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Abstract

A small area typically refers to a subpopulation or domain of interest for
which a reliable direct estimate, based only on the domain-specific sample,
cannot be produced due to small sample size in the domain. While tradi-
tional small area methods and models are widely used nowadays, there have
also been much work and interest in robust statistical inference for small
area estimation (SAE). We survey this work and provide a comprehensive
review here. We begin with a brief review of the traditional SAE methods.
We then discuss SAEmethods that are developed under weaker assumptions
and SAEmethods that are robust in certain ways, such as in terms of outliers
or model failure. Our discussion also includes topics such as nonparametric
SAE methods, Bayesian approaches, model selection and diagnostics, and
missing data. A brief review of software packages available for implement-
ing robust SAE methods is also given.
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Borrowing strength:
using information
from other sources,
such as small areas,
other variables, or
additional knowledge,
to improve SAE
estimates

1. INTRODUCTION AND BRIEF OVERVIEW OF SMALL AREA
ESTIMATION METHODS

In recent years there has been substantial and growing interest in small area estimation (SAE),
driven largely by practical demands. Here, the term small area typically refers to a subpopula-
tion or domain of interest for which a reliable direct estimate, based only on the domain-specific
sample, cannot be produced due to small sample size in the domain. Examples of small areas in-
clude geographical regions (e.g., state, county, municipality), demographic groups (e.g., specific
age×sex×race groups), demographic groups within geographic regions, etc. Such small areas are
often of primary interest, for example, in policy-making regarding allocation of resources to sub-
groups, or determination of subgroups with specific characteristics (e.g., in health and medical
studies) in a population. It is desirable that the decisions regarding such policy-making be made
based on reliable estimates, and the demand for and interest in SAE research have increased rapidly
in recent years. For example, SAE is now routinely used for effective planning of health, social,
and other services and for apportioning government funds in the United States,Canada, andmany
European countries. Since 2013, there has been an annual international conference on SAE and
related topics in various locations worldwide. Reviews on SAE and related topics have been pro-
vided by, for example, Jiang & Lahiri (2006),Datta (2009), Pfeffermann (2013), and Rao &Molina
(2015).

1.1. Simple Direct and Indirect Estimates

Direct estimates use summary statistics based on a given domain, or small area, to estimate a
characteristic of interest associated with the small area. The typical characteristics of interest are
small area means, proportions, and totals; the corresponding summary statistics are sample means,
sample proportions, and products of samplemean and domain size (i.e., population size of the small
area), assuming that the latter is known (see, e.g., chapter 2 of Rao & Molina 2015). The direct
estimates do not borrow strength in the sense that the estimate for a given domain does not utilize
information from other domains; it also does not make use of information from other sources or
variables.

In contrast, indirect estimators can utilize information from other domains or sources, which
is known as borrowing strength. Here we talk about indirect estimators without extensive use of
statistical models, and leave the model-based methods to later discussion. Methods of indirect
estimation include synthetic estimation, composite estimation, and shrinkage estimation (see Rao
&Molina 2015, chapter 3, for details).To illustrate with a simple example, suppose that the domain
sizes under poststratification (i.e., the strata in the population are formed after the samples are
taken; e.g., Lohr 2010, section 4.4) are available, say,Nig, 1 ≤ i ≤ m, 1 ≤ g ≤ G, where i represents
the domain and g the poststratum. Also suppose that an estimate of the poststratum total, Ŷ·g, is
available for 1 ≤ g ≤ G. Let N·g = ∑m

i=1Nig be the poststratum size. Then, a synthetic estimator
of the domain total is given by Ŷi = ∑G

g=1(Nig/N·g)Ŷ·g. It is clear that Ŷi is a weighted average of
estimators of the poststratum totals, where the weights depend on the domain. Furthermore, the
same poststratum total estimators are used in all of the domain total estimators, the only difference
being the weights; this way, different domains can borrow strength from each other.

1.2. Basic Small Area Estimation Models

According to Jiang & Lahiri (2006) and Pfeffermann (2013), there are three basic SAE models in
the sense that other models may be viewed as extensions, or variations, of these models. The first
is the Fay–Herriot model (Fay & Herriot 1979), also known as the area-level model; the second
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is the nested error regression (NER) model (Battese et al. 1988), also known as the unit-level
model; the third is the mixed logistic model ( Jiang & Lahiri 2001), which is often used for binary
outcomes or binomial proportions.

A Fay–Herriot model may be expressed as yi = x′
iβ + vi + ei, i = 1, . . . ,m, where m is the total

number of small areas (for which data are available); yi is a direct survey estimator for the ith small
area; xi is a vector of associated covariates, or predictors; β is a vector of unknown regression
coefficients; vi is an area-specific random effect that accounts for variation not explained by the
predictors; and ei is a sampling error. It is assumed that vi, ei, i = 1, . . . ,m are independent such that
vi ∼ N (0,A), ei ∼ N (0,Di ), where A is an unknown variance butDi is assumed known, 1 ≤ i ≤ m.
In practice,Di may not be exactly known but can be estimated with a high degree of accuracy. For
example, typically,Di can be expressed as an unknown variance divided by the sample size for the
ith area, and the unknown variance can be estimated using a (much) larger data set; Rao &Molina
(2015, chapter 6) provide further explanation. Thus, in the following, we use the notation Di with
the understanding that in most cases it is D̂i, an estimate of Di.

An NER model can be expressed as yi j = x′
i jβ + vi + ei j , i = 1, . . . ,m, j = 1, . . . , ni, where m is

the same as above, ni is the number of units sampled from the ith small area, yi j is the jth sampled
outcome measure from the ith area, and xi j is a corresponding vector of auxiliary variables. The
meanings of β and vi are the same as in the Fay–Herriot model, and ei j is an additional error. It is
assumed that the vis and ei js are independent with vi ∼ N (0, σ 2

v ) and ei j ∼ N (0, σ 2
e ), where σ 2

v and
σ 2
e are unknown variances.
As for the mixed logistic model, it is assumed that, given v = (vi )1≤i≤m where the vis have the

same meaning as above, binary responses yi j , i = 1, . . . ,m, j = 1, . . . , ni are conditionally indepen-
dent such that logit(pi j ) = x′

i jβ + vi, with xi j ,β having the same meanings as in the NER model,
logit(p) = log{p/(1 − p)}, and pi j = P(yi j = 1|v). Note that the xi js are considered nonrandom
here, so the latter conditional probability is the same as P(yi j = 1|x′

i jβ + vi ) due to the indepen-
dence of the vis. Furthermore, it is assumed that vi is distributed as N (0, σ 2) with σ 2 unknown.

The assumptions underlying these models are considered strong in that they completely spec-
ify the underlying distribution of the data. Such assumptions would allow, for example, maximum
likelihood (ML) or restricted maximum likelihood (REML) inference (e.g., Jiang 2007), but the
latter may not be robust when the assumptions fail. For example, for computing the empirical
best linear unbiased predictor (EBLUP; see below), one can use other types of consistent estima-
tors of variance components than ML or REML estimators (e.g., Prasad & Rao 1990), but mea-
sures of uncertainty are more sensitive to the distributional assumptions; this is discussed further
below.

