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An interesting, yet challenging problem in topology
optimization consists of finding the lightest structure
that is able to withstand a given set of applied loads
without experiencing local material failure. Most
studies consider material failure via the von Mises
criterion, which is designed for ductile materials. To
extend the range of applications to structures made of
a variety of different materials, we introduce a unified
yield function that is able to represent several classical
failure criteria including von Mises, Drucker–Prager,
Tresca, Mohr–Coulomb, Bresler–Pister and Willam–
Warnke, and use it to solve topology optimization
problems with local stress constraints. The unified
yield function not only represents the classical
criteria, but also provides a smooth representation
of the Tresca and the Mohr–Coulomb criteria—an
attribute that is desired when using gradient-based
optimization algorithms. The present framework has
been built so that it can be extended to failure criteria
other than the ones addressed in this investigation.
We present numerical examples to illustrate how
the unified yield function can be used to obtain
different designs, under prescribed loading or design-
dependent loading (e.g. self-weight), depending on
the chosen failure criterion.
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1. Introduction

Given the design freedom it offers, topology optimization has become a powerful computational
tool for the design of structural systems that are both efficient and organic. Within the field of
topology optimization, stress-constrained topology optimization is known for being a challenging
problem that still lacks a robust solution approach that is both efficient and suitable for large-scale
applications. Part of the reason for the lack of such an approach is the nature of the problem
itself. First, to solve the problem in a way that is consistent with continuum mechanics, one
must treat stress as a local quantity, which in the context of topology optimization implies that a
large number of stress constraints must be imposed to prevent material failure [1]. Second, it is
known that the solution of a stress-constrained optimization problem lies on a degenerated region
whose dimension is smaller than that of the solution space. Due to their degeneracy, traditional
optimization techniques are unable to reach inside those regions, thus leading to sub-optimal
designs [2–6].

A variety of approaches have been used to solve stress-constrained topology optimization
problems, most of which are based on constraint aggregation techniques [7–19]. In those
approaches, constraints are aggregated by means of a global stress function (e.g. the
Kreisselmeier–Steinhauser [20] or the p-norm function [21]), which is used to approximate the
maximum stress either in the entire design domain or in sub-regions. The global stress function
estimates the maximum stress in the design domain, yet the quality of the estimation depends
on the number of constraints that are aggregated and on the parameters of the aggregation
function. As a result, the solution of the aggregated problem and that of the local problem differ.
Besides aggregation, other approaches have been employed to solve stress-constrained topology
optimization problems, yet instead of a complete literature survey, we revisit some of the most
relevant studies related to this work and refer the reader to Senhora et al. [22] and the references
therein for a comprehensive review of the stress-constrained literature.

The approach that we adopt in this study to solve stress-constrained topology optimization
problems is based on the Augmented Lagrangian (AL) method [23,24]. This method is a numerical
optimization technique that solves the original optimization problem with local constraints as the
solution of a series of unconstrained optimization problems. It has been demonstrated that AL
methods exhibit global convergence properties even for problems with degenerated constraints
[25,26]. The method is gaining popularity in the topology optimization community and has
been used since the mid-2000s to solve stress-constrained topology optimization problems
[27,28]. More recently, this method has been adopted to solve stress-constrained topology
optimization problems using the level-set method [29–31]. In the context of density-based
topology optimization, the AL method has also been used to solve stress-constrained topology
optimization problems considering loading uncertainties [32] or manufacturing uncertainties
[33,34]. Although promising, these approaches use the AL method without any sort of
normalization to avoid mesh dependency, which may not be conducive to the solution of
large-scale topology optimization problems.

Aiming to solve large-scale problems, Senhora et al. [22] introduced a normalized AL-based
approach for mass minimization topology optimization with local stress constraints. To enable
the method to solve large-scale problems, they modify the AL function such that the penalty term
is normalized with respect to the number of constraints, which prevents its unbounded growth
as the number of stress constraints increases. The normalization of the AL function allowed the method
to solve problems with over one million local constraints. An approach with such scalability attributes
can ultimately make topology optimization a practical tool for engineering design, and thus we
adopt it in the present study.

As in the approach by Senhora et al. [22], the vast majority of studies in the stress constraints
literature use the von Mises failure criterion [35] to represent material failure. Although the von
Mises criterion is useful to predict failure of ductile materials, a stress-based design using that
criterion is not suitable for the design of structures manufactured using other types of materials
with different strengths in tension and compression such as concrete, rock, soil, composites,
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polymers, foams, among others. From the handful of studies considering stress constraints other
than von Mises, the majority are based on the Drucker–Prager criterion (e.g. [36–39]). Besides the
Drucker–Prager criterion, Duysinx et al. [40] considered the Rhagava [41] and Ishai [42] failure
criteria, which consider different strengths in tension and compression. Other researchers such as
Jeong et al. [43] and Yoon [44] considered various failure criteria, including Tresca [45], von Mises
[35], Drucker–Prager [46] and Mohr–Coulomb [47], and used them to solve topology optimization
problems with stress constraints.

In this study, we demonstrate that several classical failure criteria, including von Mises [35],
Drucker–Prager [46], Tresca [45], Mohr–Coulomb [47], Bresler–Pister [48] and Willam–Warnke
[49], can be represented by a single yield function, which we denote as the unified yield function. We
use the unified yield function to define a general class of stress constraints that predicts failure of
a variety of materials and use it to solve mass minimization topology optimization problems with
local stress constraints. In addition to stress constraints, the formulation incorporates the effects
of self-weight, which have a significant effect when the magnitude of the externally applied load
is relatively small in comparison with the weight of the structure. To solve the problem with local
constraints, we adopt an AL-based framework. Given the generality of the stress constraint, our
formulation covers a spectrum of materials ranging from ductile metals to materials such as rocks,
concrete, soils, polymeric foams, among others.

The ideation of this paper is motivated by the pioneering contributions of Professor Daniel
C. Drucker to the field of applied mechanics, including his key contributions to the theory of
plasticity [46,50–57]. His seminal contributions paved the way towards the development of a
realistic theory of plasticity that has become useful in engineering applications. Our formulation
for topology optimization is inspired by his fundamental work in the field, especially regarding
the well-established Drucker–Prager yield criterion [46].

The remainder of this paper is organized as follows. In §2, we discuss the aforementioned
classical yield functions and set the stage for the derivation of the unified yield function, which
we present in detail in §3. Next, we introduce the stress-constrained topology optimization
formulation in §4, followed by numerical results in §5. Finally, we provide some concluding
remarks in §6. In addition to the aforementioned sections, we include the details of the sensitivity
analysis in appendix A and provide a summary of the classical yield criteria, written in terms of
the unified yield function, in appendix B.

