


was thus to envision a set of knowledge bases that capture

implicit knowledge about the state of the application and of

the system. Reasoners would then invoke the appropriate

knowledge source to refine the user request to a specific

workflow, then reason about particular resources to use,

and classify failures. Unfortunately, such knowledge was

hard to obtain and consequently the reasoners for workflow

composition and management were very limited.

A number of different techniques and heuristics have

been developed to manage the workflow life cycle, which

include workflow composition (Gil et al., 2011; Goderis

et al., 2007; Goecks et al., 2010; Taylor et al., 2007),

resource provisioning (Byun et al., 2008; Malawski et al.,

2015b; Zhou et al., 2015), and various aspects of workflow

execution such as job scheduling (Durillo et al., 2012; Lee

et al., 2015.; Pietri and Sakellariou, 2014; Ramakrishnan

et al., 2007) and fault detection (Duan et al., 2005; Plan-

kensteiner et al., 2009; Samak et al. 2011b). With the

advances being made in machine learning, new opportuni-

ties are presenting themselves, providing potentially more

sophisticated and scalable methods that can generate better

performing workflows and possibly learn to create work-

flows based on prior knowledge. In this article, we explore

the opportunities that ML techniques can offer in the area

of scientific workflows. We discuss the current challenges

in each phase of the workflow life cycle (i.e. composition,

provisioning, execution) and describe how ML can be used

to address them (e.g. unexpected and anomalous behavior).

Finally, the article gives examples of how ML techniques

are used today in managing scientific workflows and

hypothesizes potential uses of these techniques to improve

the state of the art in workflow management.

2. Current challenges in scientific

workflows

In this section, we discuss the current challenges in man-

aging scientific workflows in distributed systems and how

ML techniques can be used to address these challenges.

Our focus is on the three main phases of the workflow life

cycle: workflow composition, resource provisioning, and

workflow execution.

2.1. Workflow composition

There are a number of ways to compose scientific work-

flows. In some cases, the workflows are composed graphi-

cally (Goderis et al., 2007; Missier et al., 2010; Taylor

et al., 2007), in some cases using a variety of well-known

languages (Deelman et al., 2015) or with the aid of new

languages (Albrecht et al., 2012; Kotliar et al., 2018; Qin

and Fahringer, 2012). However, the main problem of

designing or reusing an existing workflow still remains: the

challenge is in picking the right analysis for the data at hand

or for the desired result. In addition to selecting the right

analysis, the workflow component parameters may have to

be tuned for a particular problem. If no such analysis exists,

then a new workflow needs to be designed.

One approach for finding suitable workflows is to reuse

workflows from a repository, such as MyExperiment

(David De and Goble, 2009; DeRoure et al., 2007). The

workflows can be searched based on tags, contributors, and

systems they are written in among others. It is up to the user

to decide which workflows to select for use or reuse. How-

ever, one can imagine that ML can be used to learn what

workflows are relevant to the users based on their previous

searches or the type of data the user wants to analyze, or the

results that the user is looking for.

Taking this further, ML could be used to select a set of

“similar” workflows and then suggest new workflow com-

ponents that could be used to augment the workflow to

obtain the desired results. Today, there are systems such

as Wings (Gil et al., 2007, 2011), which enable users to

compose workflow templates. AWings template represents

a skeleton of a workflow indicating the types of compo-

nents and data needed but not the exact data sets of com-

ponent implementations. Wings defines semantic

constraints about data sets and workflow components,

which can be used in component selection (filling out the

template) as well as in workflow validation. The semantic

information is also propagated to the results by providing

the metadata for the data sets generated by the workflow.

Finally, ML techniques could be used to compose an

entire workflow from scratch. This would require perform-

ing experiments to explore different workflow component

combinations that can execute successfully and work well

for particular data sets. However, this level of automation

may not be fully desirable. In previous work, AI planning

techniques for workflow composition were explored: the

workflow goals were the desired data products and the

operators were the application components (Blythe et al.,

2003; Gil et al., 2004). The planners also received the

current state of the distributed system. Although these tech-

niques were able to produce valid workflows, the target

scientists did not like the fact that the processes of compo-

nent selection and workflow composition were all auto-

mated. Scientists wanted to be able to reason about the

workflow and how to compose it themselves, often through

an exploratory process. However, ML techniques can help

fill in the details for high-level workflow structures. For

example, ML techniques can learn from previous workflow

executions to infer which parameters used by the workflow

components worked the best to obtain successful execu-

tions or desired results. At a more fine-grained level, ML

techniques could be used to reason about the right shape of

the workflow to enable a smaller workflow data footprint

(Singh et al., 2007).

2.2. Resource provisioning

After the workflow is composed, a user or a workflow

management system needs to decide what storage, network,

and computational resources are needed for the successful

2 The International Journal of High Performance Computing Applications XX(X)



workflow execution. This decision involves figuring out

the types of resources (what types of operating system and

other software) are needed to support the execution of a

workflow component. Other resource characteristics such

as the amount of memory or CPU speed to use also need to

be taken into account (Pietri and Sakellariou, 2019).

Finally, the amount of each type of resources, storage, net-

work bandwidth needs to be decided, often requiring a

balance between different requirements and cost

(Malawski et al., 2015a, 2015b).

Various approaches have been taken to performance

modeling and prediction, which can guide resource selec-

tion decisions. Some involve developing analytical models

of applications executing on particular platforms, such as

is the case with Aspen (Spafford and Vetter, 2012). This is

particularly useful when the performance model needs to

provide quick results, or when the prediction about the

application performance is made in the context of a system

that is not available (yet to be designed or deployed). In

some cases, analytical models are not sufficient to provide

desired accuracy, for example, in cases where there is con-

tention for system resources, such as networks or I/O sys-

tems. In these cases, simulations are often used to model

the system and potentially the application in more detail.

An example of such a simulator is ROSS (Carothers et al.,

2002), which can simulate complex high-performance

interconnects and I/O. Simulations may take longer to run

than analytical models, so their usefulness for online pre-

dictions is often limited.

When it is possible to run the applications on the target

platforms, performance information can be collected and

analyzed using simple statistical methods (calculating

averages, standard deviations, etc.) (Deelman et al.,

2017a; Krol et al., 2016) or in combination with simple

analytical models (Pietri et al., 2014). However, in order

to use these metrics, one often needs to determine which

factors influence application performance and what effect

they have. In some cases, trial-and-error approaches are

employed. In Tovar et al. (2018), the authors provision

resources based on previously observed job needs, being

conservative in their approach to limit resource wastage.

