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Finite Horizon Density Steering for Multi-input
State Feedback Linearizable Systems

Kenneth F. Caluya, Abhishek Halder

Abstract—In this paper, we study the feedback synthesis
problem for steering the joint state density or ensemble sub-
ject to multi-input state feedback linearizable dynamics. This
problem is of interest to many practical applications including
that of dynamically shaping a robotic swarm. Our results here
show that it is possible to exploit the structural nonlinearities to
derive the feedback controllers steering the joint density from
a prescribed shape to another while minimizing the expected
control effort to do so. The developments herein build on our
previous work, and extend the theory of the Schrodinger bridge
problem subject to feedback linearizable dynamics.

I. INTRODUCTION

We consider the problem of steering the statistics of the
state vector x(t) from a prescribed ensemble or joint density
po(x) to another p;(x) over a finite time horizon ¢ € [0, 1],
subject to controlled nonlinear dynamics of the form

z=f(z)+Gx)u, z€XCR", weR™, (1)

where f is a smooth vector field on the state space X C R",
and G is an n X m matrix whose columns consist of the
vectors g; € R" fort=1,...,m, i.e.,

G(z) = [g1(z)g2()| .. . |gm(T)] - @)

It is of broad practical interest to solve this finite horizon
density steering problem while minimizing the average total
control effort over the controlled state ensemble p(x,t).

This problem is motivated by the growing need across
science and engineering applications to control a large
population of systems. Consider for example, shaping the
bulk magnetization distribution for Nuclear Magnetic Res-
onance spectroscopy, controlling heterogeneous (e.g., aerial
and ground) robotic swarms [1], [2], strategically synchro-
nizing and desynchronizing a neuronal population to regulate
the Parkinsonian tremor [3], and differentially moving the
setpoints of a large population of residential air-conditioners
by a service provider to make their total energy consumption
track the intermittency in supply (e.g., due to stochastic
renewable generation) in a privacy-preserving manner [4],
[S]. These exemplars concern population ensemble or density
whose shape is actively controlled over time while preserving
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the physical mass. The conservation of mass allows an alter-
native interpretation of the underlying mathematical problem
— instead of steering a large number of dynamical systems,
one can think of steering a single system with probabilistic
uncertainty in its initial and terminal state, i.e., po, p1 being
joint state probability density functions (PDFs). This too,
arises naturally in practice, e.g., in robot motion planning
[6], where uncertainties in the initial and terminal states are
unavoidable due to process and sensor noise.

From a system-control theoretic viewpoint, finite hori-
zon density steering via feedback is a non-classical stochastic
optimal control problem. The qualifier “non-classical” points
to the fact that finding the feedback policy requires solving
an infinite dimensional two-point boundary value problem
on the manifold of joint state PDFs. This is an emerging
research direction in the systems-control community wherein
recent advances [7]-[11] have uncovered its connections with
the theory of optimal mass transport [12], [13] and the
Schrodinger Bridge Problem (SBP) [14]-[16]. Also, there
have been results on the covariance steering problem [17]—
[21] which concerns steering second order state statistics.
With the exception of [22], [23], almost all works have
focused on steering the state statistics over a controlled linear
system.

In this paper, we consider finite horizon density steering
state feedback linearizable systems of the form (1). The
nonlinearities in (1) induce non-Gaussian statistics even if
the endpoint PDFs are both jointly Gaussian. Thus, finding
the feedback solution of the density steering problem in a
non-parametric sense, is non-trivial. The main contribution of
this paper is to show that it is possible to exploit the feedback
linearizing transformation for density steering. In particular,
we obtain the optimal state feedback policy in terms of the
solution of certain Hamilton-Jacobi-Bellman (HJB) partial
differential equation (PDE). Furthermore, we show that a
dynamic stochastic regularization can be used to derive a
system of boundary-coupled linear PDEs, which we refer
to as the Schrodinger system, whose solutions recover the
optimal state feedback and the optimal controlled joint state
PDF. We envision that the theoretical developments herein
will help design algorithms solving the feedback density
steering over nonlinear dynamical systems.
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Notations and Preliminaries

Throughout the paper, we will use bold-faced capital
letters for matrices and bold-faced lower-case letters for
column vectors. We use the symbol (-, -) to denote the Eu-
clidean inner product. In particular, (A, B) := trace(A' B)
denotes Frobenius inner product between matrices A and
B, and (a,b) := a'b denotes the inner product between
column vectors @ and b. We use 0 and 1 to denote the
vector consisting of all zeros, and all ones, respectively,
and the symbol e to denote the k™ standard basis vector
of appropriate dimension. We use Vg, V-, and Hess(-)
to respectively denote the Euclidean gradient, divergence
and Hessian operators w.r.t. vector . The Lie bracket of
two vector fields € and n at * € R" is a new vector
field [¢,7] (z) := (Vom)€(@) — (Vab)n(a). For k € N,
the k-fold Lie bracketing of 1) with the same vector field
£ is denoted as adlgn = T{,adgln}; by convention

adgn = m. The Lie derivative of a scalar-valued function
A(z) w.rt. the vector field £ evaluated at « is LeA(x) :=
(VaA &) (x). For k € N, the k-fold Lie derivative of h
w.r.t. the same vector field £ evaluated at « is denoted as
L’g/\(w) = (VmL’g_l)\,Q(cc); by convention Lg/\(w) =
A(x). Given m vectors fields &1 (), ..., &n(x) in R™, we
say D(x) := span{&,...,&n }(x) is involutive at € R,
if for all &;(x),&,(x) € D(x), we get that the Lie bracket
[&.,&] () € D(x), where 4,5 = 1,...,m. The notation
x ~ p denotes that the random vector x has joint PDF
p. Furthermore, we denote the pushforward of a PDF by
the symbol f. We use the symbol o to denote function
composition, and spt(-) to denote the support of a function.

