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combination of supersymmetric localization and the loop equation in 2d gauge theory. The
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integrals and a Gaussian matrix model. We evaluate the integral at large N, and make
contact with the string worldsheet description at strong coupling. As an application of
our results, we compute exactly a small-angle limit (and more generally near-BPS limits)
of the cross anomalous dimension which governs the UV divergence of intersecting Wilson
lines. The same quantity describes the soft anomalous dimension of scattering amplitudes
of W-bosons in the Coulomb branch.
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1 Introduction

The loop equation was proposed initially in [1, 2] as an alternative way to formulate, and
possibly solve, the gauge theories (see e.g. [3] for a review). It has the conceptual advantage
that it directly constrains the most basic observables, namely the Wilson loops. In lower-
dimensional theories such as matrix models [4] and two-dimensional Yang-Mills theory [5—
9], it has proven to be a powerful tool for solving the theories exactly. Unfortunately, solving
the loop equation is much harder in higher dimensions and progress remains to be made.

In this paper we demonstrate the power of the loop equation in higher dimensions
when used in conjunction with other non-perturbative techniques. Specifically, we consider
intersecting 1/8-BPS Wilson loops in N/ = 4 supersymmetric Yang-Mills (M = 4 SYM)
and compute their expectation values at finite coupling and finite N using a combination
of the loop equation and supersymmetric localization [10, 11].



The 1/8-BPS Wilson loop is a supersymmetric Wilson loops in N' = 4 SYM which can
be defined on a arbitrary contour on a two-sphere and preserves four fermionic charges. It
was conjectured in [12, 13] and later supported by supersymmetric localization [11] that
its expectation value (as well as general correlation functions of any number of loops)
conicides with that of the standard Wilson loop in two-dimensional Yang-Mills theory (2d
YM) in a zero-instanton sector. Based on this, the expectation value of a non-intersecting
1/8-BPS loop was computed in [12, 13] generalizing the famous result for the 1/2-BPS
loop [10, 14, 15]. It was also used to derive multi-matrix models for correlators of local
operators and non-intersecting BPS loops [16, 17]. By now these results have been tested
by numerous direct computations [18-23] and they provide convincing evidence for the
equivalence between the BPS sector of N'=4 SYM and 2d YM.

The goal of this paper is to generalize them to intersecting loops. The strategy is
simple: using the conjecture above, we relate the intersecting 1/8-BPS loops in N’ = 4 SYM
to intersecting Wilson loops in 2d YM on S? in the zero-instanton sector. We then solve the
loop equation of 2d YM exactly at finite N. The loop equation in 2d YM was first solved for
loops on R? at large N [5]. The result was generalized to loops on R? at finite N in [6] and
to loops on 52 at large N in [7-9]. While all these results take simple and compact forms, no
such expressions were known for loops on S? at finite N: the only known expression in the
literature involves a rather complicated sum over the Young diagrams [24]. We show that a
simple closed-form expression does exist for loops on S? at finite IV if the theory is restricted
to the zero-instanton sector — the sector relevant for the BPS loops in N =4 SYM.

The result of our computation is a coupled system of multiple integrals and a Gaussian
matrix model. For instance, the expectation value of the figure eight loop with areas A;
and Aj reads (see figure 1)
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Here )\ := g2, N is the 't Hooft coupling constant and the function f4 is defined by
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while (o) denotes the expectation value of e in the Gaussian matrix model of size N,
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The integration contours Cj o encircle the eigenvalues of the Gaussian matrix model (1.3)

and they are placed far apart from each other (see sections 2 and 3 for more details). The
integral can be evaluated explicitly at large N and it gives
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Figure 1. (a) The figure eight Wilson loop with areas A; and As. (b) Two intersecting lines (left)
and two touching lines (right) which mix under the renormalization group flow.
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and Z}! := Ij(4mgs) is the modified Bessel function. The result at strong coupling repro-
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duces the area of the minimal surface as we show in section 3.2.1.

As an important application, we compute a small angle limit of the cross anomalous
dimension of intersecting Wilson lines. The cross anomalous dimension controls the mixing
of two different configurations of Wilson lines, two intersecting lines and two touching
lines (see figure 1), under the renormalization group. It also describes the soft anomalous
dimension, which controls how the soft gluons transfer the color degrees of freedom of
partons in a scattering process. We generalize the analysis of the Bremsstrahlung function
in [25, 26] and relate the small angle limit — and more generally the near-BPS limits —
of these anomalous dimensions to our localization computations. The results are exact at
finite A and N and reproduce the answers at weak coupling in the literature [27-29].

The formalism in this paper will be used in our upcoming paper [30] on the defect
CFT correlators on the higher-rank Wilson loops. There, we consider a configuration in
which multiple fundamental Wilson loops with different areas are joined together by a
projector to a higher-rank representation. We compute its expectation value by taking an
appropriate linear combination of multiply intersecting loops.

The rest of the paper is organized as follows. In section 2, we review the 1/8 BPS Wil-
son loops and their relation to 2d YM. We then present a new integral representation for cor-
relators of non-intersecting Wilson loops which simplifies the analysis of the loop equation
in the subsequent sections. In section 3, we review the loop equation in 2d YM and solve
it in the zero-instanton sector on S?. As a result, we obtain a closed-form integral repre-
sentation for intersecting loops. We then demonstrate how to evaluate the integral at large
N using examples of a figure eight loop and a two-intersection loop and study the weak-
and strong-coupling limits. In section 4, we use these results to compute the small-angle
and near-BPS limits of the cross anomalous dimension at finite A and N. We then discuss
future directions in section 5. A few appendices are provided to explain technical details.



Figure 2. The 1/8-BPS Wilson loop on S?. The 1/8-BPS loop can be defined on an arbitrary
contour on S? and its coupling to scalars is given by (2.1). A single loop divides S? into two regions,
one with area A and the other with area 47w — A. Its expectation value depends only on the area A
owing to the relation to 2d YM.

2 1/8 BPS Wilson loop, 2d YM and matrix model

2.1 1/8 BPS Wilson loops and matrix model

In supersymmetric gauge theories, one can often define a supersymmetric generalization of
the Wilson loop by coupling the loop to scalar fields. The 1/8 BPS Wilson loop in N' =4
SYM is a special kind of such operators which can be defined for an arbitrary contour C
on S? inside R* or S* (see figure 2):

Wi /g o= %tr Pexp <]{c (z‘Aj + ekﬂxkq)’) dg;j> : (2.1)

Here all the indices run from 1 to 3 and 27’s are the coordinates of S, Z;’-:l(a:j )2 = 1.
Throughout this paper, we consider the U(N) gauge group unless otherwise stated.

It was conjectured through the perturbative computations [12, 13] and later supported
by the localization [11] that the computation of the 1/8 BPS Wilson loop reduces to that

of the standard Wilson loop in 2d YM on S? in the zero-instanton sector,

1 ,
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where the coupling constants of 2d YM (g24) and N =4 SYM (gym) are related by
2
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and the action of 2d YM is
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2d

The expectation value of a single 1/8-BPS loop was computed by resumming the
perturbative series in 2d YM and re-expressing it as a matrix integral,!

___Gm? tr (@2
Wijs) = 5 [la0] i (¢¥) e #H0m k ) (2.5)

1Z is a partition function of the matrix model, namely a matrix integral without the insertion of
tr (e®) /N.



By evaluating this matrix integral, we get
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where \ = g%MN is the 't Hooft coupling constant, L}V_l is an associated Laguerre

polynomial and A is the area of the region encircled by the Wilson loop. The large N limit
of this result gives a generalization of the famous result for the 1/2-BPS Wilson loop,

(Wiys) Mz lfl(ﬁ) ; (2.7)

with I,, being the modified Bessel function.

As another application of the relation (2.2), a multi-matrix model for the correlation
functions of 1/8-BPS Wilson loops was derived in [17]. A heuristic way? to derive the
matrix model is as follows: first we rewrite the action of 2d YM as a deformed BF theory,

S = /tr (BAF) — gjid /dQJ\/gtr (B?) . (2.8)

If one integrates out B, one recovers the standard 2d YM action. Second we use the fact
that the theory reduces essentially to the abelian theory and localizes to configurations
for which B is piecewise constant with discontinuities across the Wilson loops. In such
configurations, the first term of the action (2.8) becomes a boundary term

/ tr(BAF) =tr {B A} = —itr [BX] , (2.9)
b %

where ¥ is a subregion of $? whose boundaries are given by the Wilson loops and X :=
i oy A is a boundary holonomy. On the other hand the second term simply gives
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where Ay is the area of the region X.
Performing such rewritings to each region X,,, we obtain the following multi-matrix
model action:

) . 2 4 )
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Here s, is an orientation factor which takes value +1 when the holonomy X j is oriented
in the same direction as the boundary 0%,,, and —1 otherwise. From this action, the
correlator of the Wilson loops can be computed as follows,

J1dBs,, )[dX;) [T, ter, (¥ )eS
Wy ) = . - _ , 2.12
<1;[ ’“> [1dBs, ][dX =5 (212

2See [17] for more rigorous discussions.



where 7, is the representation of the k-th Wilson loop Wy. As was done in [17], one can
integrate out Bgm’s and obtain an action purely in terms of Xj’s. This however is not
convenient for analyzing the loop equation since the resulting action depends nonlinearly
on the areas Ay, . In this paper, we instead integrate out Xj and derive a new integral
representation which is more convenient for the application of the loop equation.