When the resources turn out to be insufficient, the job is

given a larger amount of resources. The process is repeated

until the job successfully completes.

ML techniques promise to be able to learn patterns of

application and system behavior that can be more accurate

in predicting application performance (Jain et al., 2013;

Matsunaga and Fortes, 2010; Nemirovsky et al., 2017).

Such methodologies can be used to analyze past and current

workflow performance to identify the important parameters

that affect workflow behavior from a particular point of

view—for example, from the point of view of data source

selection for a task. In that case, one can learn which data

sources have high availability, what are the best parameter

settings to use for data transfers over particular networks,

and so on. Some parameters can be time dependent, for

example, the load at the data sources may be particularly

high during some time periods.

To discover parameters that determine workflow perfor-

mance, clustering type algorithms can be employed. One

can, for example, analyze class membership for both

“normal” and “faulty” clusters to understand the patterns

in the workflow executions. By analyzing the members of

the “normal” clusters, we can determine which parameters

to use for a task (e.g. degree of concurrency to use, para-

meters to set, amount of memory needed, and so on) and for

jobs such as how many processors, which resources to use

and which to avoid, how to configure data transfers and

more. By analyzing members of the “faulty” class, we can

learn which resource or combination of resources to avoid,

for example, avoiding using a data transfer path that is

experiencing packet loss or corruption, or an endpoint

experiencing disk failure. Hence, ML algorithms can pro-

vide recommendations for suitable or unsuitable resources

for a workflow, how to configure them, and so on.

ML techniques could also be used to guide other forms

of resource selection where multiple subsystems are

involved, which would require careful considerations of

subtle bottlenecks and interferences. For example, the sche-

duling of data transfer between tasks can too often create

bottlenecks between computation and communication

phases, and manual optimizations are often complex

(Huang et al., 2019). We can train ML models to classify

the workflow phases to optimize data movements, to

orchestrate I/O (Meng et al., 2014; Wang et al., 2015), and

to manage hierarchical storage (Dong et al., 2016) and data

staging (Subedi et al., 2018). Also, as in-situ execution

becomes more prevalent (Huang et al., 2019; Kwan-Liu,

2009; Subedi et al., 2018), ML can play an important role in

automating the placement of tasks to automatically find an

optimal trade-off.

2.3. Workflow execution

Workflow execution involves scheduling the tasks in a

workflow in the order they are supposed to execute on the

resources provisioned for the tasks. In some cases, the

workflow tasks may be scheduled just-in-time without an

additional prior provisioning step (Deelman et al., 2006).

Once the jobs are scheduled, they need to be monitored for

success or failure, resource consumption, or any sort of

anomalous behavior, which indicates some departure from

what is expected. Figure 1 shows how an example work-

flow that traverses several stages (left), and how different

types of cyberinfrastructure facilities provide resources for

the execution of the workflow (right).

As the workflow is executing, the analysis of the per-

formance data being generated needs to encompass two

aspects: (1) identification of workflow anomalies and task

performance bottlenecks by using the metrics and perfor-

mance data relevant to workflows and component applica-

tions, and (2) detection and localization of faults in the

multi-domain, distributed infrastructure by leveraging

Deelman et al. 3



infrastructure-centric metrics. One can then build corre-

lated failure models across workflow- and infrastructure-

level metrics for troubleshooting and pinpointing sources

of failures (Gunter et al., 2011; Samak et al., 2011b, 2013).

If undesired or anomalous behavior is detected, the

workflow management system may decide to reschedule

jobs onto a different resource, select a different data

source or target storage system, decide to provision addi-

tional resources, or, in the most drastic case, decide to

compose a different workflow altogether. Today, these

decisions are made in a simplistic way, mostly through

trial-and-error or basic heuristics. A first step to improve

the quality of adaptation decisions is to be able to detect

anomalies in the first place (Mandal et al., 2016; Pratha-

mesh et al., 2016).

In today’s workflows, the problem of unexpected or

anomalous behavior during workflow execution is exacer-

bated by the use of complex distributed cyberinfrastructure

that often encounters both performance problems and

faults/errors that potentially span all levels of the sys-

tem—applications, middleware, and the underlying execu-

tion platform. While end-to-end monitoring of workflow

applications and systems is an essential building block to

detect such problems, current techniques for anomaly

detection are often based on thresholds and simple statistics

(e.g. moving averages) (Jinka and Schwartz, 2015) that

can: (1) fail to understand longitudinal patterns, (2) miss

opportunities for anomaly detection, and (3) seldom be

used for identifying the root cause of the anomalies. Exist-

ing statistical techniques can make assumptions about

underlying distributions for the metric values, which might

not hold in large-scale execution environments. Being uni-

variate in nature, these statistical models cannot capture

interactions between features. Hence, multivariate tech-

niques, in particular ML algorithms, are envisioned as an

appropriate approach for building failure models and for

detecting and diagnosing failures in large-scale workflow

executions on complex systems.

One potential approach is to apply ML algorithms in a

top–down approach beginning with workflow-level analy-

sis. This analysis can use high-level, aggregate workflow

performance metrics, such as the number of failed/com-

pleted tasks versus the total number of tasks in the work-

flow, to predict the overall behavior of a running workflow

by clustering statistically similar workflows into classes.

When the aggregate analysis of workflow-level metrics

reveals membership to an anomalous class, job-level anal-

ysis can be triggered. Job-level analysis can then detect

faults and bottlenecks using detailed job information such

as resource usages, data sizes, resource parameters, and

application-specific job parameters.

3. ML approaches in scientific workflows

While the previous sections touched upon the challenges

faced in managing scientific workflows in distributed sys-

tems, here we describe ML techniques that are being used

today to analyze the behavior of workflows at various lev-

els of abstraction (workflow, task, and infrastructure) using

different processing modalities (online and off-line). We

Figure 1. On the left, a sample workflow that processes instrumental data. On the right, possible resources to be used for the
execution of the workflow tasks.

4 The International Journal of High Performance Computing Applications XX(X)



also describe potential issues with using ML, such as col-

lecting the training data.

