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Abstract. This is a survey of some recent results on the asymptotic behavior

of solutions to critical nonlinear wave equations.

In this article we will survey some applications of the method of energy channels,
introduced by Duyckaerts–Kenig–Merle [13] to study the long–time behavior of large
solutions to nonlinear wave equations. This article is dedicated to Luis Caffarelli,
with warm friendship, on the occasion of his 70th birthday.

Nonlinear dispersive equations were introduced in the 19th century to understand
models for water waves. Their theory has had a spectacular development in the
last 40 years. These equations model phenomena of wave propagation coming from
physics and engineering. Some of the areas that give rise to these eqautions are water
waves, optics, lasers, ferromagnetism, particle physics, general relativity, nonlinear
elasticity and many others. These equations also have connections to geometric
flows arising in Kähler and Minkowski geometries. Nonlinear dispersive equations
are time reversible. Typically they have a conserved energy, which gives rise to a
Hamiltonian structure. Here are some examples:

(a) Generalized Korteweg–de Vries equation (water waves in a shallow channel){
∂tu− ∂3xu+ uk∂xu = 0, x ∈ R, t ∈ R
u|t=0 = u0.

(b) Nonlinear Schrödinger equations (optics, lasers, ferromagnetism){
i∂tu+ ∆u± |u|p−1u = 0, x ∈ RN , t ∈ R
u|t=0 = u0.

(c) Nonlinear wave equations (nonlinear elasticity, toy model for particle physics,
general relativity){

∂2t u−∆u± |u|p−1u = 0, x ∈ RN , t ∈ R
u|t=0 = u0, ∂tu|t=0 = u1.
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(d) (Geometric example) Wave maps (particle physics, σ-models)
Let u : RN × R → SN ⊂ RN+1, where SN is the unit sphere with the round
metric, {

∂2t u−∆u = [|∇u|2 − |∂tu|2]u,
u|t=0 = u0, ∂tu|t=0 = u1.

This is a geometric equation since it is invariant under isometries of the target.

These equations are called dispersive because their linear part is. Heuristically, a
linear dispersive equation spreads out the physical support of a solution over time.
For the nonlinear versions, there may be solutions that propagate non–dispersively,
like traveling waves, which were first observed in the 19th century. Their essential
properties were not understood until much later.

In the late 70’s and 80’s many properties of nonlinear dispersive equations were
discovered, most notably the existence and stability (some times conditionally) of
special solutions, such as traveling waves. In the late 80’s and early 90’s, Kenig–
Ponce–Vega introduced the systematic use of the machinery of modern Fourier
analysis to study the associated linear problems, which was then applied perturba-
tively to the corresponding nonlinear problems. The resulting body of techniques
(with refinements and extensions by Bourgain, Klainerman–Machedon, Tataru, Tao
and many others) proved extremely powerful in many problems. This body of works
gave satisfactory theories for the short–time well–posedness with data in Sobolev
spaces, and for the global in–time well–posedness for small data. At this time, a
notion of “criticality” linked to scaling emerged.

The last 25 years have seen a lot of interest in the study of the long–time behavior
of large solutions. Issues like blow–up, global existence, scattering and long–time
asymptotic behavior have come to the forefront, especially in critical problems.
The study of some of these issues was transformed by Kenig–Merle ([29], [30], [31],
[26], [17], etc.) with their introduction of the “concentration–compactness/rigidity
theorem” method, which has now become the canonical approach to this problem-
atic. The ultimate goal of the Kenig–Merle method was to attack the problem of
asymptotic soliton resolution.

Since the 1970’s there has been a widely held belief that “coherent structures”
and free radiation describe the long–term asymptotic behavior of generic solutions
to nonlinear dispersive equations. This belief has come to be known as the “soliton
resolution conjecture”. Roughly speaking, this holds that, asymptotically in time,
the evolution of generic solutions decouples as a sum of modulated traveling waves
and a free radiation term (which is a dispersive term solving the associated linear
equation). For finite time blow–up solutions, a result in the same spirit is expected,
depending on the nature of the blow–up. This is a remarkable, beautiful claim,
showing a “simplification” in the complex, long–time dynamics of general solutions.
The soliton resolution conjecture arose in the 70’s and 80’s from various numerical
experiments (Fermi–Pasta–Ulam, Zabusky–Kruskal) and the integrability theory for
the Korteweg–de Vries equation ([20], [21], [43]). The conjecture is quite challenging,
even in the completely integrable case. To our knowledge, until recently it was only
proved for KdV (power k = 1 in (a) above) ([20], [21]), for mKdV (power k = 2 in
(a) above) ([43]), both of which are completely integrable by the method of inverse
scattering, and also for the cubic NLS in one space dimension (power p = 3 in (b)
above, N = 1), ([55], [2]), which is also completely integrable. Very few results exist
for equations which are not completely integrable. Weaker theorems are available
for some dispersive equations, in cases where traveling waves exist, and in which the
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“ground–state” plays an important role as a threshold for the dynamics. All these
works imply local versions of the soliton resolution, where at most one soliton (the
ground state) appears. We should also mention Tao’s works for L2–supercritical,
energy–subcritical NLS in high dimensions, where he showed the existence of an
attractor, which is compact modulo space translations, up to a dispersive term.
This reduces the proof of a weak variant of soliton resolution to a rigidity theorem,
showing that any solution with the compactness property (i.e. having a compact
trajectory up to the symmetries of the equation) must be a traveling wave, a very
difficult problem in itself. It has been solved only in regimes “below” or close to
the ground state, except for the case of KdV using complete integrability in work of
Martel–Merle and for equation (c) above, p = (N + 2)/(N − 2) (the energy critical
wave equation), where the rigidity theorem was proved by Duyckaerts–Kenig–Merle
[13] in the radial case, with no smallness assumption, and in the non–radial case,
with no smallness assumption, but under an additional non–degeneracy assumption
[18]. We refer also to [17], where the importance of this type of solution for general
dispersive equations is highlighted.