1.3. Traditional Model-Based Inference

We refer to Rao &Molina (2015) for details of traditional methods of inference for small areas. A
mainstream approach relies on using a statistical model in order to borrow strength. These mod-
els likely involve area-specific random effects, specification of the conditional mean and variance
given the random effects, and normality assumptions about the random effects and other addi-
tional errors that are involved in the model. The model-based approach can be non-Bayesian or
Bayesian. These approaches lead to the EBLUP, empirical best predictor (EBP), empirical Bayes
(EB) and hierarchical Bayes (HB) estimators, including their variations.The EB approach is differ-
ent from the HB approach in the way that hyperparameters at the bottom of the model hierarchy
are estimated from the data in the former, while a prior will be assigned to the hyperparameters in
the latter. Note that there are also design-based approaches that do not use any model in deriving
the estimators, such as the direct survey estimators (see Section 1.1).
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Consider, for example, the Fay–Herriot model. The small area means can be expressed as θi =
x′
iβ + vi, 1 ≤ i ≤ m. The EBLUP of θi can be expressed as

θ̂i = (1 − B̂i )yi + B̂ix
′
iβ̂, 1.

where B̂i = Di/(Â+Di ), and β̂, Â are estimators of β,A, respectively. Expression 1 shows that the
EBLUP is a weighted average of the direct estimator, yi, and an indirect regression estimator, x′

iβ̂,
with weights (1 − B̂i ) and B̂i, respectively. Alternatively, the EBLUP may be viewed as shrinking
the direct estimator toward the regression estimator with the shrinkage factor B̂i. To understand
the weights or shrinkage factor, note that if A is large compared with Di, which means that the
between-area variation is large, there is not much strength that the direct estimator can borrow
from other areas through the regression estimator; as a result, the shrinkage factor is expected to
be close to zero, meaning little or no shrinkage. In contrast, if A is small compared with Di, the
between-area variation is small; therefore, there is much strength that the direct estimator can
borrow from other areas, and as a result, the shrinkage factor is close to one, meaning substantial
shrinkage. The following example illustrates the small area model in action.

1.3.1. Example: hospital kidney transplant graft failure rates. Morris & Christiansen (1995)
presented a data set involving 23 hospitals (out of a total of 219 hospitals) that had at least 50
kidney transplants during a 27-month period. Specifically, the yis are graft failure rates for kidney
transplant operations, that is, yi = number of graft failures/ni, where ni is the number of kidney
transplants at hospital i during the period of interest. The variance for graft failure rate, Di, is
approximated by (0.2)(0.8)/ni, where 0.2 is the observed failure rate for all hospitals. Thus, the
Dis are treated as known. A severity index, xi, is considered as a covariate. Ganesh (2009) proposed
a Fay–Herriot model as yi = β0 + β1xi + vi + ei to fit the data.

A graphic illustration of the model in action is shown in Figure 1. In panel a, the direct esti-
mate and EBLUP are plotted against

√
Di; in panel b, the absolute difference of the direct estimate

and EBLUP is plotted against
√
Di. A lowess smoother running through panel b shows that this

absolute difference increases as Di increases, or, in other words, as Di increases, the EBLUP esti-
mator is increasingly affected by underlying small area model. Also note that the estimators β̂ and
Â are based on data from all of the areas; this is how the EBLUP for one area borrows strength
from other areas. In fact, the weights in Equation 1 are optimal when the Â is replaced by A, the
true variance of the random effects. Therefore, assuming that Â is a consistent estimator of A,
EBLUP borrows strength in a way that is nearly optimal. The standard estimators of β and A
include REML,ML (e.g., Jiang 2007), or ANOVA (e.g., Prasad & Rao 1990) estimators. As noted
earlier, typically Di is also estimated.

In addition to point estimates of small-area characteristics, researchers have also extensively
studied measures of uncertainty, which routinely accompany the point estimates. A standard mea-
sure of uncertainty is the mean squared prediction error (MSPE).There are other measures of un-
certainty such as prediction intervals. The standard methods of estimation of area-specific MSPE
include the Prasad-Rao linearization method and resampling methods (see Rao & Molina 2015,
chapters 6 and 7).

1.3.2. The need for robust methods. As is always said, there is no free lunch; if SAE is such
a good thing, exactly what part of it is not free? Consider, for example, model-based SAE (e.g.,
Jiang & Lahiri 2006, Datta 2009), which typically borrows strength through a statistical model.
What if the assumed model fails? Quite often, there is a consequence. This is a price that one
has to pay for doing better when the assumed model holds, in the sense that one may actually
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Figure 1

Illustration of a small area model in action. (a) Direct estimate, empirical best linear unbiased predictor (EBLUP) versus
√
Di.

(b) Absolute difference between direct estimate and EBLUP versus
√
Di.

do worse than the direct estimates when the assumed model fails. Even if the assumed model
holds, or in design-based SAE that is model free, one may still encounter the so-called outliers.
Here, the term “design-based” refers to methods of inference based on random sampling from
finite populations only (e.g., Rao & Molina 2015, section 2.2). Such problems may occur in every
subject area of statistics, which has led to a well-developed field of robust statistics (e.g., Huber &
Ronchetti 2009). This field is the main topic of the current review, with focus on robust methods
in SAE. There are features of SAE unlike any other, and naturally, these are highlighted.

Below is a brief summary of the specific topics. In Section 2 we discuss SAE methods based on
weaker model assumptions that either do not fully specify the underlying distribution of the data
or consider a broader class of models that are more likely to hold.Methods developed under such
weaker assumptions tend to be more robust against certain types of model failures. In Section 3
we discuss SAE methods that are more robust to surprises—unexpected events, such as model
misspecification, outliers, or something else. We dedicate Section 4 to recent advances in non-
parametric SAE, although there is some overlap between this and the topics discussed in other
sections. In Section 5, we discuss other topics that are related, or potentially related, to robust
SAE. These include model selection and diagnostics, Bayesian methods, and missing data. Some
available software packages for implementing robust SAE methods are summarized in Section 6.
We conclude with some remarks in Section 7.

2. METHODS DEVELOPED UNDER WEAKER ASSUMPTIONS

2.1. Relaxing Model Assumptions

Ghosh & Lahiri (1987) conducted early work on robust SAE. They were concerned about what
they called mean robust estimators of strata means, with small area means being a special case.The
authors derived the EB estimator under the posterior linearity assumption, meaning that under
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the Bayesian framework, the posterior mean of the small area mean, θi, is a linear function of yi,
the vector of sampled responses from the ith small area. In a non-Bayesian setting, this simply
means that the BP of θi is a linear function of yi, assuming that all of the parameters are known
(e.g., Rao & Molina 2015, section 9.9.2). This is weaker than assuming that the data are normal.

As the normality assumption is important, Jiang & Torabi ( J. Jiang & M. Torabi 2018, unpub-
lished technical report) developed a goodness-of-fit test for checking such an assumption. The
method extends an earlier idea of Fisher (1922) and has a connection with the specification test
in generalized method of moments (MoM) (e.g., Newey 1985). The test is guaranteed to have a
χ2 asymptotic null distribution. What is more, the method has a robust feature in the sense that
it works correctly in testing a certain aspect of the model while some other aspect of the model
may be misspecified.

In another recent development, Jiang and colleagues ( J. Jiang, N.S. Matloff & T. Nguyen
2018, unpublished technical report) proposed a robust SAE method based on regression av-
erage (RA) (Matloff 1981). To describe the idea of RA, suppose that one has random samples
(xi, yi ), i = 1, . . . , n from a (p+ 1)-dimensional distribution, where p = dim(xi ). Suppose that the
regression function (not necessarily linear), E(yi|xi ) = g(xi,β ), is known except for the vector of
unknown parameters, β. Suppose that (xi, yi ), i = 1, . . . , n are independent and identically dis-
tributed (i.i.d.). The problem of interest is to estimate the mean of the outcome variable, yi, that
is,μ = E(yi ). A well-known estimator of μ is the sample mean, ȳ = n−1∑n

i=1 yi. However, Matloff
(1981) showed that the estimator μ̂ = n−1∑n

i=1 g(xi, β̂ ), where β̂ is a weighted least squares esti-
mator of β, is better than ȳ in the sense that the asymptotic variance of μ̂ is smaller than that of ȳ.
The improvement of μ̂ over ȳ takes place as long as g is not linear; when g is linear, the asymptotic
variances of the two estimators are the same. A notable feature of the RA method is that it relies
on weaker assumptions.

