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ABSTRACT 
 

Efficient spin-charge conversion is indispensable in the spintronic computing and memory 

technologies for achieving low power. Spin Hall and quantum spin Hall effects have been 

demonstrated in certain atomically thin two-dimensional (2D) materials. In this work, we develop 

a multiscale simulation method from atomistic quantum transport simulation to the circuit model 

for the spin Hall effect (SHE) device based on 2D materials. Numerical implementation to speed 

up atomistic transport simulations with the non-equilibrium Green’s function formalism is 

described for the crossbar SHE device. The multiscale method can treat atomistic scale features 

and compute spintronic device performance metrics of the modeled device. As an example, the 

effect of edge roughness on the SHE devices based on monolayer 2D materials is investigated. 

The results illustrate that aggressively scaled monolayer SHE devices can efficiently transduce 

charge to spin in the presence of edge roughness. 
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I. INTRODUCTION 

With the scaling limits of conventional complementary metal-oxide-semiconductor (CMOS) 

device insight, spintronics has been proposed as an emerging technology for low power computing 

[1][2]. Efficient spin-charge conversion plays a critically important role in spintronic technologies. 

For example, in a recently proposed spintronic computing platform [3], devices based on 

topological spin Hall effect (SHE) and magnetoelectric switching have been demonstrated as the 

essential components for achieving efficient charge-spin transduction and low-power computing. 

The SHE devices, which are based on spin-orbit coupling (SOC) of the device channel material, 

electrically generate or detect spin current in nonmagnetic materials [4]. Significant experimental 

progress has been achieved on SHE devices based on both metallics and semiconductor material 

systems [4]. 

On the other hand, it has been theoretically proposed and experimentally demonstrated that 

certain two-dimensional (2D) Van der Waals layer materials have SHE or quantum spin Hall effect 

(QSHE) properties promising for topologically based spin-charge conversion. Due to SOC, which 

induces topological phases in the band structure, SHE or QSHE appears in 2D nonmagnetic 

monolayer materials [5][6][7]. The material systems range from the original proposal on SHE in 

graphene [5] to 2D transition metal dichalcogenide materials (TMDC) [8][9] and Kagome lattice 

materials [10]. High spin-charge conversion efficiency has been experimentally demonstrated in a 

TMDC-graphene crossbar device structure at room temperature [8]. Spin and charge transport in 

2D topological two-terminal devices have also been theoretically investigated [11]. 

In this work, we develop a multiscale simulation method and describe its numerical 

implementation for investigating the SHE device based on the 2D material system. The method 

treats atomistic scale features and defects in a 2D crossbar device structure and computes the spin-

charge conversion efficiency by using a parameterized circuit model. To achieve fast and efficient 

atomistic device simulations, a numerical implementation, which is based on a carefully designed 

lattice partition scheme, is proposed to enable the application of a recursive algorithm in the 

crossbar SHE device structure. The spintronic characteristics of SHE device based on monolayer 

2D materials are investigated. In particular, the effect of atomistic edge roughness on spintronic 

device performance is examined. 
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II. APPROACH 

A multiscale simulation method is developed to simulate spintronic properties for the modeled 

SHE device structure as shown in Fig. 1. The four contacts of the device are denoted as C1, C2, 

C3, and C4. The crossbar device structure has been widely used in the Hall effect measurement, 

as well as the experimental demonstration of room-temperature spin-charge conversion based on 

2D materials [8]. In a four-terminal crossbar device, the electrical current flows in the longitudinal 

direction between the contacts C1 and C3, which results in a spin current in the transverse direction 

between contacts C2 and C4 due to the SHE and QSHE of the 2D channel material. A multiscale 

simulation method from atomistic quantum transport simulation to the circuit model of the device, 

as well as its numerical implementation, are described below.  

