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Abstract. Header bidding (HB) is a relatively new online advertising
technology that allows a content publisher to conduct a client-side (i.e.,
from within the end-user’s browser), real-time auction for selling ad slots
on a web page. We developed a new browser extension for Chrome and
Firefox to observe this in-browser auction process from the user’s per-
spective. We use real end-user measurements from 393,400 HB auctions
to (a) quantify the ad revenue from HB auctions, (b) estimate latency
overheads when integrating with ad exchanges and discuss their implica-
tions for ad revenue, and (c) break down the time spent in soliciting bids
from ad exchanges into various factors and highlight areas for improve-
ment. For the users in our study, we find that HB increases ad revenue
for web sites by 28% compared to that in real-time bidding as reported
in a prior work. We also find that the latency overheads in HB can be
easily reduced or eliminated and outline a few solutions, and pitch the
HB platform as an opportunity for privacy-preserving advertising.

1 Introduction
Online advertising is a multi-billion dollar industry, with estimated global rev-
enues of more than 300 billion dollars (USD) in 2019 [19]. Revenues from ad-
vertising platforms exhibited a consistent positive growth rate over the last nine
quarters [32], and are projected to reach 0.5 trillion USD within the next four
years [19]. Programmatic advertising, which includes both real-time bidding
(RTB) and header bidding (HB), dominates the online advertising space to-
day: It accounts for 62% of the total advertising spend [32]. In this paper, we
offer insights into the design and performance of HB auctions using real end-user
measurements, which have not been available before.

Header bidding, introduced around 20137 [9,50,57], is a nascent program-
matic advertising technology that improves transparency and fairness in real-
time bidding (RTB). In RTB, ad slots on a web page are offered to advertisers
(or, more generally, buyers) following a waterfall model: one by one in a pre-
determined order, where the first one to bid a high enough price wins the slot.
7 The lack of any formal specification or standardization process makes it difficult to
nail down the exact time header bidding was introduced.
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The ordering is, moreover, not determined by the publisher (or web site owner),
but by an ad server, a third party that facilitates the auctioning of slots to buy-
ers. HB, in contrast, enables the publisher to solicit bids simultaneously from
multiple ad exchanges, where each exchange is a marketplace for advertisers to
bid on ad slots. Under HB, the publisher typically places some JavaScript code
within the web page’s HEAD tag that, when loaded in an end-users’ browser,
launches an in-browser auction for the ad slots on that page. This in-browser,
publisher-controlled, real-time ad auction permits publishers, as we show later,
to significantly increase their ad revenues. Perhaps as a consequence, HB has al-
ready gained significant adoption: 22% of the Alexa top 3k web sites use HB [1],
and a more recent study reports 22− 23% adoption among the top 5k sites [35].
If we remove sites that are ad-free (e.g., government and non-profit web sites)
or which use an in-house ad platform (e.g., Google and Facebook), HB adoption
among the top 1k sites is at 80.2% and growing fast [1].

Users might also benefit from HB: It could be leveraged to build a privacy-
preserving and transparent advertising ecosystem, where the end users have
control over their data. They could decide, on a per-web-site basis, for instance,
what information (e.g., concerning their interests or preferences) to barter for
helpful ads from advertisers. If properly designed, these auctions can also provide
the necessary oversight into end-user tracking, and transparency that users often
expect when seeing ads [55,56]. Any debate on such a novel advertising ecosystem
is possible, however, only if the underlying HB platform is proven to work well.

Real-time auctions such as those in RTB and HB are latency-sensitive. Google
AdX (one of the largest ad exchanges) requires, for instance, that all advertisers
respond within 120ms of the bid request being sent [22]. Setting aside a recom-
mended room of 20ms for unexpected delays, and 40ms for bid computations
and data fetches, leaves only 60ms for the round trip between an advertiser and
Google AdX [36]. Given the state of latency in the Internet [10], it is not surpris-
ing that Google AdX recommends that advertisers peer directly or co-locate with
AdX to minimize latency. Ensuring low latency for bid requests and responses
is even more challenging in HB, since users’ browsers cannot be co-located with
exchanges. Publishers thus set very long deadlines (from 500ms to 3000ms) to
ensure that all ad exchanges in an HB auction have a chance to bid. These long
deadlines are consistent with the widespread belief that the in-browser auction
held in HB imposes significant latency overhead [17,35]. The central theme of
this paper is that these concerns may be overblown. In particular, we identify the
sources of overhead and outline several avenues for lowering it. We summarize
our contributions as follows.

