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Ou — HO*u + udu = 0, (r,t) € R xR, (L.1)
u(z,0) = uo(x), '
where v = u(x,t) is a real-valued function, and H denotes the Hilbert transform
1 1
Hf(2) =~ p.V.(; * f) (x)
(1.2)

— Ly / @@:(—wgn@ﬂa)wx)

T €l0
ly|>e

The BO equation was first deduced by Benjamin [3] and Ono [37] as a model for long
internal gravity waves in deep stratified fluids. Later, it was shown to be a completely
integrable system (see [2], [6] and references therein). In particular, real solutions of the
IVP (1.1) satisfy infinitely many conservation laws, which provide an a priori estimate
for the H"/2-norm, n € Z+.

The problem of finding the minimal regularity measured in the Sobolev scale H*(R),
s € R, required to guarantee that the IVP (1.1) is locally or globally well-posed (WP) in
H?(R) has been extensively studied, see [1], [13], [38], [21], [18], [41], [5] and [12] where
global WP was established in HY(R) = L?(R), (for further details and results regarding
the well-posedness of the IVP (1.1) we refer to [31] and to [11] for a different proof of
the result in [12]).

We remark that a result established in [36] (see also [22]) implies that no well-
posedness result in H*(R), s € R, for the IVP (1.1) can be established by using solely a
contraction principle argument.

It was first shown in [13] and [14] that polynomial decay of the data may not be
preserved by the (real) solution flow of the BO equation. The results in [13] and [14] which
present some unique continuation properties of the BO equation have been extended to
fractional order weighted Sobolev spaces and have shown to be optimal in [8] and [9].
More precisely, using the notation

Zor = H*(R) N L*(|z|*"dx), Zs, = Zs, 0 {f € L}(R) : f(0) = 0},

with s,7 > 0 one has the results:

(i) [8] The IVP (1.1) is locally WP in Z, , for s > r € [1,5/2) and if u € C([0,T] :
Z5/2,2) is a solution of (11) S.t. u(~,tj) € Z5/2)5/2, _] = 1,2 with tl, to € [O,T], t1 # tz,
then u € C([O,T] : Z5/275/2).

(i) [8] The IVP (1.1) is locally WP in Z,, s > r € [5/2,7/2).

(iii) [8] If w € C(]0,T) : Z-7/2)3) is a solution of (1.1) s.t. It1, to, t3 € [0,T], t1 < t2 < t3
with u(-, ;) € Z72,7/2, 5 = 1,2,3, then u = 0.

(iv) [9] The IVP (1.1) has solutions v € C([0,T] : Z'7/2’3), u # 0, for which 3¢y, to, €
[O,T], t1 < tg, with U(',tj) S Z7/2’7/2, 7 =12
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Our first main result in this work is the following theorem:

Theorem 1.1. Let uy, us be real solutions to the IVP (1.1) for (z,t) € R x [0,T] such
that

uy, ug € C([0,T] : H*(R))NCY((0,T) : H*"2(R)), s>5/2. (1.3)
If there exists an open set @ C R x [0,T] such that
ur(x,t) = uz(x,t), (x,t) €, (1.4)
then,
ur(z,t) = ua(x,t), (x,t) € R x[0,T). (1.5)
In particular, if uy vanishes in €, then u; = 0.

Remark 1.2. (i) Under the same hypotheses, Theorem 1.1 applies to real solutions of the
generalized BO equation

Opu — HO?u + 0y f (u) = 0, (x,t) € R xR, (1.6)

with f : R — R smooth enough and f(0) = 0. In particular, it applies for f(u) = u*, k =
2,3,4,... for which the well posedness of the associated IVP was considered in [1], [19],
[18], [20], [32], [33], [42], [43], see also [27].

(i) The hypothesis (1.3) guarantees that the solutions satisfy the equation (1.1) point-
wise, which will be required in our proof.