 

A. Atomistic simulation by the NEGF formalism 

An atomistic tight binding Hamiltonian is used to describe the 2D material channel in the non-

equilibrium Green's function (NEGF) quantum transport simulations. For devices in the QSHE 

transport regime, a 2D monolayer hexagonal lattice structure is used, and the tight binding material 

parameters are taken to be the same as those in Ref. [5], which has the form of  

 𝐻 = ∑ 𝑡𝑐𝑖𝛼
+ 𝑐𝑗𝛼〈𝑖,𝑗〉𝛼 + ∑ 𝑖𝑡2𝜈𝑖𝑗𝑆𝛼𝛽

𝑧 𝑐𝑖𝛼
+ 𝑐𝑗𝛽 〈〈𝑖,𝑗〉〉𝛼𝛽 , (1) 

where 𝑡 is the nearest neighbor hopping parameter, 𝜈𝑖𝑗 = −𝜈𝑗𝑖 = ±1 depending on the relative 

orientation of two nearest neighbor bonds, 𝑆𝛼𝛽
𝑧  is the Pauli Z matrix, 𝑡2 = 0.03𝑡 is the 2nd nearest 

neighbor coupling which counts the SOC and responsible for the QSHE. The above tight binding 

Hamiltonian results in the well-known form of the Kane-Mele Hamiltonian, 𝐻𝑠𝑜 =

∆𝑠𝑜𝜓+𝜎𝑧𝜏𝑧𝑆𝑧𝜓 [5], where 𝜎𝑧, 𝜏𝑧 , and 𝑆𝑧  are the Pauli Z matrix for sublattice, valley, and spin 

degrees of freedom respectively, and ∆𝑠𝑜= 3√3𝑡2 is the SOC parameter, which determines the 

bandgap opened by the SOC effect. Although the experimental demonstration of QSHE in 

graphene is challenging, the QSHE has been experimentally demonstrated in 2D TMDC materials 

[9]. 

In addition, to simulate the 2D QSHE device, SHE device based on monolayer TMDC 

materials at the 2H crystalline phase, which has only a topologically trivial band structure but 

nonzero topological phases, is simulated. The Hamiltonian can be expressed as [6],  

 𝐻 =
Δ

2
𝜎𝑧 + ∑ 𝑡𝑐𝑖𝛼

+ 𝑐𝑗𝛼〈𝑖,𝑗〉𝛼 + 𝜆𝜏
𝜎𝑧−1

2
𝑆𝑧, (2) 



 4 

where Δ is the sublattice on-site potential difference, and 𝜆 is one half of spin splitting determined 

by SOC. As an example of TMDC material, the parameters for MoS2 are Δ = 1.66 𝑒𝑉 , t =

1.10 𝑒𝑉, and 𝜆 = 0.075 𝑒𝑉. 

Equations (1) and (2) are the Hamiltonians used in this study for 2D materials with the SHE 

and QSHE phenomena, respectively. It is noted that several types of tight binding Hamiltonian 

have been proposed to describe these effects in 2D structures [12], and the multiscale simulation 

approach is general and not restricted to the specific form of the Hamiltonian.  

Once the Hamiltonian is determined, the retarded Green’s function is calculated as [13], 

 𝐺𝑟(𝐸) = [(𝐸 + 𝑖0+)𝐼 − 𝐻𝐷 − ∑ Σ𝑖
4
𝑖=1 ]−1, (3) 

where 𝐻𝐷  is the tight binding Hamiltonian of the crossbar device channel, Σ𝑖 is the contact self-

energy of the i-th contact, with the index i summing over contacts C1 to C4 for the device in Fig. 

1. Ballistic transport and semi-infinite contacts are assumed for simplicity. The mutual charge 

transmission between any two contacts, Tij, where 1 ≤ 𝑖, 𝑗 ≤ 4, can be expressed as, 

 𝑇𝑖𝑗 = 𝑡𝑟𝑎𝑐𝑒(𝐺𝑟𝛤𝑖 𝐺𝑟+𝛤𝑗),  (4) 

where 𝛤𝑖 and 𝛤𝑗 are broadening of the physical contacts i and j, respectively. The spin transmission 

due to applied charge voltages can be computed as, 

 𝑇𝑖𝑗
𝑠𝑐 = 𝑡𝑟𝑎𝑐𝑒(𝝈𝐺𝑟𝛤𝑖𝐺𝑟+𝛤𝑗), (5) 

where 𝝈 are the Pauli matrices. For the spin colinear cases where the spin polarization is along the 

z-direction, 𝝈 can be simplified to 𝜎𝑧, thus 𝑇𝑖𝑗
𝑠𝑐 can be simplified to 𝑇𝑖𝑗

𝑧𝑐.  