3.1. Workflow-level analysis

Workflow-level analysis explores the coarse-grained beha-

vior of jobs in the workflow: their runtime, success, failure,

and so on. Unsupervised clustering, in which the classes are

formed without prior information (“supervision”), to clas-

sify similar workflow runs and associate them with beha-

vioral classes is a potential ML approach that can be

employed for workflow-level analysis. Features selected

for each workflow can be either static or real time. The

static features are independent of a given execution, and

thus can be computed directly from the workflow descrip-

tions. Static features can include the average degree of job

dependencies or fan out, the average level of parallelism,

and the average degree of data dependencies. Real-time

features are dependent on a given execution and include

the percentage of jobs/tasks that executed successfully, the

percentage of jobs/tasks that failed, the average duration of

successful jobs/tasks, and the average duration of failed

jobs/tasks (before termination). Any metric that is available

both in the historical and real-time data can be a feature.

Researchers have used the efficient k-means clustering

algorithm (Amer and Goldstein, 2012; He et al., 2003;

MacQueen, 1967; Samak et al., 2011b; Wang et al.,

2014), with randomized initial centers and the (standard)

Euclidean distance metric to cluster workflows. More

sophisticated clustering algorithms should be investigated

and compared with prior approaches (Duda et al., 2012). In

particular, fuzzy c-means clustering (Hathaway and Bez-

dek, 1986; Pal et al., 1996) can be used to exploit some

class overlaps that have been found with the initial clus-

tering. Fuzzy clustering has the ability to capture non-

separable classes, without the expensive pre-processing

of features.

Clustering algorithms produce a set of classes, with

associated numerical models, which can be used for future

prediction. Using online processing, feature vectors can be

computed, and the cluster model can be used to compute a

degree of membership for each cluster. For example, a

workflow can be classified in real time to belong in a High

Failure Workflow (HFW) class with 90% membership,

while another workflow can be 60% HFW. Feature vectors

can be also computed at different points in the workflow

lifetime, generating a classification result. By tracking a

workflow’s degree of membership over time, triggers can

be generated when the membership in a given class crosses

a threshold. These triggers can be used by workflow man-

agement systems to signal the need to adapt the workflow

or the resources. The quality of clustering algorithms can

be evaluated by measuring inter-cluster homogeneity (min-

imum overall distance between objects from the same

class) and intra-cluster separation (maximum distance

between different clusters).

3.2. Task-level analysis

To better understand the source of the anomaly, task-level

analysis should be triggered when a possibly anomalous

workflow is found. This analysis should identify possible

causes of task failures and help identify performance bot-

tlenecks. The analysis can be aided by task performance

data and job-relevant metadata from a workflow perfor-

mance data repository. The workflow management system

collects task-level data as the workflow is executing.

Hence, the system can perform accurate labeling of the data

when task failures are observed. Based on the status of the

job containing the task, the workflow management system

can label a feature vector consisting of task-specific metrics

as “Failed” or “Successful.” As a result, one can assume to

have a significant portion of tasks’ performance data being

labeled. This allows the building of supervised learning

classifiers that distill task failures from historical labeled

training data, and those models can be used for classifying

task failures at runtime for fast detection.

Naive Bayes classifier has been shown to accurately

predict the failure probability of tasks for scientific work-

flows on the cloud using task performance data (Samak

et al., 2013). Others (Bala and Chana, 2015) have compared

logistic regression, artificial neural nets (ANN), Random

Forest and Naive Bayes for failure prediction of workflow

tasks in the cloud and concluded that the Naive Bayes’

approach provided the maximum accuracy. In Buneci and

Reed (2008), the authors have used a k-nearest neighbors

(k-NN) classifier to classify workflow tasks into

“Expected” and “Unexpected” categories using feature

vectors constructed from temporal signatures of task per-

formance data. In addition to applying the Naive Bayes

classifier, further research should be conducted to explore

a spectrum of classifiers for task performance data, which

can include k-NN, ANNs, logistic regression, and Support

Vector Machines (SVM) (Lorena et al., 2011). The accu-

racy of the classification algorithms should be then evalu-

ated using paired criteria like precision and recall, and

combined criteria like the balanced classification rate,

which takes into account both true negative and true posi-

tive rates, and F-measure, which is the harmonic mean

between precision and recall.

Sometimes, performance bottlenecks can also be

detected using metrics that are gathered from the task meta-

data and provenance information, some of which might be

categorical in nature. In these cases, decision tree-based

classifiers can be used because they are suitable for fast

online inference of the “tree path” that led to the anomaly.

The features can include task information such as task type,

input size, parameters to the executable, as well as system

related information such as user name, site name, host IP,

job delay, and job exit code. The feature vectors can then be

fed to a learning classifier as the training set to generate a

model for predicting behaviors of interest. In previous work

(Samak et al., 2011a), regression trees were used as the

learning classifier, giving both prediction ability and fault

Deelman et al. 5



isolation results. Other partitioning algorithms should be

investigated for constructing decision trees (Breiman,

2017). These algorithms are able to build a tree, where

internal nodes are feature descriptions and tree leaves are

task states. Traversal of the tree from root to leaf for a given

input task can help identify bottlenecks.

3.3. Infrastructure-level analysis

The distributed, heterogeneous nature of the end-to-end

platform with multiple resource providers makes it harder

to collect labeled data systematically about anomalies and

failures in the infrastructure used to execute workflows. In

addition, the dynamic characteristics of the platform-

induced anomalies often manifest themselves in an

unknown manner. This makes it difficult to define anomaly

classes a priori. Hence, various unsupervised learning (UL)

techniques should be more suitable for infrastructure-level

data analysis.

Choosing an appropriate feature space needs to be the

first step in the process. Metrics like uptime, number of jobs

per machine, system throughput and latency, available stor-

age and network capacity, and so on play a critical role to

ensure workflows reach completion, and hence should be

present in relevant feature vectors. The next step is the

selection of appropriate UL strategies. Several researchers

have studied the use of UL techniques for anomaly detec-

tion in computing systems (Ibidunmoye et al., 2015). Three

broad UL strategies, and combinations thereof, have been

shown to work well in different scenarios: (1) nearest

neighbor-based techniques like those based on local outlier

factor (LOF), k-NN (Amer and Goldstein, 2012; Bhaduri

et al., 2011; Elomaa et al., 2002; He et al., 2003; Wang

et al., 2014), (2) clustering-based techniques using k-means

clustering combined with outlier factor (Amer and Gold-

stein, 2012; He et al., 2003; Wang et al., 2014), and (3) self-

organizing maps-based techniques (Dean et al., 2012;

Kohonen, 2001).