In the rest of this review we will concentrate the discussion on the energy critical
wave equation in the focusing case (− sign in front of the nonlinearity in (c) above).
In the defocusing case (+ sign in front of the nonlinearity in (c) above), it was shown
in the period 1990–2000, in works of Struwe, Grillakis, Shatah–Struwe, Bahouri–
Shatah and Bahouri–Gérard, that all data in the energy space yield global in time
solutions which scatter.

The focusing case is very different, since one can have finite–time blow–up, or
solutions which exist for all time that do not scatter and traveling wave solutions.
The ultimate goal here is to prove soliton resolution for all solutions of the focusing
energy critical wave equation which remain bounded in the energy space. I will
describe here the progress towards this, obtained in the last 12 years. The hope is
that the results that we will discuss will be a model for what to strive for in the
study of other nonlinear dispersive equations.

Thus we will be mainly considering the equation{
∂2t u−∆u− |u|4/(N−2)u = 0,
u|t=0 = u0, ∂tu|t=0 = u1,

(NLW)

where (x, t) ∈ RN × R, and where u0 ∈ Ḣ1(RN ) = {u0 : ∇u0 ∈ L2(RN )} and

u1 ∈ L2(RN ). The space Ḣ1 × L2(RN ) will be called the energy space. We will
restrict ourselves to 3 ≤ N ≤ 6, to avoid technical complications due to lack of
smoothness of the nonlinearity. In this problem, small data yield solutions which
exist for all time and “scatter”, that is to say they exhibit linear behavior for large
times, asymptotically. For large data, we have solutions u ∈ C(I; Ḣ1 × L2) for
small time intervals I, with a maximal interval of existence (T−(u), T+(u)) and
u ∈ L2(N+1)/(N−2)(RN × I ′), for each I ′ compactly contained in (T−(u), T+(u)).
(See for instance [30]). The energy norm is “critical”, since for all λ > 0, uλ(x, t) =
λ−(N−2)/2u(x/λ, t/λ) is also a solution and ‖(u0,λ, u1,λ)‖Ḣ1×L2 = ‖(u0, u1)‖Ḣ1×L2 .
The equation is focusing, so there is competition between the linear part and the
nonlinearity, and the conserved energy is:

E(u0, u1) =
1

2

∫
|∇u0|2 + |u1|2dx−

N − 2

2N

∫
|u0|2N/(N−2)dx.

It is easy to construct solutions that blow–up in finite time, say at T = 1, by
considering the associated ODE. For instance, when N = 3, u(x, t) = (3/4)1/4(1−
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t)−1/2 is a solution, and using finite speed of propagation, it is then easy to construct
solutions with T+ = 1, and limt↑T+ ‖(u(t), ∂tu(t))‖Ḣ1×L2 = ∞. Such solutions are
called “type I blow–up” solutions.

(NLW) also admits “type II blow–up” solutions, i.e. solutions which remain
bounded in norm. Here the breakdown occurs by “concentration”. The existence of
such solutions is a typical feature of energy critical problems. The first examples of
such solutions (radial) where constructed for N = 3 by Krieger–Schlag–Tataru [38],
for N = 4 by Hillairet–Raphaël [23] and for N = 5 by Jendrej [24]. For (NLW) one
expects soliton resolution for solutions that remain bounded in the energy norm,
i.e. such that

sup
0<t<T+

‖(u(t), ∂tu(t))‖Ḣ1×L2 <∞. (∗)

Some examples of solutions verifying (∗), when T+ = ∞ are “scattering solu-

tions”, that is solutions such that T+ = ∞ and there exists (u+0 , u
+
1 ) ∈ Ḣ1 × L2,

with
lim
t→∞

‖(u(t), ∂tu(t))− (S(t)(u+0 , u
+
1 ), ∂tS(t)(u+0 , u

+
1 ))‖Ḣ1×L2 = 0,

where S(t)(u+0 , u
+
1 ) is the solution of the associated linear wave equation with data

(u+0 , u
+
1 ). For instance, as we mentioned before, for (u0, u1) small in Ḣ1 × L2, we

have a scattering solution. Other examples of solutions of (NLW), with T+ = ∞,
and verifying (∗) are the stationary solutions, that is the solutions Q 6= 0 of the
elliptic equation

∆Q+ |Q|4/(N−2)Q = 0 in RN , (Σ)

with Q ∈ Ḣ1(RN ). We say that such a solution Q is in Σ. For example,

W (x) =

(
1 +

|x|2

N(N − 2)

)−(N−2)/2
is such a solution. Stationary solutions do not scatter, since they do not disperse. W
has several important characterizations: up to sign and scaling it is the only radial
element in Σ due to work of Pohozaev and Gidas–Ni–Nirenberg. Up to translation
and scaling it is also the only non–negative element in Σ (Caffarelli–Gidas–Spruck).
The equation (Σ) was extensively studied in connection with the Yamabe problem
in differential geometry. There is a continuum of variable sign, non–radial Q ∈ Σ
(Ding, del Pino–Musso–Pacard–Pistoia). W also has a variational characterization
as the extremal (modulo sign, translation and scaling) in the Sobolev embedding

‖f‖L2N/(N−2) ≤ CN‖∇f‖L2 .

It is also (modulo sign, translation and scaling) the element of Σ of least energy,
and there is a positive gap between the energy of W and the energies of the other
elements in Σ (up to sign, translation and scaling). Because of this, W is referred
to as the “ground state”. In [30], Kenig and Merle established the “ground state”
or “threshold” conjecture for (NLW).

Theorem 0.1. Let u be a solution of (NLW). Assume that E(u0, u1) < E(W, 0).

(i) If ‖∇u0‖L2 < ‖∇W‖L2 , then T+ = +∞, T− = −∞, and u scatters in both time
directions.
(ii) If ‖∇u0‖L2 > ‖∇W‖L2 , then T+ < +∞, T− > −∞.
(iii) The case ‖∇u0‖L2 = ‖∇W‖L2 is vacuous by variational considerations.

