
Déjà View: Spatio-Temporal Compute Reuse for
Energy-Efficient 360° VR Video Streaming

Shulin Zhao, Haibo Zhang, Sandeepa Bhuyan, Cyan Subhra Mishra, Ziyu Ying,
Mahmut T. Kandemir, Anand Sivasubramaniam, Chita R. Das

Dept. of Computer Science and Engineering, The Pennsylvania State University
Email: {suz53, huz123, sxb392, cyan, ziy5087, mtk2, axs53, cxd12}@psu.edu

Abstract—The emergence of virtual reality (VR) and aug-
mented reality (AR) has revolutionized our lives by enabling
a 360° artificial sensory stimulation across diverse domains,
including, but not limited to, sports, media, healthcare, and
gaming. Unlike the conventional planar video processing, where
memory access is the main bottleneck, in 360° VR videos the
compute is the primary bottleneck and contributes to more than
50% energy consumption in battery-operated VR headsets. Thus,
improving the computational efficiency of the video processing
pipeline in a VR is critical. While prior efforts have attempted to
address this problem through acceleration using a GPU or FPGA,
none of them has analyzed the 360° VR pipeline to examine
if there is any scope to optimize the computation with known
techniques such as memoization.

Thus, in this paper, we analyze the VR computation pipeline
and observe that there is significant scope to skip computations
by leveraging the temporal and spatial locality in head orienta-
tion and eye correlations, respectively, resulting in computation
reduction and energy efficiency. The proposed Déjà View design
takes advantage of temporal reuse by memoizing head orientation
and spatial reuse by establishing a relationship between left and
right eye projection, and can be implemented either on a GPU or
an FPGA. We propose both software modifications for existing
compute pipeline and microarchitectural additions for further
enhancement. We evaluate our design by implementing the
software enhancements on an NVIDIA Jetson TX2 GPU board
and our microarchitectural additions on a Xilinx Zynq-7000
FPGA model using five video workloads. Experimental results
show that Déjà View can provide 34% computation reduction
and 17% energy saving, compared to the state-of-the-art design.

Index Terms—Virtual Reality, Edge Computing, IoT, 360°
Video Processing

I. INTRODUCTION

Recent developments in technology, computing and com-

munication have brought significant changes to the lifestyle

of common people by providing them access to increasingly

sophisticated devices. Especially, VR and AR are now gaining

traction because of their versatile nature of providing an

immersive sensory experience, which is not possible with the

conventional systems – especially in the domain of video

streaming. They are emerging as one of the most important

entertainment markets and Goldman Sachs predicts that, by

2025, around 79 million users will use online video streaming

from the VR/AR ecosystem, resulting in a multi-billion dollar

market [20], penetrating the fields of media streaming, VR

gaming, education, medicine, communication and many more.

Even today, more than 10 million users enjoy 360° videos

using Google Cardboard [10], Samsung Gear VR [44], and

Oculus VR [8], to experience 360° video [7], art museum [9],

live stadium [46], etc.

The 360° videos are created by capturing scenes in all

directions typically using omnidirectional cameras or a set

of cameras. They are further encoded by the conventional

video encoders, as if they are planar videos, for transmission

efficiency. The video frames are transmitted to the users, who

wear a portable VR headset (like Facebook Oculus or Google

Cardboard), via Youtube or Facebook 360 services [7], [61].

360° video streaming creates an interactive and immersive

environment by connecting the user and the video content;

the users are allowed to move their heads’ orientation to enjoy

the surroundings in all perspectives along with a 3D view, i.e.,

a different view for each of the eyes, and hence creating an

illusion that the user is present at the scene rather than viewing

it on a projected surface.

This immersive experience comes at the cost of additional

computations - not only is the video being streamed, the
streaming itself changes with the head orientation. Moreover,

streaming requires two projections for both the eyes. As the

360° video is not in a planar format, the VR ecosystem

converts it to a conformal 2D format by passing it through

multiple stages of transformations. Thus, unlike planar videos,

in 360° videos, specifically the projection computations for

capturing the head movements and eye correlations, are sig-

nificantly computation-heavy, amounting to 59% of the overall

VR (headset) power budget. Current head mounted VR devices

use a GPU for this heavy computation. Since the head mounted

VR devices are battery-backed, the computations that draw

high power from the battery greatly hinder the experience of

watching long 360° videos [39].

This heavy computation has become an acceleration candi-

date/target in previous works, by offloading the entire compu-

tation, as is, to an accelerator (GPU [39], or FPGA [28]).

However, prior works do not consider other avenues for

optimizing the computation. In this context, this paper dives

deep to understand the projection computation pipeline for ex-

ploring available opportunities and optimizations for speedup

as well as power savings. Since head movement and cor-
relations between the left and right eye projections are the

two critical components of the projection computation, we

analyze and study them to explore possible opportunities to

exploit these relations. Specifically, we analyze four scenarios,

241

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00030

namely, InterFrame-IntraEye (EA), IntraFrame-InterEye (AE),
IntraFrame-IntraEye (AA), and InterFrame-InterEye (EE), that

are critical in capturing the head movement and eye correlation

for projection computation. Out of these four scenarios, we

observe that EA computation for head orientation can be

exploited for temporal reuse/memoization since there is little

difference between two previous head orientations, and AE
computation for exploiting the correlation between both the

eyes by spatial reuse – correlating the coordinate relationship
between both eyes. Based on this observation, we develop

computation optimization mechanisms for facilitating temporal

reuse/memoization and spatial reuse that can be integrated

with a VR projection computation pipeline to significantly

reduce energy consumption of the device. The proposed ar-

chitecture is named Déjà View, a play on the word Déjà vu,

as it uses previous or already seen views.

To the best of our knowledge, this is the first work that

leverages head orientation and correlation between eyes to do

efficient memoization and in turn result in compute reduction

in the VR video streaming domain. The major contributions
of the paper can be summarized as follows:

• From an open-source 360° VR video dataset [3], we identify
both temporal reuse and spatial locality that exists in user
behavior. We formally analyze the potential “input invari-

ability” in the projection computation during 360° video

streaming, which manifests in the head movement locality

(temporal reuse) and the stationarity relationship between

two eyes (spatial reuse). Such invariances are leveraged as

reuse opportunities to reduce the compute-heavy projection

computation.

• We design two complementary schemes to capture both
temporal and spatial reuse opportunities. We propose a

memoization scheme, called EA, to capture recent head

orientation data for temporal reuse, and for the spatial reuse,

we design the AE scheme, which leverages the stationary

relationship between two eyes to efficiently reduce the

amount of projection computation.

• We implement both our schemes as a software enhancement

to the existing compute pipeline in NVIDIA GPUs. To

further exploit the energy efficiency, we also implement our

hardware prototype using an FPGA to evaluate the energy

benefits brought by the microarchitectural augmentations.

Both the proposed software and hardware solutions are

modular, and hence can be integrated to the existing pipeline

with little change.

• We evaluate our integrated design, including both EA and
AE, using an open-source 360° VR video dataset [3] with
the traces of 20 users watching 5 different VR videos. Over-

all, our experimental results show that, on an average, Déjà
View can provide 54% compute reduction, which translates

to 28% total energy savings compared to the baseline setup.

Compared to a state-of-the-art scheme [28], our design

provides 34% reduction in projection computations, which

translates to 17% additional energy savings.

Fig. 1: A 360° video processing pipeline on a battery-backed
stereoscopic HMD with an Inertial Measurement Unit (IMU)
and an SoC equipped with a GPU [28], [39].

II. BACKGROUND AND MOTIVATION

Before getting into the details of the existing issues and

possible solutions, we first outline the computation pipeline

of the state-of-the-art 360° VR streaming (Fig. 1). Further, we

describe the existing energy inefficiencies in processing 360°

VR systems, to motivate our design for mitigating the com-

putational inefficiencies by avoiding redundant computations.

A. 360° Video Streaming Pipeline

The key difference between a 360° VR video compared to a

conventional 2D video is that the former provides content-rich

immersive user experience. Wearing a head mounted display

(HMD), a user navigates in a virtual world by looking around,

or moving around [55], to interact with the virtual world. As

shown in Fig. 1, a typical VR HMD [39] has two major

components: (i) an SoC with a video decoder, a GPU for

processing projection computation, and a display controller,

and (ii) a video buffer in DRAM for storing the decoded 360°

frames and projected frames for both the left and right eyes.

More specifically, the 360° video processing pipeline can be

summarized as follows:

Video Decoder: The HMD receives encoded 360° video

bitstream from the network (YouTube [61], Facebook-360 [7],

etc). Similar to 2D videos, the 360° video bitstreams are

encoded in H.264/MPEG formats [19] for network efficiency.

The next step is to decode the original frame from the

bitstream, and today, this is mostly done using a hardware-

based h264/MPEG decoder for more energy efficiency. After

decoding, the 360° output frames are then buffered in the video

buffer, waiting to be rendered.