Selecting the appropriate UL technique for workflow

use cases is a non-trivial problem. While nearest

neighbor-based approaches produce more accurate models,

they are computationally more expensive than clustering-

based approaches (Goldstein and Uchida, 2016). Some

techniques work well to detect global anomalies (e.g.

k-NN) but fail to identify local anomalies. The strategy

should be to systematically explore this spectrum of UL

techniques, with particular emphasis on online techniques

that combine incremental clustering with dynamic LOF

calculations, which potentially balances accuracy and

detection time.

3.4. Cross-level analysis

Most research on performance anomaly detection using

ML techniques has dealt with either the system or the

application (Chandola et al., 2009; Ibidunmoye et al.,

2015). Correlating these two types of anomalies in a unified

framework is a relatively unexplored problem, albeit a very

important one. Correlations allow users to identify the

source of anomalies and performance bottlenecks by con-

volving failing or poorly performing workflow tasks with

infrastructure elements potentially responsible for the

anomalies. One approach can be to extend the UL tech-

niques developed above to cluster feature vectors and

identify outliers. Then the anomalous samples can be inves-

tigated to troubleshoot the sources of anomalies.

In addition to the infrastructure-level metrics, one will

need to include the relevant workflow- or task-level metrics

in the feature vectors. This will have an effect on how the

UL algorithms will scale because this would significantly

increase the number of metrics. In choosing the UL algo-

rithm, several variants of clustering-based algorithms

should be explored since they tend to scale better with

larger feature spaces and sample sizes. Reducing the

dimensionality of data using techniques such as principal

component analysis, factor analysis, and similarity identi-

fication (Jolliffe and Cadima, 2016; Fu, 2011; Steuer et al.,

2002) will help with scalability as well.

After detecting anomalous instances, the anomalous

metrics should be located for analyzing root causes of

performance deviations or failures. Since the feature vec-

tor contains both kinds of metrics, one approach can be to

use a simple but effective method based on the Student’s

t-test (Weiss and Weiss, 2012) statistical method. This

method exploits the underlying property that normal data

instances occur in high probability regions in a stochastic

model, while anomalies occur in low probability regions.

If comparison with prior samples of a metric results in

significant differences, it can signify the presence of an

anomaly. For every metric in the anomalous feature vec-

tor, one can calculate the t-transfer to fit the t-distribution

to calculate the metric anomaly value (MAV) (Wang

et al., 2014), and then sort the MAVs to locate the suspi-

cious metrics. Correlated anomalies will manifest as high

MAV values for multiple metrics, which can help trouble-

shoot the sources of the anomaly.

3.5. Online/off-line analysis

The ML-based methods will need to analyze both online

and off-line performance and provenance data, and they

can be integrated following the principles of the

“Lambda architecture” (LA) (Kiran et al., 2015). LA is

a generic, linearly scalable, and fault-tolerant data pro-

cessing architecture that is able to serve a wide range of

queries and computations on both fast-moving (stream-

ing) data and historical data (batch). Large volumes of

performance and provenance data can be analyzed with

both batch- and stream-processing techniques. The

stream processing component, the “speed layer,” can

encapsulate the ML approaches for online analysis,

while batch-processing can be leveraged for the heavy-

weight off-line ML techniques at the “batch layer” ana-

lyzing data across multiple workflows.

6 The International Journal of High Performance Computing Applications XX(X)



For comprehensive introspection and analysis of per-

formance and provenance data, off-line ML-based

approaches need to be developed to enable longitudinal

analysis across multiple workflow executions. Such a type

of analysis can be computationally intensive since it inte-

grates and correlates data from multiple workflows,

thereby enabling discovery of patterns across workflows.

Several supervised and semi-supervised learning

approaches (SVM, Random Forest, Bayesian classifiers,

etc.) have been shown to be effective in identifying sys-

tem and application anomalies. All these techniques rely

on the availability of high-quality labeled data to train the

ML models to be used later for classification of test cases.

Hence, one should use carefully labeled performance and

provenance data obtained from workflow executions

on isolated and controlled environments to train the

ML-based analysis algorithms.

A significant challenge for online analysis is to develop

algorithms that are lightweight yet provide accurate detec-

tion of anomalies when operating on high-volume, real-

time, streaming data. A two-pronged approach can be

employed for online analysis of a single workflow execu-

tion. Deploying the ML models developed using off-line

techniques on production cyberinfrastructure is one option.

One can then evaluate the accuracy of those models in

production for predicting faults and detecting anomalies.

The other option can be to explore the application of

low-overhead, streaming versions of ML techniques like

streaming mini-batch k-means and logistic regression

directly on streaming data. We can leverage the state-of-

the-art data stream processing engines and libraries includ-

ing Apache Spark Streaming (Spark, 2014) and Apache

MOA/SAMOA (Kourtellis et al., 2019) and the best off-

line ML models for online analysis. While off-line ML

models can be used to guide online analysis, the results

of the online analysis, capturing specific characteristics of

workflow ensemble run, can also be used to tune and

update the off-line ML models. Such feedback loops

between off-line and online approaches will be essential

to improve the accuracy of each.

3.6. Training data collection

In order to train robust ML models that can be used for

scientific workflows, one needs to collect a large and

diverse set of data from workflows, not just individual users

but from large collaborations as well. One will need to

develop new capabilities to instrument the scientific work-

flow to automatically collect and store various metrics for

the end-to-end workflow that can be used for ML training

data, including information about (a) the input, intermedi-

ate, and output data products; (b) application codes that

constitute the workflow; and (c) the resource envelope or

the infrastructure the workflow is executing in.

Novel architectures are needed for triaging and collating

data from a variety of tools responsible for workflow and

infrastructure performance monitoring and the collection of

various metrics that can be used for ML training. Figure 2

provides a conceptual framework for such a data collection

architecture. The expanded set of metrics collected from

multiple sources of data can be triaged at a message bus

that can be used for off-line and online analysis as

described in Section 3.5. The data collected can also be

used as an audit trail for the workflow execution and can

help in capturing provenance of both the application pro-

cesses and the infrastructure used for processing.

Collecting provenance information for workflows is

critical, as provenance data provide an audit trail by which

the integrity of the data can be judged (Simmhan et al.,

2005, 2006; Zhang et al., 2011). Data provenance collec-

tion in a cloud or another multi-provider environment,

common for workflow execution today, is challenging due

to the need for cross-layer correlation of data from multiple

layers and sources (Muniswamy-Reddy et al., 2009, 2010).

Part of provenance data collection includes data about spe-

cific virtual and physical resources used for the execution

Figure 2. Overview of the workflow management, monitoring, and analysis systems.