The threshold case E(u0, u1) = E(W, 0) was completely described by Duyckaerts–
Merle.
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The proof of Theorem 0.1 was obtained through the “concentration–compactness/
rigidity theorem” method, introduced by Kenig–Merle for this purpose (see also
[29], [31], [27], etc.). This method has since become the standard tool to under-
stand scattering, below the ground–state threshold, in critical dispersive problems.
It was through the work in [30] that Kenig–Merle realized that (NLW) was a favor-
able non–integrable model in which one could hope to attack the problem of soliton
resolution. To understand this further, note that other non–scattering solutions of
(NLW), which verify (∗) are the traveling wave solutions. These are obtained as

Lorentz transforms of Q ∈ Σ. Let ~̀ ∈ RN , |~̀| < 1. Then,

Q~̀(x, t) = Q~̀(x− t~̀, 0) = Q

([
−t

(1− |~̀|2)1/2
+

1

|~̀|2

(
1

(1− |~̀|2)1/2
− 1

)
(~̀ · x)

]
~̀+ x

)
is a traveling wave solution of (NLW). Moreover, Duyckaerts–Kenig–Merle showed
in [17] that these are all the traveling wave solutions of (NLW) in the energy space.
With these traveling wave solutions in hand, it becomes possible to give a rigorous
formulation of the soliton resolution conjecture for solutions of (NLW) verifying
(∗). The first progress in this direction was in the radial case, when N = 3, in
[15], where it was shown that, if u is a radial solution of (NLW), verifying (∗), one
can find well–chosen sequences {tn}, tn ↑ T+, J ∈ N, signs ij = ±1, 1 ≤ j ≤ J ,
scalings λj,n > 0 with 0 < λ1,n � . . . � λJ,n (where λ1,n � λ2,n means that
limn→∞ λ1,n/λ2,n = 0), and a solution of the linear wave equation vL(x, t), such
that

(u(tn), ∂tu(tn)) =

J∑
j=1

ij

(
1

λ
1/2
j,n

W

(
x

λj,n

)
, 0

)
+ (vL(x, tn), ∂tvL(x, tn)) + on(1),

where on(1) tends to 0 in Ḣ1 × L2 norm as n → ∞. Moreover, if T+ < ∞, then
λJ,n � (T+ − tn) and if T+ =∞, then λJ,n � tn.

Soon after, the same authors showed [16]:

Theorem 0.2. Let u be a radial solution of (NLW), with N = 3. Then one of the
following holds (with ~u(t) = (u(t), ∂tu(t))):

(i) T+ <∞ and sup0<t<T+
‖~u(t)‖Ḣ1×L2 =∞ (type I blow–up).

(ii) T+ < ∞ and sup0<t<T+
‖~u(t)‖Ḣ1×L2 < ∞ (type II blow–up), and there exist

J ≥ 1, ij ∈ {±1}, λj(t) > 0, for 1 ≤ j ≤ J , with 0 < λ1(t) � . . . � λJ(t) �
(T+ − t), such that

~u(t)− ~v(t) =

J∑
j=1

ij

(
1

λj(t)1/2
W

(
x

λj(t)

)
, 0

)
+ o(1) in Ḣ1 × L2,

where ~u(t) ⇀ (v0, v1) as t → T+ and v is the solution of (NLW) with ~v(T+) =
(v0, v1) which verifies supp (~u(t)− ~v(t)) ⊂ {|x| < T+ − t}. (v is the “regular part”

of u, it is equivalent to the radiation term since ~v(t) − ~SL(t − T+)(v0, v1) → 0 as

t→ T+ in Ḣ1 × L2.)
(iii) T+ = ∞. Then there exist vL a solution of the linear wave equation, and
J ≥ 0, and for 1 ≤ j ≤ J , ij ∈ {±1}, λj(t) > 0 with 0 < λ1(t)� . . .� λJ(t)� t,
and

~u(t)− ~vL(t) =

J∑
j=1

ij

(
1

λj(t)1/2
W

(
x

λj(t)

)
, 0

)
+ o(1) in Ḣ1 × L2 as t→∞.
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Let us briefly discuss the main idea in the proof of Theorem 0.2. The mechanism
for relaxation to a “coherent structure” (a sum of modulated solitons), which has
been observed numerically and experimentally, is the radiation of excess energy to
spatial infinity. This appears in such diverse settings as the dynamics of gas bubbles
in a compressible fluid and the formation of black holes in gravitational collapse.
In a series of works with Duyckaerts and Merle ([13], [14], [15], [16], [18], etc.) we
have found a way to quantify the ejection of energy, that occurs as we approach the
final time T+ for nonlinear wave equations, through a method that we call “energy
channels”. This has allowed us to make significant progress on “soliton resolution”,
such as in Theorem 0.2, and other works (sometimes also with other collaborators).
The main point in the proof of Theorem 0.2, is a dynamical characterization of W
through “energy channels”: if u is a radial solution of (NLW), N = 3, which exists
for all times and is not 0 or a rescaled ±W , then ([16]) there exist R > 0 and η > 0,
such that, for all t ≥ 0 or all t ≤ 0, we have∫

|x|>|t|+R
|∇x,tu|2 ≥ η. (†)

Some of the key tools for proving this are the following “outer energy lower
bounds”, valid for radial solutions of the linear wave equation, when N = 3. For
r0 > 0, let Pr0 = {(a/r, 0) : a ∈ R, r ≥ r0} b Ḣ1 × L2(r > r0). Let Π⊥r0 be the
orthogonal projection onto the orthogonal complement of Pr0 . Then, for v a radial
solution of the linear wave equation, N = 3, we have ([13]): for all t ≥ 0 or all t ≤ 0,∫

|x|>|t|+r0
|∇x,tv|2dx ≥

1

2
‖Π⊥r0(v0, v1)‖2

Ḣ1×L2(r>r0)
. (1)

Note that it is easy to check that

‖Π⊥r0(v0, v1)‖2
Ḣ1×L2(r>r0)

