2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

Déja View: Spatio-Temporal Compute Reuse for
Energy-Efficient 360° VR Video Streaming

Shulin Zhao, Haibo Zhang, Sandeepa Bhuyan, Cyan Subhra Mishra, Ziyu Ying,
Mahmut T. Kandemir, Anand Sivasubramaniam, Chita R. Das
Dept. of Computer Science and Engineering, The Pennsylvania State University
Email: {suz53, huz123, sxb392, cyan, ziy5087, mtk2, axs53, cxd12} @psu.edu

Abstract—The emergence of virtual reality (VR) and aug-
mented reality (AR) has revolutionized our lives by enabling
a 360° artificial sensory stimulation across diverse domains,
including, but not limited to, sports, media, healthcare, and
gaming. Unlike the conventional planar video processing, where
memory access is the main bottleneck, in 360° VR videos the
compute is the primary bottleneck and contributes to more than
50% energy consumption in battery-operated VR headsets. Thus,
improving the computational efficiency of the video processing
pipeline in a VR is critical. While prior efforts have attempted to
address this problem through acceleration using a GPU or FPGA,
none of them has analyzed the 360° VR pipeline to examine
if there is any scope to optimize the computation with known
techniques such as memoization.

Thus, in this paper, we analyze the VR computation pipeline
and observe that there is significant scope to skip computations
by leveraging the temporal and spatial locality in head orienta-
tion and eye correlations, respectively, resulting in computation
reduction and energy efficiency. The proposed Déja View design
takes advantage of temporal reuse by memoizing head orientation
and spatial reuse by establishing a relationship between left and
right eye projection, and can be implemented either on a GPU or
an FPGA. We propose both software modifications for existing
compute pipeline and microarchitectural additions for further
enhancement. We evaluate our design by implementing the
software enhancements on an NVIDIA Jetson TX2 GPU board
and our microarchitectural additions on a Xilinx Zynq-7000
FPGA model using five video workloads. Experimental results
show that Déja View can provide 34% computation reduction
and 17% energy saving, compared to the state-of-the-art design.

Index Terms—Virtual Reality, Edge Computing, IoT, 360°
Video Processing

I. INTRODUCTION

Recent developments in technology, computing and com-
munication have brought significant changes to the lifestyle
of common people by providing them access to increasingly
sophisticated devices. Especially, VR and AR are now gaining
traction because of their versatile nature of providing an
immersive sensory experience, which is not possible with the
conventional systems — especially in the domain of video
streaming. They are emerging as one of the most important
entertainment markets and Goldman Sachs predicts that, by
2025, around 79 million users will use online video streaming
from the VR/AR ecosystem, resulting in a multi-billion dollar
market [20], penetrating the fields of media streaming, VR
gaming, education, medicine, communication and many more.
Even today, more than 10 million users enjoy 360° videos

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00030

241

using Google Cardboard [10], Samsung Gear VR [44], and
Oculus VR [8], to experience 360° video [7], art museum [9],
live stadium [46], etc.

The 360° videos are created by capturing scenes in all
directions typically using omnidirectional cameras or a set
of cameras. They are further encoded by the conventional
video encoders, as if they are planar videos, for transmission
efficiency. The video frames are transmitted to the users, who
wear a portable VR headset (like Facebook Oculus or Google
Cardboard), via Youtube or Facebook 360 services [7], [61].
360° video streaming creates an interactive and immersive
environment by connecting the user and the video content;
the users are allowed to move their heads’ orientation to enjoy
the surroundings in all perspectives along with a 3D view, i.e.,
a different view for each of the eyes, and hence creating an
illusion that the user is present at the scene rather than viewing
it on a projected surface.

This immersive experience comes at the cost of additional
computations - not only is the video being streamed, the
streaming itself changes with the head orientation. Moreover,
streaming requires two projections for both the eyes. As the
360° video is not in a planar format, the VR ecosystem
converts it to a conformal 2D format by passing it through
multiple stages of transformations. Thus, unlike planar videos,
in 360° videos, specifically the projection computations for
capturing the head movements and eye correlations, are sig-
nificantly computation-heavy, amounting to 59% of the overall
VR (headset) power budget. Current head mounted VR devices
use a GPU for this heavy computation. Since the head mounted
VR devices are battery-backed, the computations that draw
high power from the battery greatly hinder the experience of
watching long 360° videos [39].

This heavy computation has become an acceleration candi-
date/target in previous works, by offloading the entire compu-
tation, as is, to an accelerator (GPU [39], or FPGA [28]).
However, prior works do not consider other avenues for
optimizing the computation. In this context, this paper dives
deep to understand the projection computation pipeline for ex-
ploring available opportunities and optimizations for speedup
as well as power savings. Since head movement and cor-
relations between the left and right eye projections are the
two critical components of the projection computation, we
analyze and study them to explore possible opportunities to
exploit these relations. Specifically, we analyze four scenarios,

namely, InterFrame-IntraEye (EA), IntraFrame-InterEye (AE),
IntraFrame-IntraEye (AA), and InterFrame-InterEye (EE), that
are critical in capturing the head movement and eye correlation
for projection computation. Out of these four scenarios, we
observe that FA computation for head orientation can be
exploited for temporal reuse/memoization since there is little
difference between two previous head orientations, and AE
computation for exploiting the correlation between both the
eyes by spatial reuse — correlating the coordinate relationship
between both eyes. Based on this observation, we develop
computation optimization mechanisms for facilitating temporal
reuse/memoization and spatial reuse that can be integrated
with a VR projection computation pipeline to significantly
reduce energy consumption of the device. The proposed ar-
chitecture is named Déja View, a play on the word Déja vu,
as it uses previous or already seen views.

To the best of our knowledge, this is the first work that
leverages head orientation and correlation between eyes to do
efficient memoization and in turn result in compute reduction
in the VR video streaming domain. The major contributions
of the paper can be summarized as follows:

e From an open-source 360° VR video dataset [3], we identify
both temporal reuse and spatial locality that exists in user
behavior. We formally analyze the potential “input invari-
ability” in the projection computation during 360° video
streaming, which manifests in the head movement locality
(temporal reuse) and the stationarity relationship between
two eyes (spatial reuse). Such invariances are leveraged as
reuse opportunities to reduce the compute-heavy projection
computation.

We design two complementary schemes to capture both
temporal and spatial reuse opportunities. We propose a
memoization scheme, called EA, to capture recent head
orientation data for temporal reuse, and for the spatial reuse,
we design the AE scheme, which leverages the stationary
relationship between two eyes to efficiently reduce the
amount of projection computation.

We implement both our schemes as a software enhancement
to the existing compute pipeline in NVIDIA GPUs. To
further exploit the energy efficiency, we also implement our
hardware prototype using an FPGA to evaluate the energy
benefits brought by the microarchitectural augmentations.
Both the proposed software and hardware solutions are
modular, and hence can be integrated to the existing pipeline
with little change.

We evaluate our integrated design, including both EA and
AE, using an open-source 360° VR video dataset [3] with
the traces of 20 users watching 5 different VR videos. Over-
all, our experimental results show that, on an average, Déja
View can provide 54% compute reduction, which translates
to 28% total energy savings compared to the baseline setup.
Compared to a state-of-the-art scheme [28], our design
provides 34% reduction in projection computations, which
translates to 17% additional energy savings.

242

Wireless Head Mount Display
= (HVD) e
Video Orientation Inertial
Bitstream Information M“S“;m;m Unit
=
v Left Right
SoC Video 360 Video Display
Decoder Projection (GPU) [efeTy 1 ({e] | [-T; M.
AN X
Butis P
Buffer Lo = .
EREM) ----+ Data Flow
Decoded Projected Frames — Control
360 Frame for Both Eyes Information

Fig. 1: A 360° video processing pipeline on a battery-backed
stereoscopic HMD with an Inertial Measurement Unit (IMU)
and an SoC equipped with a GPU [28], [39].

II. BACKGROUND AND MOTIVATION

Before getting into the details of the existing issues and
possible solutions, we first outline the computation pipeline
of the state-of-the-art 360° VR streaming (Fig. 1). Further, we
describe the existing energy inefficiencies in processing 360°
VR systems, to motivate our design for mitigating the com-
putational inefficiencies by avoiding redundant computations.

A. 360° Video Streaming Pipeline

The key difference between a 360° VR video compared to a
conventional 2D video is that the former provides content-rich
immersive user experience. Wearing a head mounted display
(HMD), a user navigates in a virtual world by looking around,
or moving around [55], to interact with the virtual world. As
shown in Fig. 1, a typical VR HMD [39] has two major
components: (i) an SoC with a video decoder, a GPU for
processing projection computation, and a display controller,
and (ii) a video buffer in DRAM for storing the decoded 360°
frames and projected frames for both the left and right eyes.
More specifically, the 360° video processing pipeline can be
summarized as follows:

Video Decoder: The HMD receives encoded 360° video
bitstream from the network (YouTube [61], Facebook-360 [7],
etc). Similar to 2D videos, the 360° video bitstreams are
encoded in H.264/MPEG formats [19] for network efficiency.
The next step is to decode the original frame from the
bitstream, and today, this is mostly done using a hardware-
based h264/MPEG decoder for more energy efficiency. After
decoding, the 360° output frames are then buffered in the video
buffer, waiting to be rendered.