Deelman et al. 7



of workflow tasks as well as storage and transfer of initial,

intermediate, and final workflow data products, all of

which can be used as learning features to train ML models.

This information can be used to identify data sets that were

produced by hardware that became faulty or infrastructure

that was in some way compromised and whose outputs

therefore cannot be trusted. Collecting this information

requires specific mechanisms and trust structures by which

the data can be acquired, attributed and stored.

4. Conclusions

The community is just at the beginning of exploring ML

techniques in the scientific workflow space. There are

many opportunities that are outlined in this article. If we

successfully leverage and potentially develop new ML

techniques for workflows, doing science will become as

easy as using a smartphone app. As a result, scientific

productivity will increase and the population of scien-

tists that use computational methods for their work will

grow as well. New workflow systems will be able to

understand the user’s previous requests, discover the

related data and structure the computations needed to

deliver the desired results. However, providing this level

of automation may make the introspection of the pro-

cesses used to obtain the results more difficult. It would

also potentially make reproducibility more difficult.

Nevertheless, it can potentially provide a means of com-

parison of different scientific methods and their simila-

rities and differences to other approaches.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This work was performed in part under the

auspices of the US Department of Energy (DOE) by Lawr-

ence Livermore National Laboratory (LLNL) under Con-

tract DE-AC52-07NA27344. This work was also funded by

DOE under grant #DESC0012636, “Panorama–Predictive

Modeling and Diagnostic Monitoring of Extreme Science

Workflows,” by NSF under grant #1839900: CICI: SSC:

Integrity Introspection for Scientific Workflows (IRIS),

and by the Laboratory Directed Research and Development

Program at LLNL under project 16-ERD-036 (LLNL-

JRNL-765200).

ORCID iD

Ewa Deelman https://orcid.org/0000-0001-5106-503X

References

Abramson D, Enticott C and Altinas I (2008) Nimrod/K: towards

massively parallel dynamic grid workflows. In: SC ‘08:

Proceedings of the 2008 ACM/IEEE conference on supercom-

puting, Austin, TX, USA, 15–21 November 2008.

Albrecht M, Donnelly P, Bui P, et al. (2012) Makeflow: a portable

abstraction for data intensive computing on clusters, clouds,

and grids. In: 1st workshop on scalable workflow execution

engines and technologies, 2012, SWEET ‘12, Scottsdale, Ari-

zona, USA, 20 May 2012.

Altintas I, Berkley C, Jaeger E, et al. (2004) Kepler: an extensible

system for design and execution of scientific workflows. In:

Proceedings of the 16th international conference on scientific

and statistical database management, Santorini Island,

Greece, 23 June 2004, p. 423. Washington, DC: IEEE Com-

puter Society.

Amer M and Goldstein M (2012) Nearest-neighbor and clustering

based anomaly detection algorithms for RapidMiner. In: Pro-

ceeding of the 3rd RapidMiner community meeting and con-

ference (RCOMM 2012), Budapest, Hungary, 28–31 August

2012, pp. 1–12.

Bala A and Chana I (2015) Intelligent failure prediction models

for scientific workflows. Expert Systems with Applications

42(3): 980–989.

Bhaduri K, Das K and Matthews BL (2011) Detecting abnormal

machine characteristics in cloud infrastructures. In: 2011 IEEE

11th international conference on data mining workshops, Van-

couver, Canada, 11–14 December 2011, pp. 137–144.

Blythe J, Deelman E, Gil Y, et al. (2003) The role of planning in

grid computing. In: ICAPS, 2003. Available at: https://www.

globus.org/sites/default/files/ICAPS03-016.pdf (accessed 4

January 2019).

Breiman L (2017) Classification and Regression Trees. Abing-

don: Routledge.

Buneci ES and Reed DA (2008) Analysis of application heart-

beats: learning structural and temporal features in time series

data for identification of performance problems. In: SC ‘08:

Proceedings of the 2008 ACM/IEEE conference on supercom-

puting, Austin, Texas, 15–21 November 2008, pp. 1–12.

Byun E-K, Kim J-S, Kee Y-S, et al. (2008) Efficient resource

capacity estimate of workflow applications for provisioning

resources. In: 4th IEEE international conference on

e-Science (eScience), Indianapolis, IN, USA, 7–12 December

2008.

Carothers CD, Bauer D and Pearce S (2002) ROSS: a high-

performance, low-memory, modular Time Warp system.

Journal of Parallel and Distributed Computing 62(11):

1648–1669.

Chandola V, Banerjee A and Kumar V (2009) Anomaly detection:

a survey. ACM Computing Surveys 41(3): 15:1–15:58. New

York, NY, USA: ACM.

Chase J, Gorton I, Sivaramakrishnan C, et al. (n.d.) Kepler þ

MeDICi service-oriented scientific workflow applications.

In: 2009 world conference on services—I, Los Angeles, CA,

6–10 July 2009, pp. 275–282.

David De R and Goble C (2009) Lessons from myExperiment:

research objects for data intensive research. In: Microsoft

e-Science Workshop, Pittsburgh, PA, 15–17 October 2009.

Dean DJ, Nguyen H and Gu X (2012) Ubl: unsupervised behavior

learning for predicting performance anomalies in virtualized

8 The International Journal of High Performance Computing Applications XX(X)



cloud systems. Proceeding of the 9th international conference

on autonomic computing. Available at: https://dl.acm.org/cita

tion.cfm?id¼2371572 (accessed 4 January 2019).

Deelman E, Carothers C, Mandal A, et al. (2017a) PANORAMA:

an approach to performance modeling and diagnosis of

extreme scale workflows. The International Journal of High

Performance Computing Applications 31(1): 4–18.

Deelman E, Kosar T, Kesselman C, et al. (2006) What makes

workflows work in an opportunistic environment? Concur-

rency and Computation: Practice & Experience 18(10):

1187–1199.

Deelman E, Peterka T, Altintas I, et al. (2017b) The future

of scientific workflows. The International Journal of High

Performance Computing Applications 32(1): 159–175.

Deelman E, Vahi K, Juve G, et al. (2015) Pegasus, a workflow

management system for science automation. Future Genera-

tions Computer Systems: FGCS 46(0): 17–35.

DeRoure D, Goble CA and Stevens R (2007) Designing the

myExperiment virtual research environment for the social

sharing of workflows. In: IEEE international conference on

e-Science and grid computing (e-Science), Bangalore, India,

10–13 November 2007.

