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1. Introduction
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{
∂tu−H∂2

xu + u∂xu = 0, (x, t) ∈ R×R,

u(x, 0) = u0(x),
(1.1)

where u = u(x, t) is a real-valued function, and H denotes the Hilbert transform

Hf(x) := 1
π

p.v.
(1

x ∗ f
)
(x)

:= 1
π

lim
ε↓0

∫
|y|>ε

f(x− y)
y

dy = (−i sgn(ξ)f̂(ξ))∨(x)
(1.2)

The BO equation was first deduced by Benjamin [3] and Ono [37] as a model for long 
internal gravity waves in deep stratified fluids. Later, it was shown to be a completely 
integrable system (see [2], [6] and references therein). In particular, real solutions of the 
IVP (1.1) satisfy infinitely many conservation laws, which provide an a priori estimate 
for the Hn/2-norm, n ∈ Z+.

The problem of finding the minimal regularity measured in the Sobolev scale Hs(R), 
s ∈ R, required to guarantee that the IVP (1.1) is locally or globally well-posed (WP) in 
Hs(R) has been extensively studied, see [1], [13], [38], [21], [18], [41], [5] and [12] where 
global WP was established in H0(R) = L2(R), (for further details and results regarding 
the well-posedness of the IVP (1.1) we refer to [31] and to [11] for a different proof of 
the result in [12]).

We remark that a result established in [36] (see also [22]) implies that no well-
posedness result in Hs(R), s ∈ R, for the IVP (1.1) can be established by using solely a 
contraction principle argument.

It was first shown in [13] and [14] that polynomial decay of the data may not be 
preserved by the (real) solution flow of the BO equation. The results in [13] and [14] which 
present some unique continuation properties of the BO equation have been extended to 
fractional order weighted Sobolev spaces and have shown to be optimal in [8] and [9]. 
More precisely, using the notation

Zs,r := Hs(R) ∩ L2(|x|2rdx), Żs,r = Zs,r ∩ {f ∈ L1(R) : f̂(0) = 0},

with s, r > 0 one has the results:

(i) [8] The IVP (1.1) is locally WP in Zs,r for s ≥ r ∈ [1, 5/2) and if u ∈ C([0, T ] :
Z5/2,2) is a solution of (1.1) s.t. u(·, tj) ∈ Z5/2,5/2, j = 1, 2 with t1, t2 ∈ [0, T ], t1 �= t2, 
then u ∈ C([0, T ] : Ż5/2,5/2).

(ii) [8] The IVP (1.1) is locally WP in Żs,r s ≥ r ∈ [5/2, 7/2).

(iii) [8] If u ∈ C([0, T ] : Ż7/2,3) is a solution of (1.1) s.t. ∃ t1, t2, t3 ∈ [0, T ], t1 < t2 < t3
with u(·, tj) ∈ Z7/2,7/2, j = 1, 2, 3, then u ≡ 0.

(iv) [9] The IVP (1.1) has solutions u ∈ C([0, T ] : Ż7/2,3), u �≡ 0, for which ∃ t1, t2, ∈
[0, T ], t1 < t2, with u(·, tj) ∈ Z7/2,7/2, j = 1, 2.
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Our first main result in this work is the following theorem:

Theorem 1.1. Let u1, u2 be real solutions to the IVP (1.1) for (x, t) ∈ R × [0, T ] such 
that

u1, u2 ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−2(R)), s > 5/2. (1.3)

If there exists an open set Ω ⊂ R × [0, T ] such that

u1(x, t) = u2(x, t), (x, t) ∈ Ω, (1.4)

then,

u1(x, t) = u2(x, t), (x, t) ∈ R× [0, T ]. (1.5)

In particular, if u1 vanishes in Ω, then u1 ≡ 0.

Remark 1.2. (i) Under the same hypotheses, Theorem 1.1 applies to real solutions of the 
generalized BO equation

∂tu−H∂2
xu + ∂xf(u) = 0, (x, t) ∈ R×R, (1.6)

with f : R → R smooth enough and f(0) = 0. In particular, it applies for f(u) = uk, k =
2, 3, 4, . . . for which the well posedness of the associated IVP was considered in [1], [19], 
[18], [20], [32], [33], [42], [43], see also [27].

(ii) The hypothesis (1.3) guarantees that the solutions satisfy the equation (1.1) point-
wise, which will be required in our proof.

