Modeling Speedup in Multi-OS Environments

Brian R. Tauro, Conghao Liu, and Kyle C. Hale
{btauro@hawk, cliul15@hawk, khale@cs}.iit.edu
Department of Computer Science
Illinois Institute of Technology

Abstract—For workloads that place strenuous demands on sys-
tem software, novel operating system designs like unikernels, li-
brary OSes, and hybrid runtimes offer a promising path forward.
However, while these systems can outperform general-purpose
OSes, they have limited ability to support legacy applications.
Multi-OS environments, where the application’s execution is split
between a compute plane and a data plane operating system,
can address this challenge, but reasoning about the performance
of applications that run in such a split execution environment
is currently guided only by expert intuition and empirical
analysis. As the level of specialization in system software and
hardware continues to increase, there is both a pressing need
and ripe opportunity for investigating analytical models that
can predict application performance and guide programmers’
intuition when considering multi-OS environments. In this paper
we present such a model to place bounds on application speedup,
beginning with a simple, intuitive formulation, and progressing
to a more refined, predictive model. We present an analysis of
the model, apply it to a diverse set of benchmarks, and evaluate
it using a prototype measurement tool for analyzing workload
characteristics relevant for multi-OS environments.

I. INTRODUCTION

A growing number of applications and runtimes place in-
tense demands on systems which push the traditional hardware
and software stack to its limits. The needs of these applications
often cannot be met by general-purpose operating systems
(GPOSes), either owing to overheads caused by mismatched
abstractions [16], [17], system interference and jitter from “OS
noise” [8], [30], or unnecessary complexity introduced by a
general-purpose OS design [15].

For decades the HPC community has considered—and in
several cases has deployed in production [24], [11], [9], [37],
[27]—lightweight kernels, which employ a simpler and more
performant kernel design. A similar trend permeates commod-
ity computing today, where an increasing number of systems
dedicated to one application or small set of applications
obviates the need for a GPOS [25], [33]. Unikernels (and their
intellectual predecessor, Exokernels [6], [7]), take advantage
of this fact to provide an OS tailored to a specific application.
In some cases, application developers can even compile their
programs directly from a high-level language (such as OCaml)
into a bootable, application-specific OS image [29]. Amazon,
for example, has recently developed a custom version of Linux
dedicated to running containers via a lightweight hypervisor!.

While these specialized OSes (SOSes) have been shown
to increase performance, in some cases significantly [29],
[28], [33], [16] one of the biggest challenges facing their

Uhttps:/firecracker-microvm.github.io/

widespread adoption is their non-conformance to POSIX or
the Linux ABI. This means that for users to take advantage
of a new OS, developers must first port applications to work
with the kernel’s system interface. The previously described
scenario in which high-level language (HLL) applications are
compiled into a kernel is actually ideal when exploring novel
OS environments, as the HLL compiler’ controls the degree
to which an application written in the language leverages OS
interfaces (namely, system calls). The burden of supporting a
new OS environment thus lies solely on the HLL compiler/run-
time designer. However, for low-level systems and scientific
computing languages, such as C and Fortran, or for HLLs
which make extensive use of native interfaces (e.g. Java JNI),
the situation is more complicated. Developers writing their
programs in low-level languages are free to use any subset
of the application binary interface (ABI), and indeed, can
even forgo standard libraries altogether and issue system calls
directly using inline assembly. These applications therefore
require more effort when porting to a new OS, particularly one
which lacks POSIX support entirely, or one which employs a
non-traditional execution environment (e.g. a single address
space or no user/kernel isolation).

One approach to ameliorate this situation involves delega-
tion of a portion of the system call interface to another OS.
This approach, sometimes referred to as a multi-kernel [3]
or co-kernel [31] setup, partitions the machine (either virtu-
ally [17], [18], [2] or physically [31], [26], [9], [39], [10]) such
that different OSes control different resources. Usually this
means that a GPOS (such as Linux) acts as the control plane—
setting up the execution environment, launching applications,
and handling system services—while an SOS acts as the data
plane or compute plane. The rationale is that the majority of
the application’s execution will be in the compute plane, and
any system services unsupported by the SOS will be delegated
to the GPOS via some forwarding mechanism. We discuss this
approach in more detail in Section II.

As hardware designers employ increasing levels of special-
ization [20], OS developers will likely follow suit. Rather
than deploying monolithic kernels with drivers for an array of
accelerators, we can expect to see OS deployments consisting
of myriad kernels, each with its own performance properties
and target applications. Thus, the ability to understand how
applications perform in multi-OS environments will become

20r the implementation of the language runtime for interpreted/JIT-
compiled languages

https://firecracker-microvm.github.io/

increasingly important.

While others have presented empirical analysis of dele-
gation [12], and several multi-OS designs exist [31], [39],
[10], [32], there has not yet been an attempt to model these
environments analytically. This presents an opportunity, as
“bounds and bottleneck” analysis can provide valuable in-
sight and intuition for novel computing paradigms. Amdahl’s
law [1] and its successors [14], [36] provided keen insight
on the limitations of parallel program performance at a time
when parallel systems and algorithms were emerging. Roofline
models [38] provide a useful visual tool for understanding how
application performance relates to architectural limitations.
Intuitive tools like the “3 C’s” of cache misses, while not
rigorously formulated, can provide invaluable insight into pro-
gram performance and guide developers’ intuition for tuning
performance.

In this paper we provide a mathematical tool along these
lines which we hope will give insight into the limitations
of program performance in multi-OS environments. In Sec-
tion III, we present and analyze a naive yet intuitive model
to represent application speedup in a multi-OS setup and
subsequently refine it to present a more accurate picture of
reality. We use our model to analyze the behavior of real-
world benchmarks in Section IV. In Section V, we discuss
the model, including how it might be used by developers, its
limitations, and potential further refinements. We outline prior
art in Section VI and draw conclusions in Section VII.