2. Classical yield functions

We discuss several of the most popular yield criteria used in the engineering literature to predict
failure of a variety of materials. The following discussion will set the stage to our derivation of
the unified yield function, which we use to represent all failure criteria considered in this paper.
Traditionally, a yield surface is expressed in terms of stress invariants as

f (I1, J2, J3) = 0 (2.1)

or in terms of principal stresses as

f (σ1, σ2, σ3) = 0, (2.2)

where

I1 = tr(σ ), J2 = 1
2 s : s and J3 = det(s) (2.3)

are, respectively, the first invariant of the Cauchy stress tensor, σ , and the second and third
invariants of the deviatoric stress tensor,

s = σ − I1

3
I. (2.4)
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Without loss of generality, a yield surface described in the form given by either equation (2.1)
or (2.2) can be written in normalized form as

Λ = σeq − 1 = 0, (2.5)

where σeq is a (dimensionless) equivalent stress measure, which is defined in terms of either stress
invariants or principal stresses. This form of writing the yield function leads to our generalization
of local stress constraints in topology optimization. As will be discussed in the subsequent
sections, the equivalent stress measure for many of the most popular yield criteria can be written
in the following general form:

σeq = α(θ )
√

3J2 + G(I1), (2.6)

where α(θ ) is a function defined in terms of the Lode angle [58],

θ = 1
3

sin−1

(
−3

√
3

2
J3

J3/2
2

)
, −π

6
≤ θ ≤ π

6
(2.7)

and G(I1) is a function defined in terms of the first stress invariant. The function α(θ ) is used to
define the shape of the yield surface on the deviatoric plane and G(I1) is used to define the shape
of the meridional section of the yield surface under triaxial stresses corresponding to θ = −π/6.

(a) The von Mises and Drucker–Prager criteria

We begin by discussing the yield functions for the von Mises and Drucker–Prager criteria, which
are defined in terms of stress invariants. The von Mises criterion is widely used to predict failure
of ductile materials such as metals, while the Drucker–Prager criterion is typically used to predict
failure of pressure-dependent materials such as soils, rocks or concrete. The von Mises yield
criterion assumes that material failure occurs when the second deviatoric stress invariant reaches
a critical value, and it is mathematically written as

f (J2) =
√

3J2 − σlim = 0 (2.8)

or in normalized form as

Λ(J2) = α
√

3J2 − 1 = 0, (2.9)

with

α = 1/σlim, (2.10)

where σlim is the yield stress of the material. After comparing equation (2.9) with the normalized
yield surface (2.5), the equivalent stress measure for the von Mises yield criterion is given by

σeq = α
√

3J2. (2.11)

The Drucker–Prager yield criterion [46] not only depends on the second deviatoric stress
invariant, but also on the first stress invariant (i.e. it is a pressure-dependent model). Using the
form given by equation (2.5), the Drucker–Prager yield surface is written in normalized form as

Λ(I1, J2) = α
√

3J2 + βI1 − 1 = 0, (2.12)

where

α = σc + σt

2σcσt
and β = σc − σt

2σcσt
(2.13)

and σc and σt are, respectively, the compressive and tensile strength of the material. When σc =
σt = σlim, the values of α and β in equation (2.13) become α = 1/σlim and β = 0, meaning that
the Drucker–Prager model reduces to the von Mises model when the tensile and compressive
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strength of the material are the same. If one compares equations (2.12) and (2.5), it follows that
the equivalent stress measure for the Drucker–Prager yield criterion is

σeq = α
√

3J2 + βI1. (2.14)

Note that the equivalent stress measures for both the von Mises criterion (equation (2.11)) and the
Drucker–Prager criterion (equation (2.14)) satisfy the general form given by equation (2.6).

(b) The Tresca and Mohr–Coulomb criteria

The Tresca and Mohr–Coulomb criteria, which are written in terms of principal stresses, are non-
smooth versions of the von Mises and Drucker–Prager criteria, respectively. Assuming that the
principal stresses are sorted such that σ1 ≥ σ2 ≥ σ3, the normalized yield surface for the Tresca
criterion is

Λ(σ1, σ2, σ3) = α(σ1 − σ3) − 1 = 0 (2.15)

and for the Mohr–Coulomb criterion is

Λ(σ1, σ2, σ3) = α(σ1 − σ3) + β(σ1 + σ3) − 1 = 0, (2.16)

where the value of α in equation (2.15) is that given by equation (2.10) and the values of α and β

in equation (2.16) are those given by equation (2.13).1

Based on the forms in which the these yield criteria are written, it is not apparent that their
corresponding equivalent stress measures, σeq, have the form shown in equation (2.6). In order
to achieve the desired functional form of the equivalent stress measure, we express the Tresca
and Mohr–Coulomb yield criteria in terms of stress invariants. For that purpose, we express the
principal stresses in terms of stress invariants by means of the relationship [59]

⎡
⎢⎣σ1

σ2
σ3

⎤
⎥⎦= 2√

3

√
J2

⎡
⎢⎢⎢⎢⎢⎣

sin
(

θ + 2π

3

)
sin(θ )

sin
(

θ − 2π

3

)

⎤
⎥⎥⎥⎥⎥⎦+ I1

3

⎡
⎢⎣1

1
1

⎤
⎥⎦ . (2.17)

Given that the Tresca criterion is a particular case of the Mohr–Coulomb criterion, the derivations
below are shown for the Mohr–Coulomb model only. Substitution of equation (2.17) into
equation (2.16) leads to an equivalent stress measure of the form

σeq = α̂(θ )
√

3J2 + β̂I1, (2.18)

where

α̂(θ ) = 2
3

(
√

3α cos θ − β sin θ ) and β̂ = 2
3
β. (2.19)

For reasons that will become apparent later, we rewrite α̂(θ ) as follows:

α̂(θ ) = 2α

3

√
3 + (β/α)2 cos(θ + θ̃ ), with tan θ̃ = β

α
√

3
. (2.20)

Once again, note that the equivalent stress measure for the Tresca and Mohr–Coulomb models
bears resemblance with the general form in equation (2.6).

It is known that these two failure criteria have non-differentiable regions, which may cause
difficulties when using a gradient-based optimization algorithm. One way to overcome this issue
is to round the vertices of the hexagon in the deviatoric plane for both failure criteria. As discussed

1The values of α and β are chosen such that Mohr–Coulomb and Drucker–Prager models predict the same strength in uniaxial
tension and in uniaxial compression.
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by Lagioia & Panteghini [60], rounding of the vertices can be achieved if we use a modified Lode
angle of the form

θ̂ = 1
3 sin−1(ζ sin 3θ), (2.21)

where ζ ≤ 1 is a rounding parameter. When ζ = 1, then θ̂ = θ and one recovers the original Tresca
and Mohr–Coulomb models, but when ζ < 1 one obtains a smoothed version of these two yield
surfaces.

(c) The Bresler–Pister criterion

Another popular yield function, which is typically used to predict failure of isotropic materials
such as concrete, polypropylene and polymeric foams, is the Bresler–Pister yield criterion [48]. In
a normalized form, the Bresler–Pister yield surface is written as follows:

Λ(I1, J2) = αBP
√

3J2 + βBPI1 + γBPI2
1 − 1 = 0, (2.22)

which corresponds to an equivalent stress measure,

σeq = αBP
√

3J2 + βBPI1 + γBPI2
1, (2.23)

where

αBP = (σc + σt) (2 − σc/σb) (2 + σt/σb)

σcσt (8 − 3σc/σb + σt/σb)
,

βBP = (σc − σt)
(
4 − σc/σb − σt/σb + σcσt/σ

2
b

)
σcσt (8 − 3σc/σb + σt/σb)

and γBP = σc − 3σt + 2σcσt/σb

σcσtσb (8 − 3σc/σb + σt/σb)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.24)

Parameters σc, σt and σb are the yield stresses in uniaxial compression, uniaxial tension and
equibiaxial compression, respectively. The Bresler–Pister criterion reduces to the Drucker–Prager
criterion in the limit as σb → ∞. That is because αBP → (σc + σt)/(2σcσt), βBP → (σc − σt)/(2σcσt),
and γBP → 0, when σb → ∞, which if substituted into equation (2.23) yields the equivalent stress
measure for the Drucker–Prager criterion given by equation (2.14).