? We developed a web browser extension, for both the Google Chrome and
Mozilla Firefox browsers, to dissect in-browser HB auctions. We released the
source code of the extension as open source software [6].

? Prior work on header bidding [35] relied on regularly crawling websites from
a single vantage point. Crawling is valid for some of the analyses they do, such
as how many ads are on a web page, and which exchanges are involved, but it
cannot provide any useful insights into networking timing for real users. Revenue
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measurements will also be inaccurate as advertisers bid only token amounts for
synthetic user profiles. We gathered measurements of in-browser HB auctions
from about 400 real users, who volunteered to install and use the extension for a
period of 8 months. We also made the data set constituting these measurements
publicly available [6]. We call this data set Rum.

? Using the Rum data set, we demonstrate that ad revenue (estimated using
the median of bids from ad exchanges) from HB is significantly higher (28%) than
that reported for RTB in other studies. We also estimate the publishers’ latency
overheads when integrating with ad exchanges and discuss their implications for
publishers’ ad revenue.

? We break down the time spent in soliciting bids from ad exchanges into
its contributing factors and highlight areas for improvement. We do not find any
fundamental problem with client-side HB (i.e., in-browser auctions) implemen-
tations. It is not necessary to move these in-browser auctions to ad servers or,
more generally, away from end users to lower auction duration.

2 A Brief History of Programmatic Advertising
The introduction of real-time bidding fundamentally changed the way ads were
bought and sold: RTB, by leveraging programmatic advertising, facilitated the
sale and purchase of ads on a per impression or view basis [23]. Under RTB,
publishers (e.g., www.nytimes.com) announce their ad slots in real-time (i.e.,
when serving content to end users) to ad servers (e.g., DoubleClick for Publish-
ers). The ad servers then reach out to typically several demand sources (e.g.,
privately negotiated advertisers, Google AdSense, or an ad exchange), where
advertisers either bid for a chance to place ads in the available slots, or have
previously negotiated contracts to show a certain volume of ads for a price.8
A bid, typically expressed in cost per mille (CPM), represents the amount that
an advertiser is willing to pay for one thousand impressions or views of the
ad [61]. Advertisers estimate the worth of each ad slot using user-specific data
from one or more data brokers, which track end users to compile a database of
user profiles (e.g., comprising details such as a user’s gender, age, and location).9

The need for header bidding. In RTB, ad servers contact demand sources in
a rank order (referred to as the waterfall model) determined a priori by the
publisher and/or ad server. For a given ad slot, the process terminates as soon
as the slot is filled by a source, even if those appearing later in the ordering might
have offered a higher price. This static ordering, hence, treats the sources, and in
turn advertisers, unfairly. Publishers suffer from lower ad revenues—due to lost
opportunities—and a lack of transparency—they do not know of the demands
across different sources, especially ad exchanges, to inform a better ordering.
Leveling the playing field. Header bidding was introduced sometime around
2013 or 2014 [9,39,50,57], to address RTB’s shortcomings. HB allows the pub-
lisher to contact different advertisers and ad exchanges concurrently. Then, these
bids are sent to the ad server so they can be compared to other demand sources.
8 Ad exchanges and advertisers are also collectively referred to as buyers.
9 For more details on data brokers, we refer the reader to [4,47]
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Fig. 1: Interactions between different elements in
client-side header bidding

Table 1: A summary of
the Rum data set

Attribute(s) Value

Users ≈ 400
Duration 8 months

Cities; countries 356; 51
web sites 5362

Ad exchanges 255
Page visits 103,821

Auctions 393,400
Bids 462,075

With this model, ad exchanges have a fair chance to bid for the slots, and publish-
ers can monitor the demand across different exchanges. Over time, three different
kinds of header bidding implementations have emerged: client-side, server-side,
and hybrid (see [35]), although client-side is the original and still dominant im-
plementation. For the rest of this paper, we focus our attention on client-side
HB.
Client-side HB. The publisher adds JavaScript in the web page’s header, i.e.,
content enclosed by the HEAD HTML-tag that when processed by an end-user’s
browser, kick-starts an in-browser auction (illustrated in Fig. 1). The auction
concurrently solicits bids from different exchanges for the ad slots on that page.
The bids received until the end of the auction are then sent to the ad server to
compare with those retrieved via the waterfall-model auctions in the ad server.
Finally, the ad server chooses the highest bid, i.e., with the highest CPM, and
returns the winning bid to the browser. The browser then contacts (not shown
in the illustration) the winning bidder to retrieve the ad and display it.