Projection: Note that, the output frames from the decoder
are still in the spherical coordinate system. This is because,
for encoding purpose, the original 360° videos are projected
into the 2D plane (usually represented in 2D format such as
Equirectangular [52], Cubemap [41], etc.). Therefore, unlike
the 2D video processing where the display can directly read

1. Reuse in Head
Orientation

2. Relation in Eye
- Views -

mCompute/ -\

O Memory

ODecode

E Display

360 Frame Data

(b) Overview of 360° video projection.

(a) Power breakdown.

(c) Head movement and pupillary distance as inputs.

Fig. 2: Overview of 360° video projection. (a) Power breakdown consuming 3.4 Watts; (b) Projection pipeline taking head orientation
and pupillary distance to compute projection matrices for both the eyes, which map 360° coordinates to 2D coordinates for generating
stereoscopic frames. (c) Reusing projection matrices by exploiting relation between both eyes and fusing it with head orientation.

the video buffer to present the decoded frames, the 360° video
frames require “additional rendering effort” to get displayed.
More specifically, the rendering process is a projection from
the 360° frame pixels’ 3D coordinates to the 2D frame pixels’
2D coordinates on HMDs. The projection process considers
two user-side aspects — head orientation and pupillary dis-
tance' — to render stereoscopic views or Field of View (FoV)
frames for both eyes, towards the head direction. The head
orientation is sensed by an inertial measurement unit (IMU)
on the HMD as a triple [Yaw, Pitch, Roll] for projection
computation?. For each frame, this computation is processed
twice — one for left eye and the other for right eye — to
reinforce users’ sense of depth.

Display: After the projection, the two generated FoV frames
are stored in 2D format in the video buffer. The display
controller just needs to read them from DRAM to the screen.

To summarize, compared to 2D video processing, 360°
video processing incurs additional projection computation.
From our measurements collected from a smartphone [53]
running a 360° VR application [11], even with extra computa-
tion, the overall processing for rendering one 360° frame can
be completed within 22 ms on average (translating to 45 fps).
However, since the whole computation/rendering process takes
place on a battery-backed device [39], one needs to consider
the “energy efficiency” of this computation, i.e., even though
we can meet the performance requirements of such video,
energy efficiency needs to be improved.

B. Motivation

To understand the energy profile in the current VR devices,
we characterize the energy consumption of 360° video pro-
cessing on a prototype [36] (configured similar to a com-
mercial VR device [39], discussed in Sec. V) in Fig. 2a.
Overall, 360° VR video processing consumes 3.4 Watts,
which is 2.27x the power compared to its planar counter-
parts (1.5 Watts). We also observe that, unlike conventional
planar video processing where memory is the main bottleneck
(43%), in 360° VR video processing, compute dominates the

"Pupillary distance is the distance, typically measured in millimeters,
between the centers of the pupils of the eyes.
2Yaw: vertical; Pitch: side-to-side; Roll: front-to-back.

243

power consumption, constituting 59%. Previous studies have
observed that the computation in 360° video processing is,
mainly, the projection transformation [28]. These observations
motivate us to explore the potential opportunities for reducing
the power/energy consumption in the projection stage.

We illustrate the 360° video projection/projection transfor-
mation® computation in Fig. 2b. At a high level, we need
two major inputs to generate the final projected frames on the
display. The first input is from the user side, including the head
orientation and pupillary distance. Since there is a small offset
between the two eyes, the projection computation needs to cap-
ture the pupillary distance to generate a separate view for each
eye. Therefore, the output of the projection computation is two
projection matrices, each indicating the mapping between each
coordinate in 360° video frame and a 2D coordinate on screen
for the left and right eye. Note that, this projection process is
quite compute-intensive. Furthermore, in a typical VR headset,
the above computation needs to repeat millions of times, for
processing just one 360° frame. Our characterization indicates
that, on average, around 2.3 GFLOPS is required for this
projection transformation (details are discussed in Sec. III).

The second input is the decoded 360° frame that contains the
pixel values. The decoded 360° frame is fed to the Projection
Mapping stage, which uses the projection matrix, locates the
coordinates in the decoded 360° frame, and moves their pixel
values to the transformed 2D coordinates in the FoV frames.
It is to be noted that, when a user’s head orientation is
changed, the Projection Computation stage needs to recompute
the transformations to reflect the user’s head movement.

The VR headset allows users to freely move their heads
and eyes at any time to any degree. Hence, the projection
transformation computation has to be executed at every frame
to reflect user movements in real-time, and the whole process
is very compute intensive (36 times per second [3]) and
power hungry. However, it is too conservative to execute
the projection transformation in a short period of time even
for the same set of inputs. Intuitively, if the inputs of the
transformation computation do not change, the output of the
transformation will also be same. In fact, we observe the

3We use “projection transformation” and “360° video projection” inter-
changeably.

[@ Transformation]
>
Pupillary oo -

Distance

[@ Projection Computation] [o Projection Mapping]

360 F FoV Frames
= 1 S

P ()7
Fieo Projection

[Pm.ecuon Matvix}_ Mapping

360° Video Projection Computation for One Frame

H
[Transformation Matrix Computation } [f“ Frame]

Fig. 3: Detailed illustration of projection transformation. The
projection transformation first calculates the transformation
matrix (7), and then uses the transformation matrix to map
each of the pixel coordinates to generate the projection matrices
(P) for the FoV frames. Then projection mapping stage uses this
coordinate mapping (P) to move pixels from the original 360
frame F3¢0 to the 2D frame F.

following two properties from a published 360° VR dataset [3],
as shown in Fig. 2c:

Head Orientation Proximity: In a short period of time, the
user’s head orientation is usually stable in a small space range
(3D) or even still. In fact, from this dataset we have found that,
the head orientation for users does not often change within
around 150ms period of time. Furthermore, even in cases
where head orientation changes, the change is usually within a
small range — in a few consecutive frames. Since two identical
head orientations lead to the same projection matrices, one
opportunity to reduce computation is to memoize a set of head
orientations as well as their corresponding compute results.

Vision Proximity: It is to be emphasized that, even when
the head orientation input for two computations are the same,
the two eye coordinates can be different. Because of this, in
current designs, the projection transformation is invoked twice
as it needs to generate two different transformation matrices
for the left eye and the right eye. On the other hand, the
distance between the two eyes is small and is constant for
a particular user*. The two transformation matrices are very
“similar” as they inherit a relationship between them as a
function of the small pupillary distance.

Motivated by these observations, in the following sections,
we explore and address two critical questions: Can we identify
the proximity in the projection computation?, and Can we
leverage this proximity to safely skip some computations to
save energy?

III. 360° VIDEO PROJECTION

To leverage the opportunities in the 360° video projection,
we need to understand the execution of the entire projection
processing in a 360° VR system. We illustrate the details
of 360° video projection in Fig. 3 as three stages (detailed
background of this projection transformation can be found
in [21], [27]). The first stage, Transformation (denoted @
in Fig. 3, is to determine a transformation matrix by com-
bining five different transforms. The second stage, Projection
Computation (denoted () in Fig. 3), uses the transformation
matrix and the 2D FoV coordinates for both eyes to obtain

4We used an averaged pupillary distance in our evaluations [27], [37].

TABLE I: Projection Computation description.

ILabel | Description | HO dependent? | Known-time | Eye-dependent?
T1 | Rigid body No Compile-time| Left = Right
T> |An eye’s view| Yes Runtime Left = Right
T3 |Eye adjusting No Compile-time| Left # Right
T4 | Perspective No Design-time Left = Right
Ts Viewport No Design-time Left = Right

their corresponding 360° video frame coordinates. Finally, the

third stage, i.e., Projection Mapping, uses the mapping results

from the second stage and the 360° video frame to deduce the
pixel values for 2D FoV frames (shown in @ in Fig. 3) ,which
can be projected to both eyes on the HMD.

The Transformation stage, shown in Fig. 3@ for compu-
tation of the Transformation Matrix, is used for projecting the
360° frame pixels onto the 2D FoV plane in the subsequent
stages. This matrix is calculated by applying five different
transforms — 17, T, T3, T4, and T5 — in a serial fashion.

e T serves as a rigid body transformation matrix which ap-
plies 3D rotation (Y aw, Pitch, Roll) and translation so that,
the objects do not get distorted. Since this transformation
does not depend on any of the sensor inputs, it can be pre-
calculated at compile-time.

e T, gives us eyes’ view; i.e., this changes the virtual world’s
coordinate frame to match the frame of the eye. This
requires knowledge of the head orientation or the direction
of gaze, which can be read at runtime from the IMU sensors
embedded in the VR headset.

e T35 transforms the 360° coordinates from a monocular view
to a stereoscopic view. Since each eye sees the same object
differently, this transformation matrix is different for each
eye to give the user a more realistic experience.

e Ty, also known as the perspective transformation ma-
trix, maps all 360° coordinates onto 2D coordinates. This
transformation depends only on the HMD characteristics,
including, but not limited to, the display size and resolution,
and hence, is known apriori (at design-time).

e T5, the last transformation to be applied, performs a view-
port transformation’, bringing the projected points to the
coordinates used to index the pixels on the HMD. As in
the case of T}, this transformation is also HMD design-
dependent and is known at design-time.