(d) The Willam–Warnke criterion

In addition to the Bresler–Pister criterion, the Willam–Warnke criterion [49] has been used to
predict failure in concrete and other cohesive-frictional materials. The normalized yield surface
for the Willam–Warnke model is given by

Λ(I1, J2, θ ) = 1
σc

√
2
15

1
r(θ )

√
3J2 + βWI1 − 1 = 0 (2.25)

which corresponds to

σeq = 1
σc

√
2
15

1
r(θ )

√
3J2 + βWI1, (2.26)

where r(θ ) is given by

r(θ ) = u(θ ) + v(θ )
w(θ )

, (2.27)

and
u(θ ) = 2rc(r2

c − r2
t ) cos(θ + π/6),

v(θ ) = rc(2rt − rc)
√

4(r2
c − r2

t ) cos2(θ + π/6) + 5r2
t − 4rtrc

and w(θ ) = 4(r2
c − r2

t ) cos2(θ + π/6) + (rc − 2rt)2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.28)



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

476:20190861
...........................................................

Parameters rc and rt are expressed as

rc =
√

6
5

σbσt

3σbσt + σc(σb − σt)
and rt =

√
6
5

σbσt

σc(2σb + σt)
. (2.29)

Finally, the parameter βW is given by

βW = σb − σt

3σbσt
. (2.30)

Convexity of the Willam–Warnke yield function requires that rt > rc/2.
The term (1/σc)

√
2/15(1/r(θ )) that premultiplies

√
3J2 in equation (2.26) can be rewritten as

α(θ ) = AW cos2(θ + π/6) + BW

CW cos(θ + π/6) +
√

DW cos2(θ + π/6) + EW
, (2.31)

where

AW = 4
σc

√
2
15

(r2
c − r2

t ), BW = 1
σc

√
2
15

(rc − 2rt)2, CW = 2rc(r2
c − r2

t ),

DW = 4r2
c (rc − 2rt)2(r2

c − r2
t ), EW = r2

c (rc − 2rt)2(5r2
t − 4rtrc).

⎫⎪⎬
⎪⎭ (2.32)

If one sets AW �= 0, CW = 1, and BW = DW = EW = 0 the function α(θ ) above becomes α(θ ) =
AW cos(θ + π/6), which bears a striking resemblance to the function α(θ ) in equation (2.20) that
was derived for the Tresca and Mohr–Coulomb criteria. Similarly, if one sets AW = CW = DW = 0,
EW = 1, and BW �= 0, the function α(θ ) above becomes α(θ ) = BW = constant, as is the case for the
von Mises, Drucker–Prager, and Bresler–Pister criteria. This observation sheds some light on our
development of a general form for α(θ ) that we use to define the unified yield function comprising
all failure criteria discussed in this section. The specific form of the generalized yield function is
provided next.

3. Unified yield function

The equivalent stress measure for all the yield criteria discussed in the previous section satisfies
the general form given by equation (2.6). Particularly, the results show that all those yield criteria
can be represented by a meridional function, G(I1), of the form given by a general polynomial of
degree two and by a deviatoric function, α(θ ), of a form similar to that given by equation (2.31).
Therefore, we unify all models discussed previously using one single yield function of the form
shown in equation (2.5), such that the equivalent stress measure is given by2

σeq = α̂(θ )
√

3J2 + β̂I1 + γ̂ I2
1, (3.1)

where the deviatoric function α̂(θ ) is written as

α̂(θ ) = A cos2 θ̂ + B

C cos θ̂ +
√

D cos2 θ̂ + E
, (3.2)

with
θ̂ = 1

3 sin−1[ζ sin 3θ] + θ̄ , ζ ≤ 1. (3.3)

A suitable choice of the parameters in equations (3.1)–(3.3) leads to each of the yield criteria
discussed in the previous section. Table 1 provides a summary of the parameters that we use
to represent all of these yield criteria.

As shown in figure 1, we use equation (3.1) with the parameters of table 1 to generate the yield
surface for each of the classical models discussed in this paper. As observed in figure 1, the unified
yield function is unable to smooth the apex of the Drucker–Prager, Mohr–Coulomb, Bresler–Pister
and Willam–Warnke models, which may cause issues during topology optimization for cases in

2The unified yield function introduced here can be extended to accommodate other failure criteria such as Lade–Duncan [61]
and Matsuoka–Nakai [62].
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Figure 1. Yield surfaces obtained from the normalized yield function (2.5) using the equivalent stress measure given by

equations (3.1)–(3.3): (a) von Mises, (b) Drucker–Prager, (c) Tresca, (d) Mohr–Coulomb, (e) Bresler–Pister, and (f ) Willam–
Warnke. The parameters used to generate these surfaces correspond to those from table 1 using σlim = 1, σt = 0.5, σc = 1,

σb = 1.25 and ζ = 0.99—for the Tresca and Mohr–Coulombmodels. (Online version in colour.)

Table 1. Parameters defining the unified equivalent stress measure given by equations (3.1)–(3.3).

α̂(θ )

failure criterion A B C D E ζ θ̄ β̂ γ̂

von Mises 0
1

σlim

0 0 1 1 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Drucker–Prager 0
σc + σt

2σcσt
0 0 1 1 0

σc − σt

2σcσt
0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tresca
2√
3σlim

0 1 0 0 ≤1a 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mohr–Coulombb AMC 0 1 0 0 ≤1a θ̃
σc − σt

3σcσt
0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bresler–Pisterc 0 αBP 0 0 1 1 0 βBP γBP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Willam–Warnked AW BW CW DW EW 1
π

6

σb − σt

3σbσt
0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aSetting ζ < 1 leads to a yield surface with rounded corners [60].
bAMC = (2α/3)

√
3 + (β/α)2, in whichα andβ are given by equation (2.13), and θ̃ is given by equation (2.20).

cαBP,βBP and γBP are given by equation (2.24).
dAW, BW, CW, DW and EW are given by equation (2.32).

which the structure is subjected to purely hydrostatic loads. Although the apex can be smoothed
using, for example, the approach by Abbo & Sloan [63], we decided not to include this feature
because the issue happens under very specific circumstances.
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Figure 2. (a)Modified Lode angle, θ̂ , computed using equation (3.3) for various values of rounding parameterζ and for θ̄ = 0.

(b,c) The rounding parameter yields dθ̂/dθ = 0 forθ = ±π/6, resulting on a smooth yield surface for the Tresca andMohr–

Coulombmodels. (d–f ) An illustration of the effect of rounding parameterζ on the Tresca yield surface provided forζ = 1, 0.9

and 0.5, respectively. (Online version in colour.)

