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 
Abstract—This work proposes a global navigation satellite 

system (GNSS) spoofing detection and classification technique for 

single antenna receivers. We formulate an optimization problem 

at the baseband correlator domain by using the Least Absolute 

Shrinkage and Selection Operator (LASSO). We model correlator 

tap outputs of the received signal to form a dictionary of triangle-

shaped functions and leverage sparse signal processing to choose a 

decomposition of shifted matching triangles from said dictionary. 

The optimal solution of this minimization problem discriminates 

the presence of a potential spoofing attack peak by observing a 

decomposition of two different code-phase values (authentic and 

spoofed) in a sparse vector output. We use a threshold to mitigate 

false alarms. Furthermore, we present a variation of the 

minimization problem by enhancing the dictionary to a higher-

resolution of shifted triangles. The proposed technique can be 

implemented as an advanced fine-acquisition monitoring tool to 

aid in the tracking loops for spoofing mitigation. In our 

experiments, we are able to distinguish authentic and spoofer 

peaks from synthetic data simulations and from a real dataset, 

namely, the Texas Spoofing Test Battery (TEXBAT). The 

proposed method achieves 0.3% detection error rate (DER) for a 

spoofer attack in nominal signal-to-noise ratio (SNR) conditions 

and an authentic-over-spoofer power of 3 dB. 

 
Index Terms—Global navigation satellite systems, anti-

spoofing, correlators, sparsity, spoofing classification, spoofing 

detection, spoofing mitigation. 

 

I. INTRODUCTION 

LOBAL navigation satellite systems (GNSS) such as the 

Global Positioning System (GPS) [1] provide crucial 

positioning and timing for applications in the civil, commercial, 

and military domains. Recently, GNSS receivers have grown in 

popularity due to their low costs and broad applications. 

Instances of GNSS uses can be seen in financial transactions, 

phase measurement units (PMUs) in power grids, and 

emergency services [2].  

The open-access aspect of the GPS coarse acquisition (C/A) 

codes exposes the system to potential malicious attacks to 

position and timing-dependent applications. Such unintentional 

or intentional attempts are categorized as jamming and 

spoofing. While jamming attempts to disrupt or degrade GPS 
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channels by signal blocking or overpowering, a smarter and 

more hazardous spoofing attack can imitate GPS signals aiming 

to mislead the target receiver and infringe flawed position and 

timing resolutions. The vulnerability to GNSS spoofing is an 

active research area due to its impact in critical and ever-

growing GNSS-dependent applications [2]. 

 Once the target receiver is deceived into locking to 

counterfeit signals, the typical spoofing attack shifts the 

authentic code and carrier phases to alter the position, velocity, 

and timing (PVT) solutions. Typically, commercial off-the-

shelf (COTS) receivers lack ability to detect spoofing attacks, 

as has been proven in [3]. Additionally, recent software-defined 

radio (SDR) platforms have demonstrated fast-prototyping for 

spoofing attack implementation and mitigation techniques that 

otherwise commercial receivers lack [4]. Literature has 

categorized the type of spoofing attacks into simplistic, 

intermediate, and advanced [5] based on the complexity of the 

spoofing device, with intermediate spoofing being the most 

cost-effective in terms of implementation. 

A. Multipath considerations 

Often, spoofing attacks can manifest as multipath (MP) [6], 

[7]. In fact, considerable research addresses the discrimination 

between spoofing and MP [7], [8], [9]. However, there are four 

overall main differences considered in this work for a smart 

spoofer: (1) the delay profile of the authentic and spoofed signal 

combined appears to be sparse per channel, as opposed to MP 

signals which appear as a cluster of reflected signals with 

various delays referred to as delay profile [10]; (2) the spoofing 

attack occurs on many, if not all, visible channels concurrently; 

(3) the spoofed channels show a substantial delay incurred by 

the attack; and (4) such attacks can overall incur significantly 

more damage to the PVT solution, e.g., cause the user position 

and time estimates to deviate more substantially when 

compared to MP. Therefore, this work focuses on a detection 

and classification technique particularly for said spoofing 

attacks. In the next subsection, we provide a literature review 

on anti-spoofing techniques including the most relevant MP 

techniques for the sake of categorization. Further, a qualitative 

comparison of state-of-the-art spoofing and MP 

countermeasures in the baseband domain is provided in Section 
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and rejection. Similarly, authors in [12] use VTL outputs jointly 

for code-discriminator distortion metrics. These methods entail 

expensive receiver adaptations. 

B. Spoofing vs. multipath 

The work in the present paper (which classifies spoofing) is 

similar to MP countermeasures that are able to classify, such as 

[6] and [10]. However, unlike intermittently occurring MP, 

intentional (smart) spoofing occurs in all GPS channels at the 

same time. Spoofing attacks amount to behavior change and not 

random interference. The work in [10] models specific MP 

profiles based on particular assumptions and is able to classify 

MP, but with high complexity. Also, because MP appears 

intermittently, antenna techniques such as [27] are designed to 

blindly reject such effects, while modified correlator techniques 

as in [40] only compensate for MP errors based on specific MP 

scenarios. Rudimentary methods such as RAIM assume a single 

channel is distorted per PVT epoch, and is rejected [25]; thus, 

it will not be able to detect an all-channel spoofing attack. The 

technique in [9] relies on scalar-valued metrics that detect 

potential MP distortions of the correlation peak by setting a 

threshold and triggering an alarm when this is surpassed.  