II. BACKGROUND

Multi-OS environments are arranged such that compute
intensive portions of an application run atop a specialized
OS (compute plane), and system services not supported by
that SOS are delegated to a general-purpose OS (control
plane), which handles the calls and returns the results. There
are two primary concerns when considering this setup: (1)
which calls to forward and (2) how to forward them. The first
concern might depend on the nature of the calls. For example,
if there is no filesystem support in the SOS, system calls
like read (), write (), and open () must be delegated.
In HPC environments such I/O offload is often employed
to reduce load on the parallel file system (PFS) induced
by concurrent client requests from compute nodes. Instead,
filesystem requests are delegated to an I/O node. In other
cases, the choice of which system calls to delegate might hinge
on time and resources available to the OS developer. In the
interest of time, he or she might implement commonly invoked
system calls in the SOS to optimize for the critical path,
but choose to delegate those invoked infrequently. Gioiosa
et al. showed how this choice can be guided by empirical
analysis [12].

The second concern (regarding the delegation mechanism)
depends on the capabilities of the hardware and software stack,
and on the use case. For example, modern Linux kernels
allow for offlining a subset of CPU cores which can then
be controlled by an SOS. IHK/McKernel [10], Pisces [31],
FusedOS [32], and mOS [39] leverage this feature. In this

‘ application @ ‘

s R G —— | S—
_____________ . ! ? ? ! limited syscall AP !
syscall YR R == e S e

i delegate
' module

hardware .

Fig. 1: High-level architecture of a multi-OS system leverag-
ing the delegate model, where unsupported system calls are
delegated to a general-purpose OS.

case, because the two OS kernels run on the same node,
delegation can occur between an SOS and the GPOS using
shared pages. If the SOS and GPOS are running on separate
nodes, however, delegation must occur over the network, and
involves marshalling arguments and initiating RPC between
nodes unless the system supports distributed shared memory.
Remote delegation is necessary for the I/O offloading example
mentioned above. In cases where the machine is partitioned
using virtualization, as in Libra [2] and Hybrid Virtual Ma-
chines [17], delegation may occur either via VMM-managed
shared pages or via explicit hypercalls from guests.

Figure 1 shows an environment that supports local system
call delegation in a hexa-core machine. The machine is physi-
cally partitioned between a GPOS and SOS such that they own
a subset of the physical resources (memory and processors).
In this case, the GPOS runs on cores 0-2 and the SOS runs
on cores 3-5 (the compute cores). Memory is assumed to
be partitioned such that the physical address space is split
between them. When an application invokes a system call
supported by the SOS (1), the SOS kernel handles it directly.
However, when the application invokes an unsupported system
call, it vectors to a handler in the specialized kernel (2), which
communicates with a component (3) in the GPOS (such as a
kernel module), which fields the original request. In this case,
the communication between the SOS and GPOS is facilitated
by a shared page of memory. This delegation process involves
some subtlety, as the context of the calling (delegator) process
must be mirrored by the handling (delegate) component, and
the system call handler service might exist in the GPOS kernel
or in a user-space process running atop the GPOS, as in User-
level Servers in mOS. After the delegate handles the system
call, it sends back the results to the SOS (4), which then returns
the result to the application (5).

While there are technical differences between existing
multi-OS systems, they all share two primary characteristics
that we will use in modeling them. The first is that they assume
some difference in performance when a program runs in the
GPOS and in the SOS. The second is that some delegation
or forwarding mechanism exists to allow the two kernels to
communicate.

ITII. THE DELEGATE SPEEDUP MODEL

We now present two versions of a model which represents
the speedup of an application in a multi-OS environment. For
the following, we assume a single-threaded application (more
on this in Section V) whose computation portion runs in a
specialized (compute plane) OS, and whose system portion
(namely, system calls) run on a general-purpose (data plane)
OS. Thus, all system calls are initially assumed to be delegated
to the GPOS.

A. Naive Model

We begin by outlining the simplest and familiar scenario,
namely where there is no system call forwarding. In this
scenario, the program is executed entirely on a GPOS. Let
T,rig be the execution time of the program in this environment.
It will be useful for us to represent 7y, as follows:

Torig =lorig P+ (I-p)- Torig (D

Here p is the percentage of the workload related to system
calls. This, for example, could be calculated by dividing the
number of instructions executed in the kernel® by the total
number of instructions retired during the run of the program.
Such measures are commonly available from hardware perfor-
mance counters, but the source of these terms is beyond our
scope.

Now we consider a scenario wherein we execute the appli-
cation in an SOS, but forward all system calls to a GPOS. Let
Tnew be the new execution time, and let y be a constant factor
that represents the speedup from running the computational
portion of the workload in the SOS relative to running the
same portion in the GPOS. We hereafter refer to y as the gain
factor of the SOS.

Torig
Y
Using the familiar speedup ratio (To,ig/Thew), We arrive at

the overall speedup (represented by S,, where the n corre-
sponds to “naive”):

“(I-p) 2

Thew = orig Pt

Sn=\p+—— 3)
Y

This intuitive model has power in its simplicity. Consider the
case where p < 1. This corresponds to a workload that spends
very little of its time performing system calls (control plane),
and thus spends most of its time computing. We might say that
this application has very high “operational intensity,” spending
more time in userspace than in kernel space. In this case, the
application receives a significant benefit* from the SOS, and

3This would include transparent system events such as page fault exceptions
and interrupt handling, but we ignore this detail.

4This, for example, might be due to guaranteeing cooperative scheduling
or might be due to an address space setup amenable to (or tailored to) the
application.

o

PNWrUUp o
Sn

Fig. 2: Speedup in a multi-OS environment (S,) given the
proportion of time an application spends on system calls (p)
and the gain factor (y) from running in the specialized OS.

the overall speedup reduces to y. However, to understand how,
e.g., an I/O-intensive application behaves, we observe that as p
approaches 1, so does the overall speedup. The intuition here
is that a system-only workload will receive no benefit from
the SOS, and will thus spend most of its time in the control
plane. It is important to note just how important p is for this
model. Consider that as y tends towards infinity, this speedup
relation tends to +.