(iii) A similar result to that described in Theorem 1.1 for the IVP associated to the
generalized Korteweg-de Vries equation

Opu + O3u + Opuf =0, (,t) ER xR, k=2,3,...., (1.7)

was established in [40], and for some evolution equations of Schrédinger type in [15].
In both cases, their proofs are based on appropriate forms of the so called Carleman
estimates. Our proof of Theorem 1.1 is elementary and relies on simple properties of the
Hilbert transform as a boundary value of analytic functions.

(iv) We observe that the unique continuation in (iii) before the statement of Theo-
rem 1.1 applies to a single solution of the BO equation but not to any two solutions as
in Theorem 1.1. This is due to the fact that the argument in the proof there depends
upon the whole symmetry structure of the BO equation.

(v) It will be clear from our proof below that the last part of Theorem 1.1, i.e. if
up(z,t) =0 in Q, then u; = 0, can be generalized in the following form:
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Corollary 1.3. Let u € C([0,T] : H*(R)) n C*((0,T) : H*2(R)), s > 2n +5/2 be a
real solution of the IVP (1.1). Let p,(z) be a polynomial of degree at most n with real
coefficients. If there exists & C R x [0,T] such that u(x,t) = pn(x) for any (x,t) € Q,
then u =0 and p,(z) = 0.

(vi) Theorem 1.1 can be seen as a corollary of the following linear result whose proof
is exactly the one given below for Theorem 1.1:
Assume that k, j € ZT U {0} and that

am R x[0,T] >R, m=0,1,....k, and b:R x[0,7] =R

are continuous functions with b(-) never vanishing on (x,t) € R x [0,7], and consider
the IVP

k
Opw — b(x,t) HOIw + Y (2, )0 w = 0,

m=0

(1.8)
w(x,0) = wo(x).

Theorem 1.4. Let
we C([0,T]: H*(R))NC*((0,T) : H*"*(R)), s> max{k;j}+1/2,
be a real solution to the IVP (1.8). If there exists an open set & C R x [0,T] such that
w(z,t) =0, (z,t) €, (1.9)
then,
w(z,t) =0 (x,t) € R x[0,T7]. (1.10)

Remark 1.5. (i) In particular, applying Theorem 1.4 to the difference of two real solutions
u1, ug of the Burgers-Hilbert (BH) equation (see [4])

Oru — Hu + u0u = 0, (z,t) € R xR, (1.11)

one sees that the result in Theorem 1.1, with s > 3/2, holds for the IVP associated to
the BH equation (1.11).

(ii) The result of Theorem 1.1 extends to solutions of the initial periodic boundary
value problem (IPBVP) associated to the generalized BO equation

{ Opu —HOZu + dp f(u) =0,  (z,t) € ST xR, (1.12)

u(xz,0) = up(x),

with f(-) as in part (i) of this remark. More precisely:



C.E. Kenig et al. / Journal of Functional Analysis 278 (2020) 108396 5

Theorem 1.6. Let uy, ug be real solutions of the IPBVP (1.12) in (z,t) € S* x [0, T] such
that

uy, ug € C([0,T] : H*(SY))NnC*((0,T) : H*~2(S')), s > 5/2. (1.13)
If there exists an open set Q C S* x [0,T)] such that
ui(z,t) = us(z,t), (z,t) €, (1.14)
then,
up(z,t) = ua(z,t), (x,t) € St x [0,7]. (1.15)
In particular, if uy vanishes in €, then u; = 0.
Remark 1.7. The well-posedness of the initial IPBVP (1.12) has been studied in [28],

[29], [30], [10] and [34].

Next, we consider the Intermediate Long Wave (ILW) equation
1
Oru — L50%u + gﬁacu + udzu = 0, (z,t) € R xR, (1.16)

where u = u(z,t) is a real-valued function, § > 0 and

Lsf(x):= —2% p.v./coth <7r(:1324§y)> f(y)dy. (1.17)

Note that Ls is a multiplier operator with d,Ls having symbol
0(0,L5) = Dy Ly = 27 coth (2758). (1.18)

The ILW equation (1.16) describes long internal gravity waves in a stratified fluid with
finite depth represented by the parameter 4, see [25], [16], [17].