Bell & Huang (2006) assumed, instead of normality, nonstandardized t-distributions for the
random effects or sampling errors in the area-level model. A random variable, ξ , has a non-
standardized t-distribution if there are constants μ ∈ R and σ > 0 such that (ξ − μ)/σ has a t-
distribution. Note that the t-distribution may be viewed as a weaker assumption than the normal
distribution in that the latter requires the degrees of freedom of the t-distribution to be large (or
infinity). The authors’ main concern was outliers, and they proposed a Bayesian approach under
the t-distribution.Gershunskaya&Lahiri (2018) noted that theNERmodel is sensitive to outliers
in that a small portion of extreme observations may cause problems in estimation of the model
parameters as well as in prediction of the mixed effects.The authors took an approach in modeling
the outlying process via a mixture distribution. The underlying idea is that these outliers occur
due to some distributional reasons; this is different from some outlier situations that are treated
in the next section. The authors also proposed a test for the outlying area; based on the test re-
sult, different SAE strategies are used for different areas. The mixture model may be viewed as
an extension of the NER model by relaxing the constant-variance assumption for the errors (i.e.,
ei j). The authors also made comparisons with several other methods that were developed based
on robustness considerations (see Section 4 for further discussion).

In addition to relaxing the constant-variance assumption in the NER model, Jiang & Nguyen
(2012) considered a heteroscedastic nested error regression (HNER) model with completely
unknown within-area variances. The authors noted that the NER model can be reparametrized
as var(ei j ) = σ 2 and var(vi )/var(ei j ) = γ , where σ 2 and γ are unknown variance components,
and that ρ = cor(yi j , yik ) = γ /(1 + γ ). The HNER model allows σ 2 to be area-specific, that is,
σ 2 = σ 2

i for area i, so that the standardized observations, defined as zi j = (yi j − x′
i jβ )/σi, satisfy an

NER model with mean 0. The latter fact is an interpretation of the assumption that γ does not
depend on i. The nonstandardized observations then satisfy theHNERmodel with constant γ but
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Prasad-Rao method:
linearization method
for estimating MSPE
of the EBLUP of a
mixed effect, such as a
small area mean

area-specific σ 2. Further details are provided in section 7.6.1 of Rao & Molina (2015). The un-
known variances σ 2

i , 1 ≤ i ≤ m, cannot be consistently estimated if the nis are bounded; however,
Jiang&Nguyen (2012) showed that themaximum likelihood estimators (MLEs) of β and γ (ρ) are
consistent under the HNER model. Note that β and γ (or β and ρ) are necessary for computing
the EBLUP. In contrast, even in a very simple case with unbalanced data and heteroscedasticity,
the MLE of γ , or ρ, obtained under the NER model is inconsistent. Note that HNER is weaker
than NER. In simulation studies, the authors showed that on the one hand, even if the NER
model actually holds, as long as the sample size ni is not too small, there is not much difference
in performance between the HNER and NER based EBLUPs; on the other hand, if the NER
model does not hold but the HNER model holds, there is a substantial difference between the
two in favor of the HNER based EBLUP. Sugasawa & Kubokawa (2017) considered a variation of
the HNER model. Instead of assuming the σ 2

i s are completely unknown, the authors considered
modeling the σ 2

i s; they also relaxed the normality assumption about the random effects and errors.

2.2. Robust Methods for Mean Squared Prediction Error Estimation

In the Prasad-Rao method (Prasad & Rao 1990), the variance components involved in a linear
mixed model (LMM) (e.g., Jiang 2007, chapter 1) are estimated using the MoM, also known as
the analysis of variance (ANOVA) method (these terms are used interchangeably hereafter). The
EBLUP is then obtained with the Prasad-Rao estimators of the variance components. The ini-
tial consideration of Prasad & Rao (1990) seemed to be simplicity—the ANOVA estimators have
closed-form expressions, unlike the ML or REML estimators, which makes it easier to derive and
justify a second-order unbiased MSPE estimator. The bias of the MSPE estimator is therefore
o(m−1), where m is the total number of small areas from which data are available. However, there
is a bonus to the Prasad-Raomethod, that is, the ANOVAmethod requires specification of only up
to the second moments of the data; in particular, the normality assumption is not needed. In fact,
Lahiri & Rao (1995) showed that, under the Fay–Herriot model, the Prasad-RaoMSPE estimator
is robust to nonnormality of the small area-specific random effects, although the normality of the
sampling errors is still needed.

In terms of resampling methods for MSPE estimation, Jiang et al. (2002) proposed a jackknife
(Quenouille 1949) method for estimating the MSPE of EBP.The method is especially convenient
to implement under the posterior linearity assumption, which is weaker than assuming that the
data are normal, as noted earlier (Ghosh & Lahiri 1987). It should be noted that the Jiang et al.
(2002) jackknife is not restricted to work under the posterior linearity assumption; the latter just
makes the computation easier, because theMSPE of the BP then has an analytic expression. Later,
Jiang et al. (2018) extended the Jiang et al. (2002) jackknife to cases where the MSPE of the
BP does not have a analytic form. A different approach was taken by Hall & Maiti (2006), who
proposed a bootstrap method for the NER model that does not require complete specification of
the distribution of the random effects and errors; more detail is provided in Section 4.

In many cases the data for the outcome variable are binary or counts. In such cases an LMM
may not be appropriate; instead, a generalized linear mixed model (GLMM) (e.g., Jiang 2007,
chapter 3) may be used (e.g., Ghosh et al. 1998). In particular, Jiang & Lahiri (2001) proposed
an EBP approach and extended the Prasad-Rao method of MSPE estimation to SAE with
binary data; see also Jiang (2003). In those papers, the authors used the MoM estimators of
the parameters under a GLMM, instead of the ML estimators, which are computationally
challenging to obtain (e.g., Jiang 2007, section 4.1; Torabi 2012). Furthermore, the MoM relies
on weaker assumptions than GLMM. In fact, for the MoM estimators to be consistent, one only
requires that the conditional mean function of the response, given the random effects, is correctly
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specified; an MoM estimator with improved efficiency can be obtained by correctly specifying
the conditional first two moments ( Jiang & Zhang 2001). It should be noted, however, that the
MoM estimator is not robust to misspecification in the distribution of the random effects, unless
the GLMM is a LMM (e.g., Jiang & Nguyen 2009).

3. SMALL AREA ESTIMATION METHODS THAT ARE MORE ROBUST
IN A CERTAIN WAY

In practice, a particular statistical method is chosen for various reasons, which may be scientific,
economic, or political; once a method is adopted, it is often not easy to make substantial changes
because of the original considerations. Thus, a practitioner often has little alternative but to pro-
ceed with using the adopted method.

What if an unexpected situation—one that is not what the adopted method was designed for—
is encountered? For example, a linear regression model is designed to be used when the scatter
plot of the data follows a linear trend. Occasionally, such a linear trend is ruined by a few outliers.
Clearly, the outliers are unexpected, or unwelcomed. In order to protect the method from falling
apart when facing the unexpected, amethod should be chosen, before it is adopted, that is relatively
robust to the unexpected.