This succinctly captures the bounded speedup of the multi-
OS environment, and echoes the insight provided by Amdahl’s
Law. Essentially what this says is that even with infinite
improvement of the computational portion of a workload by
the specialized OS, the speedup of the application is bounded
by how much it relies on the legacy system interface. Figure 2
depicts how this model behaves as p and vy vary. Notice how
as p grows smaller, we reach perfect linear speedup. The gain
factor (y) is the interesting part of this model, and it very
closely resembles the parameter representing parallelism in
Amdahl’s Law. Semantically, however, they are quite different.
In practice, we do not expect the gain to be very large (likely
< 10), but the interplay between y and p are still significant
for application performance.

One can also use this model from the perspective of a kernel
developer, in which case it can be used to determine where
to focus development efforts. For example, even if monumen-
tal effort is spent improving the computational aspect of a
workload (e.g. by focusing on developing efficient threading
libraries), it might make very little impact if the kernel will
run I/O-intensive applications. This echoes the well-known
principle, “optimize for the common case.”

To understand how this model might translate into real
application performance, we first determined p for a selection
of benchmarks in the SPEC CPU 2017 suite, and projected
real application speedup given a fixed gain (y) factor.

80
—A— gcc_linux_k
704 bzip2
—— gcc_r
60{ —— mcf_r
—o— fotonik3d_s
50 —&— deepsjeng_r
roms_s
o5 40 —>— bwaves_s
304
204
10
0.
0 20 40 60 80 100
Y

Fig. 3: Speedup projected by our simple model for SPEC CPU
2017 benchmarks when the gain factor (y) is varied.

TABLE I: SPEC CPU 2017 benchmarks and empirically
determined system call portion (p).

Benchmark Description P
gcc_linux_k Linux kernel compilation 12.23%
rom_s Regional Ocean Modeling System 7.27%
bwaves_s Blast wave simulation 2.87%
fotonik3d_s Computational Electromagnetics (CEM) 1.95%
gcc_r code generation for TA-32 1.4%
deepsjeng_r Deep Sjeng chess engine (tree search) 1.12%
bzip2 bzip compression 0.48%
mcf_r combinatorial optimization 0.31%

To determine p empirically, we used the t ime command for
a reference run of the individual benchmark, and determined
p by taking the ratio of system time to total (user and system)
time. We note that this will actually be an overestimate of
p, as some portions of time spent in the kernel will not be
due to system calls, but rather due to other paths through
the kernel such as interrupts and exceptions (e.g. page faults).
Furthermore, p may vary for a particular benchmark when its
inputs are changed. Table I shows the empirically determined
values of p and descriptions for each benchmark we used.
Figure 3 shows the results of our experiment. Linux kernel
compilation (gcc in the graph) stresses the system interface
the most (due to heavy file I/O), and thus achieves very little
speedup, even with a significant initial speedup from the SOS,
represented by y. The other benchmarks are heavily skewed
towards computation (which is not surprising given the nature
of these benchmarks), and thus achieve sub-linear speedup as
v increases.

B. Extended Model
While our naive model can be used as an intuitive tool, there
are several simplifications that make it unrealistic in terms of
predicting performance:
1) The cost of forwarding system calls is ignored. In the
existing model, this means that we assume all of them

are forwarded.

2) Different system calls have different costs (in terms of
execution time).

3) A given system call will have different costs for different
invocations (in most cases determined by its arguments).
Consider, for example, the read () system call.

4) System calls which are ported to the SOS might have
different cost than the original GPOS version.

5) Itis inaccurate to say that the speedup factor (y) applies
uniformly to all non-system instructions in the program.
For example, the SOS environment might have a sim-
plified paging setup (e.g. identity-mapped, 1GB pages)
which significantly reduces TLB misses for instruction
fetches and loads and stores, but integer/floating point
instructions will be unaffected.

6) Setups where there are more than one GPOS and more
than one SOS are not considered.

In this section, we refine our model by addressing (1), (2),
and (3) above. We intend to refine the model further in future
work to account for the remaining simplifications.

We first must capture the fact that different system calls
can have different costs ((2) and (3)). Let S = {s1,52,...,5,}
be the set of all system calls invoked during a particular run
(with fixed inputs) of program P. We introduce a function
g : S — R, such that g(s) gives the absolute time taken for
all invocations of system call s in the GPOS for the run of
program P. For example, if one program run contained several
invocations of mmap () (which is common), g(mmap) will
represent the time taken for all such invocations® when run
on a general-purpose OS.

Let C represent the absolute time taken by the compu-
tational portion of the program (that is, all instructions not
executed in the context of a system call).

We can then calculate the total execution time in the default
case, where the program runs entirely in the GPOS and no
system call delegation occurs (represented by ?,4) as follows:

tna = C+) g(s) @)
seS
We then must capture the notion of system call delegation.
We introduce two functions f : S — Rand b : S — {0, 1}. The
function f(s) represents the time required to forward system
calls, defined as:

f(s) =2fen(s))

Here f. is a constant that represents the base forwarding
cost for all system calls using a particular forwarding mech-
anism, and the function n : S — N represents the number
of times system call s is invoked. f. is scaled by a factor of
two to account for the round-trip from the SOS to the GPOS.
That is, a system call is forwarded from the SOS to GPOS,
executed on the GPOS, and the results are sent back to the
SOS, so the forwarding overhead is incurred twice. f. will

Ssum of the execution times of all mmap() invocations

vary widely depending on the software mechanisms which
implement forwarding and the underlying interconnect over
which system calls are forwarded®. For example, for delegation
over shared memory (Section II), f. would likely be no more
than a few nanoseconds. For delegation over a network, this
number might be closer to several us or several ms, depending
on the network characteristics.