2.2 A new integral representation for Wilson loop correlators

To derive an integral representation, it is convenient to first rescale the matrices as

4rX; 2 B
X, = 220 By, = JYMZZm (2.13)
J 2 m 47

9ym

Then, the action and the correlator read

S = Z —itr Z Sg-m)BEij —|-27T;42mtr (B%m) ,

() O ym (2.14)
T ) = LBl ) Ty try (e e
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=B _ A _AngT (2.15)
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In the last equality, we used the notation for the 't Hooft coupling constant commonly used
in the integrability literature,

g% = : (2.16)

2.2.1 A single fundamental loop

Let us first discuss the expectation value of a single fundamental Wilson loop with no
self-intersections. In the presence of a Wilson loop, S? is divided into two regions, one with
the area 47 — A(=: Ap) and the other with the area A(=: A;) (see figure 2), and the action
of the matrix model reads

2w A 2 A
S = 00(BY) + S tx(BY) — itr (X(Bo — By)) . (2.17)
Iym 9yMm

To compute the expectation value of the Wilson loop in this matrix model, we use the
Harish-Chandra-Itzykson-Zuber identity

ia;b;
itr(QfAQB) _ det "%
/dQe ADAD (2.18)

where A and B are diagonal matrices with entries a;’s and b;’s respectively, [dQ is
an integral over the unitary matrices and A is the Vandermonde determinant A(a) :=

[Tic;(ai — aj).



Using (2.18), we can reduce the partition function of the matrix model (2.17) to inte-
grals of eigenvalues,

Z = / [dX][dBo][dB,] e % = / dNa dNo© aVp) T (2.19)

where the integrand Z is given by

i p(0) . (1)
det ™ det e b — 3T 57, (400 P+ A (65)?)
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We next expand the determinants into a sum over permutations:
. 1(0) TAC) (1) ’ P ACY
dete™® = " (=17 [[ ™", dete b = N (-7 [Je . (2.21)
oeSN 7 o’'eSn J

Owing to the symmetry of the rest of the integrand, all these permutations give the same
answer . We thus pick the simplest one (o; = j and a} = 4) and multiply a factor (N!)2.
After integrating out z’s, we get

1 — 2 S (A (02 A, (D)2
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1’s and denoted the remaining variables b;o) as b;.

In the second line, we integrated out b
We also used Ag + Ay = 4 to simplify the exponent.
Similarly, the expectation value of the fundamental Wilson loop can be reduced to the

following eigenvalue integral:

1

X
o) = £ [lax)iamoan =)

tr (e6

N

1 €Ty
¢S = Z/dedNb(O) Vo) T Zk]\f (2.23)

with Z defined in (2.20). To evaluate this integral, we again expand the determinants and
integrate out x’s. The only modification is that one of the delta functions gets shifted by
—ie owing to the factor e“**. We then get

1 OO
W) = (27r)NZ(N!)2 / (H dNb(s)A(b(s))> Z (b, _]ffk — i€)

s=0 k
_2m , (0)y2 (1)y2
< | [To0P =b) | e 225 (Ao (B 7) A (0 )%) (2.24)
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Figure 3. Two 1/8-BPS loops with the same orientations. Left: the loops divide S? into three
disconnected regions with areas Ay, A; and A,. Right: the same configuration viewed from the
south pole. We denote the areas inside outer (red) and inner (blue) circles by A; and Ay respectively
and the area of the complement by Ay. The two sets of areas are related by Ay = Ay, A1 = A1 — Ay
and AZ = AQ.

Now the crucial observation is that the sum ), can be recast into a contour integral,

oy = G0N (V? [ arwe Rl f du_ it T b

Z c 812g? Lou- b;

(2.25)
We can then interpret this as an expectation value of a Gaussian matrix model and get

W) = (§ sain@) (2.26)

Here the integration contour C encircles all the eigenvalues b;’s and f4 is given by
u— M — ie}

7 (2.27)

falu) := A5 det {
The symbol (e),, denotes the expectation value of  in a Gaussian matrix model with the
action Sy := 8w2tr (M?) /g3

f[dM] o ¢ SM

() == W . (2.28)

The result (2.26) may appear more complicated than the expressions known in the liter-
ature [12, 13]. However, for the analysis of the loop equation, (2.26) is more convenient
since the area-dependence is simple. See section 3 for more details.

2.2.2 Multiple fundamental loops

We now generalize the result (2.26) to correlators of multiple Wilson loops.

To see how it works, let us first consider the correlator of two fundamental Wilson
loops with the same orientation. As depicted in figure 3, we denote the areas inside outer
and inner loops by A; and As respectively and the area of the complement by Ag. Then
the matrix model action is given by

2

=) ZA tr(B2) —i Y tr (Xs(Bso1 — BY)) (2.29)

s=0 IYMm s=1,2




with Ay := Ag, A1 := A — Ay and Ay := A,. By reducing the matrix integral to the
eigenvalues using the identity (2.18), we get

2 2
Z = / <H[dBS]) [T laxy] ] e = / <H)dNb(5)> I %= | 2,  (2.30)

s=0 s=1,2 s=1,2

with

2 2m 2 A.(p(2
i (8)p(s—1) ;2 (8)y(s) — 5 D s— i Ag (b
To = ABO)A(LP) (l | det e % detemim Y ) e %m Zamo 2y (057 (2.31)

s=1
Expanding a product of determinants, we obtain a sum of permutations

Q)" ,L-( () 52152
]- (ot

(s)p(s—1) (8)(s)
Hdet el T dete ™ Y = Z 1)2s° He 3

00101702’03
(2.32)
Again all these permutations turn out to give the same result owing to the symmetry of

the integrand. We can therefore replace the integrand Z, with

_ 27r 2 (s)\2
To = (NDAAQO)AB@) | T[4 it #a? ) 7oy om0 0 4057
J
(2.33)
give the delta functions

Plugging this expression into (2.30), we find that the integrals of a:;»k)

6(b§0) b( )) and (5(b(1) b( )) Performing the integrals of b and b2, we get

Z = 2m)2N (N1 / Vb A7) & oo T (2.34)

Here we again denoted bg-o) by b; and used ), A; = 4m.
To compute the correlator of the Wilson loops, we insert

%tr (eX) tr () % Z geon el , (2.35)

n,m

to the partition function (2.30). We then obtain

2N 14 2 __2r 2 AL (682
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To proceed, we split the sum into two parts,

Z o+, (2.37)
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(1,2)

integrate out b, """’s and recast the sums into integrals. The first term in (2.37) gives
(2m)*Y (N — 55 05)? o @A D) eid2(bm— )
WiWa )t = ———— dNbA%(b)e R TN -
n#m
(bn - bm)2 bn - bj — 1€ bm — bk — 1€
x o — | —— 11 _ ’
(b, —bm)? + ¢ i b, — b; it b, — by,
IO RO dNb A2(b —gszi S,00% [ duy M3 dug A2 (2= 3)
-z (e 7 8242 8202
C g ™™g
= ul—bj—z'e U,Q—bk—ié
A 2.38
X (u1,u2)1;I P 11 T (2.38)
where the “interaction term” A(u,v) is given by
A (u—v)?

Au,v) := (2.39)

(u—v)2+e
Again (2.38) can be interpreted as an expectation value in the Gaussian matrix model
du1 dUQ <
WIW2) ot = g WWA(U17U2)fA1(U1)fA2 (u2) o (2.40)

Similarly, the second term in (2.37) gives®

2

21) 2N (N 14 _ 87T S (p)2 1A1(bn—i€/2) i A2 (bn—3ie/2)
VW) = B [y e ™00 5 o
bn — b; — 2ie
i#n
1 du )
=N <7€ WfAl(u)fAQ (u— Z€)>M :

Thus the sum of the two contributions (2.40) and (2.41) gives
W1iWyg) = (2.42)

duy  duy 1 d
= <]€ FZ;ZFZ;Q A(uy, uz) fAl(ul)fA2<u2)>M + IN <7({ F;LngAl(U)fAQ(U - i€)>M :

One can further simplify the expression by combining the two terms in (2.42): in the
first term of (2.42), the integration contours of u; 2 are on top of each other and encircle
all the eigenvalues of the matrix model (see figure 4). If one deforms the contour of ug so
that the two contours are far separated, the integral picks up a contribution from poles in

the interaction term )
* (u1 — uy)

Aur, uz) = -t (2.43)

3The term (2.41) resembles the “bound-state” contribution in the hexagon approach to the correlation
functions [31, 32]. See also the comments below (2.47).

~10 -



Cs

C Ju + 1€ Cl
.ul — i€

Figure 4. Deformation of the integration contours. Left: the integration contours for u; (black)
and ug (red) in (2.42). The two contours are on top of each other and encircle the eigenvalues of
M (the blue dots in the figure). Right: the integration contours in (2.46). When we deform the
contour of ug, the integral picks up a contribution from poles at us = uy =+ ie (the gray and black
dots). The residue at uj + ie turns out to vanish while the residue at u; — ie cancels the second
term in (2.42).

whose residues are

(Residue at uy = uy =+ ie) = i% < 7{ 8:“92 Fa, (W) fay (u £ ie)>M (2.44)

The residue at us = u; + i€ turns out to vanish since the product fa, (u)fa,(u + i€) is

u— M — e u— M u— M — e
) — e — 24
fa, (u) fa,(u+ie) o< det - detu_ i detu—M—i-ie’ (2.45)

which is nonsingular inside the integration contour C. On the other hand, the residue at
ug = uj —ie precisely cancels the second term in (2.42). We therefore arrive at the following
simple expression for the correlator of two fundamental loops:

v = (f B A fale)) (2460

M

The notation C; < Co means that the contour C; is inside the contour Cy and they are far
separated from each other.