Projection: Note that, the output frames from the decoder

are still in the spherical coordinate system. This is because,

for encoding purpose, the original 360° videos are projected

into the 2D plane (usually represented in 2D format such as

Equirectangular [52], Cubemap [41], etc.). Therefore, unlike

the 2D video processing where the display can directly read

242

59%

29%

6% 6%

Compute
Memory
Decode
Display

(a) Power breakdown. (b) Overview of 360° video projection. (c) Head movement and pupillary distance as inputs.

Fig. 2: Overview of 360° video projection. (a) Power breakdown consuming 3.4 Watts; (b) Projection pipeline taking head orientation
and pupillary distance to compute projection matrices for both the eyes, which map 360° coordinates to 2D coordinates for generating
stereoscopic frames. (c) Reusing projection matrices by exploiting relation between both eyes and fusing it with head orientation.

the video buffer to present the decoded frames, the 360° video

frames require “additional rendering effort” to get displayed.

More specifically, the rendering process is a projection from

the 360° frame pixels’ 3D coordinates to the 2D frame pixels’

2D coordinates on HMDs. The projection process considers

two user-side aspects – head orientation and pupillary dis-
tance1 – to render stereoscopic views or Field of View (FoV)

frames for both eyes, towards the head direction. The head

orientation is sensed by an inertial measurement unit (IMU)

on the HMD as a triple [Y aw, Pitch, Roll] for projection

computation2. For each frame, this computation is processed

twice – one for left eye and the other for right eye – to

reinforce users’ sense of depth.

Display: After the projection, the two generated FoV frames

are stored in 2D format in the video buffer. The display

controller just needs to read them from DRAM to the screen.

To summarize, compared to 2D video processing, 360°

video processing incurs additional projection computation.

From our measurements collected from a smartphone [53]

running a 360° VR application [11], even with extra computa-

tion, the overall processing for rendering one 360° frame can

be completed within 22 ms on average (translating to 45 fps).

However, since the whole computation/rendering process takes

place on a battery-backed device [39], one needs to consider

the “energy efficiency” of this computation, i.e., even though

we can meet the performance requirements of such video,

energy efficiency needs to be improved.

B. Motivation

To understand the energy profile in the current VR devices,

we characterize the energy consumption of 360° video pro-

cessing on a prototype [36] (configured similar to a com-

mercial VR device [39], discussed in Sec. V) in Fig. 2a.

Overall, 360° VR video processing consumes 3.4 Watts,

which is 2.27× the power compared to its planar counter-

parts (1.5 Watts). We also observe that, unlike conventional

planar video processing where memory is the main bottleneck

(43%), in 360° VR video processing, compute dominates the

1Pupillary distance is the distance, typically measured in millimeters,
between the centers of the pupils of the eyes.

2Yaw: vertical; Pitch: side-to-side; Roll: front-to-back.

power consumption, constituting 59%. Previous studies have

observed that the computation in 360° video processing is,

mainly, the projection transformation [28]. These observations

motivate us to explore the potential opportunities for reducing

the power/energy consumption in the projection stage.

We illustrate the 360° video projection/projection transfor-

mation3 computation in Fig. 2b. At a high level, we need

two major inputs to generate the final projected frames on the

display. The first input is from the user side, including the head

orientation and pupillary distance. Since there is a small offset

between the two eyes, the projection computation needs to cap-

ture the pupillary distance to generate a separate view for each

eye. Therefore, the output of the projection computation is two
projection matrices, each indicating the mapping between each

coordinate in 360° video frame and a 2D coordinate on screen

for the left and right eye. Note that, this projection process is

quite compute-intensive. Furthermore, in a typical VR headset,

the above computation needs to repeat millions of times, for

processing just one 360° frame. Our characterization indicates

that, on average, around 2.3 GFLOPS is required for this

projection transformation (details are discussed in Sec. III).

The second input is the decoded 360° frame that contains the

pixel values. The decoded 360° frame is fed to the Projection

Mapping stage, which uses the projection matrix, locates the

coordinates in the decoded 360° frame, and moves their pixel

values to the transformed 2D coordinates in the FoV frames.

It is to be noted that, when a user’s head orientation is

changed, the Projection Computation stage needs to recompute
the transformations to reflect the user’s head movement.

The VR headset allows users to freely move their heads

and eyes at any time to any degree. Hence, the projection

transformation computation has to be executed at every frame

to reflect user movements in real-time, and the whole process

is very compute intensive (36 times per second [3]) and

power hungry. However, it is too conservative to execute

the projection transformation in a short period of time even

for the same set of inputs. Intuitively, if the inputs of the

transformation computation do not change, the output of the

transformation will also be same. In fact, we observe the

3We use “projection transformation” and “360° video projection” inter-
changeably.

243

Fig. 3: Detailed illustration of projection transformation. The
projection transformation first calculates the transformation
matrix (T), and then uses the transformation matrix to map
each of the pixel coordinates to generate the projection matrices
(P) for the FoV frames. Then projection mapping stage uses this
coordinate mapping (P) to move pixels from the original 360
frame F360 to the 2D frame F .

following two properties from a published 360° VR dataset [3],

as shown in Fig. 2c:

Head Orientation Proximity: In a short period of time, the

user’s head orientation is usually stable in a small space range

(3D) or even still. In fact, from this dataset we have found that,

the head orientation for users does not often change within

around 150ms period of time. Furthermore, even in cases

where head orientation changes, the change is usually within a

small range – in a few consecutive frames. Since two identical

head orientations lead to the same projection matrices, one

opportunity to reduce computation is to memoize a set of head

orientations as well as their corresponding compute results.

Vision Proximity: It is to be emphasized that, even when

the head orientation input for two computations are the same,

the two eye coordinates can be different. Because of this, in

current designs, the projection transformation is invoked twice
as it needs to generate two different transformation matrices

for the left eye and the right eye. On the other hand, the

distance between the two eyes is small and is constant for

a particular user4. The two transformation matrices are very

“similar” as they inherit a relationship between them as a

function of the small pupillary distance.

Motivated by these observations, in the following sections,

we explore and address two critical questions: Can we identify
the proximity in the projection computation?, and Can we
leverage this proximity to safely skip some computations to
save energy?

III. 360° VIDEO PROJECTION

To leverage the opportunities in the 360° video projection,

we need to understand the execution of the entire projection

processing in a 360° VR system. We illustrate the details

of 360° video projection in Fig. 3 as three stages (detailed

background of this projection transformation can be found

in [21], [27]). The first stage, Transformation (denoted a
in Fig. 3, is to determine a transformation matrix by com-

bining five different transforms. The second stage, Projection
Computation (denoted b in Fig. 3), uses the transformation

matrix and the 2D FoV coordinates for both eyes to obtain

4We used an averaged pupillary distance in our evaluations [27], [37].

TABLE I: Projection Computation description.

Label Description HO dependent? Known-time Eye-dependent?
T1 Rigid body No Compile-time Left = Right
T2 An eye’s view Yes Runtime Left = Right
T3 Eye adjusting No Compile-time Left �= Right
T4 Perspective No Design-time Left = Right
T5 Viewport No Design-time Left = Right

their corresponding 360° video frame coordinates. Finally, the

third stage, i.e., Projection Mapping, uses the mapping results

from the second stage and the 360° video frame to deduce the

pixel values for 2D FoV frames (shown in c in Fig. 3) ,which

can be projected to both eyes on the HMD.

The Transformation stage, shown in Fig. 3 a for compu-

tation of the Transformation Matrix, is used for projecting the

360° frame pixels onto the 2D FoV plane in the subsequent

stages. This matrix is calculated by applying five different

transforms – T1, T2, T3, T4, and T5 – in a serial fashion.

• T1 serves as a rigid body transformation matrix which ap-

plies 3D rotation (Y aw, P itch,Roll) and translation so that,

the objects do not get distorted. Since this transformation

does not depend on any of the sensor inputs, it can be pre-

calculated at compile-time.

• T2 gives us eyes’ view; i.e., this changes the virtual world’s

coordinate frame to match the frame of the eye. This

requires knowledge of the head orientation or the direction

of gaze, which can be read at runtime from the IMU sensors

embedded in the VR headset.

• T3 transforms the 360° coordinates from a monocular view
to a stereoscopic view. Since each eye sees the same object

differently, this transformation matrix is different for each

eye to give the user a more realistic experience.

• T4, also known as the perspective transformation ma-

trix, maps all 360° coordinates onto 2D coordinates. This

transformation depends only on the HMD characteristics,

including, but not limited to, the display size and resolution,

and hence, is known apriori (at design-time).

• T5, the last transformation to be applied, performs a view-

port transformation5, bringing the projected points to the

coordinates used to index the pixels on the HMD. As in

the case of T4, this transformation is also HMD design-

dependent and is known at design-time.

Note that, the product of these five transforms gives us the final

transformation matrices (TL and TR), which together convert

the 3D coordinates of the 360° frame to the 2D coordinates

suitable for HMD. Mathematically, the transformation matrix

for each eye is shown in Equation 1.