As opposed to the previously mentioned detecting, rejecting, 

and compensating methods, the proposed technique offers a 

multi-purpose tool that detects a spoofing attack, and classifies 

the specific peak delays. Additionally, it is a contribution of this 

work to specifically model spoofing as a characteristic sparse 

event in the profile of peak delays, such that it can be estimated 

via sparse techniques. By tuning the threshold and lambda 

parameters, the proposed method can improve detection and 

classification of the attack. It is worth noting that MP is not 

necessarily a sparse event and its effect is less hazardous than a 

spoofing attack, i.e., a spoofing attack is intended to deviate the 

PVT solution substantially. As for mitigation, potential 

coupling of the proposed technique with auxiliary peak tracking 

can address this task [30], [31]. 

VII. CONCLUSION 

In this work, a spoofing detection and classification 

algorithm based on LASSO is proposed to discriminate 

correlation peaks from a dictionary of triangle replicas. The 

proposed method is further extended to detect a higher-

resolution grid tailored for spoofing attack delays that fall 

between two otherwise discrete points in the correlator tap grid. 

The multi-LASSO is able to detect spoofer peaks with a higher 

sensitivity without altering the receiver correlator 

configuration. 

A peak sensitivity response method is explored to test the 

sensitivity of detection and define a detection bandwidth. 

Additionally, synthetic Monte-Carlo simulations are performed 

to evaluate several aspects of the proposed technique, including 

different integration lengths and thresholds, and relevant 

metrics such as DER and PFA are assessed. The proposed 

method is able to maintain very low DER for several scenarios 

and for typical receiver configurations. The proposed method 

achieves 0.3% DER in nominal signal-to-noise ratio (SNR) 

conditions for an authentic-over-spoofer power of 3 dB. 

Additionally, an in-house SDR receiver from UTSA is used to 

collect correlation points from TEXBAT, a real dataset with a 

spoofing lift-off attack scenario. The proposed algorithm is able 

to detect spoofer peaks at correlator taps 0.2, 0.3, 0.4, and 0.5 

from the authentic peak, respectively.  

TABLE II  

A STATE-OF-THE-ART COMPARISON OF BASEBAND DOMAIN ANTI-SPOOFING TECHNIQUES 

 

Technique Baseband 

subcategory 

Countermeasure 

extent (D/C/M) 

Applies to 

spoofing or MP?  

Complexity Firmware 

update 

Implementation aspects 

Ref. [27] Pre-correlator M MP Low No Blind mitigation by antenna pattern tuning to avoid 

low elevation angle signals. 

Ref. [39] Pre-correlator D Spoofing Low Yes Low-complexity power monitoring in a time 

observation window. 

Ref. [40] Correlator M MP Med No Correlator configuration such as spacing for select 

MP model mitigation. 

MEDLL 

[28] 

Correlator D, M MP Med No Correlators’ configuration for specific MP model. 
Requires extra correlators and high sampling rates. 

VSD [9] Correlator D MP Low Yes Distortion metrics of correlation peak. Alarm-based 

per channel. 

Ref. [7] Correlator D, M Both Med Yes Distortion sensing of correlation peak and power 

monitoring. Hypothesis testing. 

Ref. [8] Correlator D, C Both Med Yes Distortion sensing of correlation peak in time 

observation window. Hypothesis testing. 

Ref. [10]  Correlator D, C MP High Yes MLE based on MP model. Assumptions required. 

High complexity. 

Ref. [41] Correlator D, C MP High Yes Advanced MLE based on non-Gaussian MP model. 

High complexity. 

Ref. [6] Correlator D, C MP Med Yes FFT-based correlator decomposes signal into peaks. 

Requires long integration lengths. Noise-sensitive. 

Proposed 

method* 

Correlator D, C, Ma Spoofing Med Yes Advanced acquisition monitoring tool. 

Discriminates correlator peaks with high-resolution. 

Tunable. 

Ref. [29] Post-correlator D, M Spoofing Med Yes STL discriminator-based distortions metrics. Alarm-

based per channel. 

Ref. [12]  Post-correlator D, M MP High No VTL discriminator-based distortions metrics. 

Alarm-based on all channels jointly. 
aThis method can potential implement mitigation techniques such as [31] based on smart time-based analysis of spoofer peak events. 

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 12,2020 at 02:30:39 UTC from IEEE Xplore.  Restrictions apply. 



0018-9251 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2020.2990149, IEEE

Transactions on Aerospace and Electronic Systems

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS         12 

 

VIII. FUTURE WORK 

In future work, real-time implementation of the proposed 

method is anticipated. Dynamic aspects of the implementation 

such as tuning of   based on receiver characteristics and noise 

levels among other aspects, are to be explored. Additionally, 

further examination of false alarm events and added smartness 

is anticipated to further enhance the proposed method. Further 

expansion to other GNSS signals is also proposed. Several 

computationally efficient algorithms for solving LASSO, such 

as quadratic programing (QP), the alternating direction method 

of multipliers (ADMM), [42], and least angle regression 

(LARS) [43] will be thoroughly reviewed in terms of 

computational requirements and compared towards possible 

real-time implementation. Finally, we will assess the developed 

signal model in terms of multipath effects and its potential 

applicability. 
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