(iii) A similar result to that described in Theorem 1.1 for the IVP associated to the 
generalized Korteweg-de Vries equation

∂tu + ∂3
xu + ∂xu

k = 0, (x, t) ∈ R×R, k = 2, 3, ...., (1.7)

was established in [40], and for some evolution equations of Schrödinger type in [15]. 
In both cases, their proofs are based on appropriate forms of the so called Carleman 
estimates. Our proof of Theorem 1.1 is elementary and relies on simple properties of the 
Hilbert transform as a boundary value of analytic functions.

(iv) We observe that the unique continuation in (iii) before the statement of Theo-
rem 1.1 applies to a single solution of the BO equation but not to any two solutions as 
in Theorem 1.1. This is due to the fact that the argument in the proof there depends 
upon the whole symmetry structure of the BO equation.

(v) It will be clear from our proof below that the last part of Theorem 1.1, i.e. if 
u1(x, t) = 0 in Ω, then u1 ≡ 0, can be generalized in the following form:
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Corollary 1.3. Let u ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−2(R)), s > 2n + 5/2 be a 
real solution of the IVP (1.1). Let pn(x) be a polynomial of degree at most n with real 
coefficients. If there exists Ω ⊂ R × [0, T ] such that u(x, t) = pn(x) for any (x, t) ∈ Ω, 
then u ≡ 0 and pn(x) = 0.

(vi) Theorem 1.1 can be seen as a corollary of the following linear result whose proof 
is exactly the one given below for Theorem 1.1:

Assume that k, j ∈ Z+ ∪ {0} and that

am : R× [0, T ] → R, m = 0, 1, ..., k, and b : R× [0, T ] → R

are continuous functions with b(·) never vanishing on (x, t) ∈ R × [0, T ], and consider 
the IVP ⎧⎪⎪⎨⎪⎪⎩

∂tw − b(x, t)H∂j
xw +

k∑
m=0

am(x, t)∂m
x w = 0,

w(x, 0) = w0(x).
(1.8)

Theorem 1.4. Let

w ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−2(R)), s > max{k; j} + 1/2,

be a real solution to the IVP (1.8). If there exists an open set Ω ⊂ R × [0, T ] such that

w(x, t) = 0, (x, t) ∈ Ω, (1.9)

then,

w(x, t) = 0 (x, t) ∈ R× [0, T ]. (1.10)

Remark 1.5. (i) In particular, applying Theorem 1.4 to the difference of two real solutions 
u1, u2 of the Burgers-Hilbert (BH) equation (see [4])

∂tu−Hu + u∂xu = 0, (x, t) ∈ R×R, (1.11)

one sees that the result in Theorem 1.1, with s > 3/2, holds for the IVP associated to 
the BH equation (1.11).

(ii) The result of Theorem 1.1 extends to solutions of the initial periodic boundary 
value problem (IPBVP) associated to the generalized BO equation{

∂tu−H∂2
xu + ∂xf(u) = 0, (x, t) ∈ S1 ×R,

u(x, 0) = u0(x),
(1.12)

with f(·) as in part (i) of this remark. More precisely:
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Theorem 1.6. Let u1, u2 be real solutions of the IPBVP (1.12) in (x, t) ∈ S1× [0, T ] such 
that

u1, u2 ∈ C([0, T ] : Hs(S1)) ∩ C1((0, T ) : Hs−2(S1)), s > 5/2. (1.13)

If there exists an open set Ω ⊂ S1 × [0, T ] such that

u1(x, t) = u2(x, t), (x, t) ∈ Ω, (1.14)

then,

u1(x, t) = u2(x, t), (x, t) ∈ S1 × [0, T ]. (1.15)

In particular, if u1 vanishes in Ω, then u1 ≡ 0.

Remark 1.7. The well-posedness of the initial IPBVP (1.12) has been studied in [28], 
[29], [30], [10] and [34].

Next, we consider the Intermediate Long Wave (ILW) equation

∂tu− Lδ∂
2
xu + 1

δ
∂xu + u∂xu = 0, (x, t) ∈ R×R, (1.16)

where u = u(x, t) is a real-valued function, δ > 0 and

Lδf(x) := − 1
2δ p.v.

∫
coth

(
π(x− y)

2δ

)
f(y)dy. (1.17)

Note that Lδ is a multiplier operator with ∂xLδ having symbol

σ(∂xLδ) = ̂∂xLδ = 2πξ coth (2πδξ). (1.18)

The ILW equation (1.16) describes long internal gravity waves in a stratified fluid with 
finite depth represented by the parameter δ, see [25], [16], [17].