3.1. Robustness to Outliers

In the statistics literature, quantiles, such as the median, have been used as alternatives to the
mean as measures of location. Chambers & Tzavidis (2006) proposed a quantile-based approach
to SAE. Their intention was to offer an alternative to the modeling of between-area variation
using the random effects. The approach was motivated by the quantile regression (Koenker
& Bassett 1978). A key element is called the M-quantile, defined as Q = Qq(x;ψ ), that satis-
fies the integral identity

∫
ψq(y−Q) f (y|x)dy = 0, where q is a given number in (0, 1), ψq(r) =

2ψ−1(r/s){q1(r>0) + (1 − q)1(r≤0)},ψ (·) is an influence function, and s is a robust estimator of scale.
Here, y and x denote the response and covariates, respectively. The use of M-quantile instead of
standard quantile regression is mainly due to some practical considerations, as the authors ar-
gued. Namely, the M-quantile regression is easier to fit by utilizing an iteratively reweighted least
squares algorithm. In order to apply the M-quantiles to SAE, the authors introduce a unit-level
M-quantile coefficient, q j , defined through the equationQqj (x j;ψ ) = y j , where x j and y j are x and
y for the jth unit. Furthermore, the area-specific M-quantile coefficient is defined as the average
of the unit-level ones. The area M-quantile coefficients are estimated by fitting the model with
sample M-quantiles. The authors argue that a main advantage of the M-quantile model is that it
allows for outlier-robust inference using widely availableM-estimation software.They also discuss
a link between their area-specific M-quantile coefficients and the random effects. For example, if
all area M-quantile coefficients are equal to 0.5, one may conclude that there is no between-area
variation beyond that explained by the model covariates.

Regarding the measure of uncertainty, Chambers & Tzavidis (2006) suggested using the mean
squared error (MSE).This seems a bit unnatural as the point seemed to be to avoid using themean-
based approach, which leads to the BP under the MSE. Perhaps something like the inter-quantile
range should be considered instead. Another difference from mean-based approaches such as the
EBLUP is that, unlike the latter, there was no optimality consideration under the M-quantile
framework. Apparently, there is a lack of theoretical foundation regarding the M-quantile.

Chambers (1986, p. 1063) defines a representative outlier as a “sample element with a value
that has been correctly recorded and cannot be regarded as unique,” and for which “there is
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no reason to assume that there are no more similar outliers in the non-sampled part of the
population.” Sinha & Rao (2009) studied the impact of the representative outliers on the
normality-based EBLUP. Although the EBLUPs are efficient under the assumed Gaussian mixed
model, they are sensitive to outliers that deviate from the assumed model. Such outliers exist prac-
tically, because the Gaussian distribution assumption may never hold exactly. In order to make the
EBLUP robust to such outliers, Sinha & Rao (2009) consider the likelihood equation that is de-
rived under the normality assumption. They then modify certain terms involved in the likelihood
equation by down-weighting contributions due to the outliers. In particular, the authors used
Huber’s ψ-function to modify certain “residual” terms, that is, standardized versions of yi − Xiβ.
The robustified ML estimator may be viewed as an M-estimator (e.g., Huber & Ronchetti 2009).
Sinha & Rao (2009) established asymptotic normality of their robustified ML estimator. For the
measure of uncertainty, the authors adopted a parametric bootstrap approach and studied its em-
pirical performance.

3.2. Robustness to Model Failure

One advantage of the design-based direct estimates is that they are free of model assumptions
and therefore not affected by model failure. The design-based approach may be inefficient, of
course, when sample size for the direct estimate is small, which is the main concern of SAE. It
would be nice to combine the advantages of model-based and design-based approaches. Jiang &
Lahiri (2006) attempted to do this by proposing a model-assisted EBP approach using an assumed
mixed-effects model, which may be linear or nonlinear, to derive the EBP. Then they justified
that the EBP is design-consistent in the sense that, when the sample size is large, the EBP is
close to the design-based estimator, and this is true whether the assumed model holds or not (the
technical definition is that, when the sample size ni for the ith small area goes to ∞, the difference
between the EBP and the design-based estimator of the finite population domain mean goes to 0
in probability). Since the design-based estimator is known to be accurate when the sample size is
large, the EBP is protected frommodel failure at least for areas with large sample sizes. In practice,
due to inhomogeneous subpopulation (small area) sizes, some areas do end up with relatively large
sample sizes. For example, in a US national survey, the sample sizes for California, New York, or
Texas are often quite large.Model-assisted methods had been previously used in SAE; readers are
directed to articles by Särndal (1984), Kott (1989), Prasad & Rao (1999), and You & Rao (2003),
among others. An advantage of the Jiang-Lahiri EBP is that an explicit model assumption is not
needed for the unobserved units of the finite population. This is in sharp contrast to the pseudo-
EBLUP method of Prasad & Rao (1999), who derived a design-consistent estimator assuming
that a (superpopulation) LMM holds for all of the units in the finite population, observed or
unobserved. In practice, model assumptions are difficult to check for unobserved units.

However, the model-assisted methods mentioned above are not protected from model failure
for areas with small sample sizes. For example, a linear model may be so oversimplified that it
misrepresents the true small area mean. Of course, one may avoid such model misspecification by
carefully choosing the assumed model via a statistical model selection process (see Section 5.2).
However, there are practical, sometimes even political, reasons that a simple model like LMM is
preferred. For example, such a model is simple to use and interpret, and it easily utilizes auxiliary
information. Note that the auxiliary data are often collected using taxpayers’ money, so it might
be politically incorrect not to use them, even if that is a result of the model selection.

Equation 1 shows that area direct estimate with relatively high sampling variance (or relatively
small sample size when the area-level estimate is aggregated from samples within the area) is
moved more toward the regression estimator and so is not protected frommodel misspecification.
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Observed best
prediction (OBP):
uses an assumed model
and a broader model
to consider how the
parameters of the
assumed model should
be estimated in order
to reduce the impact of
model misspecification
in prediction of mixed
effects

Best predictive
estimator (BPE):
gives more weight to
areas with larger
sampling variance Di,
in contrast to MLE,
which gives more
weight to areas with
smaller sampling
variance

Observed best prediction (OBP), proposed by Jiang et al. (2011), intends to minimize the impact
of such a misspecification. Essentially, OBP entertains two models: One is the assumed model and
the other is a broader model, usually under very mild or no assumptions. The broader model is
always, or almost always, correct, yet it is useless in terms of utilizing the auxiliary information.
The assumed model is used to derive the best prediction (BP) of the small area mean, which is
no longer the BP when the assumed model fails. The broader model, in contrast, is only used to
derive a criterion for estimating the parameters under the assumed model, and the criterion is not
model dependent. Note that some of the well-known criteria for parameter estimation, such as
ML or REML, are model dependent. The OBP criterion for parameter estimation is derived as
an observed MSPE under the true model, which is unknown (but luckily this does not matter, as
far as parameter estimation is concerned). The parameter estimator obtained by minimizing the
observed MSPE is called the best predictive estimator (BPE), which is different from the ML or
REML estimators, in general. Because OBP estimates the parameters under an objective criterion
that is unaffected by model misspecification, it is not surprising that OBP is more robust against
model failure than EBLUP in terms of predictive performance. The latter was demonstrated both
theoretically and empirically by Jiang et al. (2011) and in subsequent work (Chen et al. 2015, Jiang
et al. 2015a, Bandyopadhyay 2017).

Example 1 (OBP for hospital data). Recall the hospital data discussed in Section 1.3.
Ganesh (2009) proposed a Fay–Herriot model as yi = β0 + β1xi + vi + ei to fit the data.
However, an inspection of the scatter plot suggests some nonlinear trend. In fact, it appears
that a quadratic model would fit the data well except for a potential outlier at the upper
right corner.