Carrying out the same analysis for correlators of more than two Wilson loops of the
same orientations (see figure 5 for details of the setup), we obtain a simple generalization

of (2.46),
n d
(Tow)-(f M Tawmw) — en
j=1 1%

Interestingly this integral resembles multiparticle integrals [31-41] in the hexagon approach
to the correlation functions and we will use this connection in our upcoming paper [30] to
analyze the defect CF'T correlators on the higher-rank Wilson loop.

- 11 -



Figure 5. Multiple 1/8-BPS loops with the same orientations. The left figure is a configuration
drawn on S? while the right figure is the same configuration viewed from the south pole and
projected to a plane. We denote the area inside W; (in the right figure) by A;.

3 Loop equation and intersecting Wilson loops

We now discuss intersecting 1/8 BPS Wilson loops. In section 3.1, we review the derivation
of the loop equation in 2d YM in [5]. We then apply it to the results in the previous section
and derive integral representations for the intersecting BPS Wilson loops in section 3.2.
Let us make a remark before we proceed: below we consider the Wilson loops without
the normalization factor 1/N since they are often more convenient for analyzing the loop
equation. To distinguish them from a more standard definition (2.2), we will put a tilde as

We = trPe fe Aundy” (3.1)

3.1 Review of loop equation in 2d YM

We consider an infinitesimal deformation of the contour C — C + dC,. Specifically, we pick
a point z close to but not on top of the Wilson loop. We then add a small circle around =

and connect it the original contour as depicted in figure 6. This defines the area derivative

sWe) . Wegse,) — We)
P AN S P — (32)

Here do*” is an area tensor of 6C,, which is a product of the area |do| and the orientation
tensor n*:
ot = |dont" . (3.3)

The orientation tensor is unit-normalized and parameterizes the orientation of §C,,

1 1
§nwn‘“’ =1, |00 | = 5”#1/50—“1/' (3.4)

We then expand the path-ordered exponential to get

<WC+5Cx> - <WC> = <trP [(eﬁscz iAudyt 1) efc iAudy”:|>

1 | (3.5)
- <trP [<y{ 1A dy” — f Au(y) Au(y2)dyy dys + - > ete ZA”dy”} >
3C 2 Jsc, xsc,

- 12 —
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Figure 6. (a) Deformation of the contour 6C, denoted in red. We pick a point z close to the

Y

Wilson loop, draw a small circle and connect it to the original contour. (b) One-loop correction to
(Sym) coming from the gluon exchange. Here we used the double-line notation to make manifest
the contraction of indices.

To proceed, we use the Stokes theorem to the first term and write

7{ iAudyt = HOu () 2_ O Au(@)) 5. (3.6)
0Cx

For the second term, we split it into the symmetric and the antisymmetric parts

1
- P <2j{ Au(y1)Au(y2)dy{‘dyg”) =
0Cy X 0Cy

2
= —% (ﬁ ] Au(x)dx“> —% ﬁczxécx[A“(yl)’Ay(y2)]dylfdy5 ) (3.7)

Yy1>y2

Sym Asym

Here y; > y2 means that the integral is path-ordered and y» is always behind y;. Since 6C,
is an infinitesimal contour around x, the antisymmetric part can be approximated as

Asym ~ — [Au(l’)éAV(w)] jgcchx dyt dy¥ )
Y1>Y2 3.8

The sum of (3.6) and (3.8) gives iF),,(y)/2 with F,,, = 0, A, — 0, A, —i[A,, A].
On the other hand, the symmetric part at one loop reads (see figure 6)

N v
890 iy =~ § B A Guln — ) x 1 (39)

Here 1 is the identity matrix for the color factors and G, (x1 —x2) is a propagator of gauge
fields without color factors. In the axial gauge (A; = 0), it reads?

2
Gl —y) = =202 2452 — )’ — . (3.10)

“Note that our normalization for the coupling constant in 2d YM is different from [5]: (g£5d] )2 = (g55™)%/2.
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Plugging this into (3.9), we get

2
goq N
<Sym>’1-loop == 21 |5U| : (311)

A couple of comments are in order: first, the result (3.9) receives higher loop corrections.
However since goq has mass dimension 1, it follows from dimensional analysis that the loop
corrections come with higher powers of do#” and therefore can be neglected in the small
area limit do* — 0. Second, although (3.11) was computed in a specific gauge, the result
is actually gauge-invariant. This is because the tree-level® gauge transformation

Auly) = Auy) + dualy) (3.12)

only changes (3.9) by a term that integrates to zero:

0Sym ocyg dyf@ua(yl)jg dy50,0(y2) = 0. (3.13)
Ca

Ca

Third, the result (3.9) is for the U(NN) gauge group and the answer will be different for
other gauge groups. It would be interesting to derive the loop equation for general gauge
groups.

Now, combining the symmetric and antisymmetric parts, we arrive at the following
expression for the first-order variation:

A 2
(m - <trP [iFW(x)efc Z’Audy“b - g?iN () W) . (3.14)
Let us make some clarification on the second term in (3.14): first, it contains the orientation
tensor n,,, and changes discontinuously across the contour. This property plays a crucial
role in the derivation below. Second, it may appear to contradict a familar statement
that the small deformation of the Wilson loop is simply given by the insertion of Fj,.
This apparent contradiction comes from the difference of the regularizations: normally we
insert F,,, on top of the Wilson loop and regularize divergent diagrams which contract
F, and the loop by the principal value prescription. On the other hand, F),, in (3.14)
is inserted slightly above or below the loop, which gives a different regularization. This
alternative regularization produces a different answer, but one can show by the explicit
computation® that the sum of the two terms in (3.14) reproduces the result in the principal
value prescription. We thus have

5?}?((2) = <trP [iF,W(x)e§c iAudyuD

(3.16)

principal value ’

which is consistent with the familiar statement.

5As stated above, the higher-loop corrections can be neglected in the small area limit.
In the holomorphic gauge A; = 0, the contraction of F},, and the straight-line loop reads (see e.g. [23])

7g§dN o i l4axzy

/ " aylis Fs@ian) = - 2N [" g, Ll (3.15)

In the principal value prescription, this integral vanishes while if we shift x slightly above or below by
adding +ie, it gives 954N/ (4w), which are precisely canceled by the second term in (3.14).

— 14 —



a_§ b ab  ba Q@
5Aba.—— —e &——0 o——

Figure 7. The Ward identity on the Wilson loop. The insertion of V#F),,, on the loop can be
replaced with the functional derivative 6/0A,. When it acts on other parts of the contour, it cuts
the loop and reconnects it as shown in the figure.

Now we derive the loop equation. First we differentiate (3.14) and get

o 5(We)

iy = (o [l ) - B ). o1

To evaluate 9#n,,, that appears in the second term, it is useful to go back to the definition

P o(We) :: liml ( d(We) B §(We) ) . (3.18)
dorv(z)  e=0e \ b0 (xz +€,/2)  doH(z —€,/2)

Here we take  to be a point on the Wilson loop and ¢, to be a vector of length € in the

p direction; (e,)” := ed},. Since the points x + €,/2 sit on different sides of the loop, we

have n,, (x £ €,/2) = £1. Thus the derivative 9*n,, picks up a contribution from a delta

function

Oy () = 2 / de! 6P (2 — z), (3.19)
Iy

where the contour I, is an infinitesimal one-dimensional segment which passes through z.
Second we use the fact that V#F),, is proportional to the equation of motion”

_ 92495
2 AV

VHE,, = (3.20)

We can then replace it inside the expectation value as

a 95 )
<(V”Fuu($)) b"'>'—>—%d <5(A”(x))ba()> . (3.21)

Here we wrote the gauge indices a and b explicitly for convenience. As a result we get (see
also figure 7)

, (3.22)
_ %24 % dx,/, 5(2)(36/ — x) <trP [eﬁ iAMdy“} trP {eﬁ' iA#dy“}> .
C

2

"Ssq is the Euclidean action for 2d YM given by (2.4).
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The integral (3.22) is nonzero even for nonintersecting Wilson loops since it receives
a contribution from a “self contraction”, namely a contribution from a trivial coincidence
point 2/ = z on the loop. It can be evaluated as

(self-contraction) = g;d / dz' 63 (2/ — z) <trP {efc iAdeﬂ] tr [1]>
Iy

_ Q%N /Im da, 5(2)(36/ — ) <trP [efc iAudyH]> .

As can be seen from (3.19), this turns out to cancel the second term in (3.17). Thus, when

(3.23)

the two terms in (3.17) are combined, we are left with contributions only from intersecting
points and obtain the loop equation

~ 2 ’
M 5(We) _ deJ[dx’V 52 (2’ —z) <trP [efzz iAﬂdy”] trP [eﬁ’ iA“dyu]> , (3.24)
C

dorv (x) 2

where the symbol JCC means that we remove an infinitesimal segment around x when we
perform the integral. For the actual application, it is useful to choose v to be the direction
of the Wilson loop near the intersection and p to be the direction orthogonal to it. In
addition, we integrate (3.24) along a small path in the p direction. For the left hand side,
this is basically equivalent to going back to the definition (3.18) and removing 1/e, which
can be pictorially represented as®

7 - 3(We) S(We)

I:x =1 -
Ove) =20 dorv(x +€,/2) oot (x —€,/2)

Sot (z + %)
S
|5J| jL Ai—» -2 : (3.25)

f/x <Wc> de <W(31WCQ> , (3.26)

We then get

where Cy 2 are the two contours obtained by reconnectmg the loop C at the point z. Here we
assumed that only two lines intersect at the point x. When more than two lines intersect,
the right hand side of (3.26) is replaced by a sum of all possible reconnections.