Since the tight banding Hamiltonian provides an atomistic description of the device channel, 

the atomistic scale edge roughness or defects can be treated by removing the corresponding atoms 

in the 2D material channel. For a specified probability of edge roughness or defect percentage, a 

sufficiently large number of device samples are stochastically generated and simulated. The 

physical quantities of interest are obtained by statistically averaging over these devices. Because 

of the need to simulate a large number of devices, computational efficiency is important.  

A straightforward evaluation of the charge and spin transmission, 𝑇𝑖𝑗 and 𝑇𝑖𝑗
𝑧𝑐 by Eqs. (4) and 

(5), respectively, requires off-diagonal blocks of the Green’s function 𝐺𝑟 between the atom blocks 

i and block j. For the modeled four-terminal device, multiple off-diagonal blocks at different off-

diagonal sites are needed for computing all mutual transmissions. A direct inversion of the 
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Hamiltonian to obtain all these off-diagonal blocks can be computationally inefficient. An efficient 

numerical implementation, thereby, is developed and described next for the four-terminal device. 

 

B. Numerical implementation 

To address the computational efficiency issue of the NEGF simulations, a recursive algorithm, 

which has previously been applied to two-terminal and three-terminal devices [14], is extended to 

four-terminal crossbar devices. The recursive algorithm takes advantage of the block tridiagonal 

structure of the Hamiltonian, and computes the diagonal blocks and certain off-diagonal blocks of 

the Green’s function. The application of the recursive algorithm requires that each lattice block 

only couples to its neighboring blocks, so that the Hamiltonian matrix has a block tridiagonal 

structure. A lattice partition method of the four-terminal crossbar device is designed to achieve 

this goal, as shown in Fig. 2(a). Each box denotes a block of the device channel, which only couples 

to its neighboring block lattices for implementing the recursive algorithm. In the crossbar region, 

the size of the blocks becomes progressively larger from left to right. Figure 2(b) shows the 

topological arrangement of the blocks. In this scheme, the left contact in computation is essentially 

the physical contact C1, and the right contact for computation is combined physical contacts C2, 

C3, and C4. For semi-infinite contacts, the self-energy can be computed by using the Sancho-

Rubio scheme [15].  

A straightforward evaluation of charge and spin transmission coefficients by Eqs. (4) and (5) 

requires an off-diagonal block of the Green’s function 𝐺𝑟 between the atom block i and block j. 

For the partition scheme as shown in Fig. 2(a), the Green’s function blocks between any two of 

the contacts C2, C3 and C4 can be evaluated directly, because they belong to the same 

computational block N, which provides the required matrix elements. Therefore, the mutual 

transmissions 𝑇23 , 𝑇24  and 𝑇34  between any two of C2, C3 and C4 can be straightforwardly 

computed. However, the Green’s function blocks between contact C1 and any other contacts are 

not available from the blocks of 𝐺𝑟 calculated by the recursive algorithm. This problem can be 

addressed by noticing the following relation for the lumped sum 𝑆𝑖 of the charge transmission 

coefficients, 

 𝑆𝑖 = ∑ 𝑇𝑖𝑗 𝑗≠𝑖 = 𝑡𝑟𝑎𝑐𝑒(𝐺𝑟𝛤𝑖𝐺𝑟+ ∑ 𝛤𝑗𝑗≠𝑖 )= 𝑡𝑟𝑎𝑐𝑒(𝑖(𝐺𝑖
𝑟 − 𝐺𝑖

𝑟+) − 𝐺𝑟𝛤𝑖 𝐺𝑟+𝛤𝑖).  (6) 
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Evaluation of Eq. (6) only requires the i-th diagonal block of 𝐺𝑟. By using Eq. (6) to compute 

the lumped sum of the transmission 𝑆𝑖 for  𝑖 = 2, 3, 4, and noticing the symmetric relation 𝑇𝑖𝑗 =

𝑇𝑗𝑖 for the charge transmission coefficients, the values of 𝑇12, 𝑇13 and 𝑇14 can be solved as, 