3 Real User Measurements

Our objective is to passively observe the in-browser auctions of the client-side
header bidding process. To this end, we developed a browser extension, released
it to public, and, from real end users who used the extension for 8 months,
obtained measurements pertaining to HB auctions.

The browser extension utilizes the Prebid library [40], for it is the most
widely used HB JavaScript library, with 63.7% of the publishers using it as of
August 2019 [1]. The extension, MyAdPrice, is available on both the Google
Chrome web store and Firefox Add-ons web site. It uses the JavaScript APIs
for WebExtensions [31] to access the document-object-model (DOM) tree [30].
Via the DOM, it learns of (a) the ad slots on the Web page, (b) the name and
IP addresses of the ad exchanges that were contacted to fill up those slots, (c)
the bids received from different exchanges, and (d) which bids, if any, won the
auctions and for which ad slots. The extension also uses the Web Performance
Timing API (WPT) [59] to capture the time spent in each step of the request
such as DNS resolution, performing TCP/TLS handshakes, soliciting bids from
exchanges (i.e., transferring the data carrying the requests to the exchange’s
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servers) for various ad slots, and receiving bids (i.e., retrieving the response data
from the exchange’s servers) from the exchanges. Outgoing ad server requests
are also checked for query parameters.

In addition to releasing the source code for the extension as open source soft-
ware, we announced it on university mailing lists and public forums to increase
adoption. We recruited approximately 400 volunteers from diverse locations, with
nearly 50% of the users from the US. The rest were mostly from European coun-
tries including Bulgaria, the United Kingdom, France, Norway, Germany, and
the Netherlands, and a small, but significant fraction, also from Canada and In-
dia. Tab. 1 presents the high-level characteristics of the Rum data set, comprising
real user measurements over a period of 8 months. The end users visited about
5k web sites, for a total of about 100k web page fetches. The users’ browsing
activity resulted in about 400k auctions involving about 500k bids from 255 ad
exchanges. In total, we observed 916,447 requests issued by the users’ browsers
to ad exchanges and servers; 247,869 (27%) of these were to ad servers, while
the remaining 668,578 were to ad exchanges. Our browser extension recorded
the timestamp of each request using the browser’s Navigation Timing API [58].
Using these timestamped requests, we estimated the duration of auctions and
investigated the factors that affect an auction’s duration.

3.1 Privacy & Ethics

Our extension, by default, sends no data from the user’s browser. The extension
uses the browser’s local storage to store data pertaining to ad slots in different
pages and the bids received for each. The extension uses this data to compute
the “ad-worthiness” of the user—the money that advertisers intend to make off
of the user, and allows the user to view this locally-stored information. Users
may opt in to share data including domain names of web pages they visit, i.e.,
only those that use header bidding, ad slots on the pages, exchanges contacted
for ads, bids received, timing information on various phases of the in-browser
auction, and, lastly, their geographical location at city level. The data shared
does not have any information to uniquely identify a user. This opt-in data from
real end users constitutes the Rum data set. When we consulted our institutional
review board, they declared that we do not require an approval since we do not
gather any personally identifiable information.

The strict privacy standards we set for ourselves also mean that our dataset
has limitations. Since we don’t upload any data by default, not all installations
result in data collection. Also, since we don’t identify users, we cannot tell how
many unique users uploaded data to our servers. We also cannot track users
across different websites, and cannot profile based on age, income etc.

We refrained from conducting any experiment that would harm end users or
publishers or even the advertisers. The extension is merely a passive observer of
the in-browser auctions. We did not crawl web sites, since that would generate
synthetic ad impressions for which advertisers might have to pay the publish-
ers. Crawling activities may also lead to exchanges flagging the publisher for
suspicious activity. We did not craft synthetic user profiles for similar reasons.
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Fig. 2: (a) In the median, auctions involve only two ad exchanges and web sites
(publishers) connect with only three ad exchanges. (b) Bid prices show signifi-
cant variation, with approximately 30% of bids having at least $1 CPM. (c) The
median CPM or ad revenue increases with number of ad exchanges contacted.