Using the fact that the Wilson loops in 2d YM only depend on the area, we can
convert (3.26) to area derivatives (see figure 8),

EVWe) = (95, + 05, — 95, - 9s) OF) = 228 (e, ) (3.27)

8In the last equality, we used do* (x + €, /2) = =60 (x — €,/2) = |da].
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Figure 8. The area derivatives and the loop laplacian i/I The left hand side is the definition of
L, which can be easily translated into area derivatives. (Adapted from [5].)

This formula can be applied straightforwardly when the loop is on R2. For loops on 52, not
all the areas (.5;’s) are independent. In such a case, we go back to the pictorial definition
of L, given in (3.25) and translate it into area derivatives as we see in the next subsection.

3.2 Intersecting BPS loops in N' =4 SYM

We now apply the loop equation (3.27) and compute the expectation value of intersecting
1/8-BPS loops in N/ =4 SYM.

3.2.1 Figure eight loop

The simplest intersecting loop is the “figure eight” loop. Since the figure eight loop on
S? is equivalent to a one-intersection loop (see figure 9), we start with the latter, and the
result for the figure-eight can be simply obtained by relating the areas as in figure 9.

Under the action of f/x, the one-intersection loop WAl, A, reconnects to a product of
two disconnected loops W 2 with areas A; o. Using (3.25), this can be translated into area
derivatives as follows:?

- drta® . .
(91 = Dar) Wity a0) = == (W) (3.28)

Here we rewrote goq in terms of the coupling in N' = 4 SYM using (2.3) and (2.16):
g5y = —g¥\/(2m) = —8mg?/N. Dividing both sides by N, we get the equation for the

normalizaed expectation value
(8141 - 8A2)<WA1,A2> = _47Tg<W1W2> . (329)

This can be solved by replacing the right hand side with the integrals (2.42). The result
reads

(Wai,a,) = (3.30)
) duy  duy + fa,(ur)fa,(u2) 1 du ,
— 2 1 2 A 1
N <47rg Z% 8m2g2 87r292A(u1’ u2) = up — u22 * 2 f 8n2g? Far () fay (e = i) M
Alternatively, one can use (2.46) to write
, duy  duy fa, (w1) fa, (u2)
= (4dng? A e = . 3.31
<WA1,A2> < gt fél_«b 8772g2 871_2(92 (ula u2) Uy — g u ( )

9To derive this, one simply needs to note that the first term (3.25) decreases A2 while the second term
increases A1 when applied to the one-intersection loop.
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Figure 9. The figure eight loop and the one-intersection loop. On S?, one can continuously deform
one to the other. In the right figure, the areas of the outer and inner circles are denoted by A; 2
respectively. The areas are related by A; = 471 — A; and Ay = Aj.

Translating this to the figure eight loop using the relation (see figure 9),
A1 =47 — Al AQ == AQ 5 (332)

we obtain (1.1) in the introduction. A simple consistency check of (3.30) is to consider
the special case Ay = A, which yields a doubly-wound fundamental Wilson loop. For
As = Ay, the double-integral in (3.30) vanishes due to antisymmetry of the integrand, and
the single integral reproduces the expected result for the doubly-wound loop, which is given
by (2.26) with gyn — 2gym-'°

Large N. In the large N limit, one can evaluate the integral (3.31) explicitly. To do so,
we first replace the expectation values of f4’s with their large N results,

- i A (ug— det (ur, — M — ie) N—oo
<1;[fAk<uk)>M = <HeA Y et e = 1) >M = E[fAk<uk>, (3:33)

k

where 4 is given by
Fa(u) = eiAu—imia®Gl) (3.34)

and G(u) is the large N resolvent

Glu) = lim — <tr < ! >>M - L (u - M) . (3.35)

N—oo N u—M

We then get

N—oo 2. duy  dug fa, (Ul)ng (UQ)
w =4 . 3.36
( A1,A2> g fé1'<c2 8292 8m2¢2 U — usy ( )
Here we replaced A/(u; — ug) with its large N limit, 1/(u; — ug). This coincides with the
expression obtained in [8] for the figure eight loop at large N (after the redefinition of the
areas (3.32)). Below we evaluate this integral explicitly in terms of the Bessel functions.

YFor a k-wound fundamental loop, it is easy to see from the Gaussian matrix model (2.5) that

<Wk*W0und> = <Wsingle> ‘QYM —kgym-
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To proceed, we introduce the Zhukowski variable!!

w= —ig <$ - 1) , (3.37)

T

and express f4 as

fA(x) _ ngW(:v—l—l/ac)nga(ac—l/x) 7 a = 5 ] (338)
Substituting this into (3.36), we get
o 1 d d -
Waya,) V2 - z1 (71 7 ) dza(z2 + 2 ) Ja(w)fa,(z2) (3.39)
g Je,<c, 2mixy 27mixe (r1 —x2)(1 + 1/z129)

We then expand 1/(z1 —x2)(14 1/z122), close the contour C; at the origin, and then close
the contour Cy at infinity using the formula [26, 43]

d"'l: Tg(x T a\r—1/x
P’; Ii(4mga) = /mmez glatl/z)g2gale=1/ )7 (3.40)

/ a? Im+a
9o =9 1_§7 Pa = T —a (3.41)

As a result, we arrive at the following expression for the one-intersection loop,

N_WOIC()“I?2 . pcjlkzlgl |:< k+1 (_1)k a k—1 (_1)k a
Wa,,A :—+§7 [ T2+ | pay + 21,
< 15 2> 27Tga2 —~ 47rg a2 pg;l k+1 a2 pﬁ;l k—1

with

(3.42)
where we used a shorthand notation

Ip = Ix(47mga) - (3.43)

Using the relation (3.32), one can translate this to the result for the figure-eight loop,

N—oo

<Wﬁgure—eight> = (344)
Nooo I T om P Ty p, (CDFY o R G L
- 27 da +Z CLT Pa - | et T | Pae + 7 | Tt
a2 g Pas Pasy

Two remarks are in order. First, the expression (3.44) is not manifestly symmetric
under A; < A,. One can bring it into a symmetric form using the identities for the
infinite sum of the Bessel functions. See appendix A. Second, the infinite sum in (3.44) is
convergent at finite coupling owing to the large k& behavior of I (z)

koo (2/2)F
TR

"'As shown in [26, 42], the expressions obtained from localization often coincide with the ones from

It (2) , z fixed. (3.45)

integrability when expressed in terms of x. This suggests that our integration variable u is related to the
rapidity of magnons, defined by rapiaity = g(x + 1/x), by Urapiaity = v/49° — u?.
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However, there is a subtlety in the strong-coupling expansion: the asymptotic expansion
of the modified Bessel function reads

e* 1—4k® 9 — 40k® + 16k*
1+ + 3 RN ,
V2rx 8z 128«

and it gives a polynomial in k£ at each order. This leads to a divergence of the infinite sum

Ii(2) =

(3.46)

when pa, > pa, (i.e. A7 > As). A more reliable approach at strong coupling is to perform
the saddle-point analysis to the integral (3.39) as we see below.

Weak coupling expansion. Here we present the weak-coupling expansion (up to two
loops) of the figure eight loop obtained from (3.44):

2
Whgueaignt) " = 1+ T [~(A1 = A2)* + (A, + A2)] (3.47)
4 — — - — - - — —
+ 2 [(A1 = Ag)' — 8m(A} + A3) + 167 (4] + 44, 42 + A3)] + 0(¢°),

As expected, the result is symmetric under the exchange A; <> Ay and reduces to the one
for a single Wilson loop when Ay = 0. The result for the one-intersection loop can be
obtained by the replacement A; = 47 — Ay and Ay = A,.

Strong coupling expansion. To perform the strong coupling expansion of the figure
eight loop, we do the saddle point analysis to the integral (3.36) with the replacement (3.32).
For definiteness, we assume'? A; < Ay below.
The saddle points are determined purely by the exponent of f4’s and we find two saddle
points for each variable
x1 = tpa, , xo = £1/pa, . (3.48)

Owing to the geometrical constraint A; + Ay < 47 and the assumption A; < Ay, we have
|pa,| < |1/pa,|. Thus, the saddle points can be reached by deforming the original contours
C; < Cy without making the contours pass through'? each other. Among those four saddle
points, the ones with plus signs are always dominant. Expanding the integral around the
saddle point using the coordinates x1 = it; + pz, and xo = ite + 1/pa,, we get

N—soo fe47r(9a1+9a2)

(Whgure-cight) = - - g
g dmg(m +a1)(m — ) (pay — ;- )(1 + 22)

saddle
_Qgﬁt? 2 42
X /dtle Pay /dt2 e 2M9azPayts

1-loop

6477(961 +9gay ) ( )
_ -~ _ N 3.49
1672(ga, a2 + ga, a1)\/9a, 9as

12Gince the result (3.44) is symmetric under the exchange of A o, the result for the other case A; > A,

can be obtained by a simple replacement A; <+ As.
13When the contours pass through each other, the saddle point approximation can potentially fail owing
to the term 1/(x1 — x2)(1 + 1/x122) in the integrand.
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Figure 10. (a) The classical string configuration for the connected part of (W4, Wa,). It consists
of two disconnected surfaces joined together by an infinitesimal tube. (b) The classical string
configuration for the figure eight loop. In this case, two disconnected surfaces are connected by an
infinitesimal strip. This explains the difference of the prefactors in (3.51) and (3.52).

