log-log scale) showing how our running time grows
with the number of quad faces. For this experiment, we used a machine
with 20 cores and 32GB of RAM.

Figure 32 shows an example where there is a significant mismatch
between radii assigned to the shared node by two cell structures that
have same material properties (E = 0.0315, v = 0.75 and anisotropy
measurements a; and az in the order of 107> and 1074, respectively).
After the merge, the new homogenized properties can be obtained
by building a new square cell as shown on the right side of Figure 32.
The new material has significantly different properties, not being
isotropic anymore (a; = 0.028 and az = 0.037).
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Fig. 32. Error due to merging cell structures. Left: radii of contact nodes of
two structures with same material properties (in red) and resulting radius
after merge (in blue). Right: base homogenization cell to verify the properties
of merged structure (which are significantly different than original).

Interpolation accuracy. Finally, we show that our spline approxi-
mation is quite accurate. Figure 33 shows the absolute differences
|Hy(P(Ej,vj))—v;j| and [HE(P(Ej, vj)) — Ej|, at points (Ej, vj) not
present in the originally sampled set: these are differences between
actual homogenized material properties of the geometric structures
obtained using our map %, and the values at which # was evaluated.
Smoothness of the map # is essential for the interpolation of the
relatively sparse set of values to be accurate.

Examples of manufactured structures. Finally, we applied our
complete pipeline for a set of 2D examples similar to [Panetta et al.
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Fig. 33. Accuracy of P away from sample points, measured as the difference
between directly computed and interpolated E and v.

2015], with a crucial difference being that we use irregular, boundary-
conforming meshes optimized for rhombic shape of cells. The per-
cell material property distribution is obtained using the optimization
described in [Panetta et al. 2015]: we prescribe fixed Dirichlet bound-
ary conditions on a part of the boundary, and target positions of
another (target) part, optimizing the material distribution to obtain
the desired deformation.

As we worked with 2D elasticity, we used 0.5” sheets of closed-cell
foam with small (< 0.2 mm) foam cell size to fabricate our examples
using a laser cutter. We also experimented with other materials, as
1/8” acrylic sheets, which allow for higher resolution when com-
pared to foam (see pliers example in Figure 34). These examples have
primarily illustrative purpose. We expect more practical applications
to be accomplished by integration into new CAD design pipelines
e.g, nTop Platform [nTopology 2020], which already supports a
range of small-scale parametric structures.

9 CONCLUSIONS AND LIMITATIONS

We have demonstrated that it is possible to construct a family of
geometric structures for rhombic shapes with a large range of angles,
parameterized directly by material parameters of these shapes. The
map from the material parameters to the geometric parameters is
smooth and represented in a compact form as a set of 3D splines.
Within explicitly defined bounds, any structure in the family is
isotropic. While the material-to-geometry map depends on the base
material properties, the transformation between different materials
can be achieved with a simple analytic formula; for this reason, the
proposed family can be viewed as independent of the base material
properties.

We demonstrate that using this family improves the accuracy with
which target material properties can be approximated using cellular
structures manufactured from a single material.

This work is a first step towards explicitly defined material-to-
geometry maps of this type. We note that as an intermediate step in
our construction we have obtained a map from arbitrary orthotropic,
not just isotropic, properties to geometric parameters. Orthotropic
materials may be useful in many contexts, and our work can be
extended to this. Previous work [Milton et al. 2017; Ostanin et al.
2018] demonstrates that much broader, nearly optimal, range of pa-
rameters can be obtained by using more complex structure topology;

expanding the range further is another possible future direction of
work.