=

∫
|x|>r0

|∂r(rv0)|2 + v21 . (2)

Note that (1) and (2) easily give (†) for solutions of the linear wave equation
when N = 3. The passage to the nonlinear case combines (1), (2) with “elliptic
arguments” of iterative type. To see the method of “energy channels” at work,
let us give an outline of the proof of Theorem 0.2, (ii), T+ = 1. Take tn ↑ 1,
and consider ~u(tn) − ~v(tn), which is supported on |x| < 1 − tn, where v is the
regular part of u. Break up ~u(tn) − ~v(tn) into a sum of “orthogonal” nonlinear
“blocks”. (Technically, nonlinear profiles Uj associated to a Bahouri–Gérard [1]
profile decomposition, plus an error wn, which is a linear solution, tending to 0
in the weaker “dispersive” norm L5

tL
10
x (N = 3).) This can be done through an

approximation theorem due to Bahouri–Gérard [1]. If a “block” Uj is not (up to
a sign) a rescaled W , by (†), centered at (0, tn), it will send energy outside the
inverted light cone centered at (0, 1), in case (†) holds for t ≥ tn which contradicts
that supp ~u(t)− ~v(t) b {|x| < 1− t}, or close to |x| = 1, t = 0, for n large (in case

(†) holds for t ≤ tn), which contradicts the fact that ~u(0)−~v(0) ∈ Ḣ1×L2. Finally
one uses (1) to show that the dispersive errors ~wn tend to 0 in energy norm, by a
similar argument.

Let us also give an outline of the earlier argument in [15], which gives the de-
composition for well–chosen sequences of times. This is a weaker result, but the
argument has proved to be useful in other situations. Let us again concentrate on
the analog of (ii) in Theorem 0.2, with T+ = 1. In [15], using (1) and the Bahouri–
Gérard decomposition [1], it was shown, for N = 3, that no “self–similar blow–up”
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is possible for radial solutions verifying (∗) above: for any such solution, we have

lim
t↑1

∫
λ(1−t)<|x|<(1−t)

|∇x,tu(x, t)|2dx = 0, ∀ 0 < λ < 1. (‡)

Later, Côte–Kenig–Laurie–Schlag [9] gave a different proof of (‡), which now
applies to radial solutions for all N , without using (1) or its analogs (see [25]).
The proof was given through an adaptation of the classical argument for showing
(‡) for equivariant wave maps due to Christodoulou, Shatah and Tahvildar–Zadeh
[4],[5],[46]. Combining (‡) with classical “virial identities” [45], in [15] it was shown
that

lim
t↑1

∫ 1

t

∫
|x|<1−t

(∂tu(x, s))2dx
ds

1− t
= 0. (])

This, together with a Tauberian type argument (and hence the need to choose
suitable time sequences), and the fact that, in the radial case, the only static so-
lutions are ±W and their scalings, shows that all nonlinear “blocks” are scalings
of ±W . Then, one uses the version of (1) when r0 = 0, and an energy channel
argument to show that the dispersive errors go to 0 in energy norm. It turns out
that, in the limit as r0 → 0, (1) becomes∫

|x|>|t|
|∇x,tv|2dx ≥

1

2

∫
|∇v0|2 + v21 (3)

holds for all t ≥ 0 or all t ≤ 0. Here v is a solution of the linear wave equation in
RN ×R, with N odd, and this holds also in the non–radial case. (3) was proved in
[14].

Moving forward from the radial case of (NLW), for N = 3, we need to take into
account a number of facts.

Fact 1. In [10], it is shown that (1) and (3) fail for radial solutions of the linear wave
equations, for all even dimensions. However, (3) holds for radial, linear solutions
when N = 4, 8, . . ., (v0, v1) = (v0, 0) and when N = 2, 6, 10, . . ., (v0, v1) = (0, v1).

Fact 2. In [28] it is shown that an analog of (1) holds for radial solutions of the
linear wave equation, for all odd N . This is: Let

P = span

{(
1

rN−2k1
, 0

)
,

(
0,

1

rN−2k2

)
: 1 ≤ k1 ≤

⌊
N + 2

4

⌋
, 1 ≤ k2 ≤

⌊
N

4

⌋}
.

Let P (R) = P |{|x|>R}. Then, for all t ≥ 0, or for all t ≤ 0, if v is a radial solution

of the linear wave equation in RN × R,∫
|x|≥R+|t|

|∇x,tv|2dx ≥
1

2
‖Π⊥P (R)(v0, v1)‖2

Ḣ1×L2(|x|>R)
. (4)

Note that when N = 3, (4) is precisely (1), and when N = 5 P also includes
(0, 1/|x|3). Also as N → ∞, the dimension of the exceptional subspaces P (R)
increases to infinity.

Fact 3. ([11]) (1) and (4) fail in the non–radial case, in all dimensions. Using Fact
2, and (‡), C. Rodriguez [42] was able to extend [15], also for well–chosen sequences
of times, for radial solutions of (NLW) in all odd dimensions. Using Fact 1 for
N = 4, (‡) and (]) and the fact that the “good” data for (2) in this dimension
are (v0, 0) and ‖∂twn‖L2 → 0, for the “dispersive error”, in [9] the analog of [15]
was obtained for well–chosen sequences of times and radial solutions of (NLW) for
N = 4.
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In [25] Jia–Kenig introduced a new method, based on virial identities, to study
soliton resolution, along well–chosen sequences of times, for radial solutions of
(NLW) in all dimensions N . This method did not use (1), (3) or (4), but used
(‡) and (]), combined with an extra virial identity.