Performing similar analysis to other saddle points, we get a sum

N
<Wﬁgure—eight> = (350)
N—oo —1 647"(951 +962) _ 67477(961 +962) 647"(7.‘151 +9ﬁ2) _ 647"(951 7962)
1672, /9a, Jas Ga, G2 + ga, a1 9a, 02 — Ja, a1

To understand (3.50) from the string worldsheet, it is useful to recall the connected
correlator of two Wilson loops (W4, Wa,) analyzed in [18]. In that case, the BPS equation
of the string worldsheet does not allow any connected surface and the only allowed surface
is a degenerate cylinder made of two disks connected by a zero-area tube (see figure 10).
Physically the zero-area tube corresponds to a propagator of a graviton and gives a factor
of 1/N2. Combined with a factor g? which comes from integrating over the endpoints of
the propagator, we obtain the correct g-dependence at strong coupling,

<W W > e49ar 4mgay 1 9 e4m(ga; +9as) (3 51)
1VVA2 32 g3/ N2 J_ gN?
N dpoint
disconnected disks =~ Propagator enapomE

A similar argument seems to hold for (3.50): the idea is to consider a degenerate disk
made of two disconnected worldsheet with disk topology (ending on the two loops of the
figure-eight), joined together by a zero-area strip (see figure 10). The zero-area strip can
be viewed as a propagator of an open string and gives a factor of 1/g. Combined with
other factors, it gives

64779711 6471—9&2 1 9 647‘—(9&1 +gd2)
<Wﬁgure—eight> ~ WW X 5 X g = T, (352)
~~ endpoints

disconnected disks  propagator

which is the correct g-dependence in (3.50). The other three saddle points can be inter-
preted similarly as contributions from stable/unstable disk solutions [18, 44] joined by a
zero-area strip. It would be interesting to perform more detailed analysis and reproduce the
full one-loop answer including the numerical coefficients. (See [45, 46] for recent progress
on the one-loop computation on the worldsheet for a single Wilson loop.)
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3.2.2 Two-intersection loop

We now generalize the analysis to the two-intersection loop V~VA1, As, A5 depicted in figure 11.
Applying the loop equation to the intersection shown in figure 12, we obtain

- drg® -
(04, +04a5) Wa, 45,45) = _T<WA1,(A27A3)> : (3.53)

where WA17(A2_A3) is a one-intersection loop with areas Ay and Ay — As. Solving this
equation using (3.31) and normalizing it as'*

WA1,A2,A3

WAy, 40,45 7= N2 ) (3.54)
we get
(47g*) j{ du;  dug 5 fa,(u1)fas—a,(u2)
= F(A1 — A3z, Ag) — A 3
<WA17A2,A3> ( 1 3 2) N2 0 <C 87['292 87['292 (Ul _ U2)2 u ;

where F(A; — A3, Ag) is the integration constant. To determine F', we consider the limit
A3z — 0, in which the two-intersection Wilson loop reduces to two disconnected Wilson
loops with areas A; and As respectively. We then get the constraint

dU1 dUQ <
_ 2 A 3.55
<WA1,A2,A3>‘A3:0 <fi31-<(,'2 87T292 87T292 fA1 (Ul)fAz (U2)>M ) ( )
which allows us to compute F. As a result, we get
duy  dus
w 5) = —————=Af4,_4. 3.56
(Wi, A9, 45) <j£1<€2 S72g2 822 fay—4s (ul)fAz(U2)>M (3.56)
NEAY o g st~ S ) i)
N c1<c, 8m2g% 812 g? (u1 — ug)? M '

Large N. Let us next discuss the large N expansion of (3.56). For later purposes, we
compute it up to the first subleading order in 1/N.

First we consider the first term of (3.56) (to be denoted by W7). It coincides with the
integral representation of the two disconnected Wilson loops with areas A; — As and As
(see (2.46)). Thus, using the result in the literature, we get the large N expansion

4772961139612 6/N? a3 Gas

a13 a2 2 qaisgaz 2 gazga13 0 k
wy Nz Lh I 17 e W B W ]+]\1[2’;k<£:123> TSI,
(3.57)
with a;; := (A; — Aj — 2m)/2. Here the first two terms come from the disconnected part,
which is a product of the expectation values of a single loop!® [15], while the last term is

the connected part computed in [18].

'4The normalization is chosen such that the expectation value is O(1) in the large N limit.
5The expectation value of a single loop up to O(1/N?) is given by [15]

_ h(4ng.) | g2

(Wa) 27T ¢gq 3N?2

Ir(47ga) + -+ - . (3.58)
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Figure 11. The two intersection loop and the definition of the areas. A; is the area of the whole
regions inside the loop while A5 is the area inside the red circle. Ag is the area inside a small
subregion in the bottom bounded by the red and black curves.

Figure 12. The action of the loop equation on the two intersection loop. After using the loop
equation to the point colored in blue, we obtain a one-intersection loop with areas A; and As — As.

The second line of (3.56) (to be denoted by W2) can be evaluated in a manner similar
to the figure eight loop: namely we replace fa and A/(u1 — ug)? with f4 and 1/(u1 — usg)?
respectively, rewrite it in terms of the Zhukowski variables and perform the integrals by
closing the contour C; at the origin and Cs at infinity. The result reads

N—s00 Ia11—a23 (—l)k 1;1131—]?2 ) (—l)k
Wa = N2 Zk[ pa23_ k B k Pay — — % :

pa1 Pass Pais Pas

Adding the two contributions, we get the large N answer

Wy ap.a5) "2 e g <9azIa13I“2 + galSIMIaB)
benes 47T2ga139a2 6N? a3 Yas (3 59)
e} Ialzagg (_1)k Ia13Ia2 .
N2 Zk[ (pazs_ k ) +(_1)k bk k::| :
P Plass (ParsPaz)

Weak coupling expansion. From (3.59), the weak coupling expansion can be obtained
straightforwardly by expanding each term in powers of g2. The result up to one loop reads

Wy agag) = (3.60)

N—oo 9 47r(A1+A2—A3)—A%—A%—A§+2A1A3 4Am(Ag — Ag) — Ag(A1 — A3)
= 14g¢g 5 + N2 .

One can check that the result reproduces the one for the two disconnected loops [15, 18]
in the limit A3 — 0.
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Strong coupling expansion. We now evaluate the strong-coupling limit of (3.56). The
first term, Wi, is easy to evaluate since it coincides with the correlator of disconnected
Wilson loops with areas A; — Az and Ag. Using the result in the literature [15, 18], we get

N—o0

Wl = Wl,disc + Wl,conn 5
647r(9a13+9a2) 2(7‘(‘ga )3 2(71'9 )3
Wi gie. = 1 13 14 222 J92) ,
1,disc 87T2(ga13ga2)3/2 < =+ 3N2 > < + 3N?2 > (361)
477(9& +ga)
Wl,conn = ¢ o 2 Pai3Pas

87T2N2\/m<pa13 - pa2)2 7

where we kept only the leading exponential. W1 gisc and Wi conn are the contributions from
the disconnected part and the connected part respectively. The second term in (3.56), W,
can be evaluated by the saddle point analysis. The result reads

Nooe 1 [ y/GarGagy€!T90119023)\/Gay GagetT0eratea)
Wy ' = : (3.62)

8N? (9a; a23 + 9a23a1)2 B (Garsa2 + ga2a13>2

Let us discuss the worldsheet interpretation. W1 gisc is simply a product of the contribu-
tions from two disconnected surfaces whose worldsheet interpretation is already discussed
in [15]. The rest (W gisc and Wa) scales as Wi gise, Wa ~ €% /(gN?), which coincides
with (3.51). This shows that the relevant worldsheet configurations are again two dis-
connected surfaces connected by a zero-area tube. The only complication here is that
there are two different disconnected surfaces ending on the Wilson loop, corresponding to
two different exponentials in (3.62). The first one ends on the closed loops with areas
A7 and As — As while the second one ends on the closed loops with areas A; — A3 and
Asg (see also figure 11). However owing to the geometrical constraint 4; > As > Az, we

have gq,5 + Gas = Ga; + Gass- Thus the leading strong coupling answer is always given by
~ eA(9gay3+9as)

4 Cross anomalous dimension at small angle

We now apply the results in the previous sections to the computation of the cross anomalous
dimension. The cross anomalous dimension is a quantity which governs the UV divergence
associated to an intersection of two Wilson lines. In some respects, it is similar to the cusp
anomalous dimension, which governs the UV divergence associated to a cusp of the Wilson
line. However, one notable difference is that the cross anomalous dimension is a 2 x 2
matrix since the intersecting Wilson lines mix with the “touching” Wilson lines (depicted
in figure 13-(a)) under the renormalization group flow.

Note that there is another cross anomalous dimension which governs the mixing of two
different touching Wilson lines depicted in figure 13-(b). As we show in appendix B, our
formalism can be applied to this quantity as well.

4.1 Cross anomalous dimension in N/ =4 SYM

Definition and the relation to amplitudes. The cross anomalous dimension matrix
[eross determines the renormalization group (RG) property of the Wilson lines with an
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(a) (b)

Figure 13. (a) Intersecting lines (denoted by ) and “touching” lines (denoted by t). They are
characterized by a geometrical angle ¢ and mix under the renormalization. In A = 4 SYM, we can
consider the generalization of these lines which couple also to scalars. In that case, the black lines
couple to 7 .® and the red lines couple to 7 - ®. This introduces an additional angle cos 8 = iy - 7is.
(b) Two touching configurations (1 and 2) whose cross anomalous dimension will be computed in
appendix B.

intersection [28, 29]:

0 0 .

p— + B(9) 5 WE + (Deross) 4 BWJFS{ =0 (A, B =i,t), (4.1)
ou dg

Here 1 is the RG scale and W; and W; denote the intersecting and the touching con-

figurations respectively. The superscript R signifies the fact that the Wilson lines are

renormalized and are related to the bare Wilson lines W4 by the multiplicative renormalzi-

ation,

W = (Z(u,€)) 4 "W (4.2)

with € being the UV cut-off. As we discuss in more detail later, in conformal field theories
one can compute the cross anomalous dimension more directly from the expectation value
of the bare Wilson lines by reading off the coefficient of log e, (W) ~ el'erossloge,

The cross anomalous dimension is a function of the angle ¢ between the two intersecting
lines. When the angle is analytically continued as ¢ — ip, it gives the so-called soft
anomalous dimension. The soft anomalous dimension controls the IR divergence of the
scattering amplitude of two massive quarks in the Regge kinematics, s, m? > —t > AéCD,
and describes how the soft gluons transfer the color degrees of freedom of the quarks. In
that context, ¢ is the boost angle between the two quarks defined by

coshp := — pL b2 , (4.3)
Vping
with p; 2 being the four-momenta of the quarks. See [28, 29] for more details.