The second function, b(s) tells us whether or not a particular
system call is delegated:

b(s) = {0’

if s is not delegated 6
1, otherwise ©)

Recall that the program primarily runs in the context of the
SOS, and so receives some performance benefit (represented
before by the factor) as a result. Thus, as before, we only
apply vy to the computational portion of the workload (C). For
the system call portion of the workload, we must differentiate
between delegated system calls and local system calls (those
which have corresponding implementations in the SOS). We
can represent the absolute time taken by all local system calls
(tiocar) by introducing another function g’ which captures
this notion. We use g’(s) to represent the time taken for all
invocations of system call s given the custom version of s
implemented in the SOS.

tiocar =) (1= b(s))g'(s) (7)
seS

We then represent the absolute time taken by all delegated
system calls (¢;¢more) as follows:

tremore =) D(s)(g(s) + f(5)) ®)

seS

We can now calculate the total time taken (z;) for a setup
where some system calls are delegated:

c
tg = — +tremote t liocal 9
Y
Thus, we can represent our new speedup (S,) as

Ind

Sr = (10)
ta
Expanding this out, we get
S = C+ZSESg(S)
€+ Toes b(s)(g(s) + f(5)) + (1= b(s))g'(s)
(1)

Intuitively, the more system calls that are forwarded (those
which have b(s) = 1), the more overhead is incurred, and

SHere we make the simplifying assumption that this cost is independent of
the system call itself, but this is not strictly true. A forwarding mechanism
that uses marshalling (e.g. over a network) will incur more forwarding costs
for a system call with more arguments.

speedup is curtailed. Notice that in the denominator, the time
taken by the computational portion is scaled by a factor of
1 An ideal scenario would have g’(s) take less time than
g(s), meaning that an implementation of a system call in the
SOS would be more efficient than its counterpart in the GPOS.
However, going forward, we make the simplifying assumption
that g(s) = g’(s), meaning that both implementations take the
same amount of time.

Figure 4 illustrates speedup projections (represented by S,)
using our refined model for a subset of the benchmarks shown
in Table I. We initially fix the forwarding cost, f,, at 10 us.
This is representative of a scenario where forwarding occurs
between separate physical nodes over a network using a low-
latency interconnect such as Infiniband. We vary y to illustrate
the effects of running the application in the SOS. While a gain
factor of 100 is unlikely, these graphs help illustrate the limits
of application speedup. Each benchmark in the suite invokes
a different set of system calls, and here we are interested in
seeing the effects of choosing different sets of system calls
to forward. In this case, we show three scenarios. A fixed
proportion of 20% of system calls are forwarded. In each
graph we vary which 20% are forwarded. In the first two
scenarios, system calls are chosen according to how many
times they are invoked. Figure 4a shows the projected speedup
when system calls invoked infrequently by the application
are chosen to be forwarded. This is the most ideal scenario,
as the forwarding overheads will not be incurred often. For
comparison, Figure 4b shows the speedup when we choose
system calls which are invoked most frequently (the worst
case). Finally, Figure 4c depicts the results when we make
a random choice. Note how different benchmarks are affected
differently by the forwarding schemes. mcf_r achieves a high
speedup no matter the scheme. This is because it uses the least
system calls of all the benchmarks (as shown it Table I, it only
spends 0.31% of its time in system calls). bzip2, however,
shows a more remarkable difference when we compare the
min. frequency case with the max. frequency case. To see why,
it is illustrative to study Figure 6, which shows a breakdown
of system call usage for several of the benchmarks. Looking
at the CDF for bzip?2, it is clear that its speedup is curtailed
because it uses a small set of system calls very often (this
particular application invokes read () and write () almost
exclusively). It is thus critical that those system calls are
not forwarded. When they are, as in Figure 4b, performance
is severely affected. It is also clear from the figures that
applications which have a more varied system call distribution
will be less affected by selective forwarding schemes. More
generally, workloads showing system call invocations with
more statistical structure will be more amenable to selective
forwarding schemes. This aligns with intuition and prior
empirical results from Gioiosa et al. [12]. It is also interesting
to note that random selection shows a speedup only slightly
better than the worst case.

In Figure 5, we choose three benchmarks from the SPEC
suite, and show in the surface plots how their projected
speedup changes as we vary both the forwarding cost (f;) and

70
bzip2

60 roms_s

50 gec_linux_k
mcf_r

40 gcc_r

s

30

20

10

0 20 40 60 80
Y

(a) min. frequency

70

60

50

40

s

30
20

10

0 20 40 60 80
Y

(b) max. frequency

100

70

60

50

40

s

30
20

10

0 20 40 60 80 100
Y
(c) random

Fig. 4: Projected speedup as the gain () varies for SPEC CPU 2017 benchmarks. This assumes a fixed forwarding cost (f.) of
10 s and a fixed proportion (20%) of forwarded system calls. Three schemes for choosing which system calls to forward are
shown. From left to right, we select system calls by least frequently invoked (a), most frequently invoked (b), and randomly

(c).

bzip2

15)

PNWRO o Gme
Sr

(a)
Fig. 5: Projected speedup as the gain (y) and forwarding cost (f..) are varied for SPEC benchmarks. Here the proportion of
forwarded system calls is fixed at 20%, and which calls to forward is determined according to those least frequently invoked

(min. frequency). Note the log scale on the f. axis.

the gain factor from execution in the SOS. Here we forward the
lowest 20% of system calls (those invoked most infrequently).
It is important to note the log scale on the f. axis, so
the lower end of the scale indicates forwarding costs in the
nanosecond range, the middle approaches milliseconds, and
the higher end approaches roughly ten seconds. Along the y
axis, all benchmarks achieve a speedup, but note that from left
to right these benchmarks have characteristics less amenable
to system call delegation, respectively. bzip2 achieves the
highest speedup, both because it has a low system call portion,
and because that portion involves very few system calls that are
invoked frequently. Linux kernel compilation with gcc has the
highest system call portion, and a more uniform distribution of
system calls, which leads to a curtailed speedup. Forwarding
cost only becomes a significant factor in all cases when it
becomes greater than tens of milliseconds.

Figure 7 shows another perspective on forwarding over-
heads. Here, we show the speedup projected by our model as
we vary both the forwarding cost (f.) and the percentage of

roms_s

gcc_linux_k

15
15)

PNWROoGmo e
PNWrOoGweo e

(b) (©

w)
Q B bzip2
Cos
roms_s
< _
0.4 .
gcc_linux_k
0.3 __ mcfr
0.2 . geccr
0.1 T T T T
0 100 200 300 400 500

#syscall invocation

Fig. 6: Application system call profile for selected bench-
marks.

