


was thus to envision a set of knowledge bases that capture

implicit knowledge about the state of the application and of

the system. Reasoners would then invoke the appropriate

knowledge source to refine the user request to a specific

workflow, then reason about particular resources to use,

and classify failures. Unfortunately, such knowledge was

hard to obtain and consequently the reasoners for workflow

composition and management were very limited.

A number of different techniques and heuristics have

been developed to manage the workflow life cycle, which

include workflow composition (Gil et al., 2011; Goderis

et al., 2007; Goecks et al., 2010; Taylor et al., 2007),

resource provisioning (Byun et al., 2008; Malawski et al.,

2015b; Zhou et al., 2015), and various aspects of workflow

execution such as job scheduling (Durillo et al., 2012; Lee

et al., 2015.; Pietri and Sakellariou, 2014; Ramakrishnan

et al., 2007) and fault detection (Duan et al., 2005; Plan-

kensteiner et al., 2009; Samak et al. 2011b). With the

advances being made in machine learning, new opportuni-

ties are presenting themselves, providing potentially more

sophisticated and scalable methods that can generate better

performing workflows and possibly learn to create work-

flows based on prior knowledge. In this article, we explore

the opportunities that ML techniques can offer in the area

of scientific workflows. We discuss the current challenges

in each phase of the workflow life cycle (i.e. composition,

provisioning, execution) and describe how ML can be used

to address them (e.g. unexpected and anomalous behavior).

Finally, the article gives examples of how ML techniques

are used today in managing scientific workflows and

hypothesizes potential uses of these techniques to improve

the state of the art in workflow management.

2. Current challenges in scientific

workflows

In this section, we discuss the current challenges in man-

aging scientific workflows in distributed systems and how

ML techniques can be used to address these challenges.

Our focus is on the three main phases of the workflow life

cycle: workflow composition, resource provisioning, and

workflow execution.

2.1. Workflow composition

There are a number of ways to compose scientific work-

flows. In some cases, the workflows are composed graphi-

cally (Goderis et al., 2007; Missier et al., 2010; Taylor

et al., 2007), in some cases using a variety of well-known

languages (Deelman et al., 2015) or with the aid of new

languages (Albrecht et al., 2012; Kotliar et al., 2018; Qin

and Fahringer, 2012). However, the main problem of

designing or reusing an existing workflow still remains: the

challenge is in picking the right analysis for the data at hand

or for the desired result. In addition to selecting the right

analysis, the workflow component parameters may have to

be tuned for a particular problem. If no such analysis exists,

then a new workflow needs to be designed.

One approach for finding suitable workflows is to reuse

workflows from a repository, such as MyExperiment

(David De and Goble, 2009; DeRoure et al., 2007). The

workflows can be searched based on tags, contributors, and

systems they are written in among others. It is up to the user

to decide which workflows to select for use or reuse. How-

ever, one can imagine that ML can be used to learn what

workflows are relevant to the users based on their previous

searches or the type of data the user wants to analyze, or the

results that the user is looking for.

Taking this further, ML could be used to select a set of

“similar” workflows and then suggest new workflow com-

ponents that could be used to augment the workflow to

obtain the desired results. Today, there are systems such

as Wings (Gil et al., 2007, 2011), which enable users to

compose workflow templates. AWings template represents

a skeleton of a workflow indicating the types of compo-

nents and data needed but not the exact data sets of com-

ponent implementations. Wings defines semantic

constraints about data sets and workflow components,

which can be used in component selection (filling out the

template) as well as in workflow validation. The semantic

information is also propagated to the results by providing

the metadata for the data sets generated by the workflow.

Finally, ML techniques could be used to compose an

entire workflow from scratch. This would require perform-

ing experiments to explore different workflow component

combinations that can execute successfully and work well

for particular data sets. However, this level of automation

may not be fully desirable. In previous work, AI planning

techniques for workflow composition were explored: the

workflow goals were the desired data products and the

operators were the application components (Blythe et al.,

2003; Gil et al., 2004). The planners also received the

current state of the distributed system. Although these tech-

niques were able to produce valid workflows, the target

scientists did not like the fact that the processes of compo-

nent selection and workflow composition were all auto-

mated. Scientists wanted to be able to reason about the

workflow and how to compose it themselves, often through

an exploratory process. However, ML techniques can help

fill in the details for high-level workflow structures. For

example, ML techniques can learn from previous workflow

executions to infer which parameters used by the workflow

components worked the best to obtain successful execu-

tions or desired results. At a more fine-grained level, ML

techniques could be used to reason about the right shape of

the workflow to enable a smaller workflow data footprint

(Singh et al., 2007).