For the application to QCD, the limit ¢ — oo is of particular interest since it describes
the high energy scattering of light partons. On the Wilson line side, this corresponds to
an intersection of two light-like lines, see for instance [47-49]. The limit was studied also
in A/ =4 SYM: in [50], the self-crossing lightlike loop was analyzed up to nine loops. The
analysis was pushed further in [51] in which the anomalous dimensions relevant for the limit
were determined exactly in the large N limit using the pentagon OPE decomposition [52].
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In this paper, we focus on different limits, namely ¢ ~ ¢ ~ 0 and the near BPS limit, and
compute the anomalous dimension exactly at finite N.

Generalization in ' =4 SYM. In N =4 SYM, one can consider a generalization of
the cross anomalous dimension Icposs(¢,0) which depends on another angle 6. To do so,
we consider an intersection of the supersymmetric Wilson lines,

W ~ trP exp </(iAHd7“ +7- §|x)dr) , (4.4)

where the R-symmetry polarization 71 is a six-component unit vector which dictates the
coupling to the scalars P = (®1,...,Pg). The intersection of such lines can be characterized
by the geometric angle ¢ and the R-symmetry angle 8 which is defined by

cosf =1y - 1ig, (4.5)

where 771 2 are the R-symmetry polarizations of the two lines at the intersection point.

The supersymmetric Wilson line (4.4) naturally arises from the worldline action of
the W-boson in the Coulomb branch of N' = 4 SYM. To be concrete, let us consider
the symmetry breaking phase U(N + 2) — U(1) x U(1) x U(N) dictated by the scalar
expectation value

(®) = diag | m17i1 , mafia,0,...,0 | . (4.6)
N

In this phase, we have two kinds of W-bosons, one coming from the (1,k) (or (k,1))
component and the other coming from the (2, %) (or (k,2)) component of the gauge field.
In the limit m; 2 > 1, they can be treated as classical probe particles and their coupling to
the unbroken U(V) degrees of freedom is given precisely by (4.4). Thus Icross(¢, 0) gives
a natural generalization of the cross anomalous dimension in QCD and it characterizes
the IR divergence of the scattering of massive W-bosons after the analytic continuation
¢ — ip.

When ¢ = 6, the whole configuration becomes BPS and the anomalous dimension

L eross(@, 0) vanishes. Expanding T'eoss(¢, 8) around this limit, we obtain!6

Leross(,0) = (¢ — 0)Yeross(0) + O((¢ — 9)2) . (4.7)
In what follows, we compute the first coefficient 7cross(0) exactly as a function of A and N.

4.2 Two-point function of intersections

Let us explain in more detail how to extract the cross anomalous dimension from the
expectation values of the bare Wilson lines. The key idea is to regard them as the two-
point functions of intersections.

16The relation between eposs and Aeross parallels the relation between the cusp anomalous dimension and
the Bremsstralung function [25].
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Figure 14. Intersecting lines mapped onto S2. The black and the red lines denote W, and W,
respectively. On S2, the configuration contains two intersections, one at the north pole and the
other at the south pole. At each intersection (denoted by white circles), one can make either of the
two choices, i and t. This leads to the 2 x 2 matrix structure of the cross anomalous dimension.

To be concrete, consider the intersection of the following two Wilson lines on R,

o0

WLQ =P exp/ dr (ZA . i‘LQ + (i)' . ﬁLQ‘.’tLQ’) s (4.8)
with
1 =1(1,0,0,0), &9 = (cos ¢,sin ¢, 0,0), (4.9)
n1 = (1,0,0,0,0,0), ny = (cosf,sin 6,0,0,0,0). '

In addition to the obvious intersection at the origin, the lines intersect also at infinity. This
is easier to see if one maps the configuration to S? using the conformal transformation

2 2
2xq —2xq 1—27—23

X = %5, X == 3 X - .
! 1+$%+x§ 2 1+x%+x% 3 1+x%+1‘§

(4.10)
Here X'’s are the embedding coordinates of S? while 2’s are the coordinates on R? inside
R*. The two intersections are mapped to the north and the south poles of S?, see figure 14.

To extract the cross anomalous dimension, one has to consider the operator mixing;:
for each intersection, we can either let the lines intersect (to be denoted by ) or resolve the
intersection and make the lines touching (to be denoted by t). Since there are two inter-
sections, we have in total four different configurations of the Wilson lines which we denote
by Wii, Wi, Wy and Wy, They can be regarded as two-point functions of “operators”,
labeled by ¢ and ¢, sitting at the intersections.

These four choices of two-point functions can be naturally organized into a 2 x 2 matrix

g . ilexp ( Dlog ) |i) (i|exp (D log <) |t
W::<<Wz>(WZ>): (il g S ) [i) (il g ) It) (411)

W) (Wa) (t|exp ( Dlog 9¥ ) |i) (t|exp ( Dlog <2 ) |¢)

TIR TIR
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Here (i,t| and [i,t) denote the intersections at the origin and infinity respectively and D is
the dilatation operator. eyy and rig are the UV and the IR cutoffs. W can be expressed
alternatively in terms of the cross anomalous dimension I'¢;oss and the overlap 7 as

W — ercross log(ﬁUV/TlR) -n, (412)

where ['cross and 1 are 2 X 2 matrices defined by

(Gl (t]) o= (@D, ¢ID) . = ((tlg g'ﬁi) . (4.13)

In the near BPS limit 6 ~ ¢, both 1 and ['¢;0ss can be expanded in powers of (¢ — 0),

n="mno+ (QZ) - 9)771 + - DLeross = (d) - 9)’Ycross + e (414)
We then obtain the following expansion of the two-point function matrix W:

W:WO—F((ZS—G)Wl—I—--',

(4.15)
Wo =m0, Wi =m + (Yeross - M0) log(evv/rR) -

Thus 7eross 18 given by the coefficient of the logarithm in Wy, multiplied by (Wo)_l,

TIR

Yeross = <W1’10g 6UV) . (Wo)_l , (4.16)

where Wy is nothing but the expectation value in the BPS limit:

(4.17)

4.3 Cross anomalous dimension from localization

We now relate “yeross given in (4.16) to the localization computation. This can be done by

following the arguments in [23, 25, 26], which we briefly review below.!”

The first step is to start with the BPS limit 6 = ¢ of (4.8) and deform @ slightly. This
amounts to inserting a scalar on the second Wilson line

5W2 =00 x /_oo dr P [(I)/(T)Wz] s (4.18)

with
®'(7) = —sin 0P, + cos H@Q\WZ(T c08 0,751 6,0,0,0,0) - (4.19)

Now, using the invariance under the dilatation around the origin, we can determine the
position dependence of the scalar insertion as

1

K

(@'(1)--) (®'(r=1)---), (4.20)

17See section 4.2 of [26] for more detailed explanation.
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where we denoted all the other parts (the Wilson lines W) 2 and possible resolutions of
the intersections etc.) by ---. From this, one can see that the integral of 7 produces the
logarithmic divergence and its coefficient is given by the expectation value of the Wilson
loops with the ® insertion. More explicitly, we have the relation

WL) W,
iz =2 (1 )

where W/, ;5 is the Wilson line W4p with ® inserted at (cos#,sin#,0,0,0,0). The factor
of 2 comes from summing up contributions from [; dr and fi)oo dr.

: (4.21)

¢=0

The second step is to map the whole configuration to S? using (4.10). We then get
two great circles whose contour are given by

(21, 29, 23) = {(O,Sint, —cost) (W) ’ (4.22)

(—sinfsint, cosfsint, — cost) (Wa)

with ¢ € (=, 7). They couple to ®! and cos §®! + sin §®? respectively and satisfy the 1/8
BPS condition (2.1). Under this map, the insertion ®'(7 = 1) is mapped to the insertion
at a point t, where Wy intersects with the equator of S? (see figure 14).