Note that, the product of these five transforms gives us the final

transformation matrices (7 and 7Tgr), which together convert

the 3D coordinates of the 360° frame to the 2D coordinates
suitable for HMD. Mathematically, the transformation matrix

for each eye is shown in Equation 1.

T = TsxTyxTExTexTh 0
TR = T5><T4><T3R><T2XT1

These five transforms are of dimension of 4 x 4 (3 dimensions
for rotation; 1 for translation), thus producing 4 x 4 7, and
Tr matrices [27]. Note that, given an arbitrary FoV frame,
these transformation matrices remain the same for all the pixel

A Viewport Transformation is the process of transforming a 2D coordinate
objects to device coordinates [27].

coordinates in that frame, thus are evaluated only once for
that frame, and account for only 4.8 M FLOPS without any
optimization.

In the Projection Computation stage (refer to) in Fig. 3),
we use the transformation matrix (7°) to generate the mapping
(P) between the 360° frame coordinates and the 2D FoV
frame coordinates. At any instance, a user is only concerned
about the FoV pixels in the entire 360° frame. So, instead of
evaluating the mapping for all coordinates in the 360° frame,
we only generate the mapping for those pixels which are
within the user’s view. As the target 2D FoV coordinates are
already known (VR screen dimensions), these mappings can
be performed by multiplying the inverse of the transformation
matrix (7 ') with the 2D FoV coordinates (Vsp), thus
generating the corresponding 360° pixel coordinates (P), as
shown in Equation 2.

732 = 7_51 X VgD; Vi < num_pixels @

Ph=Tg ' x Vip; Vi< num_pizels
Here, Vap = [0, q1, g2, q3] | represents the quaternion equiva-
lent of the 2D FoV coordinates used for matrix multiplication
with the inverse transformation matrix (7 —1). Note that, this
operation, which is a matrix multiplication on each FoV pixel
coordinate, can be quite compute intensive. In fact, the number
of pixels in the FoV is usually around 1 million, and the videos
stream at a rate of 30 fps for an immersive experience. This
amounts to about 2.3 GFLOPS, which represents a substantial
amount of computation, given the limited compute capabilities
and power in such edge devices. Note that, even though
theoretically one represents the 360° frame coordinates as
quaternions, in practice, they are typically represented using
specific projection formats, e.g., equirectangular, cube map,
equi-angular cubemap, pyramid format, etc. The details of
these formats are in the purview of cartography and computer
graphics domain, and hence we do not evaluate all of the
aforementioned formats. In our evaluations and experiments,
we used the equirectangular format [52], which is one of the
most popular projection formats.

The Projection Mapping stage (@ in Fig. 3) takes the
projection matrices for both the eyes (Pr,Pr) of Equation 2
as well as the pixel values of the 360° video frame (Fsgp),
to obtain the 2D FoV frames (F; and Fg), which can be
further displayed on the HMD. This stage mostly comprises
of memory operations, and thus is not a compute bottleneck.

Our discussion in this section is summarized in Tab. I. We
have two important takeaways:

Computation Dependence Chain: We note that there
exists a data dependence from the 360° frame to generate
the final FoV frame, where F depends on P, which in
turn depends on 7. This also determines the “order of
computation”, which is first 7, then P, and finally F.

Input (in-)Variability: It should be clear from the discus-
sion above that T, T3 Ty, and T can be determined apriori.
However, T can change at runtime, and if any element in 75
is changed, the transformation matrix needs re-computation

245

o Inter-Frame Reuse (EA)

[jon Saved |
(Inter-eye Reuse, AE)

Same Head-Orientation

\ o

ion Saved
A (Inter-frame Reuse, EA)
H /\
1 '

[c ion Saved
(Inter-eye Reuse, AE)

Projection
Matrix

(Pr =P+ A)

0 Inter-Eye Reuse (AE)

Reuse Compute Result: P; — 75

Frame 1st Frame 2nd Frame 3rd

Fig. 4: InterFrame-IntraEye (EA) and IntraFrame-InterEye (AE)
reuse opportunities. This example illustrates 3 consecutive frames
processing, each of which consists of two projection matrices (P,
and Pr) for both eyes. The 3rd frame shares the same head
orientation with the 1st, thus can be optimized by EA. Moreover,
the reuse between both eyes is further optimized by AE.

along with P and F, due to their dependencies. However,
if T3 does not change across frames, P is identical to the
previous frame.

IV. REDUCING PROJECTION COMPUTATION

As discussed in Sec. II, computations dominate the energy
consumption in 360° VR video processing. Further, we also
observed in Sec. III that, the main reason behind this is that the
compute is executed repeatedly both within a single frame (due
to offset between the eyes) and across frames (due to changes
in head orientation at runtime). Unlike prior works targeting
at optimizing the efficiency of each computation [28], [57],
we primarily focus on reducing the amount of computation
to be performed, by exploring the intrinsic “compute reuse
opportunities” in 360° VR video processing.

A. Opportunities

Exploring and exploiting computation output reuse oppor-
tunities is non-trivial in this context. First of all, the projec-
tion transformation is multi-staged and is a composition of
multiple mathematical operations, e.g., transformation matrix,
projection computation, mapping, etc. As discussed in Sec. I,
the projection computation varies across eyes even for the
same head orientation. Moreover, in many cases, computations
are also sensor input-dependent such as the IMU data for
determining the head orientation, which is updated across
frames, at runtime. Thus, to explore computation reuse op-
portunities, we start by distinguishing between 4 complemen-
tary opportunities — InterFrame-IntraEye (EA), IntraFrame-
InterEye (AE), IntraFrame-IntraEye (AA), and InterFrame-
InterEye (EE), using a represent example shown in Fig. 4.

e In EA, as discussed in Sec. III, the transformation matrix
(T) is determined by the head orientation, which is sampled
from the built-in IMU sensors. We observe that, if the head
orientation does not change across two frames, the five
transforms and the 360° coordinate inputs remain the same,
thereby providing ample opportunities for directly reusing

the compute results from the previous frame (P;), as shown

in @ in Fig. 4.
e AFE comes to play when there is a change in head orientation
in consecutive frames, and we cannot enjoy the oppor-
tunities in EA. For such scenarios, due to the prevailing
relationship between the left and right eye transformation
matrices (77 and Tg), we can further avail the spatial
compute reuse opportunity shown in ® in Fig. 4, by
reconstructing the computation needed for one eye (Pgr)
from the other (Pr).
In AA, the input and output mapping are unique, that is,
no two input coordinates in 360° frame map to the same
coordinates in the 2D FoV frame, thereby eliminating any
compute reuse scope. Although, in principle, for computing
the transformation for consecutive pixels, one can leverage
data value similarity to reduce the computation, in this work
we are not focusing on leveraging any such opportunity.
EE offers little chance of reuse, and can only be leveraged in
rare occasions, where we have oracular knowledge of head
movements. Furthermore, in such cases of head movement,
there is likely to be some reuse from inter-eye reusability
within a frame, rather than inter-frame reusability.

B. Why have EA/AE Opportunities been previously Ignored?

Based on the above discussion, in this work, we focus on
FA and AE opportunities. We are unaware of any existing
implementation or research work that focus on compute reuse
by leveraging across-frames and across-eyes memoization.
In fact, the existing state-of-the-art software stack, such as
GoogleVR-SDK [11], simply uses the IMU sensor inputs
to calculate the updated transformation matrices, then passes
them to the OpenGL [42] engine to process the projection
computation, as shown in Fig. 2b. We would also like to point
that capturing these opportunities is not trivial and cannot be
efficiently done by just optimizing the existing application
layer and software stack. We describe the underlying issues
to address and emphasize the non-trivialities:

e To ease development efforts, state-of-the-art VR applica-
tions reuse APIs provided by OpenGL [24], [42], and
whenever a new frame is decoded, they always invoke the
glDrawFrame twice for both eyes (see line number 257 in
googlevr-video360 application [12]). They do not seem to
leverage the fact that the transformation matrices are unique
for each head orientation and memoizing them will save
re-calculating the transformation matrix (7°) as well as the
projection matrix (P).

Even if they do realize such opportunities, the projection
matrix (P) is very big (= 8 M B, details in Sec. IV-C), and
one edge VR headset cannot afford to memoize them for
all possible head orientations. To address this, we need to
study the impact of head orientation on the computation
and whether we can establish a relationship between the
computation executed for both the eyes to get rid of any
existing redundancies. All these are possible avenues for
optimization and demand a detailed study of the computa-

246

tion pipeline, the workloads, user behavior, etc., to find a

way to further improve the state-of-the-art.

e Furthermore, a software-only approach may not give us
the desired solution as some of these additional execution
cycles, control and data path manipulations may need ar-
chitectural support, especially to reduce memory and power
overheads on edge VRs. Therefore, we believe that, achiev-
ing benefits by exploiting the EA and AE opportunities needs
an extensive study and a careful design, especially from an
architectural perspective, to maximize the benefits.