"

S,

bzip2

o

PNWRG o Gw e
S,

100

80
60 sed

40 ¢
20 _ g
o>y

(a)

roms_s

gcc_linux_k

o
o

._.
NWwauo e
S

-
wamm\]mmH

100
80

ged

60

40 (o

20
9 0 oy

(©

Fig. 7: Projected speedup as the forwarding cost (f.) and the proportion of forwarded calls are varied, with the gain (y) fixed

at 10. Note the log scale on the f, axis.

forwarded system calls (assuming that percentage consists of
infrequently invoked system calls). We make two observations,
both of which again align with intuition. The first is that
workloads with more skewed system call distributions are
more amenable to delegation, even with a relatively large
portion of the system call interface is forwarded. The second
is that when these workloads are not properly accounted for
(i.e. when the wrong calls are forwarded, the performance
degradation is dramatic, as is shown in the curve for bzip2.
An interesting note about this visualization is that the “topog-
raphy” of the speedup curves directly reflect the structure in
the application’s system call invocation trace. bzip2’s surface
has steeper drop-offs when an increasing number of system
calls are forwarded, indicating a heavy skew in the system
call distribution. The smoother “rolling hills” of the other two
benchmarks indicate a more even distribution of calls.

In Figure 8, we vary the gain and the proportion of
forwarded calls. The interesting point here is that that with
the fixed forwarding cost of 10 us, we only see an effect for
bzip2 when almost all calls are forwarded (thus capturing
the frequently invoked read () and write () calls). Kernel
compilation and roms_s are largely unaffected by such small
forwarding overheads.

In Figure 9, we again show the effects of different for-
warding policies, but as a function of varying forwarding
overheads. mcf_r and bzip2 both have steep dropoffs in
speedup when the wrong set of system calls is forwarded.
When infrequently invoked system calls are delegated to the
GPOS, forwarding overheads must reach between 100 ms and
1 sec before making a significant impact.

IV. EXPERIMENTAL ANALYSIS

The primary obstacle in measuring application performance
directly in a multi-OS environment is the OS development
burden required to implement functionality in the SOS. The
simplest case is when the entire system interface is delegated
to a GPOS. In this case, the application benefits solely from the
properties of the execution environment provided by the SOS
(e.g. simplified, deterministic paging), and no development

effort is spent porting system calls to the SOS. However, this
scenario is not ideal, as the results from the previous section
indicate. However, it would be useful to project performance
before undertaking the development effort to do so. In this
section, we outline a tool that enables this projection, allowing
users interested in multi-OS setups to perform “what-if”
analysis. Users can run their unmodified programs using our
tool to project performance in a multi-OS setup.

Note that this tool does not actually leverage two separate
operating systems. Instead, we leverage a Linux kernel module
that employs a kernel thread on the same OS to serve as a
delegate (standing in for the control-plane OS); this delegate
fields system call requests from a running process. At a
high-level, using our tool, a configurable subset of system
calls are intercepted by the kernel, which forwards them to
this delegate thread with a tunable forwarding cost. With
this architecture we can experiment with different delegation
schemes to determine performance without spending effort
porting an application to a new OS.

Our tool, called mktrace, is freely available online’, runs
on Linux, and only requires that users load a kernel module
before using it.

The primary technique used by our tool is system call in-
terposition. This technique has been used primarily for secure
monitoring of kernel activity, both using in-kernel or user-level
approaches [13], [21], [23], [34] and out-of-kernel by lever-
aging an underlying virtual machine monitor (VMM) [19],
[5], [35]. Typical interposition tools provide hooking points
for system call entry and exit, but we only need to capture
entries in order to forward them. Figure 10 illustrates how
our tool works. After a user loads our system call interceptor
(a kernel module), system calls can be selectively forwarded,
with tunable forwarding cost. This is achieved by patching the
kernel’s system call table. In the figure, a regular system call
bar () (a) is invoked, which vectors via a system call table
entry (b) to the kernel’s handler for that system call (c). When
a forwarded system call foo () (1) is invoked, our patched

7https://github.com/hexsa-lab/mktrace

S.

https://github.com/hexsa-lab/mktrace

bzip2

o

PNWRG o Gw e
s,

(@)

is fixed to 10 us.

roms_s

()

Fig. 8: Projected speedup as the gain (y) and the proportion of forwarded calls are varied. Here the forwarding overhead (f.)

gcc_linux_k

o
o

._.
NWwauo e
S

-
Nwhmm\]mmb—\
S,

10

10°

_ 6 —a— _ 6
%) 0
——
4 ’ 4
bzip2 cf r
roms_s . gcer
2 2
gce_linux_k
—_ -_linux_|
0 0
10! 102 10° 10* 10° 10° 107 10® 10° 10t 10?2 10® 10*
fe (ns)

(a) min. frequency

fc (ns)
(b) max. frequency

10°
fe (ns)

(c) random

10° 10° 107 100 102 10%° 10%

Fig. 9: Projected speedup as the forwarding cost (f.) varies. Here we fix the gain factor (y) to 10 and assume that 20%
of system calls are forwarded. Again, forwarding is based on minimum frequency (a), maximum frequency (b), and random

selection (c).

application

sys_foo () {
} eL//’ AN
sys_bar () {

[Lo\
, O\

—
b

kernel |

fi b
O =g

tched
delegate thread g;lszaﬁ | “interceptor module
table : sys_foo_wrapper () {
1

Fig. 10: High-level overview of mktrace.

system call table entry (2) vectors instead to our module (3),
which mirrors register state (arguments) and the execution
environment in the calling process (e.g. address space). Our
module then forwards the system call to a delegate thread,
backed by a separate kernel thread on a separate CPU (4),
which spins for a configurable amount of time (representing
the forwarding delay), and then invokes the kernel’s original
system call handler (5). The results are sent back to the calling
process and execution continues normally.

A. Experimental Setup

We conducted our experiments on a system called fusion,
which has a 1.9GHz AMD Opteron 6168 CPU with 48 cores
and 256 GB of memory spread out across four sockets and
eight NUMA nodes. It runs Fedora 26 with stock Linux kernel
version 4.16.11. For these experiments, we selected several
benchmarks from the initial set: bzip2, compiling Linux
kernel version 5.1.4 with gcc, roms_s, and mcf_r.