Dong B, Byna S, Wu K, et al. (2016) Data elevator: low-

contention data movement in hierarchical storage system. In:

2016 IEEE 23rd international conference on high perfor-

mance computing (HiPC), Hyderabad, India, 19–22 December

2016, pp. 152–161.

Duan R, Prodan R and Fahringer T (2005) DEE: a distributed fault

tolerant workflow enactment engine for grid computing.

In: Yang LT, Rana OF, Di Martino B, et al. (eds) High

Performance Computing and Communications. Lecture

Notes in Computer Science. Berlin: Springer Berlin Heidel-

berg, pp. 704–716.

Duda RO, Hart PE and Stork DG (2012) Pattern Classification.

Hoboken: John Wiley & Sons.

Durillo JJ, Prodan R and Fard HM (2012) MOHEFT: a multi-

objective list-based method for workflow scheduling. In: Pro-

ceedings of the 2012 IEEE 4th international conference on

cloud computing technology and science (CloudCom),

CLOUDCOM ‘12, Taipei, Taiwan, 3–6 December 2012, pp.

185–192. Washington, DC: IEEE Computer Society.

Elomaa T, Mannila H and Toivonen H (2002) Principles of data

mining and knowledge discovery. In: Proceedings 6th Eur-

opean conference, PKDD 2002, Helsinki, Finland, 19–23

August 2002. Berlin, Heidelberg: Springer Berlin Heidelberg.

Fahringer T, Prodan R, Duan R, et al. (2005) ASKALON: a grid

application development and computing environment. In:

Proceedings of the 6th IEEE/ACM international workshop

on grid computing, Seattle, WA, USA, 13 November 2005.

Washington, DC: IEEE.

Fu S (2011) Performance metric selection for autonomic anomaly

detection on cloud computing systems. In: 2011 IEEE global

telecommunications conference—GLOBECOM 2011, Kath-

mandu, Nepal, 5–9 December 2011, pp. 1–5. Washington,

DC: IEEE.

Gil Y, Deelman E, Blythe J, et al. (2004) Artificial intelligence

and grids: workflow planning and beyond. IEEE Intelligent

Systems. Available at: https://scitech.isi.edu/wordpress/wp-

content/papercite-data/pdf/gil2004ai.pdf (accessed 4 January

2019).

Gil Y, Ratnakar V, Deelman E, et al. (2007) Wings for Pegasus:

creating large-scale scientific applications using semantic

representations of computational workflows. In: Proceedings

of the national conference on artificial intelligence, Vancou-

ver, British Columbia, Canada, 22–26 July 2007, p. 1767.

Menlo Park, CA; Cambridge, MA; London: AAAI Press; MIT

Press.

Gil Y, Ratnakar V, Kim J, et al. (2011) Wings: intelligent

workflow-based design of computational experiments. IEEE

Intelligent Systems 26(1): 62–72.

Goderis A, Brooks C, Altintas I, et al. (2007) Composing different

models of computation in Kepler and Ptolemy II. In: Shi Y,

van Albada GD, Dongarra J, et al. (eds) 2nd international

workshop on workflow systems in e-Science, Beijing, China,

27–30 May 2007.

Goecks J, Nekrutenko A and Taylor J (2010) Galaxy: a compre-

hensive approach for supporting accessible, reproducible, and

transparent computational research in the life sciences. Gen-

ome Biology 11(8): R86.

Goldstein M and Uchida S (2016) A comparative evaluation of

unsupervised anomaly detection algorithms for multivariate

data. PloS One 11(4): e0152173.

Gunter D, Deelman E, Samak T, et al. (2011) Online workflow

management and performance analysis with Stampede. In:

2011 7th international conference on network and service

management (CNSM), Paris, France, 24–28 October 2011,

pp. 1–10.

Hathaway RJ and Bezdek JC (1986) Local convergence of the

fuzzy c-means algorithms. Pattern Recognition 19(6):

477–480.

He Z, Xu X and Deng S (2003) Discovering cluster-based local

outliers. Pattern Recognition Letters 24(9): 1641–1650.

Huang D, Liu Q, Klasky S, et al. (2019) Harnessing data

movement in virtual clusters for in-situ execution. IEEE

Transactions on Parallel and Distributed Systems 30(3):

615–629.

Ibidunmoye O, Hernández-Rodriguez F and Elmroth E (2015)

Performance anomaly detection and bottleneck identification.

ACM Computing Surveys 48(1): 4:1–4:35.

Jain N, Bhatele A, Robson MP, et al. (2013) Predicting applica-

tion performance using supervised learning on communication

features. In: SC ‘13: ACM/IEEE international conference for

high performance computing, networking, storage and analy-

sis, Denver, CO, USA, 17–22 November 2013. Washington,

DC: IEEE Computer Society.

Jinka P and Schwartz B (2015) Anomaly Detection for Monitor-

ing: A Statistical Approach to Time Series Anomaly Detection.

Newton: O’Reilly Media.

Jolliffe IT and Cadima J (2016). Principal component analysis: a

review and recent developments. Philosophical Transactions

of the Royal Society A: Mathematical, Physical and Engineer-

ing Sciences 374(2065): 20150202.

Jones AC (2007) Workflow and biodiversity e-Science. In: Taylor

IJ, Deelman E, Gannon DB, et al. (eds) Workflows for

Deelman et al. 9



e-Science: Scientific Workflows for Grids. London: Springer

London, pp. 80–90.

Kiran M, Murphy P, Monga I, et al. (2015) Lambda architec-

ture for cost-effective batch and speed big data processing.

In: 2015 IEEE international conference on big data (big

data), Santa Clara, CA, USA, 29 October–1 November

2015, pp. 2785–2792. Washington, DC: IEEE.

Kohonen T, Schroeder MR and Huang TS (2001) Self-Organizing

Maps. Berlin, Heidelberg: Springer-Verlag. ISBN:

3540679219.

Kotliar M, Kartashov A and Barski A (2018) CWL-Airflow: a

lightweight pipeline manager supporting Common Workflow

Language. bioRxiv 2018: 249243. DOI: 10.1101/249243.

Kourtellis N, De Francisci Morales G and Bifet A (2019) Large-

scale learning from data streams with apache SAMOA. In:

Sayed-Mouchaweh M (ed) Learning from Data Streams in

Evolving Environments: Methods and Applications. Cham:

Springer International Publishing, pp. 177–207.