2.2. Resource provisioning

After the workflow is composed, a user or a workflow

management system needs to decide what storage, network,

and computational resources are needed for the successful
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workflow execution. This decision involves figuring out

the types of resources (what types of operating system and

other software) are needed to support the execution of a

workflow component. Other resource characteristics such

as the amount of memory or CPU speed to use also need to

be taken into account (Pietri and Sakellariou, 2019).

Finally, the amount of each type of resources, storage, net-

work bandwidth needs to be decided, often requiring a

balance between different requirements and cost

(Malawski et al., 2015a, 2015b).

Various approaches have been taken to performance

modeling and prediction, which can guide resource selec-

tion decisions. Some involve developing analytical models

of applications executing on particular platforms, such as

is the case with Aspen (Spafford and Vetter, 2012). This is

particularly useful when the performance model needs to

provide quick results, or when the prediction about the

application performance is made in the context of a system

that is not available (yet to be designed or deployed). In

some cases, analytical models are not sufficient to provide

desired accuracy, for example, in cases where there is con-

tention for system resources, such as networks or I/O sys-

tems. In these cases, simulations are often used to model

the system and potentially the application in more detail.

An example of such a simulator is ROSS (Carothers et al.,

2002), which can simulate complex high-performance

interconnects and I/O. Simulations may take longer to run

than analytical models, so their usefulness for online pre-

dictions is often limited.

When it is possible to run the applications on the target

platforms, performance information can be collected and

analyzed using simple statistical methods (calculating

averages, standard deviations, etc.) (Deelman et al.,

2017a; Krol et al., 2016) or in combination with simple

analytical models (Pietri et al., 2014). However, in order

to use these metrics, one often needs to determine which

factors influence application performance and what effect

they have. In some cases, trial-and-error approaches are

employed. In Tovar et al. (2018), the authors provision

resources based on previously observed job needs, being

conservative in their approach to limit resource wastage.

When the resources turn out to be insufficient, the job is

given a larger amount of resources. The process is repeated

until the job successfully completes.

ML techniques promise to be able to learn patterns of

application and system behavior that can be more accurate

in predicting application performance (Jain et al., 2013;

Matsunaga and Fortes, 2010; Nemirovsky et al., 2017).

Such methodologies can be used to analyze past and current

workflow performance to identify the important parameters

that affect workflow behavior from a particular point of

view—for example, from the point of view of data source

selection for a task. In that case, one can learn which data

sources have high availability, what are the best parameter

settings to use for data transfers over particular networks,

and so on. Some parameters can be time dependent, for

example, the load at the data sources may be particularly

high during some time periods.

To discover parameters that determine workflow perfor-

mance, clustering type algorithms can be employed. One

can, for example, analyze class membership for both

“normal” and “faulty” clusters to understand the patterns

in the workflow executions. By analyzing the members of

the “normal” clusters, we can determine which parameters

to use for a task (e.g. degree of concurrency to use, para-

meters to set, amount of memory needed, and so on) and for

jobs such as how many processors, which resources to use

and which to avoid, how to configure data transfers and

more. By analyzing members of the “faulty” class, we can

learn which resource or combination of resources to avoid,

for example, avoiding using a data transfer path that is

experiencing packet loss or corruption, or an endpoint

experiencing disk failure. Hence, ML algorithms can pro-

vide recommendations for suitable or unsuitable resources

for a workflow, how to configure them, and so on.

ML techniques could also be used to guide other forms

of resource selection where multiple subsystems are

involved, which would require careful considerations of

subtle bottlenecks and interferences. For example, the sche-

duling of data transfer between tasks can too often create

bottlenecks between computation and communication

phases, and manual optimizations are often complex

(Huang et al., 2019). We can train ML models to classify

the workflow phases to optimize data movements, to

orchestrate I/O (Meng et al., 2014; Wang et al., 2015), and

to manage hierarchical storage (Dong et al., 2016) and data

staging (Subedi et al., 2018). Also, as in-situ execution

becomes more prevalent (Huang et al., 2019; Kwan-Liu,

2009; Subedi et al., 2018), ML can play an important role in

automating the placement of tasks to automatically find an

optimal trade-off.

2.3. Workflow execution

Workflow execution involves scheduling the tasks in a

workflow in the order they are supposed to execute on the

resources provisioned for the tasks. In some cases, the

workflow tasks may be scheduled just-in-time without an

additional prior provisioning step (Deelman et al., 2006).