 [
𝑇12

𝑇13

𝑇14

] = [
𝑆2

𝑆3

𝑆4

] − ⌈
𝑇23 + 𝑇24

𝑇23 + 𝑇34

𝑇24 + 𝑇34

⌉. (7) 

For calculating the spin transmission coefficient 𝑇𝑖𝑗
𝑧𝑐, a similar procedure can be applied for 

the mutual transmissions between any two of the contacts C2, C3, and C4 by using Eq. (5). To 

compute the mutual spin transmission between the contact C1 and other contacts, the lumped sum 

of the spin transmission to contact Ci due to charge voltages is expressed as, 

 𝑆𝑖
𝑧𝑐 = ∑ 𝑇𝑖𝑗

𝑧𝑐
𝑗≠𝑖 = 𝑡𝑟𝑎𝑐𝑒(𝜎𝑧𝐺𝑟𝛤𝑖 𝐺𝑟+ ∑ 𝛤𝑗𝑗≠𝑖 )= 𝑡𝑟𝑎𝑐𝑒(𝑖𝜎𝑧(𝐺𝑖

𝑟 − 𝐺𝑖
𝑟+) − 𝜎𝑧𝐺𝑟𝛤𝑖𝐺𝑟+𝛤𝑖 ). (8) 

In contrast to the charge transmission, which is symmetric to index order, the spin 

transmission is antisymmetric 𝑇𝑖𝑗
𝑧𝑐 = −𝑇𝑗𝑖

𝑧𝑐 for the system with time-reversal symmetry. By using 

this relation together with the lump sum spin transmission 𝑆𝑖
𝑧𝑐 = ∑ 𝑇𝑖𝑗

𝑧𝑐
𝑗≠𝑖  for 𝑖 = 2, 3, 4, the 

mutual spin transmissions between the contact C1 and other three contacts can be solved as, 

 [

−𝑇12
𝑧𝑐

−𝑇13
𝑧𝑐

−𝑇14
𝑧𝑐

] = [

𝑆2
𝑧𝑐

𝑆3
𝑧𝑐

𝑆4
𝑧𝑐

] − ⌈

𝑇23
𝑧𝑐 + 𝑇24

𝑧𝑐

−𝑇23
𝑧𝑐 + 𝑇34

𝑧𝑐

−𝑇24
𝑧𝑐 − 𝑇34

𝑧𝑐
⌉. (9) 

The speedup of the atomistic simulations, which is the most time-consuming part of the overall 

multiscale task, stems, from the above partition scheme with the application of the recursive 

algorithm as described in Fig. 2. For a crossbar structure with a horizontal ribbon index of m and 

a vertical ribbon index of n, the crossbar central part has 𝑚 × 𝑛 atoms. Direct calculation of the 

Green’s function has a computational cost of ~𝑂(𝑚3 × 𝑛3) due to matrix inversion, for a size 

determined by the number of atoms of ~𝑚 × 𝑛. With the recursive algorithm, the computational 

cost becomes ~ 𝑂((𝑚 + 𝑛)3 × 𝑛), because only the partitioned subblocks need to be inverted. The 

speedup is in the order of ~100 for 𝑚 and 𝑛 in the order of several tens, and it becomes even more 

significant as the device size increases. This algorithm takes advantage of the carefully designed 

partition scheme and does not sacrifice the accuracy of simulation. 

C. Circuit model 

In the multiscale simulation framework, the atomistic quantum transport simulation is used to 

parameterize a spin circuit model for the crossbar device. Based on the parameterized model, the 
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spintronic device performance, such as the spin Hall angle, can be computed. For a colinear 

spintronic device modeling, the charge current and the spin current can be expressed as [16], 

 
[
𝐼𝑐(𝐸)

𝐼𝑧(𝐸)
] =

1

𝑞
[�̃�𝑐𝑐 �̃�𝑐𝑧

�̃�𝑧𝑐 �̃�𝑧𝑧
] [

𝑓𝑐(𝐸)
𝑓𝑧(𝐸)