Since we are not actually running these applications in a real
multi-OS system, we cannot empirically observe the speedup
factor y given by running the application in the SOS. To
approximate this factor, we designed a synthetic benchmark
which performs phases of variable amounts of computation
followed by phases of fixed system call invocations. The
computation is a simple Monte Carlo calculation of 7, which is
dominated by floating point operations. To artificially induce
a speedup, we simply vary the amount of computation (by
reducing the number of trials in the approximation) according
to a y value. Thus, a higher value of y is approximated by
a concomitant reduction in the amount of work done in the
computation phase.

B. Experiments

We first run the benchmarks described above both in the
normal fashion on Linux, and then using our mktrace tool,
which approximates delegation by forwarding system calls to
a kernel thread on another core. We measured the maximum
overhead of forwarding using this mechanism (represented by
fo in previous sections) to be 40 us. Figure 11 shows the
results.

In all cases, because of the small forwarding overhead, there
is very little impact on performance. We do not see the upward
trend in performance shown in previous graphs because here
v is not being accounted for. Thus, a good result here is
when the bars are the same, indicating that forwarding did not
reduce performance significantly. As projected by our model,
when the most frequently invoked system calls are forwarded,
bzip2 is the most affected. However, because of the small
forwarding overheads, there is only a 6% performance drop
in this case.

As described above, we now attempt to incorporate the
factor y by approximating gain using a variable amount of
computation. First, we show the system call profile for our
synthetic benchmark in Figure 12. We designed the benchmark
to be similar in profile to bzip2, so that there are a few
very frequently invoked system calls and several infrequently
invoked calls as well. The distribution is heavily skewed
towards write () (1.5 million invocations), with other calls
being invoked less than a few hundred times.

Figure 13 shows the projected speedup from both the
simple model and the refined model compared to the speedup
empirically determined by running our synthetic benchmark
with varying gain using our mktrace tool. Here again we
are forwarding only the 20% least frequently invoked system
calls. Noting the system call profile, this means that we can
expect forwarding to affect only a few relatively unimportant
system calls, which is reflected by the proximity of the lines
for our two models (the refined speedup has a slightly smaller
speedup due to forwarding, which is not taken into account
with the naive model).

The curve labeled “empirical speedup” shows the results for
running this synthetic benchmark with and without mktrace.
When smaller gain factors are used, the experiments track the
speedup projected by our models. For example, for y = 2 (a
fairly realistic scenario), the projected speedup is within 9%
of the experimental results. As y grows to larger values, our
models become less accurate. We suspect that this inaccuracy
stems from indirect performance effects caused by our existing
mktrace implementation. For example, TLBs are flushed on
every forwarding event to make sure system calls related to
paging are serviced correctly. The performance hit caused by
the subsequent TLB misses are not captured by our models.

V. DISCUSSION AND LIMITATIONS

What is clear from the previous section is that using the
models we presented, one can develop intuition for how
an application will behave in a multi-OS setup. While the
refined model does not predict performance precisely for our

proxy setup, it demonstrates the overall trends, and can guide
development efforts when designing a custom OS. However,
there are still several limitations with these models. The
primary limitation is that our current models assume a single
delegator thread and a single delegate thread (one on the
GPOS and one on the SOS). While this is a reasonable setup
for serial workloads, it is unrealistic for parallel applications,
where system call requests from the delegator might come
from several cores or several machines. In this case, a single
delegate (GPOS) thread servicing these requests would be
inadequate. In some cases, several applications might be
running at once, making delegation requests. This can easily
introduce a choke point in the delegate, and requires careful
consideration. We do not currently capture these concerns
in our model, but we plan to incorporate them into future
iterations.

Part of the inaccuracy of the model comes from the re-
maining simplifying assumptions described in Section III-B.
In particular, it we assume that system call implementations in
the specialized OS have the same cost as when implemented
in the GPOS. In future work we intend to address this and
explore other ways of modeling the gain offered by execution
in the specialized OS other than a simple multiplicative factor.

VI. RELATED WORK

As far as we are aware, we are the first to model speedup
analytically for multi-OS environments. We refer to Gioiosa
et al. for an excellent empirical study of system call delega-
tion [12].

Our work was inspired by Amdahl’s original formulation
of parallel speedup [1], Gustafson’s refinement [14], and Sun
and Ni’s extended model for incorporating memory-bound
programs [36].

One might view a multi-OS setup as a general distributed
system, where forwarded system calls are simply treated as
RPCs. In its simplest case, such a system might suitably be
modeled using a LogP model [4]. However, models like LogP
primarily relate to the communication/computation ratio, and
furthermore do not consider the asymmetry between execution
times and system interfaces in different operating systems.
Our model, in contrast, is designed to capture this asymmetry.
As we extend our speedup model to include concurrently
executing SOS and GPOS threads, we intend to draw on
existing models of parallel computation.

Applications limited by system call usage can be viewed
through a lens of “operational intensity,” which others have
visualized using roofline models [38], [22]. While roofline
models are based on architectural characteristics, rather than
properties inherent to the application and system software
stack, we believe they could be adapted to provide insight
for multi-OS systems, and we plan to explore this further in
follow-up work.

VII. CONCLUSIONS AND FUTURE WORK

We introduced two models to guide intuition on application
speedup when a program’s execution is split between two

== GPOS
3 Multi-0S

4000 4000

3000 3000

runtime (s)
runtime (s)

N
=3
=3
=)

2000

1000 1000

== GPOS
3 Multi-0S

= GPOS
3 Multi-0S

4000

3000

runtime (s)

2000

1000

bzip2 gec_linux_k roms_s

applications

mcf_r bzip2

(a) min. frequency

gec_linux_k

(b) max. frequency

roms_s
applications

mcf_r bzip2 gcc_linux_k roms_s

applications

mcf_r

(c) random

Fig. 11: Runtime of selected benchmarks running natively in the GPOS and running on top of our mktrace tool to approximate
system call delegation overheads. We again show the results for three forwarding schemes.

1.0

0.9

0.8

0.7

0.6

CDF

0.5

0.4

0.3

0.2

0.1 - - :
200 300 400
#syscall invocation

Fig. 12: System call profile for our synthetic benchmark.