Also, the ILW equation has been proven to be complete integrable, see [23] and [24].

In [1] it was proven that solutions of the ILW as 0 — oo (deep-water limit) converge
to solutions of the BO equation with the same initial data.

Also, in [1] it was shown that if us(x,t) denotes the solution of the ILW equation
(1.16), then

vs(z,t) = gu(s (z, %t) (1.19)

converges as  — 0 (shallow-water limit) to the solution of the KdV equation, i.e. (1.7)
with k£ = 2, with the same initial data.
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For further comments on general properties of the ILW equation we refer to the recent
survey [39] and references therein.

The well-posedness of the IVP associated to the ILW equation (1.16) was studied in
[1] and more recently in [35].

Our next theorem extends the result in Theorem 1.1 to solution of the IVP associated
to the ILW (1.16):

Theorem 1.8. Let uy, ug be real solutions to (1.16) in (x,t) € R x [0,T] such that
uy, uy € C([0,T] : H¥(R)) N CY((0,T) : H*"2(R)), s> 5/2. (1.20)
If there exists an open set @ C R x [0,T] such that
ui(z,t) = us(z,t), (z,t) €Q, (1.21)
then,
ur(z,t) = ua(z,t), (x,t) € R x[0,T). (1.22)
In particular, if uy vanishes in ), then u; = 0.

Remark 1.9. The observations in (i) and (v) in Remark 1.2 and (ii) in Remark 1.5 apply,
after some simple modifications, to the ILW equation (1.16).

The two main models considered, namely the BO eq. and the ILW eq., are two classical
examples of completely integrable systems. Both of them describe in different asymptotic
regimes internal waves propagating in one direction. Another quite well known equation,
that is also integrable, is the Korteweg-de Vries equation (KdV) which is related to the
propagation of waves in shallow water.

So it seems rather natural to try to understand to what extent the uniqueness prop-
erties established here for BO and ILW, and in [40] for the KdV (see also [7]) are still
true for general water waves. As we will see below the question for water waves turns
out to follow from a classical one concerning uniqueness of harmonic functions.

The setting is as follows. We consider an irrotational fluid under the action of gravity.
At a given time t there exists an interface 0{2; which divides the plane in two connected
regions where the fluid has two different densities. In the case of water waves there is no
fluid in one of the regions. Let us call U the velocity field in one of the regions ;. We
know that in

V-4 =0, and V xd =0.

Hence, (assuming that €, is simply connected) there exists a harmonic function ¢ such
that
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Vé=1 in Q.

Assume that 09, is locally given by a Lipschitz graph z(a,t) = (xl(a,t),xg(a,t))
with « a lagrangian parameter. Then

2t = 7(2)a

for details see for example [26].

Assume also that there exist intervals B C R and 0 € J C R such that z(«,t) =
constant on B x J. Then z; = Vo|,q, =0 for (a,t) € B x J.

As a consequence we have,

{Ad) =0 on o,
Vol pxgy =0

Then ¢ = constant and 7(%1,.%2,0) = 0. The proof of this is a consequence of the
following well known lemma.

Lemma 1.10. Let Q be a connected open set in R™,n > 2, given locally by the graph of
(Q), the set of

functions in L} (Q), with gradient in L? (). Assume that there is an open boundary

Lipschitz functions. Let ¢ be a harmonic function in Q, which is in H.

ball U, which is contained in a piece of the boundary for which the domain is given by a
Lipschitz graph intersected with a cylinder in the graph direction. Assume that the trace
of ¢ in U is constant and that the normal derivative is 0 also in U. Then ¢ is constant
in Q.