Fact 4. On the difficulty in obtaining (†) for radial solutions of (NLW), in the case
N > 3. Consider the case N = 5. Then, (4) above becomes∫

|x|≥R+|t|
|∇x,tv|2dx ≥

1

2
‖Π⊥P (R)(v0, v1)‖2

Ḣ1×L2(|x|>R)
,

where P (R) = {a(1/r3, 0) + b(0, 1/r3) : a, b ∈ R} (see [28]). Note that, as in the
case N = 3, 1/r3 is still asymptotic to W . In order to show that the failure of (†)
gives a dynamical characterization of W , it is necessary to show that the solution of
(NLW) with data (0, χ{|x|>R}/r

3} verifies (∗), while for the linear solution, the left–
hand side of (4) is 0. This has been a roadblock for a number of years. Recently, in
work in progress, Duyckaerts–Kenig–Merle have succeeded in doing this, by a very
indirect argument, which has led to a proof of the full soliton resolution for radial
solutions of (NLW), when N = 5.

We now turn to the non–radial case. Some of the difficulties here are that the
set of traveling waves Q~l, Q solving ∆Q + |Q|4/(N−2)Q = 0, is very large and
far from being understood and the outer energy lower bounds (1) and (4) fail in
the nonradial case, so that a dynamical characterization of traveling waves seems
doomed to failure.

Consider now solutions of (NLW) in RN , N = 3, 4, 5, 6, verifying (∗). If T+ <∞
(type II blow–up), we consider the set S of singular points, i.e. the set of points
where the solution concentrates energy at the blow–up time. (See [13].) In [13] it
is shown that S is non–empty and finite. Moreover, it is shown that ~u(t)→ (v0, v1)

weakly in Ḣ1 × L2 as t → T+, and that if v solves (NLW), with ~v(T+) = (v0, v1),
then supp [~u(t)−~v(t)] ⊂ ∪Mk=1{(x, t) : |x−xk| < |T+− t|}, where S = {x1, . . . , xk}.
Note that in the radial case S = {0}. We now describe the result in [11], which
gives soliton resolution, along well–chosen sequences of times.

Theorem 0.3 ([11]). Let u be a solution of (NLW), N = 3, 4, 5, 6, verifying (∗).
(i) Assume T+ < ∞. Fix x0 ∈ S. Then, there exist J ≥ 1, r0 > 0, and time
sequences tn ↑ T+ (well–chosen), scales λjn, with λjn/(T+ − tn) → 0 as n → +∞,

positions cjn ∈ Bβ(T+−tn)(x0), β ∈ [0, 1), with ~lj = limn c
j
n/(T+ − tn), and traveling

waves Qj~lj
, Qj ∈ Σ, 1 ≤ j ≤ J , such that, for x ∈ Br0(x0), we have

~u(tn)− ~v(tn)

=

J∑
j=1

(
1

(λjn)(N−2)/2
Qj~lj

(
x− cjn
λjn

, 0

)
,

1

(λjn)N/2
∂tQ

j
~lj

(
x− cjn
λjn

, 0

))
+ oḢ1×L2(1)

as n→∞. Moreover,

λjn

λj
′
n

+
λj
′

n

λjn
+
|cjn − cj

′

n |
λjn

→∞ as n→∞, for j 6= j′.

(ii) Assume that T+ = ∞. Then ([19]), there exists vL solving the linear wave
equation such that, for all A,

lim
t→∞

∫
|x|>t−A

|∇x,t(u− vL)(x)|2dx = 0.
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Moreover, there exists tn → ∞ (well–chosen), there exist J ≥ 0, λjn > 0, cjn ∈
Bβtn(0) ⊂ RN , β ∈ [0, 1), limn c

j
n/tn = ~lj, traveling waves Qj~lj

, Qj ∈ Σ, such that

~u(tn)− ~v(tn)

=

J∑
j=1

(
1

(λjn)(N−2)/2
Qj~lj

(
x− cjn
λjn

, 0

)
,

1

(λjn)N/2
∂tQ

j
~lj

(
x− cjn
λjn

, 0

))
+ oḢ1×L2(1)

as n→∞, and

λjn

λj
′
n

+
λj
′

n

λjn
+
|cjn − cj

′

n |
λjn

→∞ as n→∞ for j 6= j′, and
λjn
tn
→ 0 as n→∞.

Remark 1. The proof of (i), with error (ε0n, ε
1
n) having corresponding linear solution

wn converging to 0 in L5
tL

10
x (when N = 3) i.e. in the “dispersive” norm, but not

necessarily the energy norm, is due earlier to Hao Jia.

Remark 2. The extraction of the radiation term in (ii) is in [19] and it is a delicate
result.

Remark 3. The proof of Theorem 0.3, say when T+ = ∞, gives the following
additional fact: for any t1n, t

2
n, with limn t

1
n = limn t

2
n = limn t

2
n/t

1
n = ∞, after

extraction, we can find tn, with t1n ≤ tn ≤ t2n, so that the decomposition is valid for
tn. Thus, the decomposition holds for many sequences {tn}.

The starting point of the proof of Theorem 0.3 (i) is the following Morawetz type
estimate (say when T− = 0, 0 ∈ S):∫ t2

t1

∫
|x|<t

[
∂tu+

x

t
· ∇u+

(
N

2
− 1

)
u

t

]2
dx
dt

t
≤ C(u)

(
log

t1
t2

)1/2

, (5)

which is a consequence of preliminary control of the flux. From (5) and Tauberian
type arguments one then shows that there exist (many) tn ↓ 0, such that

sup
0<τ<tn/16

1

τ

∫
|tn−t|<τ

∫
|x|<ct

[
∂tu+

x

t
·∇u+

(
N

2
−1

)
u

t

]2
dxdt→ 0 as n→∞. (6)

From this one obtains a preliminary decomposition with an error tending to 0 in
the “dispersive” norm. To show that the error goes to 0 in energy, one uses a new
“energy channels” argument, valid in the nonradial case, in all dimensions.