As we discussed in the preceding section, setting ζ < 1 for the Tresca or Mohr–Coulomb
models leads to yield surfaces with rounded corners on the deviatoric plane. Figure 2 shows
the effect of the rounding parameter, ζ , on the modified Lode angle in equation (3.3) as well as
its effect on the rounding of the Tresca yield surface. These results show that, as ζ decreases, the
Tresca yield surface becomes more round and approaches a cylinder with circular cross section.

4. Topology optimization formulation

This section presents the general framework for topology optimization with local stress
constraints considering the unified yield function introduced previously. The formulation aims
to find the lightest structure that is able to withstand the applied loads without experiencing
local material failure. To ensure that no material failure occurs, we impose local stress constraints,
gj, at a given number of evaluation points, K, throughout the design domain, Ω . We impose
local constraints so that our formulation is consistent with classical continuum mechanics, which
defines stress as a local quantity [64]. In a continuum setting, the topology optimization statement
that we aim to solve is written as

inf
ρ∈A

m(ρ)

s.t. gj(ρ, u) ≤ 0, j = 1, . . . , K,

⎫⎬
⎭ (4.1)

where m(ρ) is the mass (volume) of the structure normalized with respect to the total volume
(mass) of domain Ω . The normalized mass is defined in terms of the density field, ρ, as

m(ρ) = 1
|Ω|

∫
Ω

mV(ρ) dx, (4.2)
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Figure 3. Threshold projection function (4.3) plotted for various values of β and for η = 0.5. As β increases, density values

above η are projected to one and those below η are projected to zero. (Online version in colour.)

where |Ω| is the total mass (volume) of the structure and mV(ρ) is an interpolation function for the
volume, which relates the density, ρ, at a point x ∈ Ω , with the volume fraction at that point. In this
study, we define the volume interpolation function in terms of a threshold projection function, as
follows [65]:

mV(ρ) = tanh(βη) + tanh(β(ρ − η))
tanh(βη) + tanh(β(1 − η))

, (4.3)

where β controls the aggressiveness of the projection and η is a threshold value above which
the density field is projected to one and below which it is projected to zero. Figure 3 depicts the
threshold projection function for various values of β and for a value of η = 0.5.

For the topology optimization problem to be well defined, we restrict the density field to
belong to a space of admissible density functions

A= {PF(z) : z ∈ L∞(Ω ; [0, 1])
}

, (4.4)

defined by the regularization map

PF(z)(x) =
∫
Ω

F(x, x̄)z(x̄) dx̄, (4.5)

which is obtained via convolution with the nonlinear filter operator

F(x, x̄) = c(x) max
(

1 − ‖x − x̄‖2

R
, 0
)q

, (4.6)

where c(x) is chosen such that
∫

Ω F(x, x̄) dx̄ = 1, R is the filter radius, ‖x − x̄‖2 is the Euclidean
distance between points x and x̄, and q ≥ 1 is a nonlinear filter exponent.3

Stress constraints gj(ρ, u) depend on the density field, ρ, and on the solution, u ∈ V , of the
variational problem of nonlinear elasticity:4

u = inf
u

[
Π (ρ, u) + ε

2
u · u

]
, (4.7)

in which ε is a Tikhonov regularization factor [66–68] and

V = {u ∈ H1(Ω , R3) : u|ΓD = 0} (4.8)

3Other filter functions (e.g. linear hat filter, Gaussian filter, among others) can be used instead of that used in this study.

4We have added a Tikhonov regularization factor ε to the variational problem (4.7), to prevent the stiffness matrix
from becoming singular when the density values become zero [66–68]. For implementation purposes, we use ε =
10−10mean[diag(KT)], in which KT is the stiffness matrix.
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is the space of admissible displacement fields, where ΓD ∈ ∂Ω is the portion of the boundary, ∂Ω ,
in which zero displacements are prescribed (i.e. u|ΓD = 0), and

Π (ρ, u) =
∫
Ω

mE(ρ)W0(u, x)dΩ −
∫
Ω

mV(ρ)b · u dΩ −
∫
Γt

t · u dS (4.9)

is the total potential energy of the system, where mE(ρ) is a stiffness interpolation function that
relates the density ρ to the stiffness at a given point on the design domain, W0(u, z) is the strain
energy density of the solid material, b is the vector of body forces for ρ = 1, and t is the traction
applied on Γt ∈ ∂Ω . The boundaries ΓD and Γt form a partition of ∂Ω , such that ΓD ∪ Γt = ∂Ω and
ΓD ∩ ΓD = ∅. We use the following two stiffness interpolation functions in the present study:

mE(ρ) = ρ̃p (SIMP) and mE(ρ) = ρ̃

1 + p0(1 − ρ̃)
(RAMP), (4.10)

where ρ̃ = mV(ρ), p ≥ 1 is the SIMP penalization factor, and p0 ≥ 0 is the RAMP penalization factor.
In the present study, we use SIMP [69–71], for cases in which self-weight is not considered and
RAMP [72] otherwise. We use RAMP when considering self-weight because SIMP would lead to
numerical instabilities that arise due to the fact that the weight-to-stiffness ratio becomes infinite
when ρ → 0, which leads to an unbounded displacement field [73]. The same type of numerical
instabilities have been observed in stress-constrained topology optimization [18].

The equilibrium condition (4.7) is valid for any material with strain energy density, W0.
However, in order to keep the focus of this study on the unified yield function, we use a linear
material whose stored energy function is given by

W0 = 1
2 εijCijklεkl, (4.11)

where εij is the infinitesimal strain tensor and Cijkl is the elasticity tensor for a linear isotropic
material.

To find a numerical solution of the optimization problem (4.1), we discretize both the
displacement and density fields. To obtain a discretized displacement field, we partition
the design domain, Ω , into elements Ωe, e = 1, . . . , Ne, such that Ω =⋃Ne

e=1 Ωe, and solve
the variational problem (4.7) using the finite-element method. To discretize the density field,
we assume a constant density value, ρe, in each element, Ωe. Thus, the topology optimization
statement in its discretized form becomes

min
z

m(z) = 1
|Ω|

Ne∑
e=1

ρ̃eve

s.t. gj(z, u) ≤ 0, j = 1, . . . , Nc

0 ≤ ze ≤ 1, e = 1, . . . , Ne

with: u(z) = arg min
u

[
Π (z, u) + ε

2
uTu

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.12)

where z are the design variables, z 
→ u(z) is an implicit function of the design variables that we
define through the equilibrium condition shown in (4.12)4, ρ̃e = mV(ρe) represents the volume
(mass) fraction of element e, and ve = |Ωe| is the volume of solid element, e. The discrete
density values, ρe, are defined in a discrete form via a regularization filter, which we obtain by
discretization of equations (4.5)–(4.6). The vector of filtered density values is obtained as

ρ(z) = Pz, (4.13)

where
Pij = wijvj∑Ne

k=1 wikvk
(4.14)

is the filter matrix, defined in terms of the nonlinear filter function,

wij = max
(

1 − ‖xi − xj‖2

R
, 0
)q

, (4.15)
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where ‖xi − xj‖2 represents the distance between the centroids, xi and xj, of elements i and j,
respectively. Note that setting q = 1 in equation (4.15) leads to the traditional linear hat filter [74].