] =
1

𝑞
{[�̃�𝑐𝑐

�̃�𝑧𝑐
] 𝑓𝑐(𝐸) + [�̃�𝑐𝑧

�̃�𝑧𝑧
] 𝑓𝑧(𝐸)}, (10) 

where 𝐼𝑐(𝐸)and 𝐼𝑧(𝐸) are the charge and spin current spectrum vectors, q is the elementary 

electron charge, 𝑓𝑐(𝐸) and 𝑓𝑧(𝐸) are the Fermi-Dirac distribution vectors for charge and spin, 

respectively, spanned over the contact index space, �̃�𝑐𝑐  and �̃�𝑧𝑐  are the charge and spin 

conductance matrices due to charge voltages, and �̃�𝑐𝑧 and �̃�𝑧𝑧 are the conductance matrices due 

to applied spin voltages. Fig. 3(a) schematically shows the edge modes of the QSHE crossbar 

device, and the current and Fermi function vectors for each contact are denoted. The modeled 

device system satisfies time-reversal symmetry, and the contacts are non-magnetic. As a result, 

the spin entries of the Fermi function are zero, 𝑓𝑧(𝐸)=0, which further simplifies Eq. (10) to the 

following expression for the charge and spin currents in the linear response regime,  

 𝐼𝑖
𝑐 =

1

𝑞
∑ 𝐺𝑖𝑗

𝑐𝑐𝐸𝐹𝑗𝑗 , 

𝐼𝑖
𝑧 =

1

𝑞
∑ 𝐺𝑖𝑗

𝑧𝑐𝐸𝐹𝑗𝑗 , 
(11) 

where 𝐼𝑖
𝑐, and 𝐼𝑖

𝑧 are the charge and spin currents at contact Ci, respectively, and 𝐸𝐹𝑗  is the Fermi 

level 𝐸𝐹  at contact Cj. The mutual charge (spin) conductance is proportional to the charge (spin) 

transmission from the NEGF transport simulation described above, 

 
𝐺𝑖𝑗

𝑐𝑐 =
𝑞2

ℎ
𝑇𝑖𝑗, 

𝐺𝑖𝑗
𝑧𝑐 =

𝑞2

ℎ
𝑇𝑖𝑗

𝑧𝑐 , 
(12) 

where h is the Planck constant. Fig. 3(b) shows the equivalent linear circuit model, in which the 

conductance values are denoted for i<j. The charge conductance and spin conductance are 

symmetric and antisymmetric, respectively, when the indices i and j are commuted. 

By computing the charge and spin currents of all 4 contacts, the spin Hall angle, which 

characterizes the spin-charge transduction efficiency as the ratio between the induced transverse 

spin current to the longitudinal electrical charge current, can be computed as, 

 𝜃𝑆𝐻 = |
𝐼2

𝑧−𝐼4
𝑧

𝐼1
𝑐−𝐼3

𝑐|. (13) 
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The multiscale simulation method described above allows the treatment of atomistic scale 

features and defects in the quantum transport simulations, and subsequently parameterizes the 

transport properties into a circuit model, from which the spintronic device performance can be 

assessed. The efficient numerical implementation allows to simulate and average over a large 

number of random device samples for modeling the effect of random disorders. 

III. RESULTS 

The carrier transport and spintronic device performance in the crossbar device structure are 

examined for the monolayer TMDC materials. We first examine the device at the QSHE transport 

regime described by the Hamiltonian in Eq. (2). In patterning a nanoscale device, the edge 

roughness is inevitable. The effect of edge roughness on the spin density is examined. Fig. 4 shows 

the spin density calculated at energy 𝐸 = 0  for four samples with different degrees of edge 

roughness. Previously, it has been shown that vacancies at 2D topological insulator edges can 

result in bound states, impact local electronic structure at edges, and deteriorate topologically 

protected transport [17][18]. The edge roughness is created by removing the atoms in the outmost 

atomistic edge line with a specified probability. The results show perfect antisymmetric spin 

densities at two edges of the device with ideal edges. Edge roughness results in significantly 

different spin density distributions at the rough edges, especially as the roughness percentage 

increases. In the atomistic sites where edge roughness exists, the spin density drastically reduces. 

The edge roughness results in a large perturbation to the lattices at the defective sites, and thereby, 

the local spin density at the defective sites.  