Once the jobs are scheduled, they need to be monitored for

success or failure, resource consumption, or any sort of

anomalous behavior, which indicates some departure from

what is expected. Figure 1 shows how an example work-

flow that traverses several stages (left), and how different

types of cyberinfrastructure facilities provide resources for

the execution of the workflow (right).

As the workflow is executing, the analysis of the per-

formance data being generated needs to encompass two

aspects: (1) identification of workflow anomalies and task

performance bottlenecks by using the metrics and perfor-

mance data relevant to workflows and component applica-

tions, and (2) detection and localization of faults in the

multi-domain, distributed infrastructure by leveraging
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infrastructure-centric metrics. One can then build corre-

lated failure models across workflow- and infrastructure-

level metrics for troubleshooting and pinpointing sources

of failures (Gunter et al., 2011; Samak et al., 2011b, 2013).

If undesired or anomalous behavior is detected, the

workflow management system may decide to reschedule

jobs onto a different resource, select a different data

source or target storage system, decide to provision addi-

tional resources, or, in the most drastic case, decide to

compose a different workflow altogether. Today, these

decisions are made in a simplistic way, mostly through

trial-and-error or basic heuristics. A first step to improve

the quality of adaptation decisions is to be able to detect

anomalies in the first place (Mandal et al., 2016; Pratha-

mesh et al., 2016).

In today’s workflows, the problem of unexpected or

anomalous behavior during workflow execution is exacer-

bated by the use of complex distributed cyberinfrastructure

that often encounters both performance problems and

faults/errors that potentially span all levels of the sys-

tem—applications, middleware, and the underlying execu-

tion platform. While end-to-end monitoring of workflow

applications and systems is an essential building block to

detect such problems, current techniques for anomaly

detection are often based on thresholds and simple statistics

(e.g. moving averages) (Jinka and Schwartz, 2015) that

can: (1) fail to understand longitudinal patterns, (2) miss

opportunities for anomaly detection, and (3) seldom be

used for identifying the root cause of the anomalies. Exist-

ing statistical techniques can make assumptions about

underlying distributions for the metric values, which might

not hold in large-scale execution environments. Being uni-

variate in nature, these statistical models cannot capture

interactions between features. Hence, multivariate tech-

niques, in particular ML algorithms, are envisioned as an

appropriate approach for building failure models and for

detecting and diagnosing failures in large-scale workflow

executions on complex systems.

One potential approach is to apply ML algorithms in a

top–down approach beginning with workflow-level analy-

sis. This analysis can use high-level, aggregate workflow

performance metrics, such as the number of failed/com-

pleted tasks versus the total number of tasks in the work-

flow, to predict the overall behavior of a running workflow

by clustering statistically similar workflows into classes.

When the aggregate analysis of workflow-level metrics

reveals membership to an anomalous class, job-level anal-

ysis can be triggered. Job-level analysis can then detect

faults and bottlenecks using detailed job information such

as resource usages, data sizes, resource parameters, and

application-specific job parameters.

3. ML approaches in scientific workflows

While the previous sections touched upon the challenges

faced in managing scientific workflows in distributed sys-

tems, here we describe ML techniques that are being used

today to analyze the behavior of workflows at various lev-

els of abstraction (workflow, task, and infrastructure) using

different processing modalities (online and off-line). We

Figure 1. On the left, a sample workflow that processes instrumental data. On the right, possible resources to be used for the
execution of the workflow tasks.
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also describe potential issues with using ML, such as col-

lecting the training data.

3.1. Workflow-level analysis

Workflow-level analysis explores the coarse-grained beha-

vior of jobs in the workflow: their runtime, success, failure,

and so on. Unsupervised clustering, in which the classes are

formed without prior information (“supervision”), to clas-

sify similar workflow runs and associate them with beha-

vioral classes is a potential ML approach that can be

employed for workflow-level analysis. Features selected

for each workflow can be either static or real time. The

static features are independent of a given execution, and

thus can be computed directly from the workflow descrip-

tions. Static features can include the average degree of job

dependencies or fan out, the average level of parallelism,

and the average degree of data dependencies. Real-time

features are dependent on a given execution and include

the percentage of jobs/tasks that executed successfully, the

percentage of jobs/tasks that failed, the average duration of

successful jobs/tasks, and the average duration of failed

jobs/tasks (before termination). Any metric that is available

both in the historical and real-time data can be a feature.