We evaluate the total potential energy as

Π (z, u) =
Ne∑

e=1

∫
Ωe

mE(ρe)W0(ue) dΩ − fT
extu, (4.16)

where u is the vector of nodal displacements and

fext = fn + fb (4.17)

is the vector of external forces, which is composed of the vector of nodal forces, fn (due to the
external traction, t) and the vector of body forces, fb (e.g. due to gravity). We assume that the
external traction is independent of the design variables, and thus the vector of nodal forces is
also independent of the design variables. However, due to gravitational forces, the vector of body
forces inherently depends on the design variables. In a finite-element implementation, the vector
of nodal forces and that of body forces are evaluated for each finite element, e, as follows:

fe
n =

∫
Γ e

t

NT
e t dS, fe

b =
∫
Ωe

mV(ρe)NT
e b dΩ , (4.18)

where Ne is the vector of shape functions for element e, and b = γ n̂ is the vector of body forces, in
which γ is the specific weight of the solid material and n̂ is a unit vector in the direction of gravity
(e.g. n̂ = [0 0 − 1]T). The term mV(ρe) in equation (4.18)2 clearly shows the explicit dependence of
the vector of external forces on the design variables.

(a) Polynomial vanishing constraint

We introduce a new type of stress constraint, which we denote to as polynomial vanishing constraint.
This constraint is a variation of the traditional vanishing constraint used in topology optimization
and is defined as

gj(z, u) = mE(ρj)Λj(Λ
2
j + 1), with Λj = σ

eq
j − 1, (4.19)

where σ
eq
j is the unified equivalent stress measure computed from equations (3.1)–(3.3) using

the stresses obtained at evaluation point xj, j = 1 . . . , Nc. For the present study, we consider one
evaluation point per element corresponding to its centroid.

The benefits of using the polynomial vanishing constraint (4.19) are twofold. First, when
σ

eq
j � 1, the constraint is dominated by the cubic term, Λ3

j , i.e. gj(z, u) ∝ (σ eq
j − 1)3, and, as a

result, the optimizer will drive the solution to a density distribution with overall lower stress,
thus speeding up the convergence towards stress constraint satisfaction. Second, as the constraints
are close to being active (i.e. when σ

eq
j → 1), the constraint is dominated by the linear term, Λj,

meaning that the polynomial vanishing constraint behaves as a traditional vanishing constraint
[75].

(b) Normalized Augmented Lagrangian

We use an AL-based method to solve the optimization statement (4.12). In the traditional AL
method [23,24], the original problem is replaced by a series of unconstrained optimization
problems that eventually converge to the solution of the original problem. At the kth step, one
seeks to find the minimizer of the AL function5

J(k)(z) = 1
|Ω|

Ne∑
e=1

ρ̃eve +
Nc∑
j=1

[
λ

(k)
j hj(z, u) + μ(k)

2
hj(z, u)2

]
, (4.20)

5In practice, we find an approximate minimizer of the AL function by running a few MMA iterations per AL step. The number
of iterations that we use is typically NMMA = 5.
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where the first term, denoted as the objective function term, corresponds to the objective function
in (4.12), and the second term, denoted as the penalty term, contains the stress constraints. The
terms hj(z, u) in equation (4.20) are given by

hj(z, u) = max

⎡
⎣gj(z, u), −

λ
(k)
j

μ(k)

⎤
⎦ , ∀j = 1, . . . , Nc, (4.21)

where λ
(k)
j are Lagrange multiplier estimators and μ(k) is a penalty factor. For a detailed derivation

of the expression for hj(z, u) in equation (4.21), the reader is referred to the work by Senhora et al.
[22]. Both the Lagrange multiplier estimators and the penalty factor are updated at each AL step
as follows:

λ
(k+1)
j = λ

(k)
j + μ(k)hj(z

(k), u), ∀j = 1, . . . , Nc (4.22)

and
μ(k+1) = min[αμ(k), μmax], (4.23)

where α > 1 is the penalty update parameter and μmax is a maximum value of the penalty factor
used to prevent ill-conditioning during the optimization steps.

Our experience has shown that, as the number of elements in the finite-element mesh increases
(i.e. as the number of stress constraints increases), the solution of the kth sub-problem becomes
dominated by the penalty term of the AL function, which negatively impacts the convergence
of the method towards a solution of (4.12). To improve the ability of the AL method to solve
problems with increasing number of constraints, we normalize the penalty term of the AL
function with respect to the number of constraints. This adjustment significantly improves the
ability of the method to solve problems with a large number of constraints [22]. The normalized
AL function is given by

J(k)(z) = 1
|Ω|

Ne∑
e=1

ρ̃eve + 1
Nc

Nc∑
j=1

[
λ

(k)
j hj(z, u) + μ(k)

2
hj(z, u)2

]
. (4.24)

To solve the stress-constrained topology optimization problem, we use the AL method yet instead
of minimizing (4.20) at each step k, we minimize the normalized function (4.24). We require
the sensitivity of the normalized AL function with respect to the design variables to find the
minimizer of (4.24) at each AL step. For the sensitivity analysis, one must consider the implicit
dependence of J(k)(z) on the solution, u, of the boundary value problem, as we show in detail in
appendix A.

5. Numerical results

We present two numerical examples to illustrate the capabilities of the proposed formulation to
handle different yield criteria by means of the unified yield function and to study the effect of self-
weight in the optimization results. Unless otherwise specified, we use the set of initial parameters
shown in table 2 to solve both problems.

The unified yield function introduced previously is able to represent several classical failure
criteria defined for a variety of materials (e.g. for ductile metals, concrete, ceramics, polymeric
foams, among others). Thus, the numerical examples discussed below aim to find optimized
topologies of structures that can be fabricated with materials whose failure behaviour can be
represented by the unified yield function. Specifically, the examples discussed herein consider
structures that can be fabricated with either a metal or a concrete-like material. For structures
made of metals, we choose E = 200 GPa and ν = 0.3 (i.e. elastic properties of steel) and a yield
stress, σlim = 250 MPa. For structures made of a concrete-like material, we choose a Young’s
modulus, E = 30 GPa, a Poisson’s ratio, ν = 0.2, and yield stresses that depend on the yield
criterion of choice (e.g. for Drucker–Prager or Mohr–Coulomb we define values for σt and σc,
and for Bresler–Pister or Willam–Warnke we define values for σt, σc and σb).
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Table 2. Input parameters used to solve all examples.

parameter value

initial Lagrange multiplier estimators,λ
(0)
j 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

initial penalty factor,μ(0) 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

maximum penalty factor,μmax 10 000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

penalty factor update parameter,α 1.05
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SIMP penalization factor, pa 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RAMP penalization factor, p0a 3.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nonlinear filter exponent, q 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number of inner MMA iterations per AL step, NMMA 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

initial threshold projection penalization factor,βb 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

threshold projection density, η 0.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

initial guess, z(0) 0.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tolerance,tolc 0.0015
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aWe use SIMP when neglecting self-weight and RAMP otherwise.
bParameterβ starts at 1 and increases by 0.5 every five AL steps and up to a maximum value of 15.
cWe consider that the problem has converged when sum(|z(k+1) − z(k)|)< tol and max(gj )< 0.005.