Krol D, Ferreira da Silva R, Deelman E, et al. (2016) Workflow

performance profiles: development and analysis. In: Euro-Par

2016: parallel processing workshops, Grenoble, France, 24–

26 August 2016, pp. 108–120.

Kwan-Liu M (2009) In situ visualization at extreme scale: chal-

lenges and opportunities. IEEE Computer Graphics and Appli-

cations 29(6): 14–19.

Lee YC, Han H, Zomaya AY, et al. (2015) Resource-efficient work-

flow scheduling in clouds. Knowledge-Based Systems 80:

153–162. 25th anniversary of Knowledge-Based Systems.

Li P, Castrillo JI, Velarde G, et al. (2008) Performing statistical

analyses on quantitative data in Taverna workflows: an example

using R and maxdBrowse to identify differentially-expressed

genes from microarray data. BMC Bioinformatics 9: 334.

Liu J, Pacitti E, Valduriez P, et al. (2015) A survey of data-

intensive scientific workflow management. Journal of Grid

Computing 13(4): 457–493.

Lorena AC, Jacintho LFO, Siqueira MF, et al. (2011) Comparing

machine learning classifiers in potential distribution model-

ling. Expert Systems with Applications 38(5): 5268–5275.

Mandal A, Ruth P, Baldin I, et al. (2016) Toward an end-to-end

framework for modeling, monitoring, and anomaly detection

for scientific workflows. In:Workshop on large-scale parallel

processing (LSPP 2016), Chicago, IL, 23–27 May 2016, pp.

1370–1379.

MacQueen J (1967) Some methods for classification and analysis

of multivariate observations. In: Proceedings of the fifth Ber-

keley symposium on mathematical statistics and probability,

Oakland, CA, USA, 1967, pp. 281–297.

Matsunaga A and Fortes JAB (2010) On the use of machine

learning to predict the time and resources consumed by appli-

cations. In: Proceedings of the 2010 10th IEEE/ACM interna-

tional conference on cluster, cloud and grid computing,

CCGRID ‘10, Melbourne, Victoria, Australia, 17–20 May

2010, pp. 495–504. Washington, DC: IEEE Computer Society.

Malawski M, Figiela K, Bubak M, et al. (2015a) Scheduling mul-

tilevel deadline-constrained scientific workflows on clouds

based on cost optimization. Scientific Programming

2015(Article 5).

Malawski M, Juve G, Deelman E, et al. (2015b) Algorithms for

cost- and deadline-constrained provisioning for scientific

workflow ensembles in IaaS clouds. Future Generations Com-

puter Systems: FGCS 48: 1–18.

Meng F, Zhou L, Ma X, et al. (2014) vCacheShare: automated

server flash cache space management in a virtualization envi-

ronment. In: 2014 USENIX annual technical conference (USE-

NIX ATC ‘14), Philadelphia, PA, 19–20 June 2014, pp.

133–144.

Missier P, Soiland-Reyes S, Owen S, et al. (2010) Taverna,

reloaded. In: Gertz M and Ludäscher B (eds) Scientific and

Statistical Database Management. Lecture Notes in Computer

Science. Berlin: Springer Berlin Heidelberg, pp. 471–481.

Muniswamy-Reddy K-K, Braun U, Holland DA, et al. (2009)

Layering in provenance systems. In: Proceedings of the

2009 conference on USENIX annual technical conference,

USENIX ‘09, San Diego, CA, USA, 14–19 June 2009, pp.

10–10. Berkeley, CA: USENIX Association.

Muniswamy-Reddy K-K, Macko P and Seltzer MI (2010) Prove-

nance for the Cloud. FAST 10: 15–14.

Nemirovsky D, Arkose T, Markovic N, et al. (2017) A machine

learning approach for performance prediction and scheduling

on heterogeneous CPUs. In: 2017 29th international sympo-

sium on computer architecture and high performance comput-

ing (SBAC-PAD), Campinas, Brazil, 17–20 October 2017, pp.

121–128.

Pal NR, Bezdek JC and Hathaway RJ (1996) Sequential compet-

itive learning and the fuzzy c-means clustering algorithms.

Neural Networks: The Official Journal of the International

Neural Network Society 9(5): 787–796.

Pietri I and Sakellariou R (2014) Energy-aware workflow sche-

duling using frequency scaling. In: 3rd international workshop

on power-aware algorithms, systems, and architectures, Min-

neapolis, MN, 10 September 2014.

Pietri I and Sakellariou R (2019) A Pareto-based approach for

CPU provisioning of scientific workflows on clouds. Future

Generations Computer Systems: FGCS 94: 479–487.

Pietri I, Juve G, Deelman E, et al. (2014) A performance model to

estimate execution time of scientific workflows on the cloud.

In: Proceedings of the 9th workshop on workflows in support

of large-scale science, WORKS ‘14, Piscataway, NJ, USA, 16

November 2014, pp. 11–19. Washington, DC: IEEE Press.

Plankensteiner K, Prodan R, Fahringer T, et al. (2009) Fault detec-

tion, prevention and recovery in current grid workflow sys-

tems. In: Yahyapour R, Talia R and Meyer N (eds) Grid and

Services Evolution. Boston, MA: Springer US, pp. 1–13.

Poehlman WL, Rynge M, Branton C, et al. (2016) OSG-GEM:

gene expression matrix construction using the open science

grid. Bioinformatics and Biology Insights 10: 133–141.

Prathamesh G, Mandal A, Ruth P, et al. (2016) Anomaly detection

for scientific workflow applications on networked clouds. In:

IEEE 2016 international conference on high performance

computing & simulation (HPCS 2016), Innsbruck, Austria,

18–22 July 2016.

Qin J and Fahringer T (2012) Abstract workflow description lan-

guage. Scientific Workflows: Programming, Optimization, and

10 The International Journal of High Performance Computing Applications XX(X)



Synthesis with ASKALON and AWDL. Berlin, Heidelberg:

Springer-Verlag, pp. 31–61.

Ramakrishnan A, Singh G, Zhao H, et al. (2007) Scheduling data-

intensive workflows onto storage-constrained distributed

resources. In: Seventh IEEE international symposium on clus-

ter computing and the grid—CCGrid 2007, Rio De Janeiro,

Brazil, 14–17 May 2007.

Samak T, Gunter D, Goode M, et al. (2011a) Failure prediction

and localization in large scientific workflows. In: Proceedings

of the 6th workshop on workflows in support of large-scale

science, Seattle, WA, 14 November 2011, pp. 107–116. New

York, NY: ACM.