4 Ad Exchanges, CPM, and Ad Revenue
The large number of ad exchanges observed in the Rum data set (in Tab. 1)
suggests that publishers leverage HB to integrate with many buyers in order to
maximize their ad revenue. To investigate further, we computed the number of
ad exchanges contacted, derived from the count of distinct ad exchanges from
which bids were received by the browser, per auction as well as per web site.
The CDF of the number of ad exchanges contacted (Fig. 2a), across all auctions
and web sites, reveals that most web sites (60%) use at most four ad exchanges,
and 10% use at least twice as many. Per this figure more than a third (35%) of
all auctions involve only one exchange and a fifth use at least four exchanges.
Publishers seem conservative in connecting with many ad exchanges, even if
HB libraries make it easy to establish such direct integrations. Prebid, the most
widely used JavaScript HB library, for instance, offers more than 250 integration
modules or “adapters” [43]; to integrate with an ad exchange, publishers simply
have to enable or include the corresponding adapter.

The CDF of CPMs across all auctions, in Fig. 2b, shows a significant variation
in bid values. While 20% of bids have at most $0.10 CPM, nearly 30% of the
bids have at least $1 CPM. We also observed 2 bids with CPM between $500−
$1000 and 3 with more than $1000 CPM. We find that ad revenue in HB (for
our volunteers) is not lower than that of RTB reported in other studies. For
example, the median winning CPM that we observe ($1.15) is 28% higher than
the RTB median of $0.90 reported in [37]. Furthermore, we grouped together ad
slots based on the number of ad exchanges from which they solicited bids and
computed the median value of bids in each group (Fig. 2c). The median value
of bids increases significantly with the number of ad exchanges. It is indeed in
the publishers’ best interests to connect with many ad exchanges—at least more
than the current number of ad exchanges (Fig. 2a) they are using.

Publishers could be contacting fewer exchanges for performance reasons. We
investigate the implications of integrating with more ad exchanges for auction
duration in the next section.

5 Auction Duration & Implications
The Prebid Javascript library does not provide explicit timestamps for auction
start, and end. As an approximation, we use the first bid request from the browser
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Fig. 3: (a) Auctions last for 600ms in the median, and some 10% of auctions
last more than 2 s. (b) Auctions, however, do not seem to affect the page load
times: Most bids arrive much later than when the onLoad event fires. (c) Auction
duration increases with the number of ad exchanges contacted.

to an ad exchange to signal an auction’s start. A call to the ad server marks the
end of an auction (step 8 in Fig. 1). Hence we approximate the auction duration
as the time between the first bid request, and the ad server call. The CDF of
these estimates, in blue in Fig. 3a, shows that auctions last for 600ms in the
median and some 10% of auctions last longer than 2 s. Despite the publishers
integrating with a small number of ad exchanges, auction durations are fairly
high.10

The CDF of the elapsed time between when the user arrives at a given web
page and the end of the auction (“since visit” line in Fig. 3a) reveals that the
browsers spend a large amount of time prior to launching HB auctions. Perhaps
web browsers spend this time prioritizing content over ads. Web pages may also
refresh ads based on user activity, e.g., scrolling down or reactivating an inactive
tab, triggering some auctions much later than when the user arrived at the web
page. These are separate auctions that are triggered in response to these events.

To ascertain the implications of auction duration for end users, we focus on
the page-load time (PLT), and measure the time it takes for the browser to
fire the onLoad event after the user navigates to the web page. We subtract the
onLoad time of a web page from the bid-arrival times associated with the ad slots
or auctions on that page, and plot the CDF of the resulting values in Fig. 3b.
Only a small fraction of bids (18%) arrive before the page load is complete; 82%
of the bids arrive after the onLoad event is fired. Although the shortcomings of
the PLT metric in reflecting end-users’ experiences is well-known, it is still the
most widely used metric [26], and according to this metric auction duration does
not significantly impact end-user experiences.