TL = T5 × T4 × TL
3 × T2 × T1

TR = T5 × T4 × TR
3 × T2 × T1

(1)

These five transforms are of dimension of 4×4 (3 dimensions

for rotation; 1 for translation), thus producing 4 × 4 TL and

TR matrices [27]. Note that, given an arbitrary FoV frame,

these transformation matrices remain the same for all the pixel

5A Viewport Transformation is the process of transforming a 2D coordinate
objects to device coordinates [27].

244

coordinates in that frame, thus are evaluated only once for

that frame, and account for only 4.8MFLOPS without any

optimization.

In the Projection Computation stage (refer to b in Fig. 3),

we use the transformation matrix (T) to generate the mapping

(P) between the 360° frame coordinates and the 2D FoV

frame coordinates. At any instance, a user is only concerned

about the FoV pixels in the entire 360° frame. So, instead of

evaluating the mapping for all coordinates in the 360° frame,

we only generate the mapping for those pixels which are

within the user’s view. As the target 2D FoV coordinates are

already known (VR screen dimensions), these mappings can

be performed by multiplying the inverse of the transformation

matrix (T −1) with the 2D FoV coordinates (V2D), thus

generating the corresponding 360° pixel coordinates (P), as

shown in Equation 2.

Pi
L = T −1

L × Vi
2D; ∀ i ≤ num pixels

Pi
R = T −1

R × Vi
2D; ∀ i ≤ num pixels

(2)

Here, V2D = [q0, q1, q2, q3]
� represents the quaternion equiva-

lent of the 2D FoV coordinates used for matrix multiplication

with the inverse transformation matrix (T −1). Note that, this

operation, which is a matrix multiplication on each FoV pixel

coordinate, can be quite compute intensive. In fact, the number

of pixels in the FoV is usually around 1 million, and the videos

stream at a rate of 30 fps for an immersive experience. This

amounts to about 2.3 GFLOPS, which represents a substantial

amount of computation, given the limited compute capabilities

and power in such edge devices. Note that, even though

theoretically one represents the 360° frame coordinates as

quaternions, in practice, they are typically represented using

specific projection formats, e.g., equirectangular, cube map,

equi-angular cubemap, pyramid format, etc. The details of

these formats are in the purview of cartography and computer

graphics domain, and hence we do not evaluate all of the

aforementioned formats. In our evaluations and experiments,

we used the equirectangular format [52], which is one of the

most popular projection formats.

The Projection Mapping stage (c in Fig. 3) takes the

projection matrices for both the eyes (PL,PR) of Equation 2

as well as the pixel values of the 360° video frame (F360),

to obtain the 2D FoV frames (FL and FR), which can be

further displayed on the HMD. This stage mostly comprises

of memory operations, and thus is not a compute bottleneck.

Our discussion in this section is summarized in Tab. I. We

have two important takeaways:

• Computation Dependence Chain: We note that there

exists a data dependence from the 360° frame to generate

the final FoV frame, where F depends on P , which in

turn depends on T . This also determines the “order of

computation”, which is first T , then P , and finally F .

• Input (in-)Variability: It should be clear from the discus-

sion above that T1, T3 T4, and T5 can be determined apriori.

However, T2 can change at runtime, and if any element in T2

is changed, the transformation matrix needs re-computation

Fig. 4: InterFrame-IntraEye (EA) and IntraFrame-InterEye (AE)
reuse opportunities. This example illustrates 3 consecutive frames
processing, each of which consists of two projection matrices (PL

and PR) for both eyes. The 3rd frame shares the same head
orientation with the 1st, thus can be optimized by EA. Moreover,
the reuse between both eyes is further optimized by AE.

along with P and F , due to their dependencies. However,

if T2 does not change across frames, P is identical to the

previous frame.

IV. REDUCING PROJECTION COMPUTATION

As discussed in Sec. II, computations dominate the energy

consumption in 360° VR video processing. Further, we also

observed in Sec. III that, the main reason behind this is that the

compute is executed repeatedly both within a single frame (due

to offset between the eyes) and across frames (due to changes

in head orientation at runtime). Unlike prior works targeting

at optimizing the efficiency of each computation [28], [57],

we primarily focus on reducing the amount of computation
to be performed, by exploring the intrinsic “compute reuse

opportunities” in 360° VR video processing.

A. Opportunities

Exploring and exploiting computation output reuse oppor-

tunities is non-trivial in this context. First of all, the projec-

tion transformation is multi-staged and is a composition of

multiple mathematical operations, e.g., transformation matrix,

projection computation, mapping, etc. As discussed in Sec. III,

the projection computation varies across eyes even for the

same head orientation. Moreover, in many cases, computations

are also sensor input-dependent such as the IMU data for

determining the head orientation, which is updated across

frames, at runtime. Thus, to explore computation reuse op-

portunities, we start by distinguishing between 4 complemen-

tary opportunities – InterFrame-IntraEye (EA), IntraFrame-
InterEye (AE), IntraFrame-IntraEye (AA), and InterFrame-
InterEye (EE), using a represent example shown in Fig. 4.

• In EA, as discussed in Sec. III, the transformation matrix

(T) is determined by the head orientation, which is sampled

from the built-in IMU sensors. We observe that, if the head

orientation does not change across two frames, the five

transforms and the 360° coordinate inputs remain the same,

thereby providing ample opportunities for directly reusing

245

the compute results from the previous frame (P1), as shown

in a in Fig. 4.

• AE comes to play when there is a change in head orientation

in consecutive frames, and we cannot enjoy the oppor-

tunities in EA. For such scenarios, due to the prevailing

relationship between the left and right eye transformation

matrices (TL and TR), we can further avail the spatial

compute reuse opportunity shown in b in Fig. 4, by

reconstructing the computation needed for one eye (PR)

from the other (PL).

• In AA, the input and output mapping are unique, that is,

no two input coordinates in 360° frame map to the same

coordinates in the 2D FoV frame, thereby eliminating any

compute reuse scope. Although, in principle, for computing

the transformation for consecutive pixels, one can leverage

data value similarity to reduce the computation, in this work

we are not focusing on leveraging any such opportunity.

• EE offers little chance of reuse, and can only be leveraged in

rare occasions, where we have oracular knowledge of head

movements. Furthermore, in such cases of head movement,

there is likely to be some reuse from inter-eye reusability

within a frame, rather than inter-frame reusability.

B. Why have EA/AE Opportunities been previously Ignored?

Based on the above discussion, in this work, we focus on

EA and AE opportunities. We are unaware of any existing

implementation or research work that focus on compute reuse

by leveraging across-frames and across-eyes memoization.

In fact, the existing state-of-the-art software stack, such as

GoogleVR-SDK [11], simply uses the IMU sensor inputs

to calculate the updated transformation matrices, then passes

them to the OpenGL [42] engine to process the projection

computation, as shown in Fig. 2b. We would also like to point

that capturing these opportunities is not trivial and cannot be

efficiently done by just optimizing the existing application

layer and software stack. We describe the underlying issues

to address and emphasize the non-trivialities:

• To ease development efforts, state-of-the-art VR applica-

tions reuse APIs provided by OpenGL [24], [42], and

whenever a new frame is decoded, they always invoke the

glDrawFrame twice for both eyes (see line number 257 in

googlevr-video360 application [12]). They do not seem to

leverage the fact that the transformation matrices are unique

for each head orientation and memoizing them will save

re-calculating the transformation matrix (T) as well as the

projection matrix (P).

• Even if they do realize such opportunities, the projection

matrix (P) is very big (≈ 8MB, details in Sec. IV-C), and

one edge VR headset cannot afford to memoize them for

all possible head orientations. To address this, we need to

study the impact of head orientation on the computation

and whether we can establish a relationship between the

computation executed for both the eyes to get rid of any

existing redundancies. All these are possible avenues for

optimization and demand a detailed study of the computa-

tion pipeline, the workloads, user behavior, etc., to find a

way to further improve the state-of-the-art.

• Furthermore, a software-only approach may not give us

the desired solution as some of these additional execution

cycles, control and data path manipulations may need ar-

chitectural support, especially to reduce memory and power

overheads on edge VRs. Therefore, we believe that, achiev-

ing benefits by exploiting the EA and AE opportunities needs

an extensive study and a careful design, especially from an

architectural perspective, to maximize the benefits.

Driven by the above discussion and the potential optimiza-

tion opportunities presented by EA and AE, we propose Déjà
View, an energy-efficient design for 360° video streaming on

VRs. As shown in Fig. 4, Déjà View leverages compute lo-

cality to bypass computations and provides significant energy

savings, with the following two-step optimization strategy:

a For each frame, if the head orientation remains the same,

we take advantage of the EA opportunity.

b If exploiting the EA opportunity is not possible, we take

advantage of the AE opportunity, by performing computation

for only one eye (and construct the result for the other eye).