The question is what to do in this situation. One option would be to look for a more
complex model that fits the data better. This approach will be explored later in Section 5.2.
Another option is to stay with the relatively simple quadratic model but take into account
the potential model misspecification. This would also avoid overfitting, especially given the
small sample size. Following the latter approach, the quadratic model, expressed as

yi = β0 + β1xi + β2x
2
i + vi + ei, i = 1, . . . , 23, 2.

is fitted using theOBPmethod,which is known to bemore robust tomodel misspecification
than the EBLUP method. The OBP is based on the BPE of the model parameters, rather
than being based on theML, REML, or Prasad-Rao estimators. To illustrate the difference,
let us assume, for now, that A is known. Under the general expression of the Fay–Herriot
model (see Section 1.2), the BPE of β has the expression

β̂ =
{

m∑
i=1

(
Di

A+Di

)2

xix
′
i

}−1 m∑
i=1

(
Di

A+Di

)2

xiyi. 3.

In comparison, the MLE of β has the expression

β̃ =
(

m∑
i=1

xix
′
i

A+Di

)−1 m∑
i=1

xiyi
A+Di

. 4.

Comparing Equations 3 and 4, we can see that both estimators are weighted averages of the
data; the only difference is how the weights are assigned.

346 Jiang • Rao



This seems to be intuitive when recalling the expression of the BP, which is Equation 1
with β̂ and Â replaced by the true β andA, respectively. In other words, the BP is a weighted
average of the direct estimator, yi, and model-based estimator, x′

iβ (assuming that β is
known), and the model part is more relevant to area with larger Di. Jiang (2017, p. 45)
wrote the following on interpreting the difference between the BPE and MLE: “Imagine
that there is a meeting of representatives from the different small areas to discuss what es-
timate of β is to be used in the BP. The areas with larger Di think that their ‘voice’ should
be heard more (i.e., they should receive more weights), because the BP is more relevant to
their business. Their request is reasonable (although, politically, this may not work. . .).” It
should be noted that the BP, not the OBP, determines how to assign weights to the direct
and model-based estimators; the OBP only finds a way to estimate the parameters involved
in the BP, namely β and A, to minimize the potential damage in case the model is misspec-
ified. The EBLUP, in contrast, finds a different way to estimate the parameters, typically
via ML, REML, or MoM estimators, which differ from the BPE. For the hospital data,
in particular, the BPE under the current model (see Equation 2) are given by β̂0 = 0.280,
β̂1 = −0.989, β̂2 = 3.261, and Â = 2.099 × 10−4. A trio of plots of the direct estimates and
resulting OBPs and EBLUPs are presented in Figure 2. The effect of differential weight-
ing of hospitals is clearly evident in Figure 2c, which compares the OBPs to the EBLUPs
(the line of identity is overlaid). In this case, using the BPE estimates forces the OBPs to be
systematically larger in magnitude than their EBLUP counterparts.

3.3. Benchmarking

Pfeffermann (2013, p. 50) wrote in his review article on SAE, “Benchmarking robustifies the infer-
ence by forcing themodel-based predictors to agreewith a design-based estimator for an aggregate
of the areas for which the design-based estimator is reliable.” A benchmarking equation typically
looks like the following:

m∑
i=1

wiθ̂i =
m∑
i=1

wiyi, 5.

where θ̂i is a model-based predictor of the small area mean for the ith small area, yi is a design-
based estimator for the same small area mean, and the wis are known weights. The right side of
Equation 5 is typically a reliable estimator for the aggregated population mean. For example, if
the small areas are states, the aggregated population mean may correspond to the national mean.
Also, because the design-based estimators have nothing to do with the model, the right side of
Equation 5 is unaffected by model failures. If Equation 5 is forced to satisfy when developing the
model-based predictors, θ̂i, there is, at least, protection from model failure at the aggregated level
of interest. Sometimes there are multiple benchmarking requirements, so onemay have more than
one equation like Equation 5 that need to be satisfied. The traditional EBLUPs do not, in gen-
eral, satisfy the benchmarking requirement(s). For the most part, there have been two approaches
to benchmark the EBLUP. The first is to make a suitable adjustment to the traditional EBLUP
by adding or multiplying a term to the EBLUP, so that the adjusted EBLUPs satisfy the bench-
marking equation. For more information, readers are referred to Pfeffermann & Barnard (1991),
Wang et al. (2008), and Rao &Molina (2015, section 6.4.6). The second approach is to modify the
way that EBLUP is derived so that the resulting small area predictors are self-benchmarking, that
is, they automatically satisfy the benchmarking requirement(s). For example, You & Rao (2002)
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Figure 2

Trio of plots from the hospital data set (Morris & Christiansen 1995) showing (a) the direct estimates versus the severity index, (b) the
observed best prediction (OBP) versus the severity index (notice the smoothing effect produced), and (c) the OBP versus the empirical
best linear unbiased predictor (EBLUP) estimates. Panel c plots the OBP against the EBLUP; the line of identity is shown.

proposed a pseudo-EBLUPusing survey weights,which has the self-benchmarking property. In an
alternative approach, Wang et al. (2008) introduced an augmented model by adding the weights
wi (see Equation 5), as an additional covariate, to the model. The EBLUPs derived under the
augmented model are then self-benchmarking.

Bandyopadhyay (2017) extended both methods, the adjustment method and the augmented
model method, to OBP to benchmark the latter under the Fay–Herriot model. Suppose
that the original Fay–Herriot model can be expressed as yi = x′

iβ1 + vi + ei, i = 1, . . . ,m,
where everything is as described in the second paragraph of Section 1.2, with β replaced
by β1. The augmented Fay–Herriot model is yi = x′

iβ1 + β2wi(1 − γi )−1 + vi + ei, which
is obtained by adding the term β2wi(1 − γi )−1 to the original Fay–Herriot model, where
γi = A/(A+Di ). If A is known, define X1 = (x′

i )1≤i≤m, X2 = X2(A) = [wi(1 − γi )−1]1≤i≤m, and
X = X (A) = [X1 X2(A)]. Then, the augmented Fay–Herriot model can be written as y =
X (A)β + v + e, where y = (yi )1≤i≤m, β = (β ′

1,β2)′, v = (vi )1≤i≤m, and e = (ei )1≤i≤m. The BPE of β

is given by β̃ (A) = {X (A)′
2(A)X (A)}−1X (A)′
2(A)y, where 
(A) = diag(1 − γi, 1 ≤ i ≤ m).
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When A is unknown, it is replaced by its BPE, Â, which is the minimizer of {y−
X (A)β̃ (A)}′
2(A){y− X (A)β̃(A)} + 2Atr{
(A)}, leading to β̂ = β̃ (Â). The OBP of the vector
of small area means, θ = (θi )1≤i≤m, is given by θ̂ = ÂV̂ −1y+DV̂ −1X (Â)β̂, where V̂ = ÂIm +D

and D = diag(Di, 1 ≤ i ≤ m). A few lines of algebra can then show that the OBP satisfies the
benchmark equation, Equation 5, which can be written as w′θ̂ = w′y with w = (wi )1≤i≤m. To
explain the procedure intuitively, note that, by Equation 1, one has yi − θ̂i = (1 − γ̂i )(yi − x′

iβ̂ ) ≈
(1 − γi )(yi − x′

iβ̂ ), so Equation 5 implies that
∑m

i=1 wi(1 − γi )−1(yi − x′
iβ̂ ) ≈ 0. The latter suggests

that, after fitting the linear regression of yi on xi, the residual, yi − x′
iβ̂, needs to be uncorrelated

with wi(1 − γi )−1; to make sure that this happens,wi(1 − γi )−1 needs to be included as a covariate
when fitting the regression model, which leads to the augmented Fay–Herriot model.

4. NONPARAMETRIC/SEMIPARAMETRIC SMALL AREA ESTIMATION

One way to achieve robustness is to make the underlying model less restrictive. For example,
instead of assuming a linear model, one may include higher-order terms, such as quadratic or
cubic functions of the covariates. The higher-order model includes the linear model as a special
case (when the coefficients of the higher-order terms are zero) and thus is less restrictive than the
linear model in that, even if the linear model fails, the higher-order model may still be valid.More
generally, one may model the mean function nonparametrically or semiparametrically.