Proposition 1 ([11],[12]). Fix γ ∈ (0, 1). There exists µ = µ(γ) > 0 and small
such that, if v is a finite energy solution of the linear wave equation in RN × R,
N ≥ 1, with initial data (v0, v1) ∈ Ḣ1 × L2, satisfying

‖(v0, v1)‖Ḣ1×L2(Bc1+µ∪B1−µ)
+ ‖∂rv0 + v1‖L2

+

∥∥∥∥∇v0 − ( x

|x|
· ∇v0

)
x

|x|

∥∥∥∥
L2

≤ µ‖(v0, v1)‖Ḣ1×L2 ,

then, for all t ≥ 0 we have∫
|x|≥γ+t

|∇x,tv|2dx ≥ γ‖(v0, v1)‖2
Ḣ1×L2 . (7)

Remark 4. With this method of proof, relying on monotonicity laws giving con-
vergence only after averaging in time (as in (5), (6)) one cannot hope for more than
a decomposition for particular (but many, see Remark 3) sequences of times. The
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difficulty of obtaining the resolution for all times is illustrated by the harmonic map
heat flow, for which the analog of Theorem 0.3 is known, but the soliton resolution
for all times need not hold in full generality for general target manifolds, as shown
by examples of Topping [54]. For this heat flow, for the case of S2 target (S2 being
the round sphere in R3), it is conjectured that the full analog of soliton resolution
holds, but this has not been proven yet.

Remark 5. We see Theorem 0.3 as an important step towards the proof of soliton
resolution for all times. Indeed, because of it, one is now reduced to the study of
the dynamics close to a sum of traveling waves plus a “dispersive” term, rather than
the general large data dynamics. The main challenge in order to succeed in this is
to show that the collision of two or more traveling waves produces dispersion. Note
that in the radial case, when N = 3, this is a consequence of (†).

The ideas that we have just outlined are very robust. We will next outline some
applications of them to the study of wave maps. This is an extremely well–studied
model, a geometric wave equation with applications in physics, to nonlinear sigma
models, to scenarios in general relativity and to gauge theories. In the energy critical
case, with values in the standard sphere S2, it takes the form, for u : R2 ×R→ S2,

∂tu−∆u = (|∇u|2 − |∂tu|2)u,

with initial data ~u(0) = (u0, u1) verifying the compatibility conditions |u0| = 1
and u0 · u1 = 0. For simplicity, in the general case when no symmetry is present,
as is usual in the subject, we shall assume that ~u(0) is smooth, u1 is compactly
supported and u0 is a constant u∞ for large x. Such wave maps are called “classical”.
This equation has been studied extensively under symmetry assumptions on the
solutions, in the so–called k–equivariant case, for which u ◦ ρ = ρk ◦ u, where ρ
is a rotation of R2, which acts on S2 by rotation about a fixed axis. If we use
coordinates (r, ω, t) for R2 × R, and (ψ, θ) as polar coordinates for S2, then u is
given by (r, ω, t) 7→ (ψ(r, t), kω), and the wave map equation then becomes:

∂2t ψ − ∂2rψ −
1

r
∂rψ + k2

sin 2ψ

2r2
= 0,

which has been studied for example in [4],[5],[46] and [47]. (The radial Yang–Mills
system in R4 can also be put in a similar form.) We consider solutions in the energy
space, where

E(ψ,ψt) =

∫ ∞
0

[
(∂rψ)2 + (∂tψ)2 + k2

sin2 ψ

r2

]
rdr.

Note that the finiteness (and conservation) of the energy imply that ψ(0, t) = mπ,
ψ(∞, t) = lπ, m, l ∈ Z. It has been shown in [41], [39] and [40] that finite time blow–
up can occur for k–equivariant wave maps. Following work in the co–rotational case
(the 1–equivariant case) in [7],[8],[6], the analog of the result in [15] was obtained in
[25], for all k–equivariant wave maps. The static solutions in this case are harmonic
maps, which in the k–equivariant setting take the form Q(r) = 2 arctan(rk) + qπ,
q ∈ Z. Note that the linearized equation associated to the k–equivariant wave map
equation is

∂2t φ− ∂2rφ−
1

r
∂rφ+ k2

φ

r2
= 0,
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which under the transformation uL = r−kφ verifies the radial 2k + 2 dimensional
wave equation. Hence solutions to the linearized equation preserve the energy

‖~φ(t)‖Hk×L2 =

∫ ∞
0

[
(∂tφ)2 + (∂rφ)2 + k2

φ2

r2

]
rdr.

Theorem 0.4 ([25]). Let ~ψ(t) be a finite energy solution of the k–equivariant wave
maps equation. Then there exist a sequence of times tn ↑ T+, an integer J ≥ 0,
J sequences of scales 0 < rJ,n ≤ . . . r2,n ≤ r1,n, with limn rj,n/rj−1,n = 0, and
J harmonic maps Q1, . . . , QJ such that QJ(0) = ψ0(0), Qj+1(∞) = Qj(0), for
j = 1, . . . , J − 1, such that the following holds:

(i) T+ = ∞. Let lπ = ψ0(∞). Then Q1(∞) = lπ, limn r1,n/tn = 0, and there

exists a radial finite energy solution ~φL to the linearized equation, such that

~ψ(tn) =

J∑
j=1

(
Qj

(
·
rj,n

)
−Qj(∞), 0

)
+ (lπ, 0) + ~φL(tn) +~bn.

(ii) T+ < ∞. Denote lπ = limt→T+
ψ(T+ − t, t), which is well–defined. Then,

J ≥ 1, limn r1,n/(T+ − tn) = 0, and there exists ~φ ∈ H × L2 of finite energy, such
that Q1(∞) = φ(0) = lπ and

~ψ(tn) =

J∑
j=1

(
Qj

(
·
rj,n

)
−Qj(∞), 0

)
+ ~φL(tn) +~bn,

where ‖φ‖2H =
∫∞
0

[(∂rφ)2 +φ2/r2]rdr, and in both cases ‖ ~bn‖H×L2 → 0 as n→∞.

The proof in [25] uses a combination of virial identities and Tauberian real vari-
able arguments, bypassing the failure of (3) in the even dimensions 2k + 2. For
the critical wave map equation, without symmetry assumptions, the theory of the
local Cauchy problem is quite intricate. The equation is invariant under the scaling
u 7→ uλ(x, t) = u(λx, λt), and the conserved energy is

E(~u) =
1

2

∫
R2

[|∇xu|2 + |∂tu|2]dx.