Longer ad auctions could, however, affect publishers and advertisers. The
negative effect of latency on e-commerce sales is well-known [3], and [8] concludes
that increased response latency decreases click-through rates for search results.
Delay in showing ads likely has the same effect, since a longer duration implies a
longer time to display the ad and engage the user. Furthermore, the display of an
ad might alter the visual elements or rendering of the web page. Auction duration
also increases with the number of ad exchanges contacted by the browser, as the

10 Appendix C presents additional results on factors that may influence the number of
exchanges contacted by a publisher.
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Fig. 4: (a) “High-CPM” ad exchanges are not any faster in responding with bids
than “low-CPM” ad exchanges. (b) 87% of the bids and (c) 90% of the ad revenue,
estimated through CPMs, arrive within 1 s of the start of the auction.

linear fit in Fig. 3c shows. While publishers can limit the auction duration,
a smaller timeout could lead to lost revenues, since a higher bid may arrive
after the timeout is triggered. Clearly, publishers have to manage the trade-off
between maximizing revenue and minimizing auction duration.

A simple approach to managing the trade-off is to cherry-pick ad exchanges
that deliver high-value bids. We thus rank-order ad exchanges by median CPM
of bids sent across all web sites and users. Fig. 4a shows, however, no correlation
between ad-exchange CPM and the median latency of its bid responses.

Rather than limit the number of exchanges, which is clearly not efficient,
publishers could perhaps specify an early timeout. Fig. 4b shows the CDF of bid-
response arrivals with respect to auction start (i.e., the timestamp of the first bid
request). 87% of the bids arrive within 1 s of the start of the auction. Also, the
CDF of CPMs of bids as a function of the time they were received since auction
start, in Fig. 4c, indicates that 90% of the total CPM is received within the same
time span. This observation is in stark contrast with the estimates of auction
duration in Fig. 3a (“since first bid” line). More concretely, per Fig.3a, 30% of
the auctions take longer than 1 s, suggesting that publishers are conservative
in setting auction timeouts or deadlines: A lot of time is, hence, unnecessarily
wasted on waiting for bids that will likely have no significant effect on the auction.

6 Sources of Latency in HB Auctions
In this section we delve into the factors that fundamentally determine the dura-
tion of the in-browser HB auctions. To this end, we dissect the latency of a bid
request into its contributing factors and identify, wherever possible, avenues for
mitigating the latency overheads.

We define bid duration as the time between the start of the bid request be-
ing sent out and the end of the bid response being received. We can measure
bid duration from two data sources—from within the Prebid JavaScript library
(in-browser) and through the WPT API [59] (on-the-wire). in-browser mea-
sures the difference between the timestamps that Prebid records when it has
prepared the bid request to be sent through the browser, and when it has fin-
ished parsing the bid response. on-the-wire is just the duration between the
bid request and response as provided by the WPT API.

The CDF of bid durations calculated separately from these two sources, in
Fig 5a, shows, surprisingly, a difference of 174ms in the median, which is fairly
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Fig. 5: (a) The gap between the “in-browser” and “on-the-wire” bid request dura-
tions suggests room for improving HB implementations. (b) Breakdown of time
spent by requests over non-persistent connections into key contributing factors.

large. This difference is suggestive of poor implementation practices or bugs in
HB libraries, specifically in the logic implemented in the adapters developed for
integrating the publisher with an ad exchange or advertiser [41]; it could also
be that publishers are using adapters incorrectly. Consider the scenario in which
a publisher’s web site contacts exchanges A and B. Suppose that bid duration
for exchanges A and B are 250ms and 300ms, respectively. In the ideal case,
the adapters for A and B should be making concurrent, asynchronous requests.
Suppose that B has a bug in its adapter: it makes a synchronous request. If the
publisher integrated HB so that B is contacted before A, given that B makes a
synchronous call, the call to A will get delayed until the request to B completes.
The auction now lasts for 550ms instead of only 300ms (in case of a correct
implementation). Such pitfalls are detailed in [18] and [42].

The WPT API allows us to break down the bid duration into the various
steps involved. We specifically gather the following measures: (a) the amount of
time the bid request was waiting in the browser’s queue (“Stall”), due to several
factors such as preemption by requests with higher priority, exhaustion of the
allowed number of simultaneous TCP connections (particularly with HTTP/1.0
and HTTP/1.1), and allocation of disk space for caching; (b) time spent in re-
solving the domain name (“DNS”); (c) time spent in TCP handshake; (d) time
spent in TLS handshake; (d) time spent in waiting for the first byte of the re-
sponse since start of request (“TTFB”); and (d) time spent in receiving the rest of
the response (“Response”). We also marked an underlying TLS/TCP connection
of a request as persistent if the time spent in TCP and TLS handshakes is zero.
In breaking down the request latency to its contributing factors, we separate
requests over persistent connections from those over non-persistent connections.