For the sake of completeness a sketch of the proof of Lemma 1.10 will be given below.
Finally, we present the following slight improvement of Theorem 1.1 and Theorem 1.6:

Theorem 1.11. Let uy, ug be real solutions to (1.1) in (x,t) € R x [0,T] such that
uy, uy € C([0,T]: H¥(R)) N C((0,T) : H*"2(R)), s> 5/2. (1.23)
If there exists an open set I C R, 0 € I such that
u1(z,0) = ug(x,0), xel, (1.24)

and for each N € 7

|0y (,0) — Qyua(z,0)?dz < ey RN as RO, (1.25)

|lz|<R

then,
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up(z,t) = ua(z,t), (x,t) € R x[0,T). (1.26)

Theorem 1.12. Let uy, uy be real solutions of the IPBVP (1.12) in (x,t) € ST x [0,T] ~
R/Z % [0,T) such that

up, ug € C([0,T]: H*(SY)) N C*((0,T) : H*2(SY)), s > 5/2. (1.27)

If there exists an open set I C [—1/2,1/2] with 0 € I such that

up(z,0) = ug(z,0), xe€l, (1.28)
and for each N € Z™*
|0y (2,0) — Qpua(z,0)|*dz < ey RN as RO, (1.29)
la[<R
then,
up(z,t) = ug(z,t), (x,t) € St x [0,7]. (1.30)

Remark 1.13. It will be clear from our proof of Theorem 1.11 that a similar argument
provides the proof of Theorem 1.12 which will be omitted.

The rest of this paper is organized as follows: section 2 contains some preliminary
estimates required for Theorem 1.1 as well as its proof. It also includes the modifications
needed to extend the argument in the proof of Theorem 1.1 from the IVP to the IPBVP
to prove Theorem 1.6. Section 3 consists of the proof of Theorem 1.8, and section 4
enclose the proof of Theorem 1.11. Finally, Lemma 1.10 is proved in section 5.

2. Proof of Theorem 1.1

To prove Theorem 1.1 we need the following result from complex analysis whose proof
follows directly from Schwarz reflection principle:

Proposition 2.1. Let I C R be an open interval, b € (0, 00] and
Dy={z=2+iyeC:0<y<b}, L={z+i0e€C:zel} (2.1)

Let F : Dy UL — C be a continuous function such that F|Db is analytic. If F}L =0,
then F' = 0.

As a consequence we have
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Corollary 2.2. Let f € H*(R), s > 1/2 be a real valued function. If there exists an open
set I C R such that

flx)=Hf(x)=0, Veel,
then f = 0.
Proof. Denoting U = U(z,y) the harmonic extension of f to the upper half-plane D,
one sees that its harmonic conjugate V = V(x,y) has boundary value V(z,0) = H f(z)

with

(FFH(E) = 2X1000) () FE),  FeL'R). (2.2)

Thus, F := U + iV is continuous on D, and analytic on D, with F‘L = 0. Hence,
Proposition 2.1 yields the desired result O

Proof of Theorem 1.1 . Defining w(z,t) = (u; — uz)(x, t) one has that
Opw — HO2w + dpug w + uy Opw = 0, (z,t) € R x [0,T7]. (2.3)
By hypotheses (1.3) and (1.21) there exist open intervals I, J C R such that

w(z,t) = Opw(x,t)

(2.4)
= Oyw(w,t) = O w(x,t) =0, (x,t) eI xJCQ.
Thus, the equation (2.3) tells us
HO?w(x,t) =0, (x,t) €I xJCQ. (2.5)
Combining (2.4) and (2.5) and fixing t* € J it follows that
2w(z, t*) = HO*w(x,t*) =0, z €I, (2.6)

with 82w(-,t*), HO2w(-,t*) € H*(R), s > 1/2.
Therefore, using Corollary 2.2 one has that 92w(-,¢*) = 0 which implies that w(-, t*) =
0 and completes the proof. O

To extend the previous argument to prove Theorem 1.6 we need the following result
from complex analysis:

Proposition 2.3. Let J C [—m, 1] be an open non-empty interval and

Bi(0)={z=z+iyeC:|z| <1}, A={2€C:|z| =1, arg(z) € J}.
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Let F: B1(0)UA — C be a continuous function such that F|Bl(0) is analytic.
IfF|A =0, then FF = 0.