Samak T, Gunter D, Goode M, et al. (2011b) Online fault and

anomaly detection for large-scale scientific workflows. In:

2011 IEEE international conference on high performance

computing and communications, Banff, Canada, 2–4 Septem-

ber 2011, pp. 373–381.

Samak T, Gunter D, Goode M, et al. (2013) Failure analysis of

distributed scientific workflows executing in the cloud. In:

Proceedings of the 8th international conference on network

and service management, CNSM ‘12, Laxenburg, Austria, 22–

26 October 2013, pp. 46–54. Laxenburg, Austria: International

Federation for Information Processing.

Simmhan YL, Plale B and Gannon D (2005) A survey of data

provenance in e-Science. ACM SIGMOD Record 34(3): 31–36.

Simmhan YL, Plale B, Gannon D, et al. (2006) Performance

evaluation of the karma provenance framework for scientific

workflows. In: Moreau L and Foster I (eds) Provenance and

Annotation of Data. Lecture Notes in Computer Science. Ber-

lin: Springer Berlin Heidelberg, pp. 222–236.

Singh G, Vahi K, Ramakrishnan A, et al. (2007) Optimizing work-

flow data footprint. Scientific Programming 15(4): 249–268.

Spafford KL and Vetter JS (2012) Aspen: a domain specific lan-

guage for performance modeling. In: Proceedings of the inter-

national conference on high performance computing,

networking, storage and analysis, SC ‘12, Los Alamitos,

CA, USA, 10–16 November 2012, pp. 84:1–84:11. Washing-

ton, DC: IEEE Computer Society Press.

Spark A (2014) Apache spark streaming. Spark streaming pro-

gramming guide. Available at: https://spark.apache.org/stream

ing/ (accessed 4 January 2019).

Steuer R, Kurths J, Daub CO, et al. (2002) The mutual informa-

tion: detecting and evaluating dependencies between vari-

ables. Bioinformatics 18(Suppl 2): S231–S240.

Subedi P, Davis P, Duan S, et al. (2018) Stacker: an autonomic

data movement engine for extreme-scale data staging-based

in-situ workflows. In: Proceedings of the international confer-

ence for high performance computing, networking, storage,

and analysis, SC ‘18, Piscataway, NJ, USA, 11–16 November

2018, pp. 73:1–73:11. Washington, DC: IEEE Press.

Taylor I, Shields M, Wang I, et al. (2007) The triana workflow

environment: architecture and applications. In: Taylor I, Deel-

man E and Gannon D, et al. (eds) Workflows for E-Science.

London: Springer, pp. 320–339.

Tovar B, da Silva RF, Juve G, et al. (2018) A job sizing strategy

for high-throughput scientific workflows. IEEE Transactions

on Parallel and Distributed Systems 29(2): 240–253.

Usman SA, Kehl MS, Nitz AH, et al. (2015) An improved pipeline

to search for gravitational waves from compact binary coales-

cence. arXiv:1508.02357 [astro-ph, physics: gr-qc]. Available

at: http://arxiv.org/abs/1508.02357 (accessed 4 January 2019).

Wang T, Oral S, Pritchard M, et al. (2015) TRIO: Burst Buffer

Based I/O Orchestration. In: 2015 IEEE International confer-

ence on cluster computing, Chicago, IL, USA, 8–11 Septem-

ber 2015, pp. 194–203. Washington, DC: IEEE.

Wang T, Wei J, Zhang W, et al. (2014) Workload-aware anomaly

detection for Web applications. The Journal of systems and

software 89: 19–32.

Weiss NA and Weiss CA (2012) Introductory Statistics. London:

Pearson Education.

Weitzel D, Bockelman B, Brown DA, et al. (2017) Data Access

for LIGO on the OSG. In: Proceedings of the practice and

experience in advanced research computing 2017 on sustain-

ability, success and impact, New Orleans, LA, 9 July 2017, p.

24. New York, NY: ACM.

Wolstencroft K, Haines R, Fellows D, et al. (2013) The Taverna

workflow suite: designing and executing workflows of Web

Services on the desktop, web or in the cloud. Nucleic Acids

Research 41: W557–W561.

Zhang OQ, Kirchberg M, Ko RKL, et al. (2011) How to track your

data: the case for cloud computing provenance. In: 2011 IEEE

third international conference on cloud computing technology

and science, Athens, Greece, 29 November–1 December 2011,

pp. 446–453.

Zhou AC, He B, Cheng X, et al. (2015) A declarative optimization

engine for resource provisioning of scientific workflows in IaaS

clouds. In: Proceedings of the 24th international symposium on

high-performance parallel and distributed computing, HPDC

‘15, Portland, OR, 15–19 June 2015, pp. 223–234. New York,

NY: ACM.

Author biographies

Ewa Deelman received her PhD in Computer Science from

the Rensselaer Polytechnic Institute in 1998 in the area of

parallel computing. Following a postdoc at the UCLA

Computer Science Department, she joined the University

of Southern California’s Information Sciences Institute

(ISI) in 2000, where she is serving as a Research Director

and is leading the Science Automation Technologies group.

Her research focuses on distributed systems with a partic-

ular emphasis on workflow technologies. She is also a

Research Professor at the USC Computer Science Depart-

ment and an IEEE Fellow.

Anirban Mandal serves as a Research Scientist at RENCI,

UNC-Chapel Hill and leads several projects in the network

research and infrastructure group. His research interests

include resource provisioning, scheduling, performance

analysis and measurements for distributed computing sys-

tems, cloud computing, and scientific workflows. Prior to

Deelman et al. 11



joining RENCI, he earned his PhD degree in Computer

Science from Rice University in 2006.

Ming Jiang received his PhD in Computer Science and

Engineering from The Ohio State University in 2005 in

the area of scientific visualization and data mining. He

joined Lawrence Livermore National Laboratory (LLNL)

as a postdoc in 2005 and worked on large-scale image and

video processing. He is currently a computer scientist at

the Center for Applied Scientific Computing at LLNL.

His current research is focused on exploiting machine

learning and Big Data analytics for improving large-

scale HPC simulations.

Rizos Sakellariou obtained his PhD from the University of

Manchester in 1997. Following brief spells with Rice Uni-

versity and the University of Cyprus, since 2000 he has

been with the University of Manchester where he is cur-

rently Professor of Computer Science leading a laboratory

that carries out research on a range of parallel and distrib-

uted systems topics with an emphasis on efficient manage-

ment of resources.

12 The International Journal of High Performance Computing Applications XX(X)