6.1 Persistent vs. non-persistent connections

Only 60% of the ad requests in the Rum data set were made with persistent
connections. They were 34.7% shorter, with a median duration of 230ms, than
those using non-persistent connections. If we break down the latency of such
requests into contributing factors, TTFB accounts for 93% and 79% of the total
duration, in the median and 80th percentile, respectively. “Response” contributes
2.3% while “Stall” contributes the rest. “Stall” time continues to increase consis-
tently for requests beyond the 80th percentile.
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Fig. 5b shows the latency breakdown for the remaining 40% of the ad re-
quests made using non-persistent connections; we omitted steps with negligible
contributions. The requests take 352ms in the median and spend, on average,
38% of their time in TCP and TLS handshakes. The handshake times can be
reduced to nearly zero if exchanges adopt newer protocols that support low-
RTT session resumption such as TCP Fast Open (TFO) [46], TLS 1.3 [49], and
QUIC [27]. We tested 228 ad exchanges and found only minimal support for
such features: Only 11.4% of the ad exchanges tested support TLS 1.3 and 6.6%
support QUIC. We found, however, that 75.9% of the observed IP addresses be-
longing to ad exchanges support TFO. However, this observation is misleading
because even though clients support TFO, they rarely have it enabled (see §A).

Response contributes, on average, 2.4% to the total duration, with a 5KB
median size response from the ad exchanges. TTFB also includes the time spent
in conducting the auctions in the exchange and indicates room for improving the
exchange-side auctions. Overall, per Fig. 5b, bid durations increase primarily
because of increases in time spent across TCP, TLS and TTFB. That TCP,
TLS, and TTFB times increase in lockstep suggests RTTs between users and ad
exchanges as a key contributor to latency.

6.2 Ad Infrastructure Deployments

Using a commercial geolocation service, we calculated the geodesic [62] between
the end users and the ad exchange servers.11 Fig 6a plots the CDF of these
distances for four of the eight most popular exchanges; we omitted the rest,
which had similar results, for clarity. Index Exchange’s servers (IND), deployed
at 88 different locations are the closest to end users: in the median, the servers are
about 180 km away from the users. The remaining exchanges each have servers
in only 20 locations and are quite far away from end users—median distances
for Rubicon Project (RUB), AOL, and Criteo (CRT) are approximately 520 km,
910 km, and 2410 km, respectively. Criteo seems to be directing almost all North
American users to a single US West Coast location. (Appendix B presents other
inferences derived from the locations of the users and ad exchanges.)

Index Exchange’s geographically widespread deployments help in ensuring
a low handshake time, as shown in Fig. 6b. The handshake times to servers of
Criteo and AOL, despite the exchanges’ comparatively poor deployment, are
surprisingly low. We found that Criteo supports TLS 1.3, while Index Exchange
does not. This can result in a drastic improvement in handshake latency as TLS
1.3 saves one complete round-trip in the handshake. Another reason that Index
Exchange is not seeing even lower latency is that perhaps most of the latency
is in the last mile. Since 60% of the bid requests use persistent connections,
TTFB, and not handshake time, accounts for most of the request duration.
Fig. 6c shows that Criteo does an exceptionally good job, especially compared
to Index Exchange, in keeping the TTFB low: The server-side auctions at Criteo
are perhaps better optimized than those at Index Exchange.

11 We geolocate the end-user’s IP address when the extension reports the opt-in data.
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Fig. 6: (a) Ad exchanges typically are quite far from end users. (b) TCP/TLS
handshakes account for a significant fraction of an ad request’s duration. (c)
Ad exchanges can quite effectively lower auction durations by optimizing the
exchange-side auctions, and lowering the TTFB values.

7 Related Work
Header bidding, being a nascent technology, has received little attention in the
literature. In [28], Jauvion et al. discuss how to optimize a buyer’s bidding strat-
egy in HB, while [45] presents a schotastic optimization model for optimizing
ad-exchange revenues. Cook et al. use machine learning models to identify re-
lationships between data brokers and advertisers [16]. In [35], Pachilakis et al.
present a measurement study of the HB platform. They focus on market as-
pects such as the most popular ad exchanges, number of ad slots found on web
pages, and their sizes. They crawl web sites with blank user profiles from a sin-
gle vantage point, so their revenue and network timing data does not reflect
real users and network conditions. They also cannot identify the causes of HB
latency. In contrast, our study uses real user measurements to study latency and
its ad-revenue implications.