Researchers have used the efficient k-means clustering

algorithm (Amer and Goldstein, 2012; He et al., 2003;

MacQueen, 1967; Samak et al., 2011b; Wang et al.,

2014), with randomized initial centers and the (standard)

Euclidean distance metric to cluster workflows. More

sophisticated clustering algorithms should be investigated

and compared with prior approaches (Duda et al., 2012). In

particular, fuzzy c-means clustering (Hathaway and Bez-

dek, 1986; Pal et al., 1996) can be used to exploit some

class overlaps that have been found with the initial clus-

tering. Fuzzy clustering has the ability to capture non-

separable classes, without the expensive pre-processing

of features.

Clustering algorithms produce a set of classes, with

associated numerical models, which can be used for future

prediction. Using online processing, feature vectors can be

computed, and the cluster model can be used to compute a

degree of membership for each cluster. For example, a

workflow can be classified in real time to belong in a High

Failure Workflow (HFW) class with 90% membership,

while another workflow can be 60% HFW. Feature vectors

can be also computed at different points in the workflow

lifetime, generating a classification result. By tracking a

workflow’s degree of membership over time, triggers can

be generated when the membership in a given class crosses

a threshold. These triggers can be used by workflow man-

agement systems to signal the need to adapt the workflow

or the resources. The quality of clustering algorithms can

be evaluated by measuring inter-cluster homogeneity (min-

imum overall distance between objects from the same

class) and intra-cluster separation (maximum distance

between different clusters).

3.2. Task-level analysis

To better understand the source of the anomaly, task-level

analysis should be triggered when a possibly anomalous

workflow is found. This analysis should identify possible

causes of task failures and help identify performance bot-

tlenecks. The analysis can be aided by task performance

data and job-relevant metadata from a workflow perfor-

mance data repository. The workflow management system

collects task-level data as the workflow is executing.

Hence, the system can perform accurate labeling of the data

when task failures are observed. Based on the status of the

job containing the task, the workflow management system

can label a feature vector consisting of task-specific metrics

as “Failed” or “Successful.” As a result, one can assume to

have a significant portion of tasks’ performance data being

labeled. This allows the building of supervised learning

classifiers that distill task failures from historical labeled

training data, and those models can be used for classifying

task failures at runtime for fast detection.

Naive Bayes classifier has been shown to accurately

predict the failure probability of tasks for scientific work-

flows on the cloud using task performance data (Samak

et al., 2013). Others (Bala and Chana, 2015) have compared

logistic regression, artificial neural nets (ANN), Random

Forest and Naive Bayes for failure prediction of workflow

tasks in the cloud and concluded that the Naive Bayes’

approach provided the maximum accuracy. In Buneci and

Reed (2008), the authors have used a k-nearest neighbors

(k-NN) classifier to classify workflow tasks into

“Expected” and “Unexpected” categories using feature

vectors constructed from temporal signatures of task per-

formance data. In addition to applying the Naive Bayes

classifier, further research should be conducted to explore

a spectrum of classifiers for task performance data, which

can include k-NN, ANNs, logistic regression, and Support

Vector Machines (SVM) (Lorena et al., 2011). The accu-

racy of the classification algorithms should be then evalu-

ated using paired criteria like precision and recall, and

combined criteria like the balanced classification rate,

which takes into account both true negative and true posi-

tive rates, and F-measure, which is the harmonic mean

between precision and recall.

Sometimes, performance bottlenecks can also be

detected using metrics that are gathered from the task meta-

data and provenance information, some of which might be

categorical in nature. In these cases, decision tree-based

classifiers can be used because they are suitable for fast

online inference of the “tree path” that led to the anomaly.

The features can include task information such as task type,

input size, parameters to the executable, as well as system

related information such as user name, site name, host IP,

job delay, and job exit code. The feature vectors can then be

fed to a learning classifier as the training set to generate a

model for predicting behaviors of interest. In previous work

(Samak et al., 2011a), regression trees were used as the

learning classifier, giving both prediction ability and fault
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isolation results. Other partitioning algorithms should be

investigated for constructing decision trees (Breiman,

2017). These algorithms are able to build a tree, where

internal nodes are feature descriptions and tree leaves are

task states. Traversal of the tree from root to leaf for a given

input task can help identify bottlenecks.

3.3. Infrastructure-level analysis

The distributed, heterogeneous nature of the end-to-end

platform with multiple resource providers makes it harder

to collect labeled data systematically about anomalies and

failures in the infrastructure used to execute workflows. In

addition, the dynamic characteristics of the platform-

induced anomalies often manifest themselves in an

unknown manner. This makes it difficult to define anomaly

classes a priori. Hence, various unsupervised learning (UL)

techniques should be more suitable for infrastructure-level

data analysis.