The third step is to replace ® at t, with & — i®, =: —®. This replacement does
not affect the expectation values since the correlator with ®4 vanishes owing to the charge
conservation. We then use the fact that the insertion of ® corresponds to the insertion of the
field strength in 2d YM [11, 16]. Therefore its expectation value can be computed by taking
the area derivative. In our setup there are two regions with area 2(m — 6), and changing 6
by 66 leads to a total change (decrease) of the area by 460. We thus have the relation

= iaewow) ; (4.23)
=0

Wii) Win)
Wii) (Wer)

with Wy is the expectation value in the BPS limit (4.17). Combined with (4.21), it gives
1
W1|logEU—V = 789W0(6) : (424)
R 2
Using (4.16), we get the formula relating 7eross to the BPS Wilson loops
1 5
VYcross = 5 (aHWO) : (WO) . (425)
Before we proceed, let us comment on the normalization. In what follows, we normalize
Wy by dividing the path-ordered exponentials by a common factor N2. This is a natural
normalization for discussing the renormalization of open intersecting lines (see [27-29]) and
makes ['c;oss more symmetric. However it does not coincide with the normalization used in

some of the literature in which they discuss the renormalization of closed loops. We will
later translate the final result to such a normalization.
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The last step is to compute Wy. Let us first consider (Wy;). Since both intersections
are resolved, it coincides with a correlator of two disconnected loops. Thus, setting A; =
2(m+0) and Az = 2(7m — 0) in (2.46), we get

du dus -
<wﬂ>|¢_9=<f’é 1QQA(ul,uz)fg(He)(ul)fz(ﬂ9><u2>> S (20)

1=C2 871'292 87T2g M

Using the result in the literature, we can compute its large N limit as'®

Wet)lg—p = = Smdp ERRAE (4.27)

2 o0
k=1
Second, Wy;)(= (Wi)) is a single-intersection loop with areas A; = 2(w 4 6) and Ay =
2(m — 0) (or equivalently, a figure-eight loop with areas A; = Ay = 2(7 — 6)). We thus get
from (3.31)

dmg%i dur  dus fa(ry0)(u1) foin—oy(u2)
o A du duy R, (2
Weidlg—o = — <7€1<cg 87242 8n2q? (u1,us2) L iy Ny (4.28)

Here the extra factor 1/N comes from the normalization that we adopted. The large N
limit can be computed from (3.42) as

Noow 1 (BT STL [ oy kP8 — Py
; = — E —_— 1) -7 . 4.2

Finally, (W;;) is a two-intersection loop which we computed in (3.56). Setting A, = 2(7+86),
Ay =21 and Az = 260, we get

. du1 dUQ
Wii)ly=o = <7€71<02 87242 872 Af27r(u1)f27r(u2)>M (4.30)
N (4mg?)? <?{ duy  duz + for(u1)for(u2) = forrie) (U1) forr—g) (u2)>
N? ci~c, 8m%g° 8m2g? (u1 —u2)? M

The large N limit can be computed from (3.59), and the result reads

Wbl 2 ( g >2+ o | S B (0% = (-DF) @2 + (-DH@)?] s

2mg 3N2 — N2

Note that these expectation values satisfy the following relation (at finite N)

87rg 87rg

9o <Wii>|¢:9 - <Wt1>|¢—9 ) 7 <Wti>|¢:9 - <th>|¢ 0 (4.32)
They are simply the loop equations written in terms of #-derivatives, but one can also

verify them directly from (4.26), (4.28) and (4.30).

8 The result (4.27) can be obtained from (3.57) by setting A; — Az = 2(7 + 6) and Az = 2(7 — 6).
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These expressions, together with the relation (4.25), give the exact cross anomalous
dimension in the near BPS limit of the U(XN) theory. Using the relations (4.32), we get

(4.33)

1 0 70 det Wy
VYeross = m _(Wti>329<th> _ 47rg2§\)7/\}tt>2 (Wu>82(9<th) + 4ﬁg2<wjffi><th>

¢=0

Note in particular that the entries in the first row are 0 and —4mwg?/N at all orders in A
and N. Epanding the result at large IV, we get

0 47rg2
N—oo N
VYeross = drg? I+ hohs A g2ho+ (hz) —hohz+ha ) (4.34)
—— 5 = ho+ e
with
4mlgy I} o7! \?
ho= 23— 575 hi=1{""7
0= — w2 17 9oLy
RATEEN A
Zl 96’ b1 g
2mg 2 g7 > (4.35)
0 _
ha= (70 ) (TR k(0™ - ) @+ 0t )
1 k=1
2mgo 2k
= () Sholl - o) e
1 k=1
Here hy is related to the Bremsstrahlung function B(\) in [25] by
4720
The eigenvalues (v+) of Yeross are given (up to O(1/N?)) b
1 [ ho(h2)? 1672g*h
—ho+ oy (PO g g Sghg + 20T IY
N2 hi ho
5 4 (4.37)
V- === | 4mgThe + —— | .
N ho

4.4 U(1) factor and weak- and strong-coupling expansions

We now expand our results and compare them with the perturbative data. However, since
the results in the literature are for the SU(N) gauge group, we first need to strip off the
U(1) factor from our results, which are for the U(N) gauge group. This can be done by
computing the expectation values in the U(1) theory since the Wilson loop in the U(N)
theory factorizes as

Wuvy = WoayWsu() - (4.38)

Since the U(1) theory is free, the computation is rather straightforward. In addition,
as the gauge group is Abelian, the path-ordering is unnecessary and all the four entries of
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W become identical. The result can be read off from the appendix A of [17], or from the
two-matrix model in [18] specialized to U(1). For the two disconnected loops with areas
defined as in figure 3, this gives

g2 47T(47TA1+A2)(47TA1A2)2> ' (439)

<W1W2>|U(1) = exp <J\72 5

Setting A1 = 2(7m 4+ 0) and Az = 2(7 — 0), we get

) (=t wyq)) - (4.40)

We then obtain

Opwy
7§£S(é\f) = Ycross — O,

21, (4.41)

where Yeross is the result for the U(N) theory (4.25) and 1 is the 2 x 2 identity matrix.

Weak coupling. Expanding (4.25) and (4.41) at weak coupling, we get the following
result for Yeposs Up to three loops:

Yoo = g®yay + gty + Oy +

,y — % _% "y = 0 2 2 0
(1) 4(9]\770 40+ % 5 (2) 80(0—m)(0—57) 80(w*—02) + 1670(60—) ’ (442)

3N 3 N?

Y3) = <8(0—7r)0(57r3-&(-)7r29—7r02+93) _ 80(n2—6%)? 4 167r(¢)9(6’—7r)(7r2—97r49+56'2)) :
3N 3 3NZ
Closed-loop normalization. As mentioned below (4.25), the normalization we used is
suited for the renomalization of open intersecting lines. To translate our result into the
normalization commonly used for the renormalization of closed loops, we simply need to
perform the following conjugation as explained in [27]'"

Fclosed _ SFcrossS_l ’ closed _ S’Ycrosss_l , (443)

Cross ,‘YCI'OSS

with S := diag(v/N,1/v/N). We then get

,ygr[g)éé\l),closed — g2 ,y(ci()Jsed + 947(05()Jsed + 9678’C)lsed 4 ( 4.4 4)
4m
W(C%())S(ad = (4(5\72) A ) V(C;(ised = (89(0 [))(9 57) 86(w2—62) ’ 1670(6 ))
- - 47 ’ - —)(60—5m T — 0 (60— ’
EE i 3N? 3 T

closed __ 0 0
73) T\ 8(0—mo(5m34m20-—n62463)  80(x2—62)2 | 16m0(9—7)(x>—9m0+562) | -
3N?2 3 + 3N?2
fyﬁogfd are in perfect agreement?” with the near-BPS limit of the two-loop results in [27].

It would be interesting to perform a direct three-loop computation and reproduce ’y(cé‘;sed.

91 [27], Ceross and [E2%4 were denoted as Teross and Teposs respectively.

20127] uses a slightly non-standard convention in which the cross anomalous dimension is defined with an
extra minus sign. (This can be seen by comparing (4.1) of our paper and (2.3) of [27]). Thus, to compare
with our results, we need to consider —I'cross in [27].
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Strong coupling. The strong coupling limit of cross can be computed from the results
for intersecting loops in section 3.2. The result in the planar limit reads

/] 8mg, /] 8mg,
Wo~<(co+135)68”9+62(§2 B 6)

c3(0)e®m90 8m

e 879 __c3(B)e 879
-1 co coca(O)N
WO ~ _03(9)6787"9 6_8"99 9

coca(O)N ca(0)

(4.45)

where ¢y and c; are #-independent while co-c4 are 6-dependent prefactors, among which c3
and ¢4 are relevant for the analysis:

1
) =———— (1+0(g " )= ——— (1+0(gh) . 4.46
03( ) 327_‘_2(930) ( + (g )) y C4( ) 87['2(90)3 ( + (g )) ( )
We then get the following result in the planar limit:
SU(N),closed 0 1[0 % 2
e = amugn | o )45 | g ity | FONT), (.47
Cq

The leading strong-coupling answer for the lower-diagonal component —4mdygy reproduces
the prediction made in [27] using the classical worldsheet. By contrast, the leading strong-

coupling answer for the upper-right component is given by

2
Ardpge S ~ L (4.48)
Cq4 T

and does not match with the one in [27], which predicts the same answer as the lower-
diagonal component, 47wdpgg. This however does not immediately imply contradiction: as
is well-known, the individual matrix elements of the anomalous dimension depend on the
choice of the basis of operators. It is likely that the choice we made here for supersymmetric
localization is different from the choice implicitly made in the analysis of the classical
worldsheet. To avoid such ambiguities, we should compare the eigenvalues of the anomalous
dimension matrix, which in fact agree with the ones in [27]. It would be important to
understand this point further and also perform a comparison at the nonplanar level.

5 Conclusion

In this paper, we computed the expectation values of intersecting 1/8 BPS Wilson loops
in N'=4 SYM at finite A and N using supersymmetric localization and the loop equation.
The results are given by a coupled system of the Gaussian matrix model and multiple con-
tour integrals, which in the planar limit give an infinite sum of products of modified Bessel
functions. Applying the formalism to near-BPS limits of the cross anomalous dimension,
we reproduced the perturbative data in [27].

The main message of this paper is that the loop equation provides a powerful compu-
tational tool in A” = 4 SYM when combined with localization.?! It would be interesting to
explore the connection with other nonperturbative techniques such as integrability and the
conformal bootstrap:>?> The intersecting lightlike Wilson lines were studied in the planar

21Gee [63-55] for previous attempts to analyze the loop equation in N' = 4 SYM and gauge/string duality.
2Gee [56, 57] for interesting proposals on (different) bootstrap approaches to the loop equation.
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limit [51] from integrability by the pentagon OPE [52]. However the relation to the loop
equation was not explored. Studying them through the lens of the loop equation may lead
to stronger results, or at least would lead to a deeper understanding of the pentagon OPE.