Driven by the above discussion and the potential optimiza-
tion opportunities presented by EA and AE, we propose Déja
View, an energy-efficient design for 360° video streaming on
VRs. As shown in Fig. 4, Déja View leverages compute lo-
cality to bypass computations and provides significant energy
savings, with the following two-step optimization strategy:

@ For each frame, if the head orientation remains the same,

we take advantage of the EA opportunity.

® If exploiting the EA opportunity is not possible, we take

advantage of the AE opportunity, by performing computation

for only one eye (and construct the result for the other eye).

C. InterFrame-IntraEye (EA) Computation Optimization

We plan to leverage the EA opportunity when the user’s

head orientation does not change. Intuitively, as mentioned
earlier in Sec. III (Fig. 3), @ Transformation and @) Projec-
tion Computation remain unchanged. To understand all the
contributing factors which affect computations, we further
investigate the important inputs of the VR headset. This can
help us identify and isolate proper memoization candidates for
carefully tweaking our design decisions to maximize the reuse
benefits. Further, we also study the overheads introduced by
our design modifications to perform a fair comparison with
the state-of-the-art.
What (features) to Memoize? As discussed earlier, at any
moment during VR video processing, the execution pipeline
is not only impacted by the head orientation, but also by
other features such as video frame rate, video types/semantics
information, pixel values, user interactions. To better under-
stand which of these are the best candidates (features, using
machine learning parlance) for memoization and whether they
are sufficient or not, we next discuss input parameters and
their impact on the computation:

e Head orientation: Any changes in this affect the matrix
T5 as discussed in Tab. I, thus changing the transformation
matrix 7 and eventually leading to re-computation of the
most compute-intensive projection matrix P. Thus, it is a
critical feature in projection computation executions.

e Pixel values: The pixel contents/values (denoted as F in
Fig. 3) matter only during data transfer (from the input
360° frame to the framebuffer) in the projection mapping
stage, after the coordinate mappings (P in Fig. 3) are gener-
ated. Potentially, content-based optimizations (e.g., content
cache [63]) can benefit the data transfer; however, they are
not attractive candidates to leverage compute reuse, which
is the major power-hungry stage (as shown in Fig. 2a). In

TABLE 1I: Video workloads.

No. Video Type (Ca}m m‘ovenr‘lent/focusFl?;I:;e #FramesBit Rate|
of attention direction) (fps) (kbps)

V1| Rhinos [4] [rationary cam, 30 | 3280 | 13462
no focus direction
Stationary cam,

V2| Timelapse [56] [fast-moving objects, 30 2730 | 15581
no focus direction
[Fast-moving cam hooked

V3 [Rollercoaster [35]jin front of a rollercoaster, 29.97| 6194 | 16075

ni-direction focus

Stationary cam,

V4 Paris [51] smooth scene cuts, 59.94| 14629 | 14268
no focus direction

VS| Elephants [5] [2Uonary cam, 30 | 5510 | 16522
uni-direction focus

this work, we are focusing on reusing computation results
rather than reducing the content maintenance/transfer, and
hence do not consider that optimization.

e Video meta-information: This contains the additional infor-
mation, such as frame rates, video semantics/types, etc.,
about the video inputs. This feature can only be used as an
add-on, along with other inputs to further improve compute
reuse scope. For example, if the 360° video frame rate
increases from the typical 30 fps to 60 fps, then one can
potentially leverage this enhanced compute frequency in
conjunction with the head orientation, to further expand
the compute reuse window. Note however that, this meta-
information is not on the data-dependence chain, and we do
not consider it for memoization.

To summarize, among the above discussed features, we

identify head orientation as the only suitable memoization
candidate for boosting the compute reuse scope. Thus, we
memoize both head orientation and its corresponding projec-
tion matrix (i.e., projection computation results) in a memory
buffer, namely, Py, s, and use the head orientation to index
the address/pointer of that Py, ;¢ stored in DRAM.
How Much to Memoize? The occupied DRAM size is mainly
determined by Py, ¢ ¢. In fact, with a VR screen size of 1,000 x
1,000, one Py, sy occupies ~ 8 M B in DRAM. Since this puts
a high demand on memory, one edge VR headset cannot afford
to memoize for all possible head orientations. Thus, we want
to limit the number of Py, s that we need to store.

To address this, we need to carefully decide how much his-
tory is to be memoized for leveraging computation reuse. We
performed a study on the VR video dataset [3] to investigate
the head orientation traces of 20 users watching 5 widely-
variant 360° VR videos (summarized in Tab. II). Typically,
the resolution of the IMU traces can be as high as 20 bits per
field [3], [28]. From the dataset, we report the average reuse
distance, i.e., the average number of preceding frames with
same head orientation to be memoized, and show it in Fig. 5a.
It can be concluded from these results that, memoizing the
last two frames is sufficient for most of the cases. Memoizing
more frames may not bring much additional benefits because
of the high sensitivity of the IMU sensors. Storing only fwo

head orientations (in registers) and their associated Py, s in
the DRAM occupies only ~ 16/ B memory space.

Further, we also observe that, the duration for which the

head orientation does not change for three consecutive frames
sums up to only ~ 28% of the video runtime on average (refer
to Fig. 5b), limiting the memoization opportunities to those
instances. Such low reuse ratio is expected because of the high
sensitivity of the IMU sensors. However, a higher reuse ratio
can be achieved by relaxing the precision of the IMU output.
Furthermore, we study the V3 (i.e., Rollercoaster) video
and examine the trade-offs between (i) quantizing/approximat-
ing the head orientation (thus compromising video quality)
with more reuse, vs. (ii) maintaining the lossless video quality
but with a lower reuse ratio, in Fig. 5c, to provide an intuitive
comparison in different scenarios. Here, we quantify the video
quality with the popular Peak Signal-to-Noise Ratio (PSNR,
normalized to the ground-truth; the higher, the better) [25],
[40]. From Fig. 5c, we can observe that, as the precision
decreases from 4 (resolution is 0.0001) to 1 (resolution is 0.1),
the reuse ratio increases from 18% to 92%; however, the PSNR
drops from 85% to only 19%. This is because low precision
leads to a mis-projection, which fails to reflect the current
head orientation. In this work, we do not want to distort video
quality and thus explore the ground-truth only.
The Effect of EA: With this EA memoization, once a new
head orientation is received, we first search it in the two head
orientation registers. If there is a match, the associated Py, s
will return the memory address of the saved P so that we can
reuse P and skip the entire coordinate projection computation
(refer to @ in Fig. 4), with only 1% overhead w.r.t. baseline.
If not, we have to execute the entire computation as in the
baseline case. As a result, by exploiting the EA scheme on the
second frame, its compute energy consumption can be reduced
to only 1% of that consumed by Baseline.

D. IntraFrame-InterEye (AE) Computation Optimization

In EA, the compute can be bypassed by reusing the pre-
computed results, if the head orientation matches with any of
the two previously memoized head orientations (stored in reg-
isters). However, we also note that these opportunities might
be limited owing to the “non-repetitive” user behavior. De-
spite this variation, there may still be matches/recomputations
within a frame between two eyes, i.e., IntraFrame-InterEye as
shown in () in Fig. 4. To leverage this opportunity, we next
study the coordinate projection results relationship between
left-eye and right-eye. If there exists a simple mechanism to
describe the difference between the two projection matrices of
the two eyes (Pr, and Pg), one can simplify the computation
from matrix multiplications to matrix additions.

Distance Vector Study: Let us further look into the detailed
mapping of a 360° frame (in equirectangular format) onto a
2D FoV frame in the Projection Mapping stage (refer @ in
Fig. 3), at a pixel granularity. The pixel rendered at [z?, y?] on
the left VR screen is mapped from position [(z%69)?, (y360)!]
on the equirectangular 360° frame, as shown in Fig. 6a. Simi-
larly, the pixel value rendered at [x2, 4] on the right VR screen

ERollercoaster

mRhinos
O Paris

OTimelapse
H Elephants

o

N b

(# frame)

Reuse distance
o

TNOTNONOOO N
~ -

OITLONODNO
v

Avg.

Users
(a) Reuse distance is just 2 for most of cases

© 1007, [LReuseRatio m PSN

ot 80%

= 2 60%

EL 40%

§ g 20%

AR R . o 0%
AT AP {PTY © & G 4 3 2 1

Video Precision

(b) Reuse ratio (c) Precision vs. reuse ratio tradeoffs

Fig. 5: In EA, (a) shows that, on average, how many frame(s) from the current frame to a previous one with the same head orientation,
as denoted as reuse distance. This indicates two memoization buffers are sufficient. (b) plots among all the head orientations, how
many can be memoized by these two buffers. (c) illustrates the trade-off between the precision level and reuse ratio.

deavetlt?