Also, the ILW equation has been proven to be complete integrable, see [23] and [24].
In [1] it was proven that solutions of the ILW as δ → ∞ (deep-water limit) converge 

to solutions of the BO equation with the same initial data.
Also, in [1] it was shown that if uδ(x, t) denotes the solution of the ILW equation 

(1.16), then

vδ(x, t) = 3
δ
uδ

(
x,

3
δ
t
)

(1.19)

converges as δ → 0 (shallow-water limit) to the solution of the KdV equation, i.e. (1.7)
with k = 2, with the same initial data.
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For further comments on general properties of the ILW equation we refer to the recent 
survey [39] and references therein.

The well-posedness of the IVP associated to the ILW equation (1.16) was studied in 
[1] and more recently in [35].

Our next theorem extends the result in Theorem 1.1 to solution of the IVP associated 
to the ILW (1.16):

Theorem 1.8. Let u1, u2 be real solutions to (1.16) in (x, t) ∈ R × [0, T ] such that

u1, u2 ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−2(R)), s > 5/2. (1.20)

If there exists an open set Ω ⊂ R × [0, T ] such that

u1(x, t) = u2(x, t), (x, t) ∈ Ω, (1.21)

then,

u1(x, t) = u2(x, t), (x, t) ∈ R× [0, T ]. (1.22)

In particular, if u1 vanishes in Ω, then u1 ≡ 0.

Remark 1.9. The observations in (i) and (v) in Remark 1.2 and (ii) in Remark 1.5 apply, 
after some simple modifications, to the ILW equation (1.16).

The two main models considered, namely the BO eq. and the ILW eq., are two classical 
examples of completely integrable systems. Both of them describe in different asymptotic 
regimes internal waves propagating in one direction. Another quite well known equation, 
that is also integrable, is the Korteweg-de Vries equation (KdV) which is related to the 
propagation of waves in shallow water.

So it seems rather natural to try to understand to what extent the uniqueness prop-
erties established here for BO and ILW, and in [40] for the KdV (see also [7]) are still 
true for general water waves. As we will see below the question for water waves turns 
out to follow from a classical one concerning uniqueness of harmonic functions.

The setting is as follows. We consider an irrotational fluid under the action of gravity. 
At a given time t there exists an interface ∂Ωt which divides the plane in two connected 
regions where the fluid has two different densities. In the case of water waves there is no 
fluid in one of the regions. Let us call −→u the velocity field in one of the regions Ωt. We 
know that in Ωt

∇ · −→u = 0, and ∇×−→u = 0.

Hence, (assuming that Ωt is simply connected) there exists a harmonic function φ such 
that
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∇φ = −→u in Ωt.

Assume that ∂Ωt is locally given by a Lipschitz graph z(α, t) =
(
x1(α, t), x2(α, t)

)
with α a lagrangian parameter. Then

zt = −→u (z),

for details see for example [26].
Assume also that there exist intervals B ⊂ R and 0 ∈ J ⊂ R such that z(α, t) =

constant on B × J . Then zt = ∇φ|∂Ωt
= 0 for (α, t) ∈ B × J .

As a consequence we have,{
Δφ = 0 on Ω0,

∇φ|z(B×{0}) = 0.

Then φ = constant and −→u (x1, x2, 0) = 0. The proof of this is a consequence of the 
following well known lemma.

Lemma 1.10. Let Ω be a connected open set in Rn, n ≥ 2, given locally by the graph of 
Lipschitz functions. Let φ be a harmonic function in Ω, which is in H1

loc(Ω), the set of 
functions in L2

loc(Ω), with gradient in L2
loc(Ω). Assume that there is an open boundary 

ball U , which is contained in a piece of the boundary for which the domain is given by a 
Lipschitz graph intersected with a cylinder in the graph direction. Assume that the trace 
of φ in U is constant and that the normal derivative is 0 also in U . Then φ is constant 
in Ω.

For the sake of completeness a sketch of the proof of Lemma 1.10 will be given below.
Finally, we present the following slight improvement of Theorem 1.1 and Theorem 1.6:

Theorem 1.11. Let u1, u2 be real solutions to (1.1) in (x, t) ∈ R × [0, T ] such that

u1, u2 ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−2(R)), s > 5/2. (1.23)

If there exists an open set I ⊂ R, 0 ∈ I such that

u1(x, 0) = u2(x, 0), x ∈ I, (1.24)

and for each N ∈ Z+

∫
|x|≤R

|∂tu1(x, 0) − ∂tu2(x, 0)|2dx ≤ cN RN as R ↓ 0, (1.25)

then,
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u1(x, t) = u2(x, t), (x, t) ∈ R× [0, T ]. (1.26)