(a) Corbel design

This example studies the effect of the type of yield criterion on the optimized topology of a three-
dimensional corbel whose geometry is shown in figure 4. The geometry is defined using L = 1 m,
t = 0.5 m, and the load, P, is distributed over a distance, d = 0.05 m. The magnitude of the applied
load is chosen appropriately depending on the material used for each design. For example, for
designs made of ductile metals, which are defined by the von Mises or by the Tresca criteria,
we use P = 10 000 kN and for designs made of a cementitious material, we use P = 600 kN. The
material properties and magnitude of the load, P, for each of the yield criteria, are summarized
in table 3. All results reported in this example neglect the effects of self-weight. Moreover, for this
example the domain is discretized using 250 000 regular hexahedral elements.

Figure 5 displays the topology optimization results obtained for each yield criterion. The
results in figure 5a,b correspond to those obtained for the von Mises and Tresca criteria,
respectively, for which the hydrostatic component of the Cauchy stress tensor has no effect. As
a result, the optimized topologies become symmetric. Figure 5c–f displays the results for the
Drucker–Prager, Mohr–Coulomb, Bresler–Pister and Willam–Warnke models, respectively, for
which the hydrostatic component of the stress tensor is not negligible, yielding non-symmetric
designs. The results from figure 5c–f show that, as compared to parts of the structure dominated
by compressive stresses, those dominated by tensile stresses have thicker members. We also
observe that for the Drucker–Prager criterion (figure 5c), regions with negative hydrostatic
stresses (e.g. on the lower reentrant corner) result in necking. The reason for such behaviour is
that, according to the Drucker–Prager criterion, no failure occurs under compressive hydrostatic
stresses and, as as result, no material is needed in those regions. Despite the fact that we used
different yield surfaces, all optimized structures from figure 5c–f share similarities. All those
structures contain a thick member in tension that crosses by the upper reentrant corner, and thin
compression members that meet at the lower reentrant corner. The members in compression are
thinner than those in tension because, for all those cases, the compressive strength is larger than
the tensile strength.

The results shown in figure 5b,d are obtained using a rounding parameter, ζ = 0.99. In order
to investigate the effect of ζ in the optimization results, figure 6 shows the optimized topologies
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L

Figure 4. Geometry and loading for the corbel problem. The geometry is defined using L= 1 m and t = 0.5 m, and load

P, whose magnitude depends on the yield criterion used to define material failure, is distributed uniformly across a distance
d = 0.05 m. (Online version in colour.)

Table 3. Material properties and magnitude of the applied load used to solve the corbel problem.

elastic properties yield stress (MPa) applied load

failure criterion E (GPa) ν σlim σt σc σb P (kN)

von Mises and Tresca 200 0.3 250 — — — 10 000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Drucker–Prager and Mohr–Coulomb 30 0.2 — 10.5 35 — 600
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bresler–Pister and Willam–Warnke 30 0.2 — 10.5 35 52.5 600
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

obtained for the Tresca criterion using various values of ζ . The figures in the left column display
the optimized topologies obtained for ζ = 0.95 and 0.50, respectively, which show that the results
are almost unaffected by the value of ζ . The figures in the centre column show the principal
stresses measured at each evaluation point of the optimized structures (i.e. σ e

i , i = 1, 2, 3, e =
1, . . . , Ne), together with the rounded yield surfaces in principal stress coordinates for each of
the designs. These results show that, independently of the value of ζ , all stress points are inside
the yield surface (i.e. the stress constraints are satisfied locally). Finally, the figures in the right
column show the yield surfaces as well as the principal stresses for each evaluation point when
projected onto the deviatoric plane (i.e. the octahedral profile), which provide an additional view
to show that the stress evaluation points lie inside the rounded Tresca yield surface.

(b) Dome design

This example investigates the effects of self-weight on the optimization results for a box domain
whose geometry is shown in figure 7. The box domain is defined using L = 10 m and is subjected
to a load of magnitude P applied at the centre and distributed uniformly on a circle of radius
r = 0.25 m. The box is supported at its four lower corners by square rigid pads of dimension d =
1 m. In addition to considering self-weight, we also consider two yield criteria: von Mises (for a
structure made of metal) and Willam–Warnke (for a structure made of a concrete-like material).
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Figure 5. Optimized topologies (left) and equivalent stress measures (right) for the corbel problem using the unified failure

criterion: (a) von Mises, (b) Tresca, (c) Drucker–Prager, (d) Mohr–Coulomb, (e) Bresler–Pister, and (f ) Willam–Warnke. (Online
version in colour.)

For the von Mises criterion, we use E = 200 GPa, ν = 0.3 and σlim = 250 MPa and for the Willam–
Warnke criterion, we use E = 30 GPa, ν = 0.2, σt = 7 MPa, σc = 35 MPa and σb = 52.5 MPa. The box
is discretized using 250 000 regular hexahedral elements.

To investigate the relative influence of the external load over the self-weight, we use the
ratio P/W between the applied load, P, and the weight of the solid domain, W. The weight, W,
corresponds to the total weight of the initial design domain, and it is computed as W = γ L3/4,
in which γ refers to the specific weight of the material. We obtain optimized topologies for four
values of P/W (P/W = −0.1, P/W = 0.01, P/W = 1 and P/W = ∞). To obtain a similar volume
fraction for all designs, we vary the magnitude of P for each P/W ratio. The magnitude of the
applied load used to obtain each design is shown in table 4.

Figure 8 shows the results we obtain when using the von Mises criterion. When P/W = −0.1
(figure 8a), the load is applied in the upward direction and the optimized topology consists of
four members connected to the four supports and a block of material underneath the point of
load application. The block of material tries to counteract the effect of the upward load so that the
overall mass of the structure is reduced. When P/W = 0.01 (figure 8b), the influence of self-weight
is predominant, and the optimized topology contains a truss like structure that connects the point
of load application to arch-like members located on the outer part of the domain to transfer the
external load to the supports. When P/W = 1 (figure 8c) or P/W = ∞ (figure 8d), the influence of
self-weight decreases, and the optimized topologies approach a truss. For these two cases, more



17

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

476:20190861
...........................................................

deviatoric
plane

deviatoric
plane

s1

s1

s1

s1

s2

s2

s2

s2

s3

s3

s3

s3

(b)

(a)

Figure 6. Optimized topologies (left), rounded Tresca yield surfaces (centre), and their projection onto the deviatoric plane

(right), considering different values of the rounding parameter: (a) ζ = 0.95 and (b) ζ = 0.50. (Online version in colour.)
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Figure 7. Geometry and loading for the dome problem. (Online version in colour.)

Table 4. Magnitude of the applied load, P, used to obtain the optimized topologies of figures 8 and 9 (×103 kN).

P/W

failure criterion −0.1 0.01 1 ∞
von Mises −177 39 195 195

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Willam–Warnke −10.4 6 30 30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

material appears underneath the point of load application, which is consistent from a structural
point of view.