C. InterFrame-IntraEye (EA) Computation Optimization

We plan to leverage the EA opportunity when the user’s

head orientation does not change. Intuitively, as mentioned

earlier in Sec. III (Fig. 3), a Transformation and b Projec-

tion Computation remain unchanged. To understand all the

contributing factors which affect computations, we further

investigate the important inputs of the VR headset. This can

help us identify and isolate proper memoization candidates for

carefully tweaking our design decisions to maximize the reuse

benefits. Further, we also study the overheads introduced by

our design modifications to perform a fair comparison with

the state-of-the-art.

What (features) to Memoize? As discussed earlier, at any

moment during VR video processing, the execution pipeline

is not only impacted by the head orientation, but also by

other features such as video frame rate, video types/semantics

information, pixel values, user interactions. To better under-

stand which of these are the best candidates (features, using

machine learning parlance) for memoization and whether they

are sufficient or not, we next discuss input parameters and

their impact on the computation:

• Head orientation: Any changes in this affect the matrix

T2 as discussed in Tab. I, thus changing the transformation

matrix T and eventually leading to re-computation of the

most compute-intensive projection matrix P . Thus, it is a

critical feature in projection computation executions.

• Pixel values: The pixel contents/values (denoted as F in

Fig. 3) matter only during data transfer (from the input

360° frame to the framebuffer) in the projection mapping

stage, after the coordinate mappings (P in Fig. 3) are gener-

ated. Potentially, content-based optimizations (e.g., content

cache [63]) can benefit the data transfer; however, they are

not attractive candidates to leverage compute reuse, which

is the major power-hungry stage (as shown in Fig. 2a). In

246

TABLE II: Video workloads.

No. Video Type (Cam movement/focus
of attention direction)

Frame
Rate
(fps)

#FramesBit Rate
(kbps)

V1 Rhinos [4]
Stationary cam,
no focus direction

30 3280 13462

V2 Timelapse [56]
Stationary cam,
fast-moving objects,
no focus direction

30 2730 15581

V3 Rollercoaster [35]
Fast-moving cam hooked
in front of a rollercoaster,
uni-direction focus

29.97 6194 16075

V4 Paris [51]
Stationary cam,
smooth scene cuts,
no focus direction

59.94 14629 14268

V5 Elephants [5]
Stationary cam,
uni-direction focus

30 5510 16522

this work, we are focusing on reusing computation results

rather than reducing the content maintenance/transfer, and

hence do not consider that optimization.

• Video meta-information: This contains the additional infor-

mation, such as frame rates, video semantics/types, etc.,

about the video inputs. This feature can only be used as an

add-on, along with other inputs to further improve compute

reuse scope. For example, if the 360° video frame rate

increases from the typical 30 fps to 60 fps, then one can

potentially leverage this enhanced compute frequency in

conjunction with the head orientation, to further expand

the compute reuse window. Note however that, this meta-

information is not on the data-dependence chain, and we do

not consider it for memoization.

To summarize, among the above discussed features, we

identify head orientation as the only suitable memoization

candidate for boosting the compute reuse scope. Thus, we

memoize both head orientation and its corresponding projec-

tion matrix (i.e., projection computation results) in a memory

buffer, namely, Pbuff , and use the head orientation to index

the address/pointer of that Pbuff stored in DRAM.

How Much to Memoize? The occupied DRAM size is mainly

determined by Pbuff . In fact, with a VR screen size of 1, 000×
1, 000, one Pbuff occupies ≈ 8MB in DRAM. Since this puts

a high demand on memory, one edge VR headset cannot afford

to memoize for all possible head orientations. Thus, we want

to limit the number of Pbuff that we need to store.

To address this, we need to carefully decide how much his-

tory is to be memoized for leveraging computation reuse. We

performed a study on the VR video dataset [3] to investigate

the head orientation traces of 20 users watching 5 widely-

variant 360° VR videos (summarized in Tab. II). Typically,

the resolution of the IMU traces can be as high as 20 bits per

field [3], [28]. From the dataset, we report the average reuse

distance, i.e., the average number of preceding frames with

same head orientation to be memoized, and show it in Fig. 5a.

It can be concluded from these results that, memoizing the

last two frames is sufficient for most of the cases. Memoizing

more frames may not bring much additional benefits because

of the high sensitivity of the IMU sensors. Storing only two

head orientations (in registers) and their associated Pbuff in

the DRAM occupies only ≈ 16MB memory space.

Further, we also observe that, the duration for which the

head orientation does not change for three consecutive frames

sums up to only ≈ 28% of the video runtime on average (refer

to Fig. 5b), limiting the memoization opportunities to those

instances. Such low reuse ratio is expected because of the high

sensitivity of the IMU sensors. However, a higher reuse ratio

can be achieved by relaxing the precision of the IMU output.

Furthermore, we study the V3 (i.e., Rollercoaster) video

and examine the trade-offs between (i) quantizing/approximat-

ing the head orientation (thus compromising video quality)

with more reuse, vs. (ii) maintaining the lossless video quality

but with a lower reuse ratio, in Fig. 5c, to provide an intuitive

comparison in different scenarios. Here, we quantify the video

quality with the popular Peak Signal-to-Noise Ratio (PSNR,

normalized to the ground-truth; the higher, the better) [25],

[40]. From Fig. 5c, we can observe that, as the precision

decreases from 4 (resolution is 0.0001) to 1 (resolution is 0.1),

the reuse ratio increases from 18% to 92%; however, the PSNR

drops from 85% to only 19%. This is because low precision

leads to a mis-projection, which fails to reflect the current

head orientation. In this work, we do not want to distort video

quality and thus explore the ground-truth only.

The Effect of EA: With this EA memoization, once a new

head orientation is received, we first search it in the two head

orientation registers. If there is a match, the associated Pbuff

will return the memory address of the saved P so that we can

reuse P and skip the entire coordinate projection computation

(refer to a in Fig. 4), with only 1% overhead w.r.t. baseline.

If not, we have to execute the entire computation as in the

baseline case. As a result, by exploiting the EA scheme on the

second frame, its compute energy consumption can be reduced

to only 1% of that consumed by Baseline.

D. IntraFrame-InterEye (AE) Computation Optimization

In EA, the compute can be bypassed by reusing the pre-

computed results, if the head orientation matches with any of

the two previously memoized head orientations (stored in reg-

isters). However, we also note that these opportunities might

be limited owing to the “non-repetitive” user behavior. De-

spite this variation, there may still be matches/recomputations

within a frame between two eyes, i.e., IntraFrame-InterEye as

shown in b in Fig. 4. To leverage this opportunity, we next

study the coordinate projection results relationship between

left-eye and right-eye. If there exists a simple mechanism to

describe the difference between the two projection matrices of

the two eyes (PL and PR), one can simplify the computation

from matrix multiplications to matrix additions.

Distance Vector Study: Let us further look into the detailed

mapping of a 360° frame (in equirectangular format) onto a

2D FoV frame in the Projection Mapping stage (refer c in

Fig. 3), at a pixel granularity. The pixel rendered at [x0
l , y

0
l] on

the left VR screen is mapped from position [(x360)0l , (y
360)0l]

on the equirectangular 360° frame, as shown in Fig. 6a. Simi-

larly, the pixel value rendered at [x0
r, y

0
r] on the right VR screen

247

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
vg

.R
eu

se
 d

is
ta

nc
e

(#
 fr

am
e)

Users

Rhinos Timelapse Rollercoaster
Paris Elephants

(a) Reuse distance is just 2 for most of cases

28%

0%
20%
40%
60%

R
eu

se
 R

at
io

Video
(b) Reuse ratio

0%
20%
40%
60%
80%

100%

G 4 3 2 1

N
or

m
. t

o
G

ro
un

d
Tr

ut
h(

G
)

Precision

ReuseRatio PSNR

(c) Precision vs. reuse ratio tradeoffs

Fig. 5: In EA, (a) shows that, on average, how many frame(s) from the current frame to a previous one with the same head orientation,
as denoted as reuse distance. This indicates two memoization buffers are sufficient. (b) plots among all the head orientations, how
many can be memoized by these two buffers. (c) illustrates the trade-off between the precision level and reuse ratio.

(a) Distance vector.

-5
5

15
25

1
22

5
44

9
67

3
89

7
11

21
13

45
15

69
17

93
20

17
22

41

D
is

ta
nc

e

Pixel ID

distanceY distanceX

-10
-5
0
5

10

0 10 20

D
is

ta
nc

e-
x

Distance-y

(b) (0.00, 1.57, -0.73)

-20
0

20
40
60

1
20

2
40

3
60

4
80

5
10

06
12

07
14

08
16

09
18

10
20

11
22

12

D
is

ta
nc

e

Pixel ID

distanceY distanceX

-10
-5
0
5

10

0 20 40 60

D
is

ta
nc

e-
x

Distance-y

(c) (0.52, 1.05, -0.73)

Fig. 6: In AE, distance vector (a) patterns with two different
head orientations (Y aw, P itch,Roll) in (b) and (c).

is mapped from position [(x360)0r, (y
360)0r] on the 360° frame.