Theorem 1.12. Let u1, u2 be real solutions of the IPBVP (1.12) in (x, t) ∈ S1 × [0, T ] �
R/Z × [0, T ] such that

u1, u2 ∈ C([0, T ] : Hs(S1)) ∩ C1((0, T ) : Hs−2(S1)), s > 5/2. (1.27)

If there exists an open set I ⊂ [−1/2, 1/2] with 0 ∈ I such that

u1(x, 0) = u2(x, 0), x ∈ I, (1.28)

and for each N ∈ Z+

∫
|x|≤R

|∂tu1(x, 0) − ∂tu2(x, 0)|2dx ≤ cN RN as R ↓ 0, (1.29)

then,

u1(x, t) = u2(x, t), (x, t) ∈ S1 × [0, T ]. (1.30)

Remark 1.13. It will be clear from our proof of Theorem 1.11 that a similar argument 
provides the proof of Theorem 1.12 which will be omitted.

The rest of this paper is organized as follows: section 2 contains some preliminary 
estimates required for Theorem 1.1 as well as its proof. It also includes the modifications 
needed to extend the argument in the proof of Theorem 1.1 from the IVP to the IPBVP 
to prove Theorem 1.6. Section 3 consists of the proof of Theorem 1.8, and section 4
enclose the proof of Theorem 1.11. Finally, Lemma 1.10 is proved in section 5.

2. Proof of Theorem 1.1

To prove Theorem 1.1 we need the following result from complex analysis whose proof 
follows directly from Schwarz reflection principle:

Proposition 2.1. Let I ⊆ R be an open interval, b ∈ (0, ∞] and

Db = {z = x + iy ∈ C : 0 < y < b}, L = {x + i0 ∈ C : x ∈ I}. (2.1)

Let F : Db ∪ L → C be a continuous function such that F
∣∣
Db

is analytic. If F
∣∣
L
≡ 0, 

then F ≡ 0.

As a consequence we have
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Corollary 2.2. Let f ∈ Hs(R), s > 1/2 be a real valued function. If there exists an open 
set I ⊂ R such that

f(x) = Hf(x) = 0, ∀x ∈ I,

then f ≡ 0.

Proof. Denoting U = U(x, y) the harmonic extension of f to the upper half-plane D, 
one sees that its harmonic conjugate V = V (x, y) has boundary value V (x, 0) = Hf(x)
with

( ̂f + iHf)(ξ) = 2χ[0,∞)(ξ) f̂(ξ), f̂ ∈ L1(R). (2.2)

Thus, F := U + iV is continuous on D∞ and analytic on D∞ with F
∣∣
L

≡ 0. Hence, 
Proposition 2.1 yields the desired result �
Proof of Theorem 1.1 . Defining w(x, t) = (u1 − u2)(x, t) one has that

∂tw −H∂2
xw + ∂xu2 w + u1 ∂xw = 0, (x, t) ∈ R× [0, T ]. (2.3)

By hypotheses (1.3) and (1.21) there exist open intervals I, J ⊂ R such that

w(x, t) = ∂xw(x, t)

= ∂tw(x, t) = ∂2
xw(x, t) = 0, (x, t) ∈ I × J ⊂ Ω.

(2.4)

Thus, the equation (2.3) tells us

H∂2
xw(x, t) = 0, (x, t) ∈ I × J ⊂ Ω. (2.5)

Combining (2.4) and (2.5) and fixing t∗ ∈ J it follows that

∂2
xw(x, t∗) = H∂2

xw(x, t∗) = 0, x ∈ I, (2.6)

with ∂2
xw(·, t∗), H∂2

xw(·, t∗) ∈ Hs(R), s > 1/2.
Therefore, using Corollary 2.2 one has that ∂2

xw(·, t∗) ≡ 0 which implies that w(·, t∗) ≡
0 and completes the proof. �

To extend the previous argument to prove Theorem 1.6 we need the following result 
from complex analysis:

Proposition 2.3. Let J ⊂ [−π, π] be an open non-empty interval and

B1(0) = {z = x + iy ∈ C : |z| < 1}, A = {z ∈ C : |z| = 1, arg(z) ∈ J}.
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Let F : B1(0) ∪A → C be a continuous function such that F
∣∣
B1(0)

is analytic.
If F

∣∣
A
≡ 0, then F ≡ 0.

Proof. The proof follows from Proposition 2.1 by considering FoT (z) where T is a frac-
tional linear transformation mapping the upper half-plane to the unit disk B1(0). �
3. Proof of Theorem 1.8

First, we shall prove the following result:

Corollary 3.1. Let f ∈ Hs(R), s > 3/2 be a real valued function. If there exists an open 
set I ⊂ R such that

f(x) = Lδ∂xf(x) = 0, ∀x ∈ I,

with Lδ as in (1.17), (1.18), then f ≡ 0.