—A— Naive speedup
—&— Refined speedup
—#— Empirical speedup

o<}

10

Fig. 13: Speedup for the synthetic benchmark when the gain
factor (y) is varied across the synthetic benchmark.

operating systems. We illustrated in detail how speedup gained
by running in an environment provided by a heavily optimized
OS can be curtailed by system call delegation overheads
and by a poor choice of forwarding policy. We showed
that applications with skewed system call distributions can
tolerate higher forwarding overheads when a good policy is

employed, but suffer from more dramatic effects when the
wrong system calls are forwarded. To measure the effect of
these overheads on real applications, we presented an open-
source tool called mktrace which approximates forwarding
overheads by delegating system calls to a remote thread. Using
this tool, we showed that with us-scale forwarding costs,
very little overhead (max ~6%) is introduced for a variety of
benchmarks. Finally, while our intent is to provide an intuitive
guide for reasoning about speedup for multi-OS systems, we
showed using a synthetic benchmark with a variable proxy for
speedup from a specialized OS that our refined model predicts
performance for a proxy delegation system within 9% of
actual performance when a reasonable execution environment
is considered.

In future work, we plan to extend our models to include
multi-OS systems that do not assume a single delegator and
delegate thread, but rather employ varying degrees of paral-
lelism. We plan to extend mktrace to support multi-node
systems. Finally, we plan on investigating other perspectives
on multi-OS speedup, including roofline models.

VIII. ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for their valu-
able feedback. We also thank Alexandru Iulian Orhean for
providing access to hardware resources and his key insights
on the speedup model. We thank Amal Rizvi for her valuable
feedback on the speedup model.

REFERENCES

[1] AMDAHL, G. M. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the Spring Joint
Computer Conference (Apr. 1967), AFIPS *67 (Spring), pp. 483-485.
AMMONS, G., APPAVOO, J., BUTRICO, M., DA SILVA, D., GROVE, D,
KAWACHIYA, K., KRIEGER, O., ROSENBURG, B., VAN HENSBERGEN,
E., AND WISNIEWSKI, R. W. Libra: A library operating system for a
JVM in a virtualized execution environment. In Proceedings of the
374 International Conference on Virtual Execution Environments (June
2007), VEE °07, pp. 44-54.

BAUMANN, A., BARHAM, P., DAGAND, P. E., HARRIS, T., ISAACS,
R., PETER, S., ROSCOE, T., SCHUPBACH, A., AND SINGHANIA, A.
The Multikernel: A new OS architecture for scalable multicore systems.
In Proceedings of the 22" ACM Symposium on Operating Systems
Principles (Oct. 2009), SOSP *09, pp. 29-44.

[2]

[3]

[4

[5

—

[6

=

[7

—

[8

[t}

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

CULLER, D., KARP, R., PATTERSON, D., SAHAY, A., SCHAUSER,
K. E., SANTOS, E., SUBRAMONIAN, R., AND VON EICKEN, T. LogP:
Towards a realistic model of parallel computation. In Proceedings of the
4th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (May 1993), PPOPP *93.

DINABURG, A., ROYAL, P., SHARIF, M., AND LEE, W. Ether: Malware
analysis via hardware virtualization extensions. In Proceedings of the
15" ACM Conference on Computer and Communications Security
(CCS 2008) (Oct. 2008), pp. 51-62.

ENGLER, D. R., AND KAASHOEK, M. F. Exterminate all operating
system abstractions. In Proceedings of the 5*" Workshop on Hot Topics
in Operating Systems (HotOS 1995) (May 1995), pp. 78-83.

ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE, JR., J. Exokernel:
An operating system architecture for application-level resource man-
agement. In Proceedings of the 15' h ACM Symposium on Operating
Systems Principles (Dec. 1995), SOSP ’95, pp. 251-266.

FERREIRA, K. B., BRIDGES, P., AND BRIGHTWELL, R. Characteriz-
ing application sensitivity to OS interference using kernel-level noise
injection. In Proceedings of Supercomputing (Nov. 2008), SC ’08.
GARA, A., BLUMRICH, M. A., CHEN, D., CHIU, G. L.-T., Co-
TEUS, P., GiaAMpAPA, M. E., HARING, R. A., HEIDELBERGER,
P., HOENICKE, D., KorcsAYy, G. V., LIEBSCH, T. A., OHMACHT,
M., STEINMACHER-BUROW, B. D., TAKKEN, T., AND VRANAS, P.
Overview of the Blue Gene/L system architecture. [IBM Journal of
Research and Development 49, 2 (Mar. 2005), 195-212.

GEROFI, B., TAKAGI, M., HORI, A., NAKAMURA, G., SHIRASAWA,
T., AND ISHIKAWA, Y. On the scalability, performance isolation and
device driver transparency of the IHK/McKernel hybrid lightweight
kernel. In Proceedings of the 30'" IEEE International Parallel and
Distributed Processing Symposium (May 2016), IPDPS 16, pp. 1041—
1050.

GIAMPAPA, M., GOODING, T., INGLETT, T., AND WISNIEWSKI, R. W.
Experiences with a lightweight supercomputer kernel: Lessons learned
from Blue Gene’s CNK. In Proceedings of Supercomputing (Nov. 2010),
SC ’10.

GI1010SA, R., WISNIEWSKI, R. W., MURTY, R., AND INGLETT, T.
Analyzing system calls in multi-OS hierarchical environments. In Pro-
ceedings of the 5'" International Workshop on Runtime and Operating
Systems for Supercomputers (June 2015), ROSS ’15.

GOLDBERG, I., WAGNER, D., THOMAS, R., AND BREWER, E. A. A
secure environment for untrusted helper applications confining the wily
hacker. In Proceedings of the 6'" USENIX Security Symposium (July
1996), SSYM ’96.

GUSTAFSON, J. L. Reevaluating amdahl’s law. Communications of the
ACM 31,5 (May 1988), 532-533.

HALE, K. C., AND DINDA, P. An evaluation of asynchronous events
on modern hardware. In Proceedings of the 26" IEEE International
Symposium on the Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS 2018) (Sept. 2018).

HALE, K. C., AND DINDA, P. A. A case for transforming parallel
runtimes into operating system kernels. In Proceedings of the 24'" ACM
Symposium on High-performance Parallel and Distributed Computing
(June 2015), HPDC ’15.