The works [32], [33], [34], [35], [36], [44] established the local well–posedness in
subcritical spaces. The small data Cauchy problem in the critical energy space
was addressed in the breakthrough works of Tataru [52], [53] and Tao [50], using
the null–frame spaces introduced by Tataru and Tao’s microlocal gauge. The large
data theory has been treated by Sterbenz–Tataru [48], using the diffusive gauge.
Sterbenz–Tataru [49] showed that if a wave map blows–up in finite time, or is global
in time but does not scatter, then, after modulation, it must converge locally in space
time, along a sequence of times, to a harmonic map. This can be seen as a first step
towards soliton resolution for a sequence of times. It proves the “ground–state” or
“threshold” conjecture: if the energy of the initial data is smaller than the one of
the minimal energy harmonic map, the solution exists for all times and scatters.
(In the case when the target is the hyperbolic sphere, and hence no harmonic map
exists, the corresponding global in time result was also proved by Krieger–Schlag
[37] and Tao [51].) Here scattering does not have the usual meaning of the solution
approaching asymptotically a solution of the underlying linear equation, due to a
non–perturbative portion of the nonlinearity. The meaning of scattering is that of
[48], that a certain controlling space–time norm S, introduced in [48], is finite. A
characterization of wave maps with finite S norm is given in [48]. Recently, Grinis
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[22] has taken a further step towards establishing soliton resolution along a well–
chosen sequence of times. He proved that, along a well–chosen sequence of times,
all of the energy concentration strictly inside the light–cone must be in the form of
a traveling wave. He showed this by proving that there is no energy in the “neck
region” (the region strictly inside the light cone and away from the traveling waves).
Here a new difficulty arises, not present in the equivariant case (due to [5], [46]),
namely that it is not known in the general case how to prevent energy concentration
near the singularity cone. In [12], Duyckaerts, Jia, Kenig and Merle have been able
to do this, for the finite time blow–up case, when the energy of the wave map is
only slightly bigger than the one of the minimal energy harmonic map for which
the energy is 4π, which is achieved for degree 1, 1–equivariant harmonic maps (with
respect to an axis of symmetry). LetM1 be the space of such harmonic maps, and

M~l,1 = {Q~l : Q ∈ M1, |~l| < 1} denote the set of Lorentz transforms of elements in

M1.

Theorem 0.5 ([12]). Let u be a classical wave map with E(~u) < E(Q, 0) + ε20, Q ∈
M1, that blows–up at a finite time T+, with the origin being a singular point. Then,

there exists ~l ∈ R2, |~l| � 1, x(t) ∈ R2, λ(t) > 0 with limt→T+ x(t)/(T+ − t) = ~l,

λ(t) = o(T+ − t) and (v0, v1) ∈ Ḣ1 × L2 ∩ C∞(R2 \ {0}), with (v0 − u∞, v1) being
compactly supported such that

(i) inf{‖~u(t)− (v0, v1)− (Q~l, ∂tQ~l)‖Ḣ1×L2 : Q~l ∈M~l,1} → 0 as t→ T+,

(ii) ‖~u(t)− (v0, v1)‖Ḣ1×L2(R2\Bλ(t)(x(t))) → 0 as t→ T+.

Heuristically, the result says that at the blow–up time, the wave map essentially
consists of two parts, one regular part outside the light–cone {|x| < T+ − t}, and

a traveling wave with small velocity ~l in a small region (relative to the size of the

cone) near the point ~l(T+ − t). Moreover, there is no other energy concentration.
The key new idea in the proof of Theorem 0.5 is a new “energy channel” for wave
maps.

Proposition 2 ([12]). Fix β ∈ (0, 1). There exists a small δ(β) > 0 and a small
ε0(β) > 0, such that if u is a classical wave map with energy E(~u) < ε0, satisfying

‖(u0, u1)‖Ḣ1×L2(Bc1+δ∪B1−δ)
+

∥∥∥∥∇u0 − ( x

|x|
· ∇u0

)
x

|x|

∥∥∥∥
L2

+ ‖∂ru0 + u1‖ ≤ δ‖(u0, u1)‖Ḣ1×L2 ,

then, for all t ≥ 0, ∫
|x|>β+t

|∇x,tu|2dx ≥ β‖(u0, u1)‖2
Ḣ1×L2 .

This is an analog of Proposition 1 (which is valid for solutions of the linear
wave equation). The proof of Theorem 0.5 follows, roughly speaking, by using the
wave map Morawetz identity [51], [49], Grinis’ result [22] as a substitute for the
Bahouri–Gérard decomposition and the energy channels in Proposition 2 to show
that there can be no energy concentration on the boundary of the singularity cone.
The proof of Proposition 2 uses the linear results in Proposition 1, in dimension
2, a frequency decomposition with a direct argument for low frequencies, and the
fact that the outgoing conditions are stable (for most frequencies) with respect to
frequency projection. Since the nonlinearity cannot be treated perturbatively ([50]),
one has to perform a gauge transform to treat the nonlinearity. The key point is
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that, although the gauge transform can change the wave map significantly, it does
not change significantly the energy distribution.

Going forward, we would like to prove the analog of Theorem 0.5, without the
energy restriction, thus proving soliton resolution for wave maps along well–chosen
time sequences. In order to do this one hopes to give an extension of Proposition
2, where one replaces the smallness in energy by smallness in “energy dispersion
norm” (see [47],[48]). This seems to require stronger “high frequency perturbation
theorems”. We would also like to extend all these results to the scattering situation,
where one also needs stronger perturbation theorems. Finally, we believe that the
full soliton resolution holds for classical wave maps into S2. We believe that this
should follow from “energy channels for wave maps close to a multisoliton plus
radiation” which could be proved exploiting the recent non–degeneracy result for
harmonic maps in [3], together with arguments as in [18].
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[10] R. Côte, C. Kenig and W. Schlag, Energy partition for the linear radial wave equation, Math.

Ann., 358 (2014), 573–607.