Orthogonal to header bidding, there is a rich body of work on online advertis-
ing, end-user tracking, and privacy that show how users attach monetary value
to their personally identifiable information (e.g., [11,53]) and how to uncover
advertising and tracking services by analyzing network traffic data (e.g., [48]).
Venkatadri et al. propose a novel mechanism that enforces transparency on online
advertising platforms [56]. Guha et al. and Toubiana et al. have presented de-
signs for privacy preserving advertising that puts the client at the center [24,55].
These techniques, however, require sweeping changes for real-world deployments,
and we argue that they can be ported over to the HB platform that is already
enjoying widespread adoption.

8 Concluding Remarks
Within a span of roughly six years since its introduction, header bidding has
gained a strong adoption: Among the top 1k web sites that use third-party ad
platforms, 80% use HB. It decreases publishers’ dependence on large advertising-
market players, e.g., Google, and also improves publisher revenue [52]. Although
there are widespread concerns that HB’s in-browser auctions introduce signif-
icant latency overheads and affect end-users’ browsing experiences [17] ( [35]
mentions high delays seen from one vantage point, and paints a gloomy picture
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without any analysis on what is causing the delay), our real-end-user measure-
ments lessen these concerns. We showed that more than half of these overheads
can be eliminated by adopting more modern protocols and also, perhaps, by
fixing bugs in the JavaScript-based HB implementations. Since HB is widely
adopted by publishers, shows promise in signficantly increasing the publishers’
ad revenues (e.g., see §4), and has implementation overheads that are address-
able with minimal engineering efforts, we propose that client-side HB be seen as
an opportunity for privacy-preserving advertising.

The pervasive and commonplace tracking of users to improve targeted ads is
unsustainable in the long term. Recent privacy violations and scandals [15,21,51]
have raised users’ awareness and lowered their tolerances: A recent study found
22% of surveyed users to be using Adblock Plus, the most popular ad-blocking
browser extension [44], and, fueled by users’ demands, Firefox ships bundled
with a collection of privacy extensions (e.g., tracker and third-party cookie
blocker) [33]. Such aggressive measures to block ads and trackers, nevertheless,
is fundamentally at odds with the publishers’ business model. Major news web
sites have resorted to putting up paywalls [54], and asking for donations [60].

There is, unfortunately, an inherent flaw in today’s approach to blocking
ads and trackers: ads and trackers are treated equally. While users are sensitive
about privacy, most do not mind seeing non-intrusive ads; users would be willing
to share more if they had control over what is shared and with whom, and what
kind of ads they would like to see [12]. Users also think that ad targeting based on
tracking is often inaccurate: they see ads related to common stereotypes about
their identity, or related to searches they made over a month ago [12].

The client-side HB platform gives us an opportunity to address these con-
cerns: Since the browser has control over the in-browser auction, it can essentially
control the entire ad-fetch process. Browsers must continue to block tracking
mechanisms such as host fingerprinting [63] and third-party cookies [20], but
could allow HB-based ad requests. They could even append such requests with
user-profile data, obviating the exchanges’ need for data brokers. The user-profile
data could be based on a limited form of profiling or could consist of manually
entered preferences as in Privad [24]. Regardless of the approach, the user has
complete control and visibility into this data. Privacy-preserving designs for on-
line advertising (e.g., [24,55]) are not novel, but they require sweeping changes
for deployment in practice. Given HB’s widespread adoption, porting over these
techniques to work on top of the HB platform might mitigate the deployment
issues.