A nonparametric area-level model, extending the Fay–Herriot model, may be written as

yi = f (xi ) + vi + ei, i = 1, . . . ,m, 6.

where the assumptions about vi and ei are the same as in the Fay–Herriot model (see Section 1.2)
but f (·) is an unknown function. In order to make inference about f (·) trackable, Opsomer et al.
(2008) used a P-spline approximation to f (·). Here, P-spline refers to penalized spline, which uses
penalization methods to ensure smoothness of the fitting function and avoid overfitting. Specifi-
cally, the P-spline is in the form of

f̃ (x) = β0 + β1x+ · · · + βpx
p + γ1(x− κ1)

p
+ + · · · + γq(x− κq )

p
+, 7.

where p is the degree of the spline, q is the number of knots, κ j , 1 ≤ j ≤ q are the knots, and
x+ = x1(x>0). The idea can be extended to other types of small area models as well. In fitting the
P-spline-basedmodel,Opsomer et al. (2008) assumed that the γ coefficients are random; this leads
to a connection between P-spline fitting and LMM (e.g.,Wand 2003) that is used to determine the
penalty parameter. Jiang (2010, section 13.4) noted that the LMM connection is asymptotically
unjustified in estimating the unknown function f (·). Jiang et al. (2010) considered model selection
in choosing the degree of the spline, p, and number of knots, q, using fence methods, a class of
strategies formodel selection that is particularly suitable for nonconventional problems (e.g., Jiang
2014; also see Section 5.2). Rao et al. (2014) considered a similar P-spline approach to SAE under
semiparametric mixed models, extending the work of Sinha & Rao (2009). Lombardía & Sperlich
(2008) considered an extension of GLMM in which the conditional mean of the response given
the random effects is assumed to satisfy

g(E(yi j|αi,Ti j ,Xi j )) = λ(Ti j ) + x′
i jβ + z′

i jαi,

where g(·) is a known link function; αi is a vector-valued random effect; xi j , ti j are observed vectors
of regressors; and zi j is a subvector of (1, x′

i j )
′. Furthermore, λ(·) is an unknown function. The
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authors combined a likelihood approach for mixed-effects models with kernel methods. As for
measure of uncertainty, the authors proposed a bootstrap procedure and provided a theoretical
justification. They also discussed application to SAE.

Lohr and Mendez (S. Lohr & G. Mendez 2011, unpublished technical report) noted that
for spline-based approaches, one needed to have the xi j for population units, not just X̄i, the
population mean of the xs. They also raised the question about spline smoothing with several
continuous predictors that would then have issues with the curse of dimensionality (Hastie &
Tibshirani 1990). In addition, many of the auxiliary data are categorical instead of continuous;
as a result, the mean function may not be smooth. They took the approach of subsetting and
interactions instead, that is, there may be different relationships between the response and the
auxiliary variables in different subgroups. Building upon the work of Mendez (2008), who devel-
oped tree-based approaches to model dependent data, Lohr and Mendez extended the proposed
tree-based models to SAE. This recognized earlier work on using classification and regression
trees for survey data (see Goksel et al. 1992, Schouten & De Nooij 2005, Toth & Eltinge 2011).
Lohr andMendez developed tree growing and pruning approaches. They then went a step further
and proposed random forests (RFs) (Brieman 2001) for SAE,which they called mixed RFs to allow
random effects. RFs are appealing and are now widely used because they are excellent predictors,
nonparametric, resistant to overfitting, and able to model complex interactions. As part of their
mixed-RF algorithm,Lohr andMendez used their proximity-based estimators of residual variance
(Mendez & Lohr 2011) for fitting. It should be noted that Bilton (2016) independently studied
tree-based methods for SAE when looking at modeling strategies for poverty estimation used to
estimate levels of deprivation across small geographical domains, using data from theWorld Food
Programme.

Datta et al. (2018), in one of the last contributions of Peter Hall to SAE before he sadly passed
away in 2016, noted that measurements of auxiliary variables used in SAE are often subject to
measurement errors. Ignoring such error-in-variable can lead to estimators that perform even
worse than the direct survey estimators. The authors proposed a semiparametric approach based
on the Fay–Herriot model to produce reliable prediction intervals for small-area characteristics
of interest. The approach is semiparametric because it is assumed that the distribution of the
auxiliary variable without error, X , which is unobserved, is completely unknown; other parts of
random variables, such as the area-specific random effects, the sampling errors, and the measure-
ment errors corresponding to X , follow either parametric or known distributions. The unknown
probability density function of X is estimated using the kernel deconvolution estimator of Carroll
& Hall (1988), based on which the prediction intervals are produced.

Resampling methods in SAE have received much attention since the beginning of the century
(see, e.g., Gershunskaya et al. 2009 for a review). In particular, Hall & Maiti (2006) proposed a
nonparametric bootstrap method for estimating the MSPE of EBLUP under an NERmodel.We
note that it is not obvious, in general, how to bootstrap nonparametrically under a mixed-effects
model. Efron’s (1979) bootstrap, which is based on the i.i.d. assumption, clearly cannot be directly
applied. Hall & Maiti (2006) had a clever idea about how to bootstrap without making specific
distributional assumptions about the random effects and errors when the interest is in estimating
the MSPE. They considered an extended version of the NER model (Battese et al. 1988). A key
observation is that the MSPE is a second/fourth-moment quantity in the sense that, up to the
order of o(m−1), the MSPE of EBLUP only depends on the second and fourth moments of the
random effects and errors. Thus, if one can generate random effects and errors such that their
second and fourth moments match those of the true random effects and errors, the MSPE of the
EBLUP under the generated data distribution would be the same, up to a difference of o(m−1),
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as that under the actual data distribution. The second and fourth moments of the random effects
and errors are estimated from the data, which the authors called moment matching. It should be
noted that this method is designed for the area means. It does not work for complex small area
parameters, such as small area proportions under a GLMM (e.g., Jiang 2007). In the latter con-
text, Diallo & Rao (2018) developed a skew-normal distribution approach for estimating complex
parameters.

5. OTHER TOPICS

There are various contributions that are related to robust SAE, in one way or another, but the
topics may not belong to one of the earlier sections, or have special features of their own. We
review a few such topics in this section.

5.1. Bayesian Approaches

There are HB and EB approaches to producing robust estimators using the Dirichlet process
prior. The latter is a standard tool in nonparametric or semiparametric Bayesian analysis (see, e.g.,
Ghosh et al. 1989, Polettini 2017). In the EB case, parameters of the Dirichlet process prior are
estimated from the data.

Datta & Lahiri (1995) proposed a robust HB approach for SAE in the presence of covariates
and outliers. They suggested a way to achieve robustness to second-level model failure in a mul-
tivariate Fay–Herriot model by replacing normality with a scale mixture of normal distributions
with unknown parameters, which are handled through assignment of priors. They derived some
interesting theoretical properties. For example, it was shown that if the model fails for a given
area due to an outlier, one still retains the benefit of shrinking for all areas except for the outlying
area, which does not happen if one had the normal prior (in which case the HB estimators
for all areas converge to the direct estimators). For the outlying area, the HB estimator converges
to the direct estimator.