S

. Distance-x
Distance-x

w-R(x") &m - o
10 10
0 10 20 0 20 40 60
Distance-y Distance-y
225 —distanceY —distanceX 280 i Y i
815 240
55 £0
2 5 80
B cooorcnon~e -20
J3IG8SIBRS S 883885832 Y
= FEYT-&N AIcBS]I¥BoS N
Input 360 Equirectangular Frame 15 Pixel ID Pixeld™ —
(a) Distance vector. (b) (0.00, 1.57, -0.73) (c) (0.52, 1.05, -0.73)

Fig. 6: In AE, distance vector (a) patterns with two different
head orientations (Y aw, Pitch, Roll) in (b) and (c).

is mapped from position [(236)%, (y359)9] on the 360° frame.

To study the relationship between the coordinate projection re-
sults between both eyes, for the same two coordinates [z?, ']
on both 2D FoV frames, we determine the distance vector
(CZ)Z between their equirectangular counterparts, represented
in Equation 3:

()" = [(z"); = (@), (y 3)
The knowledge of distance vector d is critical to explore the
AFE opportunity, because if it was known apriori, then we only
need to process the entire projection transformation to generate
the mapping results (Pr) for one eye, and then deduce the
coordinate projection computation results for the other (Pg) by
simply adding d with Py This encourages us to further study
whether this distance vector changes with head orientation or
not, and also whether it is invariant for any particular frame —
if yes, then how? To investigate these questions, we examine
how the distance vector varies within a same frame, with two
different head orientations, shown in Fig. 6b and Fig. 6c.
On plotting the distance vectors for each row of the FoV
frames, we observe a recurring ellipse pattern. The intuitive
reason behind this ellipse pattern is related to the built-in
features of the equirectangular format. Second, for different
head orientations, their distance vectors plotted in Fig. 6b
and Fig. 6c retain the same ellipse behavior but different
shapes. Furthermore, by exacting the x (or y) coordinate in the
distance vector, the above ellipse pattern can be represented
as Az = a-cos(0) and Ay = b- sin(0) + ¢, where 6 € [0, 7],
and a, b, ¢ vary with head orientation change but remain same

36())i

T

SV

248

for each row in the same frame. Additionally, there are few
pixel positions at the frame edges which can only be viewed
by one eye (denoted as exclusive), which cannot be captured
by the above pattern. These pixels amount to only 2.7% of the
entire FoV frame.

How to capture the pattern and utilize the pattern? Due
to this inherent nature of compute, the pattern between left
eye and right eye can be easily captured by profiling the
distance vector for only the first row on the screens: A =
[#0 — &), 5% — 7], as shown in line number 2 in Algorithm 1.
With the learned pattern, the remaining ith rows for the right-
eye (¢ € [1,n — 1], where n is the height of the VR screen)
can be reconstructed by using the projection computation
results of the left-eye ([, 7}]) and the pattern A, as shown
in line 6 in Algorithm 1. Note that, as discussed above,
2.7% exclusive pixel coordinates for the right-eye cannot be
reconstructed by this algorithm. Therefore, only for this small
number of pixel coordinates, the entire coordinate projection
computations need to be processed.

Algorithm 1 Algorithm to capture and utilize the pattern A

Input: ["0 el g0l left-eye projection (all rows)

Input: [72, §°]: right-eye first-row’s projection

Output: [#17~1 17 ~1]: right-eye projection
1: procedure CAPTUREPATTERN(JL,, y,., xl, gj?)
2 [AgAy) =[5 —)
3 return A = [A,, A
4: end procedure
5. procedure UTILIZEPATTERN(Z, "', 41", A)
6 [j»qun 17?7%71 1]:=[—'117L1+Ax’—*1n 1+Ay}
7 return[#1l:in—1 g&:n 1]
8

: end procedure

The Effect of AE: with this AE optimization, for the right eye,
the intensive projective transformation computations can now
be short-circuited by light-weight Add operations. As a result,
by exploiting the AE scheme on the first frame in Fig. 4®),
its compute energy can be reduced to only 62.35% of that
consumed by baseline.

Resultf1].R)2440)
sub Delta _. | ||
2x144 e
ResuliL 2x14b 0 5
esult.. S~
2x14b 28
P 14
s
g
ma]
o Y
= =
Sighal E g P e
¢ VAN
/ .. ResultlL ResultR Signal /
N T
3 — Z
2 Head Miss Original
] orientation—| ompute Engine
8 (OCE)
Hit (i-2)th | Hit (-2)th ™ Signal to bypass compute | l
Hem Bl Horw Nires D D £ e B = 1
E | :
| HE EE [
""" ;“" elleletelalatele Replace ‘“[En;“"‘
i—2 i—1
PL2 B buf

Fig. 7: The proposed EA and AE design blocks implementation.

E. Design Considerations and Implementation

We designed both our schemes as modular and scalable
additions to the existing pipeline (refer the EA and AE blocks
shown in Fig. 7). The EA block is placed before the original
compute engine (OCE, e.g., GPU) to opportunistically bypass
the projection computation. However, when AE cannot take
advantage of memoization due to a head orientation change,
then the compute is distributed across the OCE (51%) and AE
block (49%); to be precise, only the entire coordinates on the
left screen and the first row on the right-screen are processed
by the OCE - the remaining rows on the right screen are
reconstructed by the less power-hungry AE block.
Implementation Details: We abstract the EA and AE design
blocks irrespective of the underlying hardware SoCs, and
plot them in Fig. 7. In the Baseline, the OCE takes the
head orientation as its input, processes the entire projection
transformation for each pixel coordinate in the FoV region,
and then stores the compute results for both eyes in DRAM
for the subsequent mapping stage from the 360° frame to
framebuffer. In our EA design, the last two head orientations
are cached in local SRAM (Compl and Comp2 in the EA
block) and their corresponding projection computation results
are stored in DRAM (]P’é;? 7 and]PZ;} f). Once the current head
orientation is received, the EA block first compares it with the
memoized Compl and Comp2. If a match is detected, then
the corresponding]P’i;?f or IP’};;J% f buffer address pointer is
directly returned. If no match is found, the OCE is invoked for
the entire left eye and only the first row for the right eye, and
then terminates by an external signal sent from our AE block,
and bypasses the computation for rest rows. In the proposed
AE design, the A pattern buffer is first initialized by subtract-
ing Result[1].R from Result[1].L, as shown in the AE block
in Fig. 7. After the pattern between left eye and right eye is
captured, an external signal is propagated to the OCE to bypass
the further original projection computations. Consequently,
the projection computation results (Result[2 : n].R) for the
remaining rows of the right eye can be easily reconstructed
by adding Result[2 : n].L and the A.

We prototyped our proposed EA and AE design blocks using
System Verilog in Xilinx Vivado 2019.2 [58], targeting the Xil-

inx Zyng-7000 SoC ZC706 board running at I00MHz (same as
state-of-the-art EVR [28]). The evaluation shows that our EA
and AE designs consume only 2mW and 65m W, respectively,
and are able to deliver around 100 fps, which is more than
sufficient for the current VR application requirements.

V. EVALUATION

We compare our proposed FA and AE designs with six
different VR streaming setups, by evaluating the computation
and the total energy consumption. In this section, we first
describe the experimental platforms, datasets and measurement
tools used in this study. We then analyze the results measured
using these platforms.

A. VR Design Configurations

We evaluate the following six configurations of VR stream-
ing to demonstrate the effectiveness of Déja View:

o Baseline (SW): We use a mobile GPU [36] to evaluate the
baseline VR video streaming. This GPU is commonly used
in contemporary VR devices (Oculus [39], Magic Leap [16],
and GameFace [47], etc.). Note that, with this setup, the
projection computation is triggered for each frame, and also
per projection computation invocation includes computation
of two projection matrices for the two eyes.

e PTU (HW): A recent optimized solution [28] utilizes
a more energy-efficient hardware accelerator, i.e., Projec-
tive Transformation Unit (PTU), to process the compute-
intensive projection operations. This is the most recent VR
design that uses an FPGA for accelerating the computation.
We consider this design as the state-of-the-art. However,
PTU only optimizes the energy per compute through accel-
eration, with exactly the “same amount of computations” as
in the baseline design. In contrast, as explained earlier in
Sec. IV, our design skips a huge amount of computations
by exploiting the FA and AE.

o EA (SW): We evaluate the Inter Frame, IntraEye(EA)
design on a GPU, as shown in the EA block in Fig. 7. Note
that, this implementation is purely done in software, without
any hardware modification.

e AE (SW): We evaluate the IntraFrame, Inter Eye(AE)
design on a GPU, and bypasses the projection computation
for the right-eye by reconstructing the results with a learned
pattern, as shown in the AE block in Fig. 7.

o EA+AE (SW): The above two designs can be seamlessly
integrated into the original SoC, with the EA block placed
before the GPU and the AE block after the GPU. We denote
this design combination as EA+AE.

o PTU+EA+AE (HW): In addition to the GPU-based design,
our proposed designs can also be integrated into any other
hardware platforms, including the FPGA-based PTU [28].
The PTU+EA+AE implementation combines the PTU and
our FA+AE optimizations together.