Choosing an appropriate feature space needs to be the

first step in the process. Metrics like uptime, number of jobs

per machine, system throughput and latency, available stor-

age and network capacity, and so on play a critical role to

ensure workflows reach completion, and hence should be

present in relevant feature vectors. The next step is the

selection of appropriate UL strategies. Several researchers

have studied the use of UL techniques for anomaly detec-

tion in computing systems (Ibidunmoye et al., 2015). Three

broad UL strategies, and combinations thereof, have been

shown to work well in different scenarios: (1) nearest

neighbor-based techniques like those based on local outlier

factor (LOF), k-NN (Amer and Goldstein, 2012; Bhaduri

et al., 2011; Elomaa et al., 2002; He et al., 2003; Wang

et al., 2014), (2) clustering-based techniques using k-means

clustering combined with outlier factor (Amer and Gold-

stein, 2012; He et al., 2003; Wang et al., 2014), and (3) self-

organizing maps-based techniques (Dean et al., 2012;

Kohonen, 2001).

Selecting the appropriate UL technique for workflow

use cases is a non-trivial problem. While nearest

neighbor-based approaches produce more accurate models,

they are computationally more expensive than clustering-

based approaches (Goldstein and Uchida, 2016). Some

techniques work well to detect global anomalies (e.g.

k-NN) but fail to identify local anomalies. The strategy

should be to systematically explore this spectrum of UL

techniques, with particular emphasis on online techniques

that combine incremental clustering with dynamic LOF

calculations, which potentially balances accuracy and

detection time.

3.4. Cross-level analysis

Most research on performance anomaly detection using

ML techniques has dealt with either the system or the

application (Chandola et al., 2009; Ibidunmoye et al.,

2015). Correlating these two types of anomalies in a unified

framework is a relatively unexplored problem, albeit a very

important one. Correlations allow users to identify the

source of anomalies and performance bottlenecks by con-

volving failing or poorly performing workflow tasks with

infrastructure elements potentially responsible for the

anomalies. One approach can be to extend the UL tech-

niques developed above to cluster feature vectors and

identify outliers. Then the anomalous samples can be inves-

tigated to troubleshoot the sources of anomalies.

In addition to the infrastructure-level metrics, one will

need to include the relevant workflow- or task-level metrics

in the feature vectors. This will have an effect on how the

UL algorithms will scale because this would significantly

increase the number of metrics. In choosing the UL algo-

rithm, several variants of clustering-based algorithms

should be explored since they tend to scale better with

larger feature spaces and sample sizes. Reducing the

dimensionality of data using techniques such as principal

component analysis, factor analysis, and similarity identi-

fication (Jolliffe and Cadima, 2016; Fu, 2011; Steuer et al.,

2002) will help with scalability as well.

After detecting anomalous instances, the anomalous

metrics should be located for analyzing root causes of

performance deviations or failures. Since the feature vec-

tor contains both kinds of metrics, one approach can be to

use a simple but effective method based on the Student’s

t-test (Weiss and Weiss, 2012) statistical method. This

method exploits the underlying property that normal data

instances occur in high probability regions in a stochastic

model, while anomalies occur in low probability regions.

If comparison with prior samples of a metric results in

significant differences, it can signify the presence of an

anomaly. For every metric in the anomalous feature vec-

tor, one can calculate the t-transfer to fit the t-distribution

to calculate the metric anomaly value (MAV) (Wang

et al., 2014), and then sort the MAVs to locate the suspi-

cious metrics. Correlated anomalies will manifest as high

MAV values for multiple metrics, which can help trouble-

shoot the sources of the anomaly.

3.5. Online/off-line analysis

The ML-based methods will need to analyze both online

and off-line performance and provenance data, and they

can be integrated following the principles of the

“Lambda architecture” (LA) (Kiran et al., 2015). LA is

a generic, linearly scalable, and fault-tolerant data pro-

cessing architecture that is able to serve a wide range of

queries and computations on both fast-moving (stream-

ing) data and historical data (batch). Large volumes of

performance and provenance data can be analyzed with

both batch- and stream-processing techniques. The

stream processing component, the “speed layer,” can

encapsulate the ML approaches for online analysis,

while batch-processing can be leveraged for the heavy-

weight off-line ML techniques at the “batch layer” ana-

lyzing data across multiple workflows.
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For comprehensive introspection and analysis of per-

formance and provenance data, off-line ML-based

approaches need to be developed to enable longitudinal

analysis across multiple workflow executions. Such a type

of analysis can be computationally intensive since it inte-

grates and correlates data from multiple workflows,

thereby enabling discovery of patterns across workflows.