Datta & Ghosh (1991) proposed an HB small area predictor. Chakraborty et al. (2018) showed
that this method is not robust to outliers in a way similar to EBLUP (see Section 3.1). Following
Sinha & Rao’s (2009) method of robustifying the EBLUP, Chakraborty et al. (2018) proposed a
robust Bayesian method based on a normal mixture distribution. The set-up may be viewed as
a Bayesian version of the NER model (Battese et al. 1988; see Section 1.2), the only difference
being that the distribution of the unit-level errors is assumed to follow a two-component nor-
mal mixture instead of following the normal distribution. Both components have zero means, but
the variances are different. Here, the larger variance corresponds to source of the outliers. The
prior for the parameters is noninformative, but sufficient conditions are given to ensure that the
resulting posterior is proper. Furthermore, the prior is chosen carefully so that the conditional dis-
tributions are simple. Note that the conditional distributions are approximated using the Markov
Chain Monte-Carlo (MCMC) method; thus, simplicity of the conditional distributions is impor-
tant from a computational point of view. Chakraborty et al. (2018) carried out an empirical study
of the frequentist properties of their proposed Bayesian predictors, and they showed that the latter
performed similarly to the robust EBLUP of Sinha & Rao (2009) in the presence of outliers; both
methods outperformed the HB method of Datta & Ghosh (1991) and the M-quantile method of
Chambers & Tzavidis (2006) (see Section 3.1). In the absence of outliers, the Chakraborty et al.
method performed similarly to that of Datta & Ghosh (1991). An application to the Iowa crops
data (Battese et al. 1988) was discussed.
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Model selection:
helps determine the
robustness of a
model-based method;
for example, in some
cases a higher-order
model provides a
better fit to the data
than a linear one

Fence methods:
construct a statistical
barrier to eliminate
incorrect models; the
optimal model is
within the fence and is
selected by a criterion
that can incorporate
practical interest

5.2. Model Selection and Diagnostics

The importance of model selection in SAE was noted earlier by Battese et al. (1988) and Ghosh &
Rao (1994), among others. Datta & Lahiri (2001) discussed the use of the Bayes factor in choosing
between a fixed effects model and a random effects model. Meza & Lahiri (2005) demonstrated
limitation of Mallow’s Cp in selecting the fixed covariates in a NER model. Vaida & Blanchard
(2005) proposed a conditional AIC (Akaike information criterion) method that is applicable to
selection among NER models. Under a general framework, Jiang et al. (2008) proposed a class
of strategies for model selection, known as the fence methods, that is especially suitable to non-
conventional model selection problems such as mixed model selection (see Jiang 2014 for more
details).

Jiang et al. (2009) applied the fence methods to selection of NER models. They, in particular,
applied the method to the Iowa crop data of Battese et al. (1988) and came up with the optimal
models of corn for corn, and soybeans for soybeans. Jiang et al. (2010) applied the fencemethods to
nonparametric model selection using spline approximation (see Section 4), which led to the cubic
model mentioned above for the special case of hospital data (Morris & Christiansen 1995,Ganesh
2009). Datta et al. (2011) considered model selection for the Fay–Herriot model by testing the
presence of the area-specific random effects. This is equivalent to testing H0 : A = 0, where A is
the variance of the area-specific random effect. If H0 is rejected, the EBLUPof the small areamean
is used with the corresponding MSPE as measure of uncertainty; if H0 is accepted, the regression
predictor is used with the standard regression variance estimator asmeasure of uncertainty.Molina
et al. (2015) showed that the method of Datta et al. (2011) (hereafter referred to as the DHM
method) can be improved; in particular, EBLUP is retained because it automatically converges to
the regression predictor when A is small (see the discussion below Equation 1). Preliminary testing
is used to construct theMSPE estimator of EBLUP (see also section 6.4.3 of Rao &Molina 2015).
Jiang et al. (2018) noted that theDHMmethod’s measure of uncertainty does not take into account
the additional uncertainty in model selection (here via hypothesis testing) and proposed a Monte
Carlo jackknife method to assess uncertainty in post-model-selection SAE. Jiang & Torabi (2019)
proposed a Sumca (which is an abbreviation for “simple, unified, Monte Carlo assisted”) method
that can also capture the additional uncertainty due to model selection.

Another type of model selection under the Bayesian framework regards the choice of the prior.
Datta et al. (2005) suggested choosing a prior such that measures of uncertainty under Bayesian
and frequentist frameworks approximately agree with each other. Here the Bayesian measure of
uncertainty is the expected posterior variance, while a frequentist measure of uncertainty is the
MSPE. Ganesh & Lahiri (2008) extended the work of Datta et al. (2005) to the weighted average
of the expected posterior variances and MSPEs over different small areas.

Example (model selection for the hospital data). The hospital data were first analyzed
by Ganesh (2009) in an SAE context. The author proposed a Fay-Herriot model for the
graft failure rates. The model is the same as that described in the second paragraph of
Section 1.2 with x′

iβ = β0 + β1xi, where xi is the severity index, that is, the average fraction
of females, blacks, children, and extremely ill kidney recipients at hospital i. An inspection of
the raw data suggests one potential outlier (at the upper right corner of Figure 3b), which
corresponds to hospital #5.Note that the case is outlying when a linear model is fitted; when
a more complex model is fitted, it may no longer be outlying.

In fact, Jiang et al. (2010) used the fence method to identify the optimal model for the
hospital data. They found that the optimal model is a cubic model, which corresponds to
the smooth curve in the Figure 3b. Specifically, we consider a class of spline-based non-
parametric area-level models. The fence method is used to select the degree of polynomial,
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Figure 3

(a) Plot of p∗ against cn from the search over the full model space. (b) Raw data and the fitted values (red dots) and curves—the cubic
function resulted from the full model search. Blue squares and lines show the linear spline with four knots from the restricted model
search; green crosses and lines show the generalized additive model (GAM) fit.

p, and the number of knots, q, for the spline. The procedure has selected the model with
p = 3 and q = 0, that is, a cubic function with no knots, as the optimal model. It should be
noted that the fence method involved bootstrap evaluation of the empirical selection prob-
ability. To take into account of the chance error involved in the bootstrapping, the fence
procedure was repeated 100 times, each giving the same optimal model. Figure 3a shows a
plot of the empirical selection probability, p∗, against c (= cn), which is a tuning parameter
whose choice is a key of the fence method.

Jiang et al. (2010) compared the fence method to a few other methods. The first com-
parison is with the fence method restricted to the space of the linear splines (i.e., p = 1). In
this case, the fence method selected a linear spline with four knots (i.e., q = 4). The second
comparison is with a generalized cross-validation (GCV)–based smoothing method. Here
the BRUTO procedure of Hastie & Tibshirani (1990) was used, which augments the class
of models to look at a null fit and a linear fit for the spline function. The resulting model
selection (i.e., null, linear, or smooth fits) was embedded into a weighted back-fitting algo-
rithm, using GCV for computational efficiency. In this case, the BRUTO finds an overall
linear fit for the fixed effects mean function. The models selected by different methods are
plotted in Figure 3b.

Closely related to model selection is model checking or diagnostics. Such techniques are often
used in conjunction withmodel selection. For example, an initial check of the proposedmodel may
suggest that the model is a poor fit to the data, a model selection procedure is then carried out to
choose a suitable model,model diagnostics are then applied again tomake sure that the newmodel
is appropriate, and so on. Broadly speaking, many diagnostic problems in SAE have to do with
mixed model diagnostics, a topic that has been discussed in the literature, though not extensively.
Several authors have used EBLUP or EB estimators for diagnostic plots, especially regarding the
random effects. Examples include articles by Dempster & Ryan (1985), Lange & Ryan (1989), and
Calvin& Sedransk (1991).There have also been goodness-of-fit tests for mixedmodel diagnostics.
Jiang (2001) proposed a χ2-type goodness-of-fit test for LMM diagnostics. Pan & Lin (2005)
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proposed a goodness-of-fit test for GLMM based on cumulative sums of residuals. Claeskens &
Hart (2009) proposed an alternative approach to that of Jiang (2001) for checking the normality
assumption in LMM. It is a likelihood-ratio test that compares the estimated distribution with the
null distribution (i.e., normal); model selection via the information criteria is used to determine the
larger class of distributions, to which the normal distribution is embedded. Gu (2008) extended
the method of Jiang (2001) to mixed logistic models, which are a special case of GLMM (e.g.,
Jiang 2007, chapter 3). Tang (2010) proposed a different χ2-type goodness-of-fit test that, unlike
that of Jiang (2001), is not based on cell frequencies. More recently, Dao & Jiang (2016) proposed
a modified Pearson’s χ2-test for GLMM diagnostics that is guaranteed to have a χ2 asymptotic
null distribution. The χ2-type tests of Jiang (2001), Gu (2008), and Tang (2010) have weighted χ2

asymptotic null distributions, whose evaluation requires Monte-Carlo simulations, similar to the
Claeskens & Hart (2009) test.