Proof. The proof follows from Proposition 2.1 by considering F,T(z) where T is a frac-
tional linear transformation mapping the upper half-plane to the unit disk B1(0). O

3. Proof of Theorem 1.8
First, we shall prove the following result:

Corollary 3.1. Let f € H*(R), s > 3/2 be a real valued function. If there exists an open
set I C R such that

f(z) = L50,f(x) =0, Veel,
with Ls as in (1.17), (1.18), then f = 0.
Proof. We define
F(z)=0,f(x) +iLs0y f(x), z€R, (3.1)
and consider its Fourier transform

F(€) = (9uf +iLs0:1)(€)
= 2mi€(1 + coth(2r6€)) £(€)

2m6E —2mwoE - 3.2
:2mg(1+z te )(5) (3:2)

2wdE _ 6—271'5&

) e47r6§ -
= _47”5 1_ 84ﬂ6§ f(é-)

We observe that by considering 0, f with f € H*(R), s > 3/2, one cancels the singu-
larity of F' at £ = 0 introduced by coth(¢).

By hypothesis and (3.2) one concludes that F € L!(R) and has exponential decay for
£ < 0. Hence,

Py = [ e B de (3.3)
has an analytic extension
F(x +iy) = / 2w tiy) B(¢) de (3.4)

—0o0
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to the strip
Dys={z=2+4+iyeC:0<y<2§}
with F' continuous on
{z=z+iy : 0<y <20}
from the hypothesis on f. Now, Proposition 2.1 leads the desired result. O

Proof of Theorem 1.8. Once Corollary 3.1 is available the proof of Theorem 1.8 is similar
to that given for Theorem 1.1, therefore it will be omitted. O

4. Proof of Theorem 1.11

To prove Theorem 1.11 we need an auxiliary lemma:

Lemma 4.1. Let f € L?(R) be a real valued function. If there exists an open set I C
R, 0 € I, such that

fz,0)=0, zel, (4.1)
and for each N € ZF
/ | Hf(x)Pdz <exyRY  as RO, (4.2)
|lz|<R
then,
f(x)=0, =zeR. (4.3)

Proof. Counsider the analytic function F' = F(x+iy) defined in R x (0, c0) with boundary
values

F(z +1i0) = —Hf(z) + if ().

Since F ’ ; is real we can use Schwarz reflexion principle to find F analytic in I X
(=00, 00) with F = F on I x [0,00).
We observe: R F(x +1i0) = Hf(z), = € I with Hf|1 € C®, by the support property
of f, and by assumption (4.2) d2Hf(0) =0, j € Z* U {0}. Hence
o7

2 F(0,0)=0 i=0,1,2,...
82’J (7) .] ) Ly &y )

which completes the proof. O
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Proof of Theorem 1.11. Defining w(z,t) = (u3 — uz)(x,t) it follows that

Opw — HO*w + dpur w + uz dpw = 0, (z,t) € R x [0,T]. (4.4)

Since w(x,0) =0, x € I, one has that d2w(x,0) =0, x € I, j € Z*T U {0}, and using
(4.4)

HO?w(x,0) = dyw(x,0)

We now apply the hypothesis (4.2) and Lemma 4.1 to conclude that d2w(x,0) = 0,
reR. O

5. Proof of Lemma 1.10

Proof. First observe that the trace on the boundary of € is well defined and is locally in
H'/2(0Q). Also, from the harmonicity of ¢ and simple integration by parts, one easily
concludes that ¢ has a normal derivative in the weak sense on 02, which is locally in
H=12(6Q).

We can assume that

xn:f(:z') j:(xlv"'vxnfl)eBa

with B a ball in R”~!, and Q is locally given by z, < f(Z). Then we extend ¢ as a
constant for {z,, > f(z),z € B}. For n € Cg°(R")

/ Vo¢Vndidz, = / + /

= (an¢7 77)|rn:f(i)
=0.

Hence the extended ¢ is weakly harmonic, and therefore harmonic, in a cylinder with
basis B. So ¢ is constant in a ball inside of €, but ¢ is analytic. Hence ¢ is constant. O
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