The results obtained using the Willam–Warnke criterion are displayed in figure 9. When
the load is applied in the upward direction (i.e. when P/W = −0.1), the optimized topology
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Figure 8. Optimized topologies (left) and equivalent stress measures (right) for the dome problem considering the von Mises

yield criterion and various P/W ratios: (a) P/W = −0.1, (b) P/W = 0.01, (c) P/W = 1, and (d) P/W = ∞. (Online version

in colour.)

becomes a truss-like structure (figure 9a) that bears resemblance to the structures shown in
figures 8c,d. Due to the weakness of the material in tension, when P/W = −0.1 we increase the
load application radius from r = 0.25 m to r = 0.66 m (cf. figure 7), which prevents the material
from yielding at the point of load application. Now, when the effect of self-weight is dominant
(i.e. when P/W = 0.01), the optimized topology corresponds to two arches that originate from the
supports and intersect at the point of load application (figure 9b). Unlike the result in figure 8b,
that obtained for the Willam–Warnke criterion only contains compressive members (i.e. the two
intersecting arches). The reason for the difference in topology between these two results is that
the material governed by the Willam–Warnke criterion is weak in tension and, as a result, the
optimizer favours the appearance of materials that are subjected to compressive stresses. Now,
when P/W = 1 (figure 9c) or when P/W = ∞ (figure 9d), the optimized topologies contain a
bulky centre part and four compressive struts that connect each support with the point of load
application. The bulky centre part appears so that the structure is able to bear with the complex
state of stresses that develop underneath the point of load application. The bulky centre part
helps increase the bearing capacity of the structure and the struts help transmit the load to the
supports.
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Figure 9. Optimized topologies (left) and equivalent stress measures (right) for the dome problem considering the Willam–

Warnke yield criterion and various P/W ratios: (a) P/W = −0.1, (b) P/W = 0.01, (c) P/W = 1, and (d) P/W = ∞. (Online

version in colour.)

6. Conclusions

In this paper, we demonstrate that several classical yield criteria, including von Mises, Drucker–
Prager, Tresca, Mohr–Coulomb, Bresler–Pister and Willam–Warnke, can be defined using a single
yield function, which we denote as the unified yield function. We use the unified yield function to
solve mass minimization topology optimization problems with local stress constraints. To solve
the problem with local constraints, we adopt an AL-based approach with a normalization that
allows the solution of problems with a large number of constraints. The AL-based approach
leads to the solution of the problem in a way that is consistent with continuum mechanics, i.e.
treating stress as a local quantity. By virtue of the unified yield function, the formulation naturally
extends the range of applications of stress-constrained topology optimization to structures that
can be fabricated with a variety of materials ranging from ductile metals to pressure-dependent
materials such as concrete, soils, ceramics, and polymeric foams, among others.

We consider the effects of self-weight and, more generally, those from design-dependent
loading (e.g. centrifugal forces, electromagnetic body forces, among others). For problems
involving self-weight, we use RAMP as the stiffness interpolation function, which helps prevent
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numerical instabilities that arise in low density elements due to the unbounded ratio between
mass and stiffness that occurs when SIMP is used. The results demonstrate that not only the
choice of yield function but also the effects of self-weight are important to obtain an appropriate
material layout via topology optimization.
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Appendix A. Sensitivity analysis

We use a gradient-based optimization algorithm to solve the optimization problem (4.12), and
thus, we require the sensitivity of the normalized AL function (4.24), which we obtain using the
chain rule:

∂J(k)

∂zj
=

Ne∑
i=1

∂J(k)

∂ρ̃i

∂ρ̃i

∂ρi

∂ρi

∂zj
=

Ne∑
i=1

∂J(k)

∂ρ̃i

∂ρ̃i

∂ρi
Pij, (A 1)

where
∂ρ̃i

∂ρi
= β[1 − tanh(β(ρi − η))2]

tanh(βη) + tanh(β(1 − η))
(A 2)

and Pij is the filter matrix from equation (4.14). The sensitivity of the normalized AL function
(4.24) with respect to the element volume fraction, ρ̃i, is computed as

∂J(k)

∂ρ̃i
= 1

|Ω|
∂

∂ρ̃i

Ne∑
e=1

ρ̃eve + 1
Nc

∂P(k)

∂ρ̃i
= vi

|Ω| + 1
Nc

∂P(k)

∂ρ̃i
, (A 3)

where

P(k) =
Nc∑
j=1

[
λ

(k)
j hj(z, u) + μ(k)

2
hj(z, u)2

]
(A 4)

is the penalty term of the AL function. The sensitivity of the penalty term with respect to the
element volume fractions is given by

∂P(k)

∂ρ̃i
=

Nc∑
j=1

[λ(k)
j + μ(k)hj(z, u)]

[
∂hj(z, u)

∂ρ̃i
+ ∂hj(z, u)

∂u
· ∂u
∂ρ̃i

]
. (A 5)

We use the adjoint method to avoid computing the term ∂u/∂ρ̃i in (A 5), for which we use the
equilibrium condition from equation (4.12)4, which we rewrite in a convenient way as

R = ∂Π

∂u
+ εu = fint − fext + εu = 0, (A 6)

6G.H.P. received the 2020 Drucker Medal from the American Society of Mechanical Engineers (ASME).



21

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

476:20190861
...........................................................

where fint is the internal force vector, computed based on the strain energy of the system and
fext = fn + fb is the external force vector. We add the term ξT(∂R/∂ρ̃i) to equation (A 5) and obtain

∂P(k)

∂ρ̃i
=

Nc∑
j=1

[λ(k)
j + μ(k)hj(z, u)]

[
∂hj(z, u)

∂ρ̃i
+ ∂hj(z, u)

∂u
· ∂u
∂ρ̃i

]

+ ξT
(

KT
∂u
∂ρ̃i

+ ∂fint

∂ρ̃i
− ∂fb

∂ρ̃i
+ ε

∂u
∂ρ̃i

)
, (A 7)

where ξ is the adjoint vector and KT is the tangent stiffness matrix at equilibrium. Here, we use
the fact that the nodal force vector fn is independent of the design variables and the body force
vector fb has a direct dependence on the design variables. We rewrite equation (A 7) by collecting
all terms multiplying ∂u/∂ρ̃i and choose the adjoint vector ξ such that these terms vanish. After
some algebraic manoeuvring, equation (A 7) simplifies to

∂P(k)

∂ρ̃i
=

Nc∑
j=1

[λ(k)
j + μ(k)hj(z, u)]

∂hj(z, u)

∂ρ̃i
+ ξT

(
∂fint

∂ρ̃i
− ∂fb

∂ρ̃i

)
, (A 8)

where ξ solves the adjoint problem,

(KT + εI)ξ = −
Nc∑
j=1

[λ(k)
j + μ(k)hj(z, u)]

∂hj(z, u)

∂u
. (A 9)

Substitution of equation (A 8) into equation (A 3) yields

∂J(k)

∂ρ̃i
= vi

|Ω| + 1
Nc

⎧⎨
⎩

Nc∑
j=1

[λ(k)
j + μ(k)hj(z, u)]

∂hj(z, u)