The 1/2 BPS Wilson loop in N' =4 SYM is an example of a conformal defect [58-60).
The insertion of F},, — which plays the central role in the derivation of the loop equation —
is a displacement operator, which is present in any conformal defect. Rephrasing the loop
equation in the language of the defect CFT may allow us to use it as a dynamical input??
for the conformal bootstrap. This would be perhaps useful for the nonsupersymmetric
Wilson line discussed in [61-63]. Of course, in the absence of supersymmetric localization,
one would need to study in this case the loop equation in the 4d gauge theory. Another
direction is to analyze intersecting conformal defects in general CFTs. For the case of
two intersecting 1d defects, one should be able to interpret them as a conformal two-point
function of intersections as discussed in section 4.2.

Regarding the cross anomalous dimension, the simplest next step would be to generalize
our computation to multiple lines intersecting at a point. This would shed light on the
structure of the soft anomalous dimension of multileg amplitudes, studied for instance
in [64]. Of course, our analysis only applies to a small angle (or near-BPS) limit but it might
be possible to combine it with the bootstrap approach in [65] and constrain the full answer.

Another interesting direction is to perform the computation in different setups. For
instance, the exact Bremsstrahlung function in N' = 2 SCFT was studied in [66-68].
Generalizing it to the small angle limit of the cross anomalous dimension is an important
problem. It would also be interesting to study the ladder limit of the Wilson loop in N' = 4
SYM, in which the R-symmetry angle 6 is sent to ioo while the combination A= e ig
held fixed. This limit selects the ladder diagrams which can be resummed analytically [69—
74]. Last but not least, it is important to further study the cross anomalous dimension in
perturbation theory. In particular, it would be desirable to generalize the result for the
supersymmetric Wilson lines in [27] to nonsupersymmetric Wilson lines.
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A Infinite sum of modified Bessel functions

In this appendix, we derive identities for the infinite sum of modified Bessel functions and
apply it to (3.44) to rewrite it in a more symmetric form. The starting point is the integral

Z3Here we have in mind the loop equation for the non-intersecting line, for which the right hand side of
the loop equation vanishes.
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representation

dx 6%(m+1/:p)
I = . Al
n(2) 7{ 2mix " ( )
We then rescale the integration variable z — ax to get
1 dr e%(ax—f—l/(ax))
1 = — . A2
n(2) am 7{ 2mix " (A-2)

We now factorize the exponential into two pieces

ol )] o) ool (o) 0
z:\/2%+z§+(ﬁ+;>2122, a:\/ﬂ' (A4)

and use the generating function representation for each exponential:

with

2T/ = N L(y)y”. (A.5)
k=—0o0
After performing the integral of z, we get
1 &
In(z) = J Z ﬁ In,k(zl)Ik(zQ) . (Aﬁ)

k=—oc0
Specifying n to be 1 and using I_; = I, we get the identity
1 oo
Li(z)=— Z/Bk+llk(zl)lk+l(z2) + B D1 (21) Ti(22) - (A.7)

(0}
k=0

Now applying this identity (A.7), we can exchange A; o in (3.44):

N
<Wﬁgure—eight> = (AS)
N—ooo ISIQI{H > P]r; IIC;LQ k+1 (*Uk a k—1 (*Dk a
T 2rga T Z ;T Par T | T T Pa = | el
a0 Y Pay Pa,

It is also possible to make it manifestly symmetric under A; <> As:

a1—ag

N—oo Il 2 (29) 1 « a1 as as ai
<Wﬁgure-eight> = 47rg + 27Tg Z (Ik+1(g)Ik (g> + IkJrl(g)Ik (g)) ’ (Ag)
k=1

Here I%(g) is the modified Bessel function introduced in [43],

(228) - (55)

Iy (47mgy)
2

1(g) = (A.10)
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B Cross anomalous dimension of two touching lines

In this appendix, we compute the cross anomalous dimension of two touching Wilson lines.
The basic strategy is the same as in section 4: we map it to a sphere, view it as two-point
functions of intersections and differentiate it with respect to the angle 6.

In this case, the analogue of (4.17) is given by

; (B.1)

where W;; denotes a Wilson loop whose intersections at the north and the south poles are
resolved into configurations ¢ and j in figure 13-(b). The formula (4.25) applies also to this
case and the computation boils down to computing the BPS loops (Wij)|¢=¢. The main
difference from section 4 is that all the relevant loops are non-intersecting and one can
simply use the results in the literature.

Let us first consider (Wj1). It corresponds to two oppositely-oriented Wilson loops
with areas A; = 47 — 260 and Ay = 20. Using the result in [18], we find?*

2
(= W S U I” ‘)) 4
Win)ly—p = (27%9) + e ng +O(1/N*). (B.2)

On the other hand, W2 and Wy, are single Wilson loops with areas 46 and 4(m — 6)
respectively. They have the same expectation values given by?°

1 1'29771' 7.[. g 9 I29 ™
Wi2)lpmg = War)lg—p = ( > .

N\ 2rgmes T B2 >+0(1/N4)- (B.3)

Finally Whs corresponds to two oppositely-oriented loops with areas A; = 2(m + 6) and
Ay = 2(m — 6). We then have

9 \2 0 o0 02
Wa2)lyg = ( L ) + 991121 NLZ +O(1/N*%). (B.4)
k=

2mge

From Wy, the near-BPS limit of the cross anomalous dimension Teross = (¢ —0)Veross +
O((¢ — 0)?) can be computed by Feross = 5 (0gWo) - (W) 1. The result reads
Yeross = (B5)
T 7—7— h_ T T—\L—1T hd +hy )h
~hg + 3z (g AT =% = (h§ +hg )by hs) (B g s
(h —ﬁo)hg ho+ 5= (—71031—1—72 - (ﬁg—i‘zo)ﬁ;ﬁg,)

24In this appendix, we focus on the large N limit for simplicity. The result at finite N can be obtained
using matrix models in [17].

25 As in section 4, here we normalized the Wilson loops by dividing by a common factor N2. This is the
origin of the extra factor of 1/N in (B.2).
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with Ay, == hy(6), hy = hy(m — 0) and hi = hy(20 — 7) and

_ Anbgy IO - 70 \?
ho(0) = 5 2% 2 hl(e)—( 1)

mgpT{Z | o k(-DH(I{)
2

02 — 72 ff ) 2w gy 3 P (pg)2F o)
_ ) 21’29—7r B 70 2 7070 0o (1) 70y2 .
ho(0) = 9L h3(6)2< 1> P MJrZ#
&) 20 5 W)
The eigenvalue (74) are given by
o (ho+ hg)(=2hohy + hy) + 2(ho — hy )*hshy
Y+ =ho + e ’
2N2(h0 + hO ) (B 7)
o = ey (ot ho)@hohy —hy) = 2Ahg +hg)hshs -

2N2(ho + hy)

To perform a comparison with the results in [27], one needs to consider the SU(N)
theory by stripping off the U(1) factor

Opwy (1)
2’(DU(1)

_SU(N)

Yeross © = Yeross —

(B.8)

Here wy(q) is the U(1) factor which in this case is the expectation value of the Wilson loop
with area 46 (see [17]),

W) . (B.9)

Wu(1) = exp ( RE

Converting the result to the closed-loop normalization by FSosed = G5 S~ with S =

diag(v/N,1/v/N), and expanding the result at weak coupling, we get

Wgrgéé\f),closed _ g2,7(ched +g4;y(c%c)>sed +96,7(c:1))c)>sed T (BlO)
—20
Wclosed _ _ (9 - ’/T) + 7rNg 4
(1) 0];2% 0+ 71’]:7%6 )

0(0—m)(0—57) (02 . 7'('2) _ 20(0—m)(0—2m)

N2

—Closed_8<9(0_77)(9—271')+20(7;\2f2_62) 9((9—7’[')((9+47T) )
3 aal ’
8
3

(0—7)(6—2m)262 4 2O—MCTST2045m0%) (g _ 1) (63 + 2702 + 2720 — 67%)
X 0(0—m) (r3+9720—5m0%+63) 2 22 20(0—7)(4nd — 42042762 +03)
N2 H(ﬂ- - 6 ) - N2

The results up to two loops reproduce the perturbative computation in [27].
The strong coupling expansion can be obtained from the results in section 3.2. In the
planar limit, we have

G187 9n—0 Cpe’920-7 . e 8mIn—0 &g (9207290297 —0)

N N N — Cc1 ci1csN

W~ oeT920 7 , Wy~ o™ (9207 =209 =297 _0) o—873g ’
Ge 7 _

63 687‘!’99

cicsN c3
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where the prefactors all depend on 6 and are given (at strong coupling) by

1 _ 1 1

1= —5——=, o= ——7, C3= ——=. (B.11)
8772 (gﬂ79)3 7T(292977r)3/2 87T293
Then the leading answer at strong coupling is given by
SU(N),closed __ 4109 gr—0 22362 (69929—7r - 28997r—9)647r(929_w_296) 4 (B 12)
Cross - 0 47T89g9 : :

As in section 4.4, the diagonal components reproduce the results in [27] while the upper

off-diagonal component does not match with the one in [27]. However the off-diagonal

component is exponentially suppressed at strong coupling since gog_r < 2gog. Thus the
eigenvalues of the matrix do coincide with the ones in [27]. (See the discussion below (4.48)).
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