B. Experimental Platforms and Datasets

Evaluation Platforms: The Baseline GPU platform described
in Fig. 8 consists of a 512-core Volta GPU, a 4Kp60 HEVC

codec, 16GB LPDDR4x memory, 32GB eMMC storage, and
a power management unit (PMU) that exposes the real-time
power traces to users. To evaluate our design implementation
in hardware, we use an FPGA platform, which is the same
as the state-of-the-art PTU [28], with a 100MHz system
clock, onboard configuration circuitry, 2x16MB Quad SPI
Flash, 1GB DDR2 Component Memory, and also a hardware
PMU. A full seat Vivado design suite [58], [59] is utilized
to synthesize the design and report the power and timing
numbers. We collect the display traces from a 5-inch (130
mm) 16:9 1080p (1920 x 1080) AMOLED display [54],
which is similar to the Samsung Gear VR display [45].

360° VR Video Dataset: We
use the published 360° Head
Movements Dataset [3], which
includes head movement traces
from 59 users viewing seven
widely-variant 360° VR videos.®
The meta information of these VR
videos are listed in Tab. II.

Connector to Display

N Jetson TX2 GPU

C. Experimental Results

Fig. 8: Evaluation proto-
type — Nvidia Jetson TX2
GPU board [36] (PMU:
Power Management Unit).

We present and compare the
energy consumption of the pro-
jection computation and the cor-
responding video quality impact,
when running the five VR videos
described in Tab. II, with the six
design configurations discussed in Sec. V-A. These energy
results are normalized w.r.t. the Baseline method. Later, we
show quality results compared to the baseline design. In
addition, we also discuss the our design’s versatility on other
360° video representation formats.
Energy Savings: Overall, our software implementation
EA+AE on GPU can save 54% computation, which translates
to 28% total energy savings, compared to the baseline. Com-
pared to the state-of-the-art hardware-modified PTU, our soft-
ware implementation can still provide 16% computation and
8% total energy savings. Our FPGA results can further provide
18% more computation and 9% more total energy savings,
compared to the state-of-the-art design. More specifically, for
each of the five video inputs (shown in the x-axis in Fig. 9),
we compare the compute energy consumption incurred by six
schemes with left-eye and right-eye breakdown, and present
the respective compute energy in the left y-axis Fig. 9, which is
further translated to the total end-to-end energy savings shown
in the right y-axis in Fig. 9. From this figure, we observe that:
e Baseline: In Baseline, since there are no optimizations, the

projection operations for both eyes consume equal energy

(on GPU), i.e., each eye’s compute consumes 50% energy.
e FA: With our proposed EA scheme, we fully exploit the

temporal compute reuse across frames with head orien-

tations unchanged, with a negligible overhead (1% extra

%Due to space limitation, here we only present 5 videos and 20 users.

250

overhead, as discussed in Sec. IV-C). In this scheme, one
can observe from Fig. 9 that, the compute consumes less
energy than the Baseline, i.e., only 72% on average. This
occurs as a result of reusing the memoized results which
have been computed and stored previously, ranging from
21.63% (Rollercoaster video) to 50.28% (Paris
video). By applying the EA optimization itself, on an
average, the energy benefit is translated to 14% end-to-end
energy savings, as shown on the right y-axis in Fig. 9.

e AE: For those head orientations not memoized, we further
exploited the spatial compute reuse across eyes within a
frame. In the proposed AE scheme, one can observe that
for the left-eye computation, the energy consumption is the
same as in the Baseline. Recall from the AE design logic in
Fig. 7 that, the results of the left-eye are generated by the
Original Compute Engine (GPU in this case) and fed into
the AE block with the first row for the right-eye, to store
the pattern into the Delta Buffer. After that, the computation
for the right-eye can be easily reconstructed by the left-
eye’s compute results and the pattern, which only consumes
13% energy compared to the Baseline. Therefore, as shown
in Fig. 9, our proposed AE optimization alone saves 37%
compute energy compared to the Baseline, translating to
19% total energy saving.

e EA+AE: With both EA and AE optimizations deployed, as
shown in Fig. 9, on average, the left-eye compute consumes
only 36% energy w.r.t. the Baseline, with only 10% for the
right-eye, translating to 28% total energy saving.

e PTU: In the current state-of-the-art scheme, which is
the hardware-based PTU [28], they explored the energy-
efficient hardware accelerator (namely, PTU) to replace
power-hungry GPU. Due to this, one can observe from
Fig. 9 that, to execute the same amount of the projection
computation, the PTU scheme consumes only 62% of
energy w.r.t. the Baseline, which contributes to 20% total
energy saving.

o PTU+EA+AE: Note that, our proposed EA and AE designs
are “independent” of the underlying hardware used. As a
result, they can also be deployed on top of the PTU-based
SoC. This can be further asserted from Fig. 9, that only
28% of the compute energy is consumed w.r.t. the Baseline
(22% for the left-eye, 6% for the right-eye), translating to
a 37% total energy saving.

Impact on Quality: The proposed AE scheme captures the
pattern between both the eyes with only the 1st row of the
frame, and then uses the same pattern to bypass the projection
computation for the remaining rows of the right eye. Note that,
as shown in Fig. 6b and 6c, the ¢th-row’s pattern may not be
exactly the same as the jth-row. This is due to the floating-
point hardware rounding (to find the nearest-neighbor integer
coordinates) and the transformation matrix’s various weights
are dependent on the row numbers. To simplify our AE design,
we simply reuse the pattern captured in the 1st row, and do not
consider the deeper information related to the row numbers.
To study how this decision affects the video quality, we report

2] 57 O, 1

. 100% mL SR = ATaIEnergySavmg 100% o
D c 80% N 80% £
2.260% 60% 3
W 2 40% 40% 2
5 720% 20% D
‘E"g 0% 0% 2
o w|e w|e w|e w|e w o w w
8° £ <|£ <|£ <| £ <|£ < | < 5
[] [[[[[} 4
< < < < < 5]
2 i 38 i3 4 73 P
P 2 P 2 2 P -

o o o o o o

Rhinos Timelapse Rollercoaster Elephants Avg.

Fig. 9: Normalized energy consumption and savings with different configurations and video inputs. The left y-axis shows the compute
energy consumption normalized to the compute energy consumption in Baseline (the lower, the better). The right y-axis shows the
amount of energy savings compared to the end-to-end total energy consumption in Baseline (the higher, the better).

80 10 —Delta-y Delta-x
o 8
60 o5
2 So [l"—m." | =
aZ: 40 o] S = —
2 &N
20 -10\—<rr~onwaaNmmq-<rv~omwoaN
SIR8-8328ReESN8EgR
0 NToeo-22CRRAIRRSIAS
Vi V2 V3 V4 V5 Avg. Pixel ID

(a): PSNR (b): Pattern in CubeMap format

Fig. 10: Sensitivity study. (a): Video quality metric (PSNR [25],
[40]) across video inputs. (b): The pattern between left-eye and
right-eye in the front face in Cube Mapping [41].

the averaged PSNR [25], [40] of the five videos represented in
Equirectangular format [52] in Fig. 10@. These results indicate
that, although we ignore the row-number related information,
the resulting PSNR is still sufficient (47.71 on average) for
VR video applications [26], [62].

General Applicability of Déja View: The above discussion
assumes that the Equirectangular format [52] is used to
represent the 360° videos. We want to emphasize that our
underlying ideas behind the proposed FA and AE (designed
for the Equirectangular format) can work irrespective of the
representation formats used [48]. For example, similar to the
distance vector study in Fig. 6b and Fig. 6¢c, we plot the
distance pattern between both eyes of a 360° frame using the
CubeMap format [41] in Fig. 10®. Clearly, a pattern (different
from the e11ipse observed with the Equirectangular format)
exists in A, and A,. Note that the pattern behavior also
depends on the row numbers. This again validates the quality
impact discussed earlier. Putting together, these above observa-
tions indicate that, with very little change (to capture the row-
dependent information) in our original AE design, our idea is
able to work with any representation format. This motivates
us to target on further improving quality across video formats
by capturing the information related to row numbers in future.

VI. RELATED WORK

Optimizations in Planar Video Streaming: Pixel-similarity
based optimizations [38], [57] have been exploited to improve

251

performance in 2D rendering. For example, ATW [38] is
a post-render technique, which sits between rendering (our
focus) and display. To reduce the impact by the long-latency
from rendering, ATW either guesses the next head-orientation
or only considers the rotation (no translation), then skews two
already-rendered planar FoV frames to remove judders [43].
Note that, this computation still happens in planar-format, and
remains the same between two-eyes for one frame. Targeting
on ATW, PIMVR [57] proposed a 3D-stacked HMC to re-
duce Motion-to-Photon latency and off-chip memory accesses.
Motivated by the observation that the ATW transform matrix
generated by rotation on a 2D image is shared by both eyes,
PIMVR [57] calculated the transform matrix only once, and
scheduled two tiles (one for left-eye one for right-eye) with
the same coordinate to the same vault in HMC. However, in
contrast to the 360° VR video streaming, ATW is in 2D planar
format, and share the same compute results across eyes. These
two characterizations indicate that such optimizations in the
planar world are infeasible to be applied in 3D PT-rendering.