When implemented correctly, these solutions will limit users’ exposure to es-
sentially IP-address-based tracking, which can be alleviated by tunneling the ad
requests through a forward proxy operated by neutral or non-profit entitites such
as Mozilla or Brave; since these ad requests are encrypted, we do not need to trust
the proxy operator. Such public proxies have been operated by Google [2] and
Opera [34], albeit for other purposes. We could also incentivize such proxies by
devising a revenue-sharing mechanism between the end user, publisher, and the
proxy operator using an in-browser cryptocurrency wallet (e.g., MetaMask [29]).
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A detailed investigation of such mechanisms will constitute future work. For
now, we have shown that HB is already popular and generating higher revenues
for publishers, and the perceived latency limitations are addressable, and not
fundamental to the protocol. We hope that our insights will encourage both
academia and the industry to take a deeper look into header bidding.
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A Client-side TFO adoption
In this appendix, we complement the observations on server-side TFO adop-
tion (in §6.1) with some comments on adoption on the client side. Measuring
TFO adoption on the client side is challenging. The Linux kernel disables TFO
globally if it sees 3 consecutive TCP timeouts, before or after the handshake,
for any destination [13]. The rationale is to avoid the extra cost of TFO failure
or client blacklisting in case of middlebox interference [25]. macOS implements
a similar backoff strategy and disables TFO [5], although it is a bit less con-
servative. Windows implements an even more conservative backoff strategy [7].
Even if the operating system has TFO enabled, the browser usually does not.
The Chromium project, on which Google Chrome and some other browsers are
based, has removed TFO from all platforms [14], while Firefox supports TFO,
but keeps it disabled by default.

B NA & EU Users: GDPR, ad-worthiness and latencies
In this appendix, we examine the role that user location plays in HB. We coarsely
divided our users into regions of North America (NA), Europe (EU), Asia (AS),
and Oceania (OC), we observe that web sites contact more ad exchanges in North
America: 13% of web sites, when visited by users in North America, contact 8
or more ad exchanges, but in case of EU users 99% web sites contact at most 7
(Fig. 7a). Perhaps this effect can be attributed to the strict privacy requirements
of GDPR. The difference between European and North American users is even
more pronounced when it comes to bid amounts (or CPMs). Web sites generate 4
times more CPM through a visit from a North American user than they do from
a European user as shown in Fig. 7b. It is hard to conclusively determine the
reason for this large difference as there are a multitude of factors that determine
the “ad-worthiness” of a user.
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Fig. 7: Impact of a user’s location on (a) the number of exchanges contacted, (b)
the mean CPM obtained per web page, and (c) bid-request durations.
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Fig. 8: (a) Impact of user’s location on auction duration, and the impact of a
web-site’s ranking on (b) mean CPM and (c) number of exchanges contacted.

The CDF of on-the-wire bid durations for users in different regions (Fig. 7c)
shows that, in the 80th percentile, European (EU) users observe 12% higher bid
durations than North American (NA) users. The auction durations for NA users
are, however, 27% longer than that of their EU counterparts in the 80th percentile
(Fig. 8a). These observations can perhaps be attributed to NA users contacting
more exchanges, and that, as we have seen earlier in Fig. 3c, increases auction
duration. Bid durations for Oceania (OC) users are alarmingly high: 23% of
bids take longer than 1 s (Fig. 7c), which precipitates in long auctions for OC
users (Fig. 8a). Only 7% auctions of OC users take, however, longer than 2.5 s
compared to 10% of auctions in case of NA users. For a large fraction of OC users,
even though bids arrive late, the JavaScript perhaps times out and terminates
the auction, potentially introducing some loss of ad revenue for publishers.

C Popularity Correlations
We investigate, in this appendix, how the popularity ranking of a web site affects
its HB implementation and the CPM it receives on its ad slots. For popularity
rankings, we used the Tranco list [38], a stable top list hardened against ma-
nipulation. We used the relative ranks of second-level domains observed in our
measurements and filtered out web sites that have fewer than 10 data points.

Fig. 8b shows the mean CPM per web-page visit, of a given web site, as a
function of that site’s relative Tranco rank. The linear fit, with a slope of 0.008,
reveals a weak correlation, suggesting that web-site popularity is not a strong
indicator of “high-value” audience for advertisers. For instance, imgur.com (rank
51), an image-sharing web site outranks wsj.com (rank 152), a major business-
focused publication.

Increasing the number of ad exchanges contacted increases the auction dura-
tion, which may have implications for end-users’ browsing experiences (refer §5).
Fig 8c shows, however, no correlation between the rank of a web site (based on
Tranco) and the number of ad exchanges it contacts: Popular web sites do not
contact fewer exchanges than unpopular ones to improve user experience.

We also repeated these analyses with the Majestic Million top list12 instead
of Tranco. Majestic Million ranks web sites by the number of subnets linking to
them, which is more of a quality measure than raw traffic. Regardless, we did
not observe any significant change in the results and inferences presented above.

12 https://majestic.com/reports/majestic-million
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