∂ρ̃i
+ ξT

(
∂fint

∂ρ̃i
− ∂fb

∂ρ̃i

)⎫⎬
⎭ , (A 10)

which together with equation (A 1) leads to the sensitivity of the normalized AL function (4.24).
For the sake of completeness, we provide the expressions for the partial derivatives appearing

in equations (A 9) and (A 10), which we require for the sensitivity analysis. First, we provide
those appearing in equation (A 10). From equations (4.19) and (4.21), we have that ∂hj(z, u)/∂ρ̃i = 0

whenever gj(z, u) < −λ
(k)
j /μ(k) and

∂hj(z, u)

∂ρ̃i
= ∂mE(ρi)

∂ρ̃i
Λj(Λ

2
j + 1) (A 11)

otherwise. To obtain ∂fint/∂ρ̃i, we recall that the material model is linear, and thus fint = KTu.
Therefore,

∂fint

∂ρ̃i
= ∂

∂ρ̃i
(KTu) = ∂mE(ρi)

∂ρ̃i
ki

0ui, (A 12)

where ki
0 and ui are the stiffness matrix (computed using the properties of the solid material) and

the displacement vector of element i, respectively. Finally, we obtain the sensitivity of the body
force vector, ∂fb/∂ρ̃i, from equation (4.18)2, as follows:

∂fe
b

∂ρ̃i
= ∂mV(ρi)

∂ρ̃i
fi
b0, with fi

b0 =
∫
Ωi

NT
e b dΩ . (A 13)

Next, we proceed to provide the expression for the term ∂hj/∂u that appears in equation
(A 9). Once more, the functional form of hj(z, u) in (4.21) shows that ∂hj(z, u)/∂u = 0 whenever

gj(z, u) < −λ
(k)
j /μ(k) and

∂hj

∂u
= ∂gj

∂u
= ∂gj

∂Λj

(
∂Λj

∂I1

∂I1

∂σ
+ ∂Λj

∂J2

∂J2

∂σ
+ ∂Λj

∂J3

∂J3

∂σ

)
· ∂σ

∂u
(A 14)

otherwise, where we use equation (4.19) to obtain the expression for ∂gj/∂u in equation
(A 14). Recalling that Λj = σ

eq
j − 1, where the equivalent stress measure, σ

eq
j , is given by (3.1),
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Table 5. Deviatoric function, α̂(θ ), and modified Lode angle, θ̂ , for classical yield criteria.

failure criterion deviatoric function modified Lode angle

von Mises α̂(θ )= 1

σlim

θ̂ = θ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Drucker–Prager α̂(θ )= σc + σt

2σcσt
θ̂ = θ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Trescaa α̂(θ )= 2√
3σlim

cos θ̂ θ̂ = 1

3
sin−1[ζ sin 3θ ]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mohr–Coulomba,b α̂(θ )= 2α

3

√
3 +
(

β

α

)2

cos θ̂ θ̂ = 1

3
sin−1[ζ sin 3θ ] + θ̃

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bresler–Pisterc α̂(θ )= αBP θ̂ = θ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Willam–Warnked α̂(θ )= AW cos2 θ̂ + BW

CW cos θ̂ +
√
DW cos2 θ̂ + EW

θ̂ = θ + π

6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aSetting ζ < 1 leads to a yield surface with rounded corners [60].
bα andβ are given by equation (2.13), and θ̃ is given by equation (2.20).
cαBP is given by equation (2.24).
dAW, BW, CW, DW and EW are given by equation (2.32).

the sensitivity of the unified yield function with respect to the stress invariants is given by

∂Λj

∂I1
=

∂σ
eq
j

∂I1
= β̂ + 2γ̂ I1,

∂Λj

∂J2
=

∂σ
eq
j

∂J2
= ∂α̂(θ )

∂θ

∂θ

∂J2

√
3J2 + 3α̂(θ )

2
√

3J2

and
∂Λj

∂J3
=

∂σ
eq
j

∂J3
= ∂α̂(θ )

∂θ

∂θ

∂J3

√
3J2,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A 15)

where the partial derivatives, ∂α̂(θ )/∂θ , ∂θ/∂J2 and ∂θ/∂J3, are obtained from equations (3.2), (3.3)
and (2.7).

The sensitivity of the stress invariants, I1, J2 and J3, with respect to the vector of Cauchy stresses
(written in Voigt notation) can be found explicitly. For instance, the first invariant of the Cauchy
stress vector can be written as I1 = Mσ , with M = [1 1 1 0 0 0] and σ = [σ11 σ22 σ33 σ23 σ13 σ12]T,
and thus ∂I1/∂σ = MT. Similarly, the second invariant of the deviatoric stress can be written as
J2 = 1

3 σTVσ , where V is a 6 × 6 symmetric matrix, and thus ∂J2/∂σ = 2
3 Vσ . The third invariant of

the deviatoric stress is obtained as

J3 = s11s22s33 + 2σ23σ13σ12 − (s11σ
2
23 + s22σ

2
13 + s33σ

2
12), (A 16)

where s = [s11 s22 s33 s23 s13 s12]T is the deviatoric stress tensor expressed in Voigt notation. Thus,

∂J3

∂σ
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s22s33 − σ 2
23

s11s33 − σ 2
13

s11s22 − σ 2
12

2(σ13σ12 − s11σ23)

2(σ12σ23 − s22σ13)

2(σ23σ13 − s33σ12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ J2

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A 17)

The above expression for ∂J3/∂σ can also be found explicitly in [63]. The last two pieces needed to
obtain ∂hj/∂u are ∂gj/∂Λj and ∂σ/∂u. The former is obtained from (4.19) and is given by ∂gj/∂Λj =
mE(ρ̃j)(3Λ2

j + 1). The latter is also found explicitly using the chain rule, ∂σ/∂u = ∂σ/∂ε · ∂ε/∂u =
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Table 6. Equivalent stress measure,σeq, for classical yield criteria

a.

failure criterion equivalent stress measure

von Mises and Tresca σeq = α̂(θ )
√
3J2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Drucker–Prager and Mohr–Coulombb σeq = α̂(θ )
√
3J2 + β̂ I1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bresler–Pisterc σeq = α̂(θ )
√
3J2 + βBPI1 + γBPI21

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Willam–Warnke σeq = α̂(θ )
√
3J2 + σb − σt

3σbσt
I1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aThe deviatoric function α̂(θ ) for all yield criteria is given in table 5.
bβ̂ = (σc + σt )/2σcσt for Drucker–Prager and β̂ = (σc + σt )/3σcσt for Mohr–Coulomb.
cβBP and γBP are given by equation (2.24).

DB, where ε is the infinitesimal strain vector (in Voigt notation), D is the material tangent matrix
and B is the strain-displacement matrix.

Appendix B. Summary of classical yield criteria

The unified yield function introduced in §3 is able to reproduce all classical yield criteria
presented in §2. Table 5 presents explicit expressions for the deviatoric function, α̂(θ ), used in
equation (3.1) to define the unified yield function. All the analytical expressions for α̂(θ ) shown
in table 5 are derived from equation (3.2) and using the parameters displayed in table 1.

In a similar manner, table 6 presents explicit expressions for the equivalent stress measure, σeq,
for all classical yield criteria considered in this study. All the analytical expressions for σeq shown
in table 6 are derived from equation (3.1) and using the parameters displayed in table 1.
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