Next, we examine the effect of edge roughness on the spin-charge transduction efficiency in 

the crossbar device. Figure 5 shows the calculated spin Hall angle for two crossbar sizes with 

various edge roughness. The vertical armchair-edge ribbon is chosen to have an index of n=3p+2, 

where p is an integer, in which quantum confinement alone does not result in a band gap [19]. For 

the horizontal zigzag-edge nanoribbon, quantum confinement effect alone does not open a bandgap 

for any index m. The results for two crossbar sizes, with a larger one in Fig. 5(a) and smaller one 

in Fig. 5(b), are shown here to illustrate the impact of the crossbar device size. Devices with other 

size parameters have also been simulated, which show the same physical trend. Figure 5(a) shows 

that with perfect edges, the spin Hall angle approaches the ideal value of 1 when the Fermi level 

is placed in the bandgap created by SOC. For a further scaled device with a smaller size as shown 
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in Fig. 5(b), the spin Hall angle for the perfect edges also approaches 1. As the edge roughness 

percentage increases, these two devices, however, show different sensitivity to edge roughness. 

For the wider device in Fig. 5(a), the spin Hall angle changes by a smaller amount when the edge 

roughness percentage increases from 5% to 20% in the low energy range. In contrast, in the 

narrower ribbon in Fig. 5(b), the spin Hall angle decreases by a larger amount. The reason is that 

as the edge width decreases, the spatial overlap between two edge modes increases, which weakens 

the topologically protected transport properties. The spin Hall angle in the narrower device, 

however, is still >0.2 in the presence of 20% edge roughness. In addition, the spin Hall angle shows 

a dip near the energy of E=0, which is due to the nanostructured size effect of the crossbar structure, 

and the depth of the dip decreases as the crossbar size increases, as shown by shallower dip in Fig. 

5(a) compared to Fig. 5(b). The results indicate that although the topologically protected edge 

modes in principle can achieve high values of the spin Hall angle for the channel material with 

QSHE, edge quality and device size play an important role in the spin-charge transduction 

efficiency when the device is scaled down. 

At last, we examine the SHE devices based on TMDC materials at the 2H phases with the 

Hamiltonian in Eq. (2). Compared to the QSHE device examined above, the channel materials are 

topologically trivial, but the berry phases are nonzero. These properties of the monolayer MoS2 

have been experimentally utilized in a crossbar structure for room-temperature spin-charge 

transduction [8]. Fig. 6(a) shows the energy-resolved charge and spin conductance in the valence 

band for the crossbar device with ideal edges. The charge conductance is calculated as 𝐺𝑐 =
𝜕𝐼1

𝑐

𝜕𝑉𝐷
 

and the spin conductance is calculated as 𝐺𝑧 =
𝜕𝐼2

𝑧

𝜕𝑉𝐷
, for the device structure as shown in Fig. 1. 

Away from the valence band edge, the charge conductance increases due to a larger number of 

modes for charge transport. In comparison, the spin conductance is considerably smaller and does 

not increase as a function of energy difference to the valence band edge. The spin Hall angle, 

therefore, is smaller than that of the QSHE device investigated in Fig. 5, which represents the 

upper limit when the bands are topologically inverted. To examine the effect of edge roughness, 

Fig. 6(b) plots the spin Hall angle with different percentages of edge roughness. For the modeled 

nanoscale MoS2 crossbar device structure, the simulation results show that the operation near the 

valence band edge is more desirable for a larger spin Hall angle. In addition, the peak value of the 

spin Hall angle reaches a value of >0.2 for ideal edges and a spin Hall angle of 0.15 is still obtained 
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in the presence of 20% edge roughness in an energy range wider than room-temperature thermal 

energy, which indicates that the 2D TMDC crossbar device is promising for efficient room-

temperature spin-charge conversion even when the device is scaled down to ~10 nm-scale device 

channel size. 