To study the relationship between the coordinate projection re-

sults between both eyes, for the same two coordinates [xi, yi]
on both 2D FoV frames, we determine the distance vector

(�d)i between their equirectangular counterparts, represented

in Equation 3:

(�d)i = [(x360)ir − (x360)il, (y
360)ir − (y360)il]

� (3)

The knowledge of distance vector �d is critical to explore the

AE opportunity, because if it was known apriori, then we only

need to process the entire projection transformation to generate

the mapping results (PL) for one eye, and then deduce the

coordinate projection computation results for the other (PR) by

simply adding �d with PL. This encourages us to further study

whether this distance vector changes with head orientation or

not, and also whether it is invariant for any particular frame –

if yes, then how? To investigate these questions, we examine

how the distance vector varies within a same frame, with two

different head orientations, shown in Fig. 6b and Fig. 6c.

On plotting the distance vectors for each row of the FoV

frames, we observe a recurring ellipse pattern. The intuitive

reason behind this ellipse pattern is related to the built-in

features of the equirectangular format. Second, for different

head orientations, their distance vectors plotted in Fig. 6b

and Fig. 6c retain the same ellipse behavior but different

shapes. Furthermore, by exacting the x (or y) coordinate in the

distance vector, the above ellipse pattern can be represented

as Δx = a · cos(θ) and Δy = b · sin(θ)+ c, where θ ∈ [0, π],
and a, b, c vary with head orientation change but remain same

for each row in the same frame. Additionally, there are few

pixel positions at the frame edges which can only be viewed

by one eye (denoted as exclusive), which cannot be captured

by the above pattern. These pixels amount to only 2.7% of the

entire FoV frame.

How to capture the pattern and utilize the pattern? Due

to this inherent nature of compute, the pattern between left

eye and right eye can be easily captured by profiling the

distance vector for only the first row on the screens: Δ =[
�x0
r − �x0

l , �y
0
r − �y0l

]
, as shown in line number 2 in Algorithm 1.

With the learned pattern, the remaining ith rows for the right-

eye (i ∈ [1, n − 1], where n is the height of the VR screen)

can be reconstructed by using the projection computation

results of the left-eye ([�xi
l, �y

i
l]) and the pattern Δ, as shown

in line 6 in Algorithm 1. Note that, as discussed above,

2.7% exclusive pixel coordinates for the right-eye cannot be

reconstructed by this algorithm. Therefore, only for this small

number of pixel coordinates, the entire coordinate projection

computations need to be processed.

Algorithm 1 Algorithm to capture and utilize the pattern Δ

Input: [�x0:n−1
l , �y0:n−1

l]: left-eye projection (all rows)

Input: [�x0
r, �y

0
r]: right-eye first-row’s projection

Output: [�x1:n−1
r , �y1:n−1

r]: right-eye projection

1: procedure CAPTUREPATTERN(�x0
r , �y0r , �x0

l , �y0l)

2: [Δx,Δy] := [�x0
r − �x0

l , �y0r − �y0l]
3: return Δ = [Δx,Δy]
4: end procedure
5: procedure UTILIZEPATTERN(�x1:n−1

l , �y1:n−1
l , Δ)

6: [�x1:n−1
r , �y1:n−1

r] := [�x1:n−1
l + Δx , �y1:n−1

l + Δy]
7: return [�x1:n−1

r , �y1:n−1
r]

8: end procedure

The Effect of AE: with this AE optimization, for the right eye,

the intensive projective transformation computations can now

be short-circuited by light-weight Add operations. As a result,

by exploiting the AE scheme on the first frame in Fig. 4 b ,

its compute energy can be reduced to only 62.35% of that

consumed by baseline.

248

Fig. 7: The proposed EA and AE design blocks implementation.

E. Design Considerations and Implementation

We designed both our schemes as modular and scalable

additions to the existing pipeline (refer the EA and AE blocks

shown in Fig. 7). The EA block is placed before the original

compute engine (OCE, e.g., GPU) to opportunistically bypass

the projection computation. However, when AE cannot take

advantage of memoization due to a head orientation change,

then the compute is distributed across the OCE (51%) and AE
block (49%); to be precise, only the entire coordinates on the

left screen and the first row on the right-screen are processed

by the OCE – the remaining rows on the right screen are

reconstructed by the less power-hungry AE block.

Implementation Details: We abstract the EA and AE design

blocks irrespective of the underlying hardware SoCs, and

plot them in Fig. 7. In the Baseline, the OCE takes the

head orientation as its input, processes the entire projection

transformation for each pixel coordinate in the FoV region,

and then stores the compute results for both eyes in DRAM

for the subsequent mapping stage from the 360° frame to

framebuffer. In our EA design, the last two head orientations

are cached in local SRAM (Comp1 and Comp2 in the EA
block) and their corresponding projection computation results

are stored in DRAM (Pi−2
buff and P

i−1
buff). Once the current head

orientation is received, the EA block first compares it with the

memoized Comp1 and Comp2. If a match is detected, then

the corresponding P
i−2
buff or P

i−2
buff buffer address pointer is

directly returned. If no match is found, the OCE is invoked for

the entire left eye and only the first row for the right eye, and

then terminates by an external signal sent from our AE block,

and bypasses the computation for rest rows. In the proposed

AE design, the Δ pattern buffer is first initialized by subtract-

ing Result[1].R from Result[1].L, as shown in the AE block

in Fig. 7. After the pattern between left eye and right eye is

captured, an external signal is propagated to the OCE to bypass

the further original projection computations. Consequently,

the projection computation results (Result[2 : n].R) for the

remaining rows of the right eye can be easily reconstructed

by adding Result[2 : n].L and the Δ.

We prototyped our proposed EA and AE design blocks using

System Verilog in Xilinx Vivado 2019.2 [58], targeting the Xil-

inx Zynq-7000 SoC ZC706 board running at 100MHz (same as

state-of-the-art EVR [28]). The evaluation shows that our EA
and AE designs consume only 2mW and 65mW , respectively,

and are able to deliver around 100 fps, which is more than

sufficient for the current VR application requirements.

V. EVALUATION

We compare our proposed EA and AE designs with six

different VR streaming setups, by evaluating the computation

and the total energy consumption. In this section, we first

describe the experimental platforms, datasets and measurement

tools used in this study. We then analyze the results measured

using these platforms.

A. VR Design Configurations

We evaluate the following six configurations of VR stream-

ing to demonstrate the effectiveness of Déjà View:

• Baseline (SW): We use a mobile GPU [36] to evaluate the

baseline VR video streaming. This GPU is commonly used

in contemporary VR devices (Oculus [39], Magic Leap [16],

and GameFace [47], etc.). Note that, with this setup, the

projection computation is triggered for each frame, and also

per projection computation invocation includes computation

of two projection matrices for the two eyes.

• PTU (HW): A recent optimized solution [28] utilizes

a more energy-efficient hardware accelerator, i.e., Projec-

tive Transformation Unit (PTU), to process the compute-

intensive projection operations. This is the most recent VR

design that uses an FPGA for accelerating the computation.

We consider this design as the state-of-the-art. However,

PTU only optimizes the energy per compute through accel-

eration, with exactly the “same amount of computations” as

in the baseline design. In contrast, as explained earlier in

Sec. IV, our design skips a huge amount of computations

by exploiting the EA and AE.

• EA (SW): We evaluate the InterFrame, IntraEye(EA)
design on a GPU, as shown in the EA block in Fig. 7. Note

that, this implementation is purely done in software, without

any hardware modification.

• AE (SW): We evaluate the IntraFrame, InterEye(AE)
design on a GPU, and bypasses the projection computation

for the right-eye by reconstructing the results with a learned

pattern, as shown in the AE block in Fig. 7.

• EA+AE (SW): The above two designs can be seamlessly

integrated into the original SoC, with the EA block placed

before the GPU and the AE block after the GPU. We denote

this design combination as EA+AE.

• PTU+EA+AE (HW): In addition to the GPU-based design,

our proposed designs can also be integrated into any other

hardware platforms, including the FPGA-based PTU [28].

The PTU+EA+AE implementation combines the PTU and

our EA+AE optimizations together.

B. Experimental Platforms and Datasets

Evaluation Platforms: The Baseline GPU platform described

in Fig. 8 consists of a 512-core Volta GPU, a 4Kp60 HEVC

249

codec, 16GB LPDDR4x memory, 32GB eMMC storage, and

a power management unit (PMU) that exposes the real-time

power traces to users. To evaluate our design implementation

in hardware, we use an FPGA platform, which is the same

as the state-of-the-art PTU [28], with a 100MHz system

clock, onboard configuration circuitry, 2x16MB Quad SPI

Flash, 1GB DDR2 Component Memory, and also a hardware

PMU. A full seat Vivado design suite [58], [59] is utilized

to synthesize the design and report the power and timing

numbers. We collect the display traces from a 5-inch (130

mm) 16:9 1080p (1920 × 1080) AMOLED display [54],

which is similar to the Samsung Gear VR display [45].