Proof. We define

F (x) = ∂xf(x) + iLδ∂xf(x), x ∈ R, (3.1)

and consider its Fourier transform

F̂ (ξ) = ̂(∂xf + iLδ∂xf)(ξ)

= 2πiξ(1 + coth(2πδξ)) f̂(ξ)

= 2πiξ
(
1 + e2πδξ + e−2πδξ

e2πδξ − e−2πδξ

)
f̂(ξ)

= −4πiξ e4πδξ

1 − e4πδξ f̂(ξ)

(3.2)

We observe that by considering ∂xf with f ∈ Hs(R), s > 3/2, one cancels the singu-
larity of F at ξ = 0 introduced by coth(ξ).

By hypothesis and (3.2) one concludes that F̂ ∈ L1(R) and has exponential decay for 
ξ < 0. Hence,

F (x) =
∞∫

−∞

e2πiξx F̂ (ξ) dξ (3.3)

has an analytic extension

F (x + iy) =
∞∫

e2πiξ(x+iy) F̂ (ξ) dξ (3.4)

−∞
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to the strip

D2δ = {z = x + iy ∈ C : 0 < y < 2δ}

with F continuous on

{z = x + iy : 0 ≤ y < 2δ}

from the hypothesis on f . Now, Proposition 2.1 leads the desired result. �
Proof of Theorem 1.8. Once Corollary 3.1 is available the proof of Theorem 1.8 is similar 
to that given for Theorem 1.1, therefore it will be omitted. �
4. Proof of Theorem 1.11

To prove Theorem 1.11 we need an auxiliary lemma:

Lemma 4.1. Let f ∈ L2(R) be a real valued function. If there exists an open set I ⊂
R, 0 ∈ I, such that

f(x, 0) = 0, x ∈ I, (4.1)

and for each N ∈ Z+ ∫
|x|≤R

|Hf(x)|2dx ≤ cN RN as R ↓ 0, (4.2)

then,

f(x) = 0, x ∈ R. (4.3)

Proof. Consider the analytic function F = F (x +iy) defined in R ×(0, ∞) with boundary 
values

F (x + i0) = −Hf(x) + if(x).

Since F
∣∣
I

is real we can use Schwarz reflexion principle to find F̃ analytic in I ×
(−∞, ∞) with F̃ = F on I × [0, ∞).

We observe: � F̃ (x + i0) = Hf(x), x ∈ I with Hf
∣∣
I
∈ C∞, by the support property 

of f , and by assumption (4.2) ∂j
xHf(0) = 0, j ∈ Z+ ∪ {0}. Hence

∂j

∂zj
F̃ (0, 0) = 0 j = 0, 1, 2, . . . ,

which completes the proof. �
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Proof of Theorem 1.11. Defining w(x, t) = (u1 − u2)(x, t) it follows that

∂tw −H∂2
xw + ∂xu1 w + u2 ∂xw = 0, (x, t) ∈ R× [0, T ]. (4.4)

Since w(x, 0) = 0, x ∈ I, one has that ∂j
xw(x, 0) = 0, x ∈ I, j ∈ Z+ ∪ {0}, and using 

(4.4)

H∂2
xw(x, 0) = ∂tw(x, 0)

We now apply the hypothesis (4.2) and Lemma 4.1 to conclude that ∂2
xw(x, 0) = 0,

x ∈ R. �
5. Proof of Lemma 1.10

Proof. First observe that the trace on the boundary of Ω is well defined and is locally in 
H1/2(∂Ω). Also, from the harmonicity of φ and simple integration by parts, one easily 
concludes that φ has a normal derivative in the weak sense on ∂Ω, which is locally in 
H−1/2(∂Ω).

We can assume that

xn = f(x̄) x̄ = (x1, · · · , xn−1) ∈ B̃,

with B̃ a ball in Rn−1, and Ω is locally given by xn < f(x̄). Then we extend φ as a 
constant for 

{
xn > f(x̄), x̄ ∈ B̃

}
. For η ∈ C∞

0 (Rn)

∫
∇φ∇ηdx̄dxn =

∫
xn≥f

+
∫

xn≤f

= (∂nφ, η)|xn=f(x̄)

= 0.

Hence the extended φ is weakly harmonic, and therefore harmonic, in a cylinder with 
basis B̃. So φ is constant in a ball inside of Ω, but φ is analytic. Hence φ is constant. �
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