IV. CONCLUSIONS 

A multiscale simulation framework is developed to simulate the SHE crossbar devices based 

on 2D materials. Numerical implementation to speed up the NEGF atomistic simulation of the 

crossbar spintronic device is discussed. This method is applied to simulate the spintronic and 

quantum transport properties of the four-terminal SHE and QSHE devices based on monolayer 2D 

materials. The results show that edge roughness plays an important role in the device properties 

and charge-spin transduction efficiency. The impact of the edge roughness is strongly dependent 

on the width of the device channel. Even in the presence of edge roughness, the aggressively scaled 

monolayer SHE devices based on 2D materials still show promising performance for spin-charge 

conversion. 
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FIG. 1. Schematic structure of the modeled crossbar device based on the quantum spin Hall or spin 

Hall effect of the 2D layered material channel. A voltage is applied between the contact C1 
and contact C3 with 𝑉1 = 𝑉𝐷/2 and 𝑉3 = −𝑉𝐷/2, which induces a transverse spin current 
between contacts C2 and C4. The transverse contacts C2 and C4 are biased at 𝑉2 = 𝑉4 = 0, 
which results in only spin current without charge current between C2 and C4.  
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FIG. 2. (a) A lattice partition scheme for numerical implementation of the recursive algorithm in 
quantum transport simulations of the four-terminal crossbar device. The contacts of the 
crossbar device structures are assumed to be semi-infinite ribbons. The subblocks are 
indexed from 1 to N, in which each subblock couples only to its neighboring subblocks. (b) 
Schematic structure of the crossbar device that illustrates the topological structure for 
implementing the recursive algorithm. The first subblock is connected to the physical 
contact C1, and the last subblock is connected to the physical contacts C2, C3, and C4.  
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FIG. 3. (a) Schematic plot of the edge modes in a QSHE crossbar device. For colinear simulations, 
both the Fermi Dirac distribution, fi, and the current, Ii, at contact i have two components, 
one for charge and the other for spin. The blue and red arrows represent these spins, as well 
as the directions of the edge mode currents. (b) The equivalent circuit model for the 
crossbar spin Hall effect device. Only the conductance elements, 𝐺𝑖𝑗

𝑐𝑐  and 𝐺𝑖𝑗
𝑧𝑐 , with 𝑖 < 𝑗 

are shown. The charge conductance satisfies 𝐺𝑖𝑗
𝑐𝑐 = 𝐺𝑗𝑖

𝑐𝑐 and the spin conductance satisfies 
𝐺𝑖𝑗

𝑧𝑐 = −𝐺𝑗𝑖
𝑧𝑐  in a system with time-reversal symmetry. The modeled device structure is 

shown in Fig. 1.  
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FIG. 4. Simulated normalized spin density in the crossbar device with monolayer 2D material 

channel for (a) perfect edges, and defective edges with (b) 5%, (c) 10%, and (d) 20% edge 
roughness. The horizontal part of the crossbar structure has zigzag edges, and the vertical 
part of the crossbar structure has armchair edges. The x and y positions have a unit of 
Angstrom, Å. The modeled device structure is shown in Fig. 1. 
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FIG. 5. Effect of edge roughness on spin-charge conversion: The spin Hall angle as a function of 
the normalized Fermi energy 𝐸𝐹  for a monolayer crossbar channel with (a) a horizontal 
zigzag edge ribbon width of m=20 and a vertical armchair ribbon width of 𝑛 = 20, and (b) 
a horizontal zigzag edge ribbon width of m=10 and a vertical armchair ribbon width of 𝑛 =
14. The results are simulated in the linear transport regime with perfect edges and defective 
edges in the presence of 5%, 10%, and 20% edge roughness, respectively. The Fermi 
energy 𝐸𝐹  is with reference to the middle of the bandgap and is normalized to the SOC 
parameter ∆𝑆𝑂. The modeled device structure is shown in Fig. 1. 
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FIG. 6. (a) Charge conductance and spin conductance vs. the Fermi energy EF with perfect edges. 
(b) The spin Hall angle vs. 𝐸𝐹  for various edge roughness percentages with monolayer 
MoS2 as the channel material.  The horizontal ribbon has zigzag edges with a width index 
of 𝑚 = 25, and the vertical part has armchair edges with a width index of 𝑛 = 20. The 
results are simulated in the linear transport regime with perfect edges and defective edges 
in the presence of 5%, 10%, and 20% edge roughness. The modeled device structure is 
shown in Fig. 1. 

  