Fig. 8: Evaluation proto-
type – Nvidia Jetson TX2
GPU board [36] (PMU:
Power Management Unit).

360° VR Video Dataset: We

use the published 360° Head

Movements Dataset [3], which

includes head movement traces

from 59 users viewing seven

widely-variant 360° VR videos.6

The meta information of these VR

videos are listed in Tab. II.

C. Experimental Results

We present and compare the

energy consumption of the pro-

jection computation and the cor-

responding video quality impact,

when running the five VR videos

described in Tab. II, with the six

design configurations discussed in Sec. V-A. These energy

results are normalized w.r.t. the Baseline method. Later, we

show quality results compared to the baseline design. In

addition, we also discuss the our design’s versatility on other

360° video representation formats.

Energy Savings: Overall, our software implementation

EA+AE on GPU can save 54% computation, which translates

to 28% total energy savings, compared to the baseline. Com-

pared to the state-of-the-art hardware-modified PTU, our soft-

ware implementation can still provide 16% computation and

8% total energy savings. Our FPGA results can further provide

18% more computation and 9% more total energy savings,

compared to the state-of-the-art design. More specifically, for

each of the five video inputs (shown in the x-axis in Fig. 9),

we compare the compute energy consumption incurred by six

schemes with left-eye and right-eye breakdown, and present

the respective compute energy in the left y-axis Fig. 9, which is

further translated to the total end-to-end energy savings shown

in the right y-axis in Fig. 9. From this figure, we observe that:

• Baseline: In Baseline, since there are no optimizations, the

projection operations for both eyes consume equal energy

(on GPU), i.e., each eye’s compute consumes 50% energy.

• EA: With our proposed EA scheme, we fully exploit the

temporal compute reuse across frames with head orien-

tations unchanged, with a negligible overhead (1% extra

6Due to space limitation, here we only present 5 videos and 20 users.

overhead, as discussed in Sec. IV-C). In this scheme, one

can observe from Fig. 9 that, the compute consumes less

energy than the Baseline, i.e., only 72% on average. This

occurs as a result of reusing the memoized results which

have been computed and stored previously, ranging from

21.63% (Rollercoaster video) to 50.28% (Paris
video). By applying the EA optimization itself, on an

average, the energy benefit is translated to 14% end-to-end

energy savings, as shown on the right y-axis in Fig. 9.

• AE: For those head orientations not memoized, we further

exploited the spatial compute reuse across eyes within a

frame. In the proposed AE scheme, one can observe that

for the left-eye computation, the energy consumption is the

same as in the Baseline. Recall from the AE design logic in

Fig. 7 that, the results of the left-eye are generated by the

Original Compute Engine (GPU in this case) and fed into

the AE block with the first row for the right-eye, to store

the pattern into the Delta Buffer. After that, the computation

for the right-eye can be easily reconstructed by the left-

eye’s compute results and the pattern, which only consumes

13% energy compared to the Baseline. Therefore, as shown

in Fig. 9, our proposed AE optimization alone saves 37%
compute energy compared to the Baseline, translating to

19% total energy saving.

• EA+AE: With both EA and AE optimizations deployed, as

shown in Fig. 9, on average, the left-eye compute consumes

only 36% energy w.r.t. the Baseline, with only 10% for the

right-eye, translating to 28% total energy saving.

• PTU: In the current state-of-the-art scheme, which is

the hardware-based PTU [28], they explored the energy-

efficient hardware accelerator (namely, PTU) to replace

power-hungry GPU. Due to this, one can observe from

Fig. 9 that, to execute the same amount of the projection

computation, the PTU scheme consumes only 62% of

energy w.r.t. the Baseline, which contributes to 20% total

energy saving.

• PTU+EA+AE: Note that, our proposed EA and AE designs

are “independent” of the underlying hardware used. As a

result, they can also be deployed on top of the PTU-based

SoC. This can be further asserted from Fig. 9, that only

28% of the compute energy is consumed w.r.t. the Baseline
(22% for the left-eye, 6% for the right-eye), translating to

a 37% total energy saving.

Impact on Quality: The proposed AE scheme captures the

pattern between both the eyes with only the 1st row of the

frame, and then uses the same pattern to bypass the projection

computation for the remaining rows of the right eye. Note that,

as shown in Fig. 6b and 6c, the ith-row’s pattern may not be

exactly the same as the jth-row. This is due to the floating-

point hardware rounding (to find the nearest-neighbor integer

coordinates) and the transformation matrix’s various weights

are dependent on the row numbers. To simplify our AE design,

we simply reuse the pattern captured in the 1st row, and do not

consider the deeper information related to the row numbers.

To study how this decision affects the video quality, we report

250

0%
20%
40%
60%
80%
100%

0%
20%
40%
60%
80%

100%

B
as

el
in

e
EA A

E
EA

+A
E

PT
U

PT
U

+E
A

+A
E

B
as

el
in

e
EA A

E
EA

+A
E

PT
U

PT
U

+E
A

+A
E

B
as

el
in

e
EA A

E
EA

+A
E

PT
U

PT
U

+E
A

+A
E

B
as

el
in

e
EA A

E
EA

+A
E

PT
U

PT
U

+E
A

+A
E

B
as

el
in

e
EA A

E
EA

+A
E

PT
U

PT
U

+E
A

+A
E

B
as

el
in

e
EA A

E
EA

+A
E

PT
U

PT
U

+E
A

+A
E

Rhinos Timelapse Rollercoaster Paris Elephants Avg.

%
 T

ot
al

 E
ne

rg
y

Sa
vi

ng

C
om

pu
te

 E
ne

rg
y

C
on

su
m

pt
io

n
L R %TotalEnergySaving

Fig. 9: Normalized energy consumption and savings with different configurations and video inputs. The left y-axis shows the compute
energy consumption normalized to the compute energy consumption in Baseline (the lower, the better). The right y-axis shows the
amount of energy savings compared to the end-to-end total energy consumption in Baseline (the higher, the better).

0

20

40

60

80

V1 V2 V3 V4 V5 Avg.

PS
N

R
 (d

B
)

-10
-5
0
5

10

1
22

4
44

7
67

0
89

3
11

16
13

39
15

62
17

85
20

08
22

31
24

54
26

77
29

00
31

23
33

46
35

69
37

92

D
is

ta
nc

e

Pixel ID

Delta-y Delta-x

(a): PSNR (b): Pattern in CubeMap format

Fig. 10: Sensitivity study. (a): Video quality metric (PSNR [25],
[40]) across video inputs. (b): The pattern between left-eye and
right-eye in the front face in Cube Mapping [41].

the averaged PSNR [25], [40] of the five videos represented in

Equirectangular format [52] in Fig. 10 a . These results indicate

that, although we ignore the row-number related information,

the resulting PSNR is still sufficient (47.71 on average) for

VR video applications [26], [62].

General Applicability of Déjà View: The above discussion

assumes that the Equirectangular format [52] is used to

represent the 360° videos. We want to emphasize that our

underlying ideas behind the proposed EA and AE (designed

for the Equirectangular format) can work irrespective of the

representation formats used [48]. For example, similar to the

distance vector study in Fig. 6b and Fig. 6c, we plot the

distance pattern between both eyes of a 360° frame using the

CubeMap format [41] in Fig. 10 b . Clearly, a pattern (different

from the ellipse observed with the Equirectangular format)

exists in Δx and Δy . Note that the pattern behavior also

depends on the row numbers. This again validates the quality

impact discussed earlier. Putting together, these above observa-

tions indicate that, with very little change (to capture the row-

dependent information) in our original AE design, our idea is

able to work with any representation format. This motivates

us to target on further improving quality across video formats

by capturing the information related to row numbers in future.

VI. RELATED WORK

Optimizations in Planar Video Streaming: Pixel-similarity

based optimizations [38], [57] have been exploited to improve

performance in 2D rendering. For example, ATW [38] is

a post-render technique, which sits between rendering (our

focus) and display. To reduce the impact by the long-latency

from rendering, ATW either guesses the next head-orientation

or only considers the rotation (no translation), then skews two

already-rendered planar FoV frames to remove judders [43].

Note that, this computation still happens in planar-format, and

remains the same between two-eyes for one frame. Targeting

on ATW, PIMVR [57] proposed a 3D-stacked HMC to re-

duce Motion-to-Photon latency and off-chip memory accesses.

Motivated by the observation that the ATW transform matrix

generated by rotation on a 2D image is shared by both eyes,

PIMVR [57] calculated the transform matrix only once, and

scheduled two tiles (one for left-eye one for right-eye) with

the same coordinate to the same vault in HMC. However, in

contrast to the 360° VR video streaming, ATW is in 2D planar

format, and share the same compute results across eyes. These

two characterizations indicate that such optimizations in the

planar world are infeasible to be applied in 3D PT-rendering.