[11] T. Duyckaerts, H. Jia, C. Kenig and F. Merle, Soliton resolution along a sequence of times

for the focusing energy critical wave equation, Geom. Funct. Anal., 27 (2017), 798–862.
[12] T. Duyckaerts, H. Jia, C. Kenig and F. Merle, Universality of blow–up profile small blow–up

solutions to the energy critical wave map equation, preprint, arXiv:1612.04927, to appear in
IMRN .

[13] T. Duyckaerts, C. Kenig and F. Merle, Universality of blow–up profile for small radial type

II blow–up solutions of the energy–critical wave equation, J. Eur. Math. Soc., 13 (2011),

533–599.
[14] T. Duyckaerts, C. Kenig and F. Merle, Universality of blow–up profile for small type II blow–

up solutions of the energy–critical wave equation: The nonradial case, J. Eur. Math. Soc., 14
(2012), 1389–1454.

[15] T. Duyckaerts, C. Kenig and F. Merle, Profiles of bounded radial solutions of the focusing,

energy–critical wave equation, Geom. Funct. Anal., 22 (2012), 639–689.
[16] T. Duyckaerts, C. Kenig and F. Merle, Classification of radial solutions of the focusing,

energy–critical wave equation, Cambridge Journ. of Math., 1 (2013), 75–144.

[17] T. Duyckaerts, C. Kenig and F. Merle, Profiles for bounded solutions of dispersive equations,
with applications to energy–critical wave and Schrödinger equations, Commun. Pure Appl.

Anal., 14 (2015), 1275–1326.

http://www.ams.org/mathscinet-getitem?mr=MR1705001&return=pdf
http://dx.doi.org/10.1353/ajm.1999.0001
http://dx.doi.org/10.1353/ajm.1999.0001
http://www.ams.org/mathscinet-getitem?mr=MR3795020&return=pdf
http://dx.doi.org/10.1016/j.anihpc.2017.08.006
http://dx.doi.org/10.1016/j.anihpc.2017.08.006
http://arxiv.org/pdf/1806.04131
http://www.ams.org/mathscinet-getitem?mr=MR1230285&return=pdf
http://dx.doi.org/10.1215/S0012-7094-93-07103-7
http://dx.doi.org/10.1215/S0012-7094-93-07103-7
http://www.ams.org/mathscinet-getitem?mr=MR1223662&return=pdf
http://dx.doi.org/10.1002/cpa.3160460705
http://dx.doi.org/10.1002/cpa.3160460705
http://www.ams.org/mathscinet-getitem?mr=MR3403756&return=pdf
http://dx.doi.org/10.1002/cpa.21545
http://www.ams.org/mathscinet-getitem?mr=MR3318089&return=pdf
http://dx.doi.org/10.1353/ajm.2015.0002
http://dx.doi.org/10.1353/ajm.2015.0002
http://www.ams.org/mathscinet-getitem?mr=MR3318090&return=pdf
http://dx.doi.org/10.1353/ajm.2015.0003
http://dx.doi.org/10.1353/ajm.2015.0003
http://www.ams.org/mathscinet-getitem?mr=MR3769743&return=pdf
http://dx.doi.org/10.1007/s00220-017-3043-2
http://dx.doi.org/10.1007/s00220-017-3043-2
http://www.ams.org/mathscinet-getitem?mr=MR3175135&return=pdf
http://dx.doi.org/10.1007/s00208-013-0970-x
http://www.ams.org/mathscinet-getitem?mr=MR3678502&return=pdf
http://dx.doi.org/10.1007/s00039-017-0418-7
http://dx.doi.org/10.1007/s00039-017-0418-7
http://www.ams.org/mathscinet-getitem?mr=MR3878592&return=pdf
http://dx.doi.org/10.1093/imrn/rnx073
http://dx.doi.org/10.1093/imrn/rnx073
http://arxiv.org/pdf/1612.04927
http://www.ams.org/mathscinet-getitem?mr=MR2781926&return=pdf
http://dx.doi.org/10.4171/JEMS/261
http://dx.doi.org/10.4171/JEMS/261
http://www.ams.org/mathscinet-getitem?mr=MR2966655&return=pdf
http://dx.doi.org/10.4171/JEMS/336
http://dx.doi.org/10.4171/JEMS/336
http://www.ams.org/mathscinet-getitem?mr=MR2972605&return=pdf
http://dx.doi.org/10.1007/s00039-012-0174-7
http://dx.doi.org/10.1007/s00039-012-0174-7
http://www.ams.org/mathscinet-getitem?mr=MR3272053&return=pdf
http://dx.doi.org/10.4310/CJM.2013.v1.n1.a3
http://dx.doi.org/10.4310/CJM.2013.v1.n1.a3
http://www.ams.org/mathscinet-getitem?mr=MR3359522&return=pdf
http://dx.doi.org/10.3934/cpaa.2015.14.1275
http://dx.doi.org/10.3934/cpaa.2015.14.1275


6992 CARLOS E. KENIG

[18] T. Duyckaerts, C. Kenig and F. Merle, Solutions of the focusing nonradial critical wave
equation with the compactness property, Ann. Sc. Norm. Super. Pisa Cl. Sci., 15 (2016),

731–808.

[19] T. Duyckaerts, C. Kenig and F. Merle, Scattering profile for global solutions of the energy–
critical wave equation, preprint, arXiv:1601.01871, to appear in J. Eur. Math. Soc.

[20] W. Eckhaus, The long–time behaviour for perturbed wave–equations and related problems,
in Trends in Applications of Pure Mathematics to Mechanics (Bad Honnef, 1985) (eds. E.
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[38] J. Krieger, W. Schlag and D. Tataru, Slow blow–up solutions for the H1(R3) critical focusing
semilinear wave equation, Duke Math. J., 147 (2009), 1–53.

[39] J. Krieger, W. Schlag and D. Tataru, Renormalization and blow–up for charge one equivariant

wave maps, Invent. Math., 171 (2008), 543–615.
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