Hardware assist on VRs: Various energy-efficient hardware
modifications [28] have been proposed to reduce energy con-
sumption in the VR domain. For example, PTU [28] uses a
hardware-accelerated rendering unit (HAR) to mitigate energy-
overheads due to on-device rendering. In this work, we pro-
pose two optimizations, i.e., EA and AE, which can be coupled
with the existing 360° video compute engine (without any
hardware modifications), and are even more energy efficient
than the existing state-of-the-art PTU (discussed in Sec. V).
Moreover, EA and AE can further be integrated into PTU to
save even more energy.

Pixel Content Reuse on VRs: Pixel value reuse has been
well-studied in VRs [17], [22], [23], [29], [33], [50], [60],
[66] to improve throughput and performance. For example,
DeltaVR [29] adaptively reuses the redundant VR pixels
across multiple VR frames to improve performance. These
works focus on the pixel content reuse, which is the last
stage (Projection Mapping) in the 360° video projection
pipeline (discussed in Sec IIT). However, none of these existing
schemes leverage reducing the large amounts of “redundant”
computations in the preceding stage (projection computation).

Our proposed EA and AE designs focus on these intensive
projection computations, and as such are orthogonal to these
prior efforts. In our future work, we would like to further
explore the benefits by incorporating them into our design.
Head Orientation Prediction for 360° Video Streaming:
To optimize both performance and energy, researchers have
leveraged the powerful remote rendering engines on cloud to
predict the next head orientation for the VR clients [2], [6],
[18], [23], [30]-[32]. FlashBack maintains a storage cache of
multiple versions of pre-rendered frames, which can be quickly
indexed by head orientations [2]. In comparison, Semantic-
Aware-Streaming (SAS) exploits the semantic information
inherent in a VR video content to precisely predict users’
next head orientations [28]. These optimizations rely on the
powerful cloud with a high bandwidth access, which may not
be always available. However, our work focuses on edge-side
optimization, which can also be implemented as a comple-
mentary add-on in such cloud-assisted systems.

Energy Optimizations in Conventional Video Processing:
In the existing planar video processing pipeline on mobile de-
vices, prior works have looked at memory [1], [63], [64], dis-
play [13]-[15], [34] and codec [49], [65], and identified "mem-
ory” as the major energy bottleneck. For example, AFBC [1]
is proposed to efficiently compress video streams between the
processing pipeline blocks. MACH [63] integrates a display
cache to reduce the amount of memory bandwidth. Although,
these techniques can potentially save memory usage/energy
for 360° VR videos, as discussed in earlier sections, due to
inherent nature of 360° video processing, which introduces
additional overheads for projection computation, we identify
compute to be the major energy bottleneck. Hence, these
memory optimizations are not applicable to reduce compute
energy on 360° VR videos.

VII. CONCLUDING REMARKS

360° VR videos have become the next trend in entertain-
ment media and soon will become an integral part of the
technology influencing many application domains. However,
unlike planar videos, the 360° VR video streaming demands
significantly more compute power from a battery-operated
headset. Thus, prior research has proposed using accelerators
for optimizing the computations.

In contrast, this paper attempts to exploit available ‘“re-
dundancies” in computation by analyzing the VR projection
computation pipeline. Specifically, we propose and evaluate in
detail two pluggable schemes (for taking advantage of intrinsic
temporal-spatial reuse), and prototype them as microarchitec-
tural augmentations using FPGA. Our experimental results
show 34% computation reduction and 17% energy savings,
compared to the state-of-the-art [28]. In the future, we would
also like to explore other opportunities to improve energy
efficiency and tune the computation pipelines to cater more
towards VR applications. We believe, given that the current
VR devices are battery-backed, these kinds of energy savings
and performance improvements will not only enable the users
to experience longer videos, but also encourage both industry

252

and academia to work further on improving the pipeline to
make VR more pervasive and versatile.

ACKNOWLEDGMENT

This research is supported in part by NSF grants #1763681,
#1629915, #1629129, #1317560, #1526750, #1714389,
#1912495, and a DARPA/SRC JUMP grant. We would also
like to thank Dr. Jack Sampson, Dr. Aasheesh Kolli and Dr.
Timothy Zhu for their feedback on this paper.

REFERENCES

Arm Holdings, “Arm Frame Buffer Compression (AFBC).” “https:
//developer.arm.com/architectures/media-architectures/afbc”, 2019.

K. Boos, D. Chu, and E. Cuervo, “FlashBack: Immersive Virtual Reality
on Mobile Devices via Rendering Memoization,” in Proceedings of the
14th Annual International Conference on Mobile Systems, Applications,
and Services, ser. MobiSys *16, 2016, pp. 291-304.

X. Corbillon, F. De Simone, and G. Simon, “360-Degreee Video Head
Movement Dataset,” in Proceedings of the 8th ACM on Multimedia
Systems Conference, 2017, pp. 199-204.

Discovery, “Caring for Rhinos: Discovery VR (360 Video).” “https:/
www.youtube.com/watch?v=7IWp875pCxQ”, 2019.

Discovery, “Elephants on the Brink.” "https://www.youtube.com/watch?
v=2bpICICIAIg”, 2019.

T. El-Ganainy and M. Hefeeda, “Streaming Virtual Reality Content,”
CoRR, vol. abs/1612.08350, 2016. [Online]. Available: http://arxiv.org/
abs/1612.08350

Facebook, “Facebook 360,” “https://facebook360.fb.com/”, 2019.
Facebook Inc., “Facebook Oculus,” "https://www.oculus.com/”.
Google, “360° videos - Google Arts & Culture,” "https://artsandculture.
google.com/project/360-videos”.

Google, “More Ways to Watch and Play with AR and VR.” “https:/
blog.google/products/google- vr/more-ways- watch-and-play-ar-and-vr”.
Google, “Build Virtual Worlds.” “https://developers.google.com/vr”,
2019.

Google, “GVR Android SDK Samples - Video360.” https://github.com/
googlevr/gvr-android-sdk/blob/master/samples/sdk- video360/src/main/
java/com/google/vr/sdk/samples/video360/VrVideoActivity.java#L.257",
2019.

M. Ham, I. Dae, and C. Choi, “LPD: Low Power Display Mechanism
for Mobile and Wearable Devices,” in Proceedings of the USENIX
Conference on Usenix Annual Technical Conference (ATC), 2015, pp.
587-598.

K. Han, Z. Fang, P. Diefenbaugh, R. Forand, R. R. Iyer, and D. Newell,
“Using Checksum to Reduce Power Consumption of Display Systems
for Low-motion Content,” in 2009 IEEE International Conference on
Computer Design, 2009, pp. 47-53.

K. Han, A. W. Min, N. S. Jeganathan, and P. S. Diefenbaugh, “A
Hybrid Display Frame Buffer Architecture for Energy Efficient Display
Subsystems,” in International Symposium on Low Power Electronics and
Design (ISLPED), 2013, pp. 347-353.

T. HARDWARE, “Magic Leap One Powered by Nvidia Tegra TX2,
Available Summer.” “https://support.oculus.com/248749509016567/”,
2019.

B. Haynes, A. Mazumdar, A. Alaghi, M. Balazinska, L. Ceze, and
A. Cheung, “LightDB: A DBMS for Virtual Reality Video,” Proc. VLDB
Endow., pp. 1192-1205, 2018.

J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han, “Rubiks: Practical
360-Degree Streaming for Smartphones,” in Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and
Services, 2018, pp. 482-494.

HEADJACK, “The Best Encoding Settings For Your 4k 360 3D
VR Videos + FREE Encoding Tool,” https://headjack.io/blog/best-
encoding-settings-resolution-for-4k-360-3d-vr-videos/”.

C. Heather Bellinii, W. Chen, M. Sugiyama, M. Shin,
S. Alam, and D. Takayama, “Virtual and Augmented Reality.”
“https://www.goldmansachs.com/insights/pages/technology-driving-
innovation-folder/virtual-and-augmented-reality/report.pdf”, 2016.

L. F. Hodges, “Tutorial: Time-multiplexed Stereoscopic Computer
Graphics,” IEEE Computer Graphics and Applications, pp. 20-30, 1992.

—_——
e

[10]
[11]

[12

[13]

[14]

[15]

[16]

[17]

[18]

[19

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]
[44]
[45]
[46]

[47]

A. Holdings, “White Paper: 360-Degree Video Rendering.”
“https://community.arm.com/developer/tools-software/graphics/b/
blog/posts/white- paper-360-degree- video-rendering”, 2019.

J. Huang, Z. Chen, D. Ceylan, and H. Jin, “6-DOF VR Videos with a
Single 360-camera,” 2017 IEEE Virtual Reality (VR), pp. 37-44, 2017.
A. Inc., “Rendering Omni-directional Stereo Content.” “https:/
developers.google.com/vr/jump/rendering-ods-content.pdf”, 2019.