Hardware assist on VRs: Various energy-efficient hardware

modifications [28] have been proposed to reduce energy con-

sumption in the VR domain. For example, PTU [28] uses a

hardware-accelerated rendering unit (HAR) to mitigate energy-

overheads due to on-device rendering. In this work, we pro-

pose two optimizations, i.e., EA and AE, which can be coupled

with the existing 360° video compute engine (without any

hardware modifications), and are even more energy efficient

than the existing state-of-the-art PTU (discussed in Sec. V).

Moreover, EA and AE can further be integrated into PTU to

save even more energy.

Pixel Content Reuse on VRs: Pixel value reuse has been

well-studied in VRs [17], [22], [23], [29], [33], [50], [60],

[66] to improve throughput and performance. For example,

DeltaVR [29] adaptively reuses the redundant VR pixels

across multiple VR frames to improve performance. These

works focus on the pixel content reuse, which is the last

stage (Projection Mapping) in the 360° video projection

pipeline (discussed in Sec III). However, none of these existing

schemes leverage reducing the large amounts of “redundant”

computations in the preceding stage (projection computation).

251

Our proposed EA and AE designs focus on these intensive

projection computations, and as such are orthogonal to these

prior efforts. In our future work, we would like to further

explore the benefits by incorporating them into our design.

Head Orientation Prediction for 360° Video Streaming:
To optimize both performance and energy, researchers have

leveraged the powerful remote rendering engines on cloud to

predict the next head orientation for the VR clients [2], [6],

[18], [23], [30]–[32]. FlashBack maintains a storage cache of

multiple versions of pre-rendered frames, which can be quickly

indexed by head orientations [2]. In comparison, Semantic-

Aware-Streaming (SAS) exploits the semantic information

inherent in a VR video content to precisely predict users’

next head orientations [28]. These optimizations rely on the

powerful cloud with a high bandwidth access, which may not

be always available. However, our work focuses on edge-side

optimization, which can also be implemented as a comple-

mentary add-on in such cloud-assisted systems.

Energy Optimizations in Conventional Video Processing:
In the existing planar video processing pipeline on mobile de-

vices, prior works have looked at memory [1], [63], [64], dis-

play [13]–[15], [34] and codec [49], [65], and identified ”mem-

ory” as the major energy bottleneck. For example, AFBC [1]

is proposed to efficiently compress video streams between the

processing pipeline blocks. MACH [63] integrates a display

cache to reduce the amount of memory bandwidth. Although,

these techniques can potentially save memory usage/energy

for 360° VR videos, as discussed in earlier sections, due to

inherent nature of 360° video processing, which introduces

additional overheads for projection computation, we identify

compute to be the major energy bottleneck. Hence, these

memory optimizations are not applicable to reduce compute

energy on 360° VR videos.

VII. CONCLUDING REMARKS

360° VR videos have become the next trend in entertain-

ment media and soon will become an integral part of the

technology influencing many application domains. However,

unlike planar videos, the 360° VR video streaming demands

significantly more compute power from a battery-operated

headset. Thus, prior research has proposed using accelerators

for optimizing the computations.

In contrast, this paper attempts to exploit available “re-

dundancies” in computation by analyzing the VR projection

computation pipeline. Specifically, we propose and evaluate in

detail two pluggable schemes (for taking advantage of intrinsic

temporal-spatial reuse), and prototype them as microarchitec-

tural augmentations using FPGA. Our experimental results

show 34% computation reduction and 17% energy savings,

compared to the state-of-the-art [28]. In the future, we would

also like to explore other opportunities to improve energy

efficiency and tune the computation pipelines to cater more

towards VR applications. We believe, given that the current

VR devices are battery-backed, these kinds of energy savings

and performance improvements will not only enable the users

to experience longer videos, but also encourage both industry

and academia to work further on improving the pipeline to

make VR more pervasive and versatile.

ACKNOWLEDGMENT

This research is supported in part by NSF grants #1763681,

#1629915, #1629129, #1317560, #1526750, #1714389,

#1912495, and a DARPA/SRC JUMP grant. We would also

like to thank Dr. Jack Sampson, Dr. Aasheesh Kolli and Dr.

Timothy Zhu for their feedback on this paper.

REFERENCES

[1] Arm Holdings, “Arm Frame Buffer Compression (AFBC).” ”https:
//developer.arm.com/architectures/media-architectures/afbc”, 2019.

[2] K. Boos, D. Chu, and E. Cuervo, “FlashBack: Immersive Virtual Reality
on Mobile Devices via Rendering Memoization,” in Proceedings of the
14th Annual International Conference on Mobile Systems, Applications,
and Services, ser. MobiSys ’16, 2016, pp. 291–304.

[3] X. Corbillon, F. De Simone, and G. Simon, “360-Degreee Video Head
Movement Dataset,” in Proceedings of the 8th ACM on Multimedia
Systems Conference, 2017, pp. 199–204.

[4] Discovery, “Caring for Rhinos: Discovery VR (360 Video).” ”https://
www.youtube.com/watch?v=7IWp875pCxQ”, 2019.

[5] Discovery, “Elephants on the Brink.” ”https://www.youtube.com/watch?
v=2bpICIClAIg”, 2019.

[6] T. El-Ganainy and M. Hefeeda, “Streaming Virtual Reality Content,”
CoRR, vol. abs/1612.08350, 2016. [Online]. Available: http://arxiv.org/
abs/1612.08350

[7] Facebook, “Facebook 360,” ”https://facebook360.fb.com/”, 2019.
[8] Facebook Inc., “Facebook Oculus,” ”https://www.oculus.com/”.
[9] Google, “360° videos - Google Arts & Culture,” ”https://artsandculture.

google.com/project/360-videos”.
[10] Google, “More Ways to Watch and Play with AR and VR.” ”https://

blog.google/products/google-vr/more-ways-watch-and-play-ar-and-vr”.
[11] Google, “Build Virtual Worlds.” ”https://developers.google.com/vr”,

2019.
[12] Google, “GVR Android SDK Samples - Video360.” ”https://github.com/

googlevr/gvr-android-sdk/blob/master/samples/sdk-video360/src/main/
java/com/google/vr/sdk/samples/video360/VrVideoActivity.java#L257”,
2019.

[13] M. Ham, I. Dae, and C. Choi, “LPD: Low Power Display Mechanism
for Mobile and Wearable Devices,” in Proceedings of the USENIX
Conference on Usenix Annual Technical Conference (ATC), 2015, pp.
587–598.

[14] K. Han, Z. Fang, P. Diefenbaugh, R. Forand, R. R. Iyer, and D. Newell,
“Using Checksum to Reduce Power Consumption of Display Systems
for Low-motion Content,” in 2009 IEEE International Conference on
Computer Design, 2009, pp. 47–53.

[15] K. Han, A. W. Min, N. S. Jeganathan, and P. S. Diefenbaugh, “A
Hybrid Display Frame Buffer Architecture for Energy Efficient Display
Subsystems,” in International Symposium on Low Power Electronics and
Design (ISLPED), 2013, pp. 347–353.

[16] T. HARDWARE, “Magic Leap One Powered by Nvidia Tegra TX2,
Available Summer.” ”https://support.oculus.com/248749509016567/”,
2019.

[17] B. Haynes, A. Mazumdar, A. Alaghi, M. Balazinska, L. Ceze, and
A. Cheung, “LightDB: A DBMS for Virtual Reality Video,” Proc. VLDB
Endow., pp. 1192–1205, 2018.

[18] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han, “Rubiks: Practical
360-Degree Streaming for Smartphones,” in Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and
Services, 2018, pp. 482–494.

[19] HEADJACK, “The Best Encoding Settings For Your 4k 360 3D
VR Videos + FREE Encoding Tool,” ”https://headjack.io/blog/best-
encoding-settings-resolution-for-4k-360-3d-vr-videos/”.

[20] C. Heather Bellini, W. Chen, M. Sugiyama, M. Shin,
S. Alam, and D. Takayama, “Virtual and Augmented Reality.”
”https://www.goldmansachs.com/insights/pages/technology-driving-
innovation-folder/virtual-and-augmented-reality/report.pdf”, 2016.

[21] L. F. Hodges, “Tutorial: Time-multiplexed Stereoscopic Computer
Graphics,” IEEE Computer Graphics and Applications, pp. 20–30, 1992.

252

[22] A. Holdings, “White Paper: 360-Degree Video Rendering.”
”https://community.arm.com/developer/tools-software/graphics/b/
blog/posts/white-paper-360-degree-video-rendering”, 2019.

[23] J. Huang, Z. Chen, D. Ceylan, and H. Jin, “6-DOF VR Videos with a
Single 360-camera,” 2017 IEEE Virtual Reality (VR), pp. 37–44, 2017.

[24] A. Inc., “Rendering Omni-directional Stereo Content.” ”https://
developers.google.com/vr/jump/rendering-ods-content.pdf”, 2019.

[25] N. INSTRUMENTS, “Peak Signal-to-Noise Ratio as an Image Quality
Metric.” ”https://www.ni.com/en-us/innovations/white-papers/11/peak-
signal-to-noise-ratio-as-an-image-quality-metric.html”, 2019.