In terms of diagnostics for Bayesianmodels,Yan&Sedransk (2007, 2010) proposed threemeth-
ods for checking a missing hierarchical structure in a Bayesian model. The first two methods use
p-values defined in different ways; one is posterior predictive p-value derived from the predictive
posterior distribution, and the other is associated with a diagnostic statistic.The thirdmethod uses
Q-Q plots of the predictive standardized residuals in a way similar to Calvin & Sedransk (1991).
Rao & Molina (2015, p. 344) discussed some limitation of the posterior predictive values due to
double use of the same data.

5.3. Missing Data

Survey data are often incomplete in the sense that some of the responses, or covariates, aremissing.
The standard approaches to handling missing data are based on the E-M algorithm and multiple
imputation (e.g., Carpenter & Kenward 2013). However, such procedures often require strong,
untestable assumptions.

Plass et al. (2017) adapted a cautious likelihood approach (CLA) (see also Plass et al. 2015)
to nonresponses in SAE problems. They considered the case of binary responses, of which some
are missing. As an example, the authors discussed a study on the area-specific ratio of people at
risk of poverty based on data from the German General Social Survey. Here the binary response
corresponds to the status of “poor” or “rich” according to a certain definition. Out of a total of
3,466 intended responses, 454 were missing. Instead of assuming the standard missing at random
(or not missing at random) missing-data mechanism (MDM) (e.g., Little & Rubin 2014), the CLA
makes either no assumption or weak assumptions regarding the MDM.1 In the case of binary re-
sponses with no MDM assumption, the responses are assumed to be either 0, or 1, or “NA” (no
answer), hence in three categories. A categorical (multinomial) likelihood approach is then used
for inference. In the case of weak MDM assumption, the weak assumption is in terms of setting
up constraints on the categorical likelihood. The CLA is, for the most part, applied to the design-
based logistic generalized regression–synthetic estimator (Lehtonen & Veijanen 1998). Applica-
tion to model-based methods is limited, according to Plass et al. (2017), due to some technical and
computational difficulties.

Jiang et al. (2015b) developed the expectation-model selection (E-MS) algorithm for model
selection in the presence of incomplete data. The basic idea is to extend the concept of “parame-
ter” to the model plus the parameters under the model. This way, the idea of the expectation-
maximization algorithm (Dempster et al. 1977) is extended to model selection problems. As
1Sensitivity analysis is a subject area that has been developed to address robustness of the results of statistical
analysis to various MDMs. While these procedures are fairly standard in medical studies (e.g., Molenberghs
& Kenward 2007), applications to SAE problems so far has been limited.
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missing or incomplete data are often encountered in surveys, and in view of the importance of
model selection in SAE (see Section 5.2), the E-MS algorithm is expected to become a useful tool
in SAE.

6. SOFTWARE FOR IMPLEMENTING ROBUST SMALL AREA
ESTIMATION METHODS

It is informative to know what software is currently in the public domain for fitting some of the
methods we have described.While this information is certainly going to change over time, to date,
this is what is currently available in R:

1. The sae package (Molina & Marhuenda 2018) produces the Prasad & Rao (1990) MSPE
estimator for the Fay–Herriot model. The package will also return resampling-based (para-
metric and nonparametric bootstrap) MSPE estimates for various forms of the Fay–Herriot
model as well as unit-level models.

2. The robustsae package (Ghosh et al. 2016) does fully nonsubjective Bayesian analysis for
general area-level models.

3. Bandyopadhyay (2017) developed an R package, OBPSAE, which returns OBPs for both the
area-level and unit-level models. Also implemented in the package is the benchmarkedOBP
method (see Section 3.3), which the author developed.

4. The BIAS project provides an R package called ecoreg along with WinBUGS resources for
fitting a variety of area-level and unit-level models.

5. The emdi R package (Kreutzmann et al. 2018) estimates and maps regional disaggregated
indicators. It employs either direct estimation or the EBP approach proposed by Molina
& Rao (2010), who developed the approach for estimating nonlinear small area population
parameters (but the approach is applicable to general nonlinear parameters). Estimates of
the MSPE for the EBLUPs are done using the parametric bootstrap technique developed
by González-Manteiga et al. (2008).

7. CONCLUDING REMARKS

One issue related to robustness of SAE methods has to do with measurement errors. In fact, out-
liers in the data are often due to measurement or recording errors. Most of the existing literature
on measurement errors is not very useful from a practical standpoint. This is because most, if
not all, of the papers deal with random measurement error models rather than systematic mea-
surement error models, which are the most challenging case. Even for a random measurement
error model, it seems that the only case where something may be implemented is when it arises
from sampling consideration (e.g., covariate subject to measurement errors). In order to estimate
the sampling variances, one would need a large sample, but then the result would likely be al-
most the same if one simply ignores the measurement errors. In fact, if the measurement error is
not due to sampling, it is not even clear how to define an uncertainty due to measurement error
(some coverage of this topic is provided by A.L. Erciulescu, C. Franco, and P. Lahiri in their 2018
unpublished book chapter on use of administrative records in small area estimation).

There have been notable trends in the current development of SAE, including both research
and applications. These include SAE with big data (e.g., Marchetti et al. 2015) and linked data
(e.g., Lahiri 2017; Y. Han & P. Lahiri, unpublished manuscript), as well as interaction of SAE
with other fields. In the latter trend, the interaction is in both ways. On the one hand, modern
statistical methods that have been mostly used in other fields of statistics, such as nonparametric
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methods (see Section 4), are increasingly being used in SAE. On the other hand, SAE methods
have received increasing attention in other fields of statistics, such as health science statistics (e.g.,
Sun et al. 2018). There is also growing interest in exploring more complex data structure, such as
spatial correlation (e.g., J. Jiang & M. Torabi, unpublished manuscript).

Historically, it did not take long for modern technologies from other fields of statistics to make
their ways to SAE, but doing so must incorporate the special and practical needs of the latter. For
example, one reason that robustness to model misspecification is important is because SAE meth-
ods are often used by practitioners who are not technically prepared to enjoy using sophisticated
models. In fact, this is why linear models are popular among SAE practitioners. Clearly, a simpler
model, such as a linear model, is more likely to be misspecified than a complex one, such as a non-
parametric model. This was illustrated in our example in Section 5.2. However, a simple model
is easier to understand and interpret. For example, an EBLUP is, perhaps, much easier to explain
to a government official than something fitted via a machine learning method in spite of the fact
that the latter may provide a better fit. This is a reality that one must face in practical SAE.

As is seen throughout the review, robust methods often have an advantage in dealing with com-
plex data structure, working under complex models, and potentially in working with big data. One
reason is that robust methods tend to be simpler than methods that rely on strong assumptions.
For example, MoM type methods (e.g., Section 2.2) tend to be simpler than likelihood-based
methods. Such simplicity often leads to computational advantage, which is important in the case
of big data or complex models.
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