Several supervised and semi-supervised learning

approaches (SVM, Random Forest, Bayesian classifiers,

etc.) have been shown to be effective in identifying sys-

tem and application anomalies. All these techniques rely

on the availability of high-quality labeled data to train the

ML models to be used later for classification of test cases.

Hence, one should use carefully labeled performance and

provenance data obtained from workflow executions

on isolated and controlled environments to train the

ML-based analysis algorithms.

A significant challenge for online analysis is to develop

algorithms that are lightweight yet provide accurate detec-

tion of anomalies when operating on high-volume, real-

time, streaming data. A two-pronged approach can be

employed for online analysis of a single workflow execu-

tion. Deploying the ML models developed using off-line

techniques on production cyberinfrastructure is one option.

One can then evaluate the accuracy of those models in

production for predicting faults and detecting anomalies.

The other option can be to explore the application of

low-overhead, streaming versions of ML techniques like

streaming mini-batch k-means and logistic regression

directly on streaming data. We can leverage the state-of-

the-art data stream processing engines and libraries includ-

ing Apache Spark Streaming (Spark, 2014) and Apache

MOA/SAMOA (Kourtellis et al., 2019) and the best off-

line ML models for online analysis. While off-line ML

models can be used to guide online analysis, the results

of the online analysis, capturing specific characteristics of

workflow ensemble run, can also be used to tune and

update the off-line ML models. Such feedback loops

between off-line and online approaches will be essential

to improve the accuracy of each.

3.6. Training data collection

In order to train robust ML models that can be used for

scientific workflows, one needs to collect a large and

diverse set of data from workflows, not just individual users

but from large collaborations as well. One will need to

develop new capabilities to instrument the scientific work-

flow to automatically collect and store various metrics for

the end-to-end workflow that can be used for ML training

data, including information about (a) the input, intermedi-

ate, and output data products; (b) application codes that

constitute the workflow; and (c) the resource envelope or

the infrastructure the workflow is executing in.

Novel architectures are needed for triaging and collating

data from a variety of tools responsible for workflow and

infrastructure performance monitoring and the collection of

various metrics that can be used for ML training. Figure 2

provides a conceptual framework for such a data collection

architecture. The expanded set of metrics collected from

multiple sources of data can be triaged at a message bus

that can be used for off-line and online analysis as

described in Section 3.5. The data collected can also be

used as an audit trail for the workflow execution and can

help in capturing provenance of both the application pro-

cesses and the infrastructure used for processing.

Collecting provenance information for workflows is

critical, as provenance data provide an audit trail by which

the integrity of the data can be judged (Simmhan et al.,

2005, 2006; Zhang et al., 2011). Data provenance collec-

tion in a cloud or another multi-provider environment,

common for workflow execution today, is challenging due

to the need for cross-layer correlation of data from multiple

layers and sources (Muniswamy-Reddy et al., 2009, 2010).

Part of provenance data collection includes data about spe-

cific virtual and physical resources used for the execution

Figure 2. Overview of the workflow management, monitoring, and analysis systems.
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of workflow tasks as well as storage and transfer of initial,

intermediate, and final workflow data products, all of

which can be used as learning features to train ML models.

This information can be used to identify data sets that were

produced by hardware that became faulty or infrastructure

that was in some way compromised and whose outputs

therefore cannot be trusted. Collecting this information

requires specific mechanisms and trust structures by which

the data can be acquired, attributed and stored.

4. Conclusions

The community is just at the beginning of exploring ML

techniques in the scientific workflow space. There are

many opportunities that are outlined in this article. If we

successfully leverage and potentially develop new ML

techniques for workflows, doing science will become as

easy as using a smartphone app. As a result, scientific

productivity will increase and the population of scien-

tists that use computational methods for their work will

grow as well. New workflow systems will be able to

understand the user’s previous requests, discover the

related data and structure the computations needed to

deliver the desired results. However, providing this level

of automation may make the introspection of the pro-

cesses used to obtain the results more difficult. It would

also potentially make reproducibility more difficult.

Nevertheless, it can potentially provide a means of com-

parison of different scientific methods and their simila-

rities and differences to other approaches.
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