HALE, K. C., AND DINDA, P. A. Enabling hybrid parallel runtimes
through kernel and virtualization support. In Proceedings of the 121"
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (Apr. 2016), VEE’16, pp. 161-175.

HALE, K. C., HETLAND, C., AND DINDA, P. A. Multiverse: Easy
conversion of runtime systems into os kernels via automatic hybridiza-
tion. In Proceedings of the 14'" IEEE International Conference on
Autonomic Computing (July 2017), ICAC’17.

HALE, K. C., XIA, L., AND DINDA, P. A. Shifting GEARS to enable
guest-context virtual services. In Proceedings of the 9'" International
Conference on Autonomic Computing (ICAC 2012) (Sept. 2012), pp. 23—
32.

HENNESSY, J. L., AND PATTERSON, D. A. A new golden age for
computer architecture. Communications of the ACM 62, 2 (Jan. 2019),
48-60.

HOFMEYR, S. A., FORREST, S., AND SOMAYAII, A. Intrusion detection
using sequences of system calls. Journal of Computer Security 6, 3 (Aug.
1998), 151-180.

IBRAHIM, K. Z., WILLIAMS, S., AND OLIKER, L. Roofline scaling
trajectories: A method for parallel application and architectural per-

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]

formance analysis. In Proceedings of the International Conference on
High Performance Computing and Simulation (July 2018), HPCS 18,

pp- 350-358.

JAIN, K., AND SEKAR, R. User-level infrastructure for system call
interposition: A platform for intrusion detection and confinement. In In
Proceedings of the Network and Distributed System Security Symposium
(Feb. 2000), NDSS ’00.

KELLY, S. M., AND BRIGHTWELL, R. Software architecture of the light
weight kernel, Catamount. In Proceedings of the 2005 Cray User Group
Meeting (May 2005), CUG’05.

KIVITY, A., LAOR, D., COSTA, G., ENBERG, P., HAR’EL, N., MARTI,
D., AND ZOLOTAROV, V. OSv—optimizing the operating system for
virtual machines. In Proceedings of the 2014 USENIX Annual Technical
Conference (June 2014), USENIX ATC’14.

KocoLOsKI, B., AND LANGE, J. XEMEM: Efficient shared memory
for composed applications on multi-os/r exascale systems. In Proceed-
ings of the 24" International Symposium on High-Performance Parallel
and Distributed Computing (June 2015), HPDC 15, pp. 8§9-100.
LANGE, J., PEDRETTI, K., HUDSON, T., DINDA, P., CUI, Z., XIA,
L., BRIDGES, P., GOCKE, A., JACONETTE, S., LEVENHAGEN, M.,
AND BRIGHTWELL, R. Palacios and kitten: New high performance
operating systems for scalable virtualized and native supercomputing.
In Proceedings of the 24'" IEEE International Parallel and Distributed
Processing Symposium (Apr. 2010), IPDPS’10.
LANKES, S., PICKARTZ, S., AND BREITBART, J.
unikernel for extreme scale computing. In Proceedings of the
International Workshop on Runtime and Operating Systems for Super-
computers (June 2016), ROSS’16.

MADHAVAPEDDY, A., MORTIER, R., ROTSOS, C., SCOTT, D., SINGH,
B., GAZAGNAIRE, T., SMITH, S., HAND, S., AND CROWCROFT, J.
Unikernels: Library operating systems for the cloud. In Proceedings
of the 18" International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Mar. 2013), ASPLOS’ 13,
pp. 461-472.

MORARI, A., GIOIOSA, R., WISNIEWSKI, R. W., CAZORLA, F. J.,
AND VALERO, M. A quantitative analysis of os noise. In Proceedings
of the 25" IEEE International Parallel and Distributed Processing
Symposium (May 2011), IPDPS 11, pp. 852-863.

OUYANG, J., KOCOLOSKI, B., LANGE, J. R., AND PEDRETTI, K.
Achieving performance isolation with lightweight co-kernels. In Pro-
ceedings of the 24'" International Symposium on High-Performance
Parallel and Distributed Computing (June 2015), HPDC 15, pp. 149—
160.

PARK, Y., HENSBERGEN, E. V., HILLENBRAND, M., INGLETT, T.,
ROSENBURG, B., RYU, K. D., AND WISNIEWSKI, R. W. FusedOS:
Fusing LWK performance with FWK functionality in a heterogeneous
environment. In Proceedings of the IEEE 24" International Symposium
on Computer Architecture and High Performance Computing (Oct.
2012), SBAC-PAD 12, pp. 211-218.

PETER, S., AND ANDERSON, T. Arrakis: A case for the end of
the empire. In Proceedings of the 14" Workshop on Hot Topics in
Operating Systems (May 2013), HotOS ’13.

ProOVOS, N. Improving host security with system call policies. In
Proceedings of the 12'" USENIX Security Symposium (Aug. 2003),
SSYM °03.

SHARIF, M. 1., LEE, W., CUI, W., AND LANZI, A. Secure in-VM
monitoring using hardware virtualization. In Proceedings of the 16"
ACM Conference on Computer and Communications Security (CCS
2009) (Nov. 2009), pp. 477-487.

SUN, X.-H., AND NI, L. M. Another view on parallel speedup. In
Proceedings of the ACM/IEEE Conference on Supercomputing (Nov.
1990), SC ’90, pp. 324-333.

WALLACE, D. Compute Node Linux: Overview, progress to date &
roadmap. In Proceedings of the 2007 Cray User Group Meeting (May
2007), CUG’07.

WILLIAMS, S., WATERMAN, A., AND PATTERSON, D. Roofline:
An insightful visual performance model for multicore architectures.
Communications of the ACM 52, 4 (Apr. 2009), 65-76.

WISNIEWSKI, R. W., INGLETT, T., KEPPEL, P., MURTY, R., AND
RIESEN, R. mOS: An architecture for extreme-scale operating sys-
tems. In Proceedings of the 4'" International Workshop on Runtime
and Operating Systems for Supercomputers (ROSS 2014) (June 2014),
pp. 2:1-2:8.

HermitCore: A
6! h