[26] B. C. Kim and C. E. Rhee, “Compression Efficiency Evaluation for
Virtual Reality Videos by Projection Scheme,” IEIE Transactions on
Smart Processing & Computing, pp. 102–108, 2017.

[27] S. M. LaValle, “The Geometry of Virtual Worlds.” ”http://msl.cs.uiuc.
edu/vr/vrch3.pdf”, 2019.

[28] Y. Leng, C.-C. Chen, Q. Sun, J. Huang, and Y. Zhu, “Energy-efficient
Video Processing for Virtual Reality,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2019, pp. 91–103.

[29] Y. Li and W. Gao, “DeltaVR: Achieving High-Performance Mobile VR
Dynamics through Pixel Reuse,” in 2019 18th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), 2019,
pp. 13–24.

[30] L. Liu, R. Zhong, W. Zhang, Y. Liu, J. Zhang, L. Zhang, and
M. Gruteser, “Cutting the Cord: Designing a High-quality Untethered
VR System with Low Latency Remote Rendering,” in Proceedings of the
16th Annual International Conference on Mobile Systems, Applications,
and Services, ser. MobiSys ’18, 2018, pp. 68–80.

[31] X. Liu, Q. Xiao, V. Gopalakrishnan, B. Han, F. Qian, and M. Varvello,
“360° Innovations for Panoramic Video Streaming,” in Proceedings of
the 16th ACM Workshop on Hot Topics in Networks, ser. HotNets-XVI,
2017, pp. 50–56.

[32] B. Luo, F. Xu, C. Richardt, and J. Yong, “Parallax360: Stereoscopic 360°
Scene Representation for Head-Motion Parallax,” IEEE Transactions on
Visualization and Computer Graphics, pp. 1545–1553, 2018.

[33] A. Mazumdar, T. Moreau, S. Kim, M. Cowan, A. Alaghi, L. Ceze,
M. Oskin, and V. Sathe, “Exploring Computation-communication Trade-
offs in Camera Systems,” in 2017 IEEE International Symposium on
Workload Characterization (IISWC), 2017, pp. 177–186.

[34] H. Miao and F. X. Lin, “Tell Your Graphics Stack That the Display Is
Circular,” in Proceedings of the 17th International Workshop on Mobile
Computing Systems and Applications, ser. HotMobile ’16, 2016, pp. 57–
62.

[35] mooovr, “RollerCoaster at Seoul Grand Park.” ”https://www.youtube.
com/watch?v=8lsB-P8nGSM”, 2019.

[36] Nvidia, “JETSON AGX XAVIER AND THE NEW ERA OF AU-
TONOMOUS MACHINES.” ”http://info.nvidia.com/rs/156-OFN-742/
images/Jetson AGX Xavier New Era Autonomous Machines.pdf”,
2019.

[37] Oculus, “Rendering to the Oculus Rift,” ”https://developer.oculus.com/
documentation/pcsdk/latest/concepts/dg-render/”.

[38] Oculus, “Asynchronous TimeWarp (ATW).” ”https://developer.
oculus.com/documentation/mobilesdk/latest/concepts/mobile-timewarp-
overview/?locale=en US”, 2019.

[39] Oculus, “Oculus Rift and Rift S Minimum Requirements and Sys-
tem Specifications.” ”https://www.tomshardware.com/news/magic-leap-
tegra-specs-release,37443.html”, 2019.

[40] OpenCV, “Similarity check (PNSR and SSIM) on the
GPU.” ”https://docs.opencv.org/2.4/doc/tutorials/gpu/gpu-basics-
similarity/gpu-basics-similarity.html”, 2019.

[41] OpenGL, “Cubemaps - Learn OpenGL.” ”https://learnopengl.com/
Advanced-OpenGL/Cubemaps”, 2019.

[42] OpenGL, “The Industry’s Foundation for High Performance Graphics.”
”https://www.opengl.org/”, 2019.

[43] O. Rift, “Oculus Rift - How Does Time Warping Work?” ”https://www.
youtube.com/watch?v=WvtEXMlQQtI”, 2019.

[44] Samsung, “Samsung Gear VR,” ”https://www.samsung.com/global/
galaxy/gear-vr/”.

[45] Samsung, “Explore New Dimensions.” ”https://www.samsung.com/
global/galaxy/gear-vr/#display”, 2019.

[46] SkySports, “Sky VR Virtual Reality,” ”https://www.skysports.com/
mobile/apps/10606146/sky-vr-virtual-reality”, 2019.

[47] Tom’s HARDWARE, “Nvidia’s Jetson TX2 Powers GameFace
Labs’ Standalone VR Headset.” ”https://www.tomshardware.com/news/
gameface-labs-standalone-steamvr-headset,37112.html”, 2019.

[48] R. Toth, J. Nilsson, and T. Akenine-Möller, “Comparison of Projection
Methods for Rendering Virtual Reality,” in Proceedings of High Perfor-
mance Graphics, ser. HPG ’16, 2016, pp. 163–171.

[49] C.-H. Tsai, H.-T. Wang, C.-L. Liu, Y. Li, and C.-Y. Lee, “A 446.6
K-gates 0.55–1.2 V H. 265/HEVC decoder for next generation video
applications,” in 2013 IEEE Asian Solid-State Circuits Conference (A-
SSCC), 2013, pp. 305–308.

[50] A. Vlachos, “Advanced VR Rendering in Valve.” ”http:
//media.steampowered.com/apps/valve/2015/Alex Vlachos Advanced
VR Rendering GDC2015.pdf”, 2019.

[51] F. G. VR360, “Virtual guided tour of Paris.” ”https://www.youtube.com/
watch?v=sJxiPiAaB4k”, 2019.

[52] Wikepedia, “Equirectangular Projection.” ”https://en.wikipedia.org/wiki/
Equirectangular projection”, 2019.

[53] Wikipedia, “Pixel 2,” ”https://en.wikipedia.org/wiki/Pixel 2”.
[54] Wikipedia, “Active-Matrix Organic Light-Emitting Diode,” ”https://en.

wikipedia.org/wiki/AMOLED”, 2019.
[55] Wikipedia, “Virtual Reality.” ”https://en.wikipedia.org/wiki/Peak

signal-to-noise ratio#:∼:targetText=Typical\%20values%20for%
20the%20PSNR,20\%20dB%20to%2025%20dB.”, 2019.

[56] B. Worldwide, “NYC 360 Timelapse.” ”https://www.youtube.com/
watch?v=CIw8R8thnm8”, 2019.

[57] C. Xie, X. Zhang, A. Li, X. Fu, and S. Song, “PIM-VR: Erasing Motion
Anomalies In Highly-Interactive Virtual Reality World with Customized
Memory Cube,” in Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA), 2019, pp. 609–622.

[58] Xilinx, “Vivado Design Hub - Installation and Licensing,”
”https://www.xilinx.com/support/documentation-navigation/design-
hubs/dh0013-vivado-installation-and-licensing-hub.html”.

[59] Xilinx, “Vivado Design Suite - HLx Editions.” ”https://www.xilinx.com/
products/design-tools/vivado.html”, 2019.

[60] xinreality, “Asynchronous Spacewarp.” ”https://xinreality.com/wiki/
Asynchronous Spacewarp”, 2019.

[61] YouTube, “Get Started with YouTube VR.” ”https://support.google.com/
youtube/answer/7205134?hl=en”, 2019.

[62] V. Zakharchenko, K. P. Choi, and J. H. Park, “Quality metric for
spherical panoramic video,” in Optics and Photonics for Information
Processing X, K. M. Iftekharuddin, A. A. S. Awwal, M. G. Vázquez,
A. Márquez, and M. A. Matin, Eds., International Society for Optics
and Photonics. SPIE, 2016, pp. 57 – 65.

[63] H. Zhang, P. V. Rengasamy, S. Zhao, N. C. Nachiappan, A. Sivasub-
ramaniam, M. T. Kandemir, R. Iyer, and C. R. Das, “Race-to-sleep
+ Content Caching + Display Caching: A Recipe for Energy-efficient
Video Streaming on Handhelds,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2017, pp. 517–531.

[64] H. Zhang, S. Zhao, A. Pattnaik, M. T. Kandemir, A. Sivasubramaniam,
and C. R. Das, “Distilling the Essence of Raw Video to Reduce Memory
Usage and Energy at Edge Devices,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2019, pp. 657–669.

[65] D. Zhou, S. Wang, H. Sun, J. Zhou, J. Zhu, Y. Zhao, J. Zhou,
S. Zhang, S. Kimura, T. Yoshimura, and S. Goto, “14.7 a 4gpixel/s
8/10b h.265/hevc video decoder chip for 8k ultra hd applications,” in
2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016,
pp. 266–268.

[66] Y. Zhu, A. Samajdar, M. Mattina, and P. Whatmough, “Euphrates:
Algorithm-SoC Co-design for Low-power Mobile Continuous Vision,”
in Proceedings of the International Symposium on Computer Architec-
ture (ISCA), 2018, pp. 547–560.

253