This work forms a foundation for developing similar parametric
families in 3D, since, although requiring more parameters and com-
putational time, we do not foresee any fundamental problems in
extending the construction of cell geometry families to 3D structures.
As a proof-of-concept, we produced a smooth family of microstruc-
tures for cubic cells in 3D, following exactly the process described
in Section 6.2, with 2D homogenization replaced with 3D. We used a
cell geometry with cubic symmetry, guaranteeing orthotropy with
same Young’s modulus in all directions, which means having a three
dimensional material space (m = 3). Initially, 9 parameters defining
the geometry were considered (p = 9). This number was reduced to
7 and then to 5 with parameter elimination step (p” = 5). Then, we
used PCA for the final reduction from 5 to 3. Figure 35 shows the
initial and also the final coverage with our 3-parameter space, from
which a nonlinear map for isotropic structures can be extracted. We
note that the second component of the method, decomposing shapes
into hexahedral cells of suitable shape, e.g., close to rhombohedra,
requires much greater adaptation, although hex meshing methods
can be used as a starting point.
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A MICROSTRUCTURE GEOMETRY REPRESENTATION

In this appendix we summarize how the geometry of the microstruc-
ture is computed from the geometry parameters p;. We use the
approach of [Panetta et al. 2017] in 2D.

Inflation Graph. Microstructure is described by a graph of edges,
with positions and radii and blending ratios associated with vertices.
The geometry itself is a level set of a signed distance function con-
structed by combining distance functions associated with a primitive
assigned to each edge.

Let G = (V, &) be the graph, where V = {v;}]_; represents the
vertex indices and & = {e; };.”:1 are the edges. Recall that F: Q — R
is the map from a unit square to the rhombus of interest. The shape

parameters are {q;, r;, b; }; where:

e q; = Fq; are the position of the vertices of G in R, and q are
positions in Q,

e r; are per-vertex radii,
o b; are per-vertex blending parameters.

In the family described in this paper, there are 12 nodes, but due to
diagonal symmetries, only 4 have independent parameters, these
can be chosen as in Figure 3. Moreover, symmetries also require
nodes 3 and 4 to stay on diagonals (i.e., their coordinates have equal
in magnitude values), and for node 1 to remain fixed. In our family
we also do not vary the blending parameters keeping them at value
0.01.
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Note that the positions {q; }; correspond to the reference unit square,
while {q;}; correspond to the rhombus.

Edge Geometry. A disk of radius r; is placed at each vertex; then
two outer common tangents are constructed for the disks centered
at vertices v; and v; at the endpoints of an edge.

We define a signed distance function for each primitive described
above, associated with an edge, and combine them together for a

final shape.

Joints Geometry. The next step in the construction of the SDF for
the graph G, is to determine the smooth blended geometry at a joint.
A joint is defined as a pair (v;, {ex|k = 1...N;}), with a central
vertex v; and the list of its incident edges eg.

Given the SDF distance dj. from query point x to each incident edge
primitive (as defined above), the SDF to the blended joint is defined
as a smooth minimum over the y; with a blending parameter p;:

1
KS(d oy pi) = =— In(Y exp(-pid))  (17)
1
k

The blending parameter p; is obtained as by multiplying the vertex
blending parameter b; with two spatially-varying modulation terms.
One term depends on the convex hull of the joint, to avoid bulging.
Another term depends on the minimum incident angle of the joint
(between each pair of incident edges). The idea of the latter is to
smooth more joints with small angles. [Panetta et al. 2017] explains
how these quantities are computed.

Combining the Joints. The last element to consider when building
the SDF for the graph as a whole, is to avoid sharp creases that can
arise when combining to joints together. Here, the idea is to blend
the SDF of the two closest joints using the smooth-min function
Equation (17), with a blending factor that depends on the difference
between the “hard-union” distance and the “smooth” SDF to those
joints. More details can be found in [Panetta et al. 2017].

B SWEEP PARAMETERS

Displacements. In the initial 8-dimensional sweep, Node 2 displace-
ment parameters (p1, p2) vary in the range (0.1, 0.5), as p1+p2 > 0.5
would take the node out of the triangle. Node 3 and node 4 displace-
ments ps3, and p4 vary in the range (0.1, 0.9), to span most of the
allowed range (we avoid placing nodes too close to the boundary
as this is likely to result in difficult-to-manufacture structures). We
use 5 samples for all 4 offset parameters.

Radii. All radii ps, . . . pg are allowed to vary in the 0.05 ... 0.3 range,
and the number of samples was 6 for ps, p7, ps, and 4 for ps. The
upper bound was chosen somewhat lower than the values needed to
produce a solid cell, as we focused on the range of Young’s moduli
0.01...0.3 relative to the base material, and using radii about 0.3
produces E close to 0.33.
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