N. INSTRUMENTS, “Peak Signal-to-Noise Ratio as an Image Quality
Metric.” “https://www.ni.com/en-us/innovations/white-papers/11/peak-
signal-to-noise-ratio-as-an-image-quality-metric.html”, 2019.

B. C. Kim and C. E. Rhee, “Compression Efficiency Evaluation for
Virtual Reality Videos by Projection Scheme,” IEIE Transactions on
Smart Processing & Computing, pp. 102-108, 2017.

S. M. LaValle, “The Geometry of Virtual Worlds.” "http://msl.cs.uiuc.
edu/vr/vrch3.pdf”, 2019.

Y. Leng, C.-C. Chen, Q. Sun, J. Huang, and Y. Zhu, “Energy-efficient
Video Processing for Virtual Reality,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2019, pp. 91-103.

Y. Li and W. Gao, “DeltaVR: Achieving High-Performance Mobile VR
Dynamics through Pixel Reuse,” in 2019 18th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), 2019,
pp. 13-24.

L. Liu, R. Zhong, W. Zhang, Y. Liu, J. Zhang, L. Zhang, and
M. Gruteser, “Cutting the Cord: Designing a High-quality Untethered
VR System with Low Latency Remote Rendering,” in Proceedings of the
16th Annual International Conference on Mobile Systems, Applications,
and Services, ser. MobiSys *18, 2018, pp. 68-80.

X. Liu, Q. Xiao, V. Gopalakrishnan, B. Han, F. Qian, and M. Varvello,
“360° Innovations for Panoramic Video Streaming,” in Proceedings of
the 16th ACM Workshop on Hot Topics in Networks, ser. HotNets-X VI,
2017, pp. 50-56.

B. Luo, F. Xu, C. Richardt, and J. Yong, “Parallax360: Stereoscopic 360°
Scene Representation for Head-Motion Parallax,” IEEE Transactions on
Visualization and Computer Graphics, pp. 1545-1553, 2018.

A. Mazumdar, T. Moreau, S. Kim, M. Cowan, A. Alaghi, L. Ceze,
M. Oskin, and V. Sathe, “Exploring Computation-communication Trade-
offs in Camera Systems,” in 2017 IEEE International Symposium on
Workload Characterization (IISWC), 2017, pp. 177-186.

H. Miao and F. X. Lin, “Tell Your Graphics Stack That the Display Is
Circular,” in Proceedings of the 17th International Workshop on Mobile
Computing Systems and Applications, ser. HotMobile *16, 2016, pp. 57—
62.

mooovr, “RollerCoaster at Seoul Grand Park.” https://www.youtube.
com/watch?v=81sB-P8nGSM”, 2019.

Nvidia, “JETSON AGX XAVIER AND THE NEW ERA OF AU-
TONOMOUS MACHINES.” ”http://info.nvidia.com/rs/156-OFN-742/
images/Jetson_AGX_Xavier_New_Era_Autonomous_Machines.pdf”,
2019.

Oculus, “Rendering to the Oculus Rift,” "https://developer.oculus.com/
documentation/pcsdk/latest/concepts/dg-render/”.

Oculus, “Asynchronous TimeWarp (ATW).” “https://developer.
oculus.com/documentation/mobilesdk/latest/concepts/mobile-timewarp-
overview/?locale=en_US”, 2019.

Oculus, “Oculus Rift and Rift S Minimum Requirements and Sys-
tem Specifications.” https://www.tomshardware.com/news/magic-leap-
tegra-specs-release,37443.html”, 2019.

OpenCV, “Similarity check (PNSR and SSIM) on the
GPU.” https://docs.opencv.org/2.4/doc/tutorials/gpu/gpu-basics-
similarity/gpu-basics-similarity.html”, 2019.

OpenGL, “Cubemaps - Learn OpenGL.” https://learnopengl.com/
Advanced-OpenGL/Cubemaps”, 2019.

OpenGL, “The Industry’s Foundation for High Performance Graphics.”
“https://www.opengl.org/”, 2019.

O. Rift, “Oculus Rift - How Does Time Warping Work?” https://www.
youtube.com/watch?v=WvtEXMIQQtI”, 2019.

Samsung, “Samsung Gear VR,” ”https://www.samsung.com/global/
galaxy/gear-vr/”.

Samsung, “Explore New Dimensions.” “https://www.samsung.com/
global/galaxy/gear-vr/#display”, 2019.

SkySports, “Sky VR Virtual Reality,” ”https://www.skysports.com/
mobile/apps/10606146/sky-vr-virtual-reality”, 2019.

Tom’s HARDWARE, “Nvidia’s Jetson TX2 Powers GameFace
Labs’ Standalone VR Headset.” “https://www.tomshardware.com/news/
gameface-labs-standalone-steamvr-headset,37112.html”, 2019.

253

[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]
[61]

[62]

[63]

[64]

[65]

[66]

R. Toth, J. Nilsson, and T. Akenine-Moller, “Comparison of Projection
Methods for Rendering Virtual Reality,” in Proceedings of High Perfor-
mance Graphics, ser. HPG ’16, 2016, pp. 163-171.

C.-H. Tsai, H.-T. Wang, C.-L. Liu, Y. Li, and C.-Y. Lee, “A 446.6
K-gates 0.55-1.2 V H. 265/HEVC decoder for next generation video
applications,” in 2013 IEEE Asian Solid-State Circuits Conference (A-
SSCC), 2013, pp. 305-308.

A. Vlachos, “Advanced VR Rendering in Valve.” “http:
//media.steampowered.com/apps/valve/2015/Alex_Vlachos_Advanced_
VR_Rendering_GDC2015.pdf”, 2019.

F. G. VR360, “Virtual guided tour of Paris.” "https://www.youtube.com/
watch?v=sJxiPiAaB4k”, 2019.

Wikepedia, “Equirectangular Projection.” “https://en.wikipedia.org/wiki/
Equirectangular_projection”, 2019.

Wikipedia, “Pixel 2,” “https://en.wikipedia.org/wiki/Pixel_2".
Wikipedia, “Active-Matrix Organic Light-Emitting Diode,” “https://en.
wikipedia.org/wiki’/AMOLED”, 2019.

Wikipedia, “Virtual Reality.” “https://en.wikipedia.org/wiki/Peak_
signal-to-noise_ratio#:~:targetText=Typical\ %20values%20for%
20the%20PSNR, 20\ %20dB %20t0%2025%20dB.”, 2019.

B. Worldwide, “NYC 360 Timelapse.” “https://www.youtube.com/
watch?v=CIw8R8thnm8”, 2019.

C. Xie, X. Zhang, A. Li, X. Fu, and S. Song, “PIM-VR: Erasing Motion
Anomalies In Highly-Interactive Virtual Reality World with Customized
Memory Cube,” in Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA), 2019, pp. 609-622.
Xilinx, “Vivado Design Hub - Installation and Licensing,”
“https://www.xilinx.com/support/documentation-navigation/design-
hubs/dh0013-vivado-installation-and-licensing-hub.html”.

Xilinx, “Vivado Design Suite - HLx Editions.” "https://www.xilinx.com/
products/design-tools/vivado.html”, 2019.
xinreality, “Asynchronous Spacewarp.”
Asynchronous_Spacewarp”, 2019.
YouTube, “Get Started with YouTube VR.” "https://support.google.com/
youtube/answer/7205134?hl=en”, 2019.

V. Zakharchenko, K. P. Choi, and J. H. Park, “Quality metric for
spherical panoramic video,” in Optics and Photonics for Information
Processing X, K. M. Iftekharuddin, A. A. S. Awwal, M. G. Vézquez,
A. Miérquez, and M. A. Matin, Eds., International Society for Optics
and Photonics. SPIE, 2016, pp. 57 — 65.

H. Zhang, P. V. Rengasamy, S. Zhao, N. C. Nachiappan, A. Sivasub-
ramaniam, M. T. Kandemir, R. Iyer, and C. R. Das, “Race-to-sleep
+ Content Caching + Display Caching: A Recipe for Energy-efficient
Video Streaming on Handhelds,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2017, pp. 517-531.

H. Zhang, S. Zhao, A. Pattnaik, M. T. Kandemir, A. Sivasubramaniam,
and C. R. Das, “Distilling the Essence of Raw Video to Reduce Memory
Usage and Energy at Edge Devices,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2019, pp. 657-669.

D. Zhou, S. Wang, H. Sun, J. Zhou, J. Zhu, Y. Zhao, J. Zhou,
S. Zhang, S. Kimura, T. Yoshimura, and S. Goto, “14.7 a 4gpixel/s
8/10b h.265/hevc video decoder chip for 8k ultra hd applications,” in
2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016,
pp. 266-268.

Y. Zhu, A. Samajdar, M. Mattina, and P. Whatmough, “Euphrates:
Algorithm-SoC Co-design for Low-power Mobile Continuous Vision,”
in Proceedings of the International Symposium on Computer Architec-
ture (ISCA), 2018, pp. 547-560.

“https://xinreality.com/wiki/