II. MIMO FEEDBACK LINEARIZATION

We consider multiple-input control system of the form
(1), and recall some well-known results on feedback lin-
earization [24] that will be useful in the sequel.

Definition 1: (Full state static feedback linearization)
System (1) is said to be full state static feedback linearizable
around a point £y € X if there exists a smooth feedback
of the foom v = d&(z) + I'(x)v defined on X, and a
diffeomorphism 7 : X ~— R"™ such that the change of
variables z := 7 () transforms (1) into

2=Az+Bv, zecR", veR™ 3)
wherein the pair (A, B) is controllable.
In other words, (1) is full state static feedback linearizable
if there exists a triple (6(x),I'(z), 7(x)) such that
(VT (f(@) + G(®)6(2))) oy 1) = AZ,
(V7 (G(z)l'(z))) =B,
where the pair (A, B) satisfies
rank [B, AB, A’B,... A" 'B] =n. 3)

“)

z=17"1(2)

Definition 2: [24, p. 220] (Vector relative degree)
Consider the Multi-Input Multi-Output (MIMO) system:
z = f(z) + G(x)u,
y = h(x),
where € € X C R",u € R™ as before. Furthermore,
h(z) = (hi(x), ha(x),... hm(x)) € R™, where h; are
smooth scalar-valued functions for all j = 1...,m. The

input-output system (6) is said to have vector relative degree
™ = (7T1,7T2,...,7Tm) at xg € X, if

Lg].L’}hi(m) =0,

(6)

1<ié,j<m, 1<k<m-1, (7

and the m x m matrix

Lg, L7 hy () Lg, L7 h(x)

C(x) := : :
Lg, L5 ho () Lg, L™ ho () ©

evaluated at * = x, is non-singular.

Here, m; € N, j = 1,...,m, is the number of times one
has to differentiate the j® output y; W.L.t. T such that at
least one of the m input components appears explicitly in
the expression for yj(ﬁj ) In other words, 7; is the number
of integrators between the input and the j® output.

Remark 1: It is known [24, p. 230] that given an n-
dimensional vector field f, and a matrix G(x) of rank m,
the system (1) is full state static feedback linearizable if and
only if:

(i) there exist functions hi(x), ho(x),. .., hpy(x), such that
the input-output system (6) has relative degree m at *p € X,
and

(ii) the relative degree 7 is such that my + 7o+ - -+7mp, = n,
where n is the dimension of the state vector x.

The output function h(x) play an important role in trans-
forming (1) into a controllable linear system. If we can find
h(-) satisfying conditions (i)-(ii) in Remark 1, then we can
use the same to construct a state feedback law and a desired
change of coordinates. Explicitly, this feedback law can be
obtained as

u=—(C(z)) 'd(x)+(C(z)) " v, €
:=6(x) =I'(x)

where C'(x) is as in (8), and

-
d(z) == (L;Ihl(a;), Lehs(), ..., L;mhm(m)) . (10)
The linearizing coordinates z := 7(x) are subdivided as
2! Ti(x)
2? 72(x)
z = , T(x)= . , (11
z™m T ()



where each 2*, 7" € R™, ¢ = 1,..., m, have components

2 =7h() ==Ly Thi(x), k=1,...,m. (12)
The feedback law (9) and the change of coordinates (11),
together transform (1) which is in state-control pair (x,u),
into the Brunovsky canonical form in the state-control pair
(z,v), given by

z2=Az+ Bv, ze€R" wveR™ (13)
where A, B are block diagonal matrices
A :=diag(A;, Ao, ..., A,,), B :=diag(b1,ba,...,by),
wherein for each ¢ = 1,..., m, we have
A; = [0leiles]...lex, ] e RTX™ 0 b :=e, € R™.

Remark 2: Since static state feedback linearization is
equivalent to Remark 1, hence the matrix (8) is invertible
at = x(. This guarantees that I'(z) and 6(x) in (9) are
well-defined at x.

As seen above, the existence of the (fictitious) output h(-)
is a necessary and sufficient condition for full state feedback
linearization. The following result allows us to establish the
existence of the h(-) under suitable conditions on the vector
fields f(x),g1(x),...,gm(x). Thus, the conditions for full
state feedback linearization can be restated as the following.

Proposition 1: [24, p. 232] Consider the system (1)
where rank(G(xo)) = m, and for i = 0,1,...,n — 1, let

Ai(x) = spam{audl}g;C 0<k<i,1<j<m}.

Then, there exist scalar-valued functions hq(x),. .., hpy(x),
defined on A" such that (6) has relative degree 7 at oo, with
™ + 7o + - + W = n, iff:

(i) A; has constant dimension near xy for each i =
0,1,...,n—1,

(i) A,,—1 has dimension n,

(iii) A; is involutive for each ¢ = 0,1,...,n — 2.
Proposition 1 helps to verify if a given system of the form
(1) is full-state feedback linearizable. For the construction
of the functions h; in Proposition 1, we refer the readers to
[24].

Example 1: Let us consider a system of the form (1)
defined on a neighborhood of xy = 0, given by

T + 73 0
T3 — XL1X4 + T4Zs 0
&= | woxy + 2125 — 22 | 4+ [ cos(z1 —x5) | wy
Ts5 0
2
x5 0
f(z) gi(x)

uz. (14)

+
— O = O

——"
g2(x)

A direct computation verifies that (14) satisfies the conditions
(1)-(iii) of Proposition 1, implying the existence of output
functions hi(x), ho(x). Following the constructive steps in
[24, p. 232], these output functions can be obtained as

y1=h1 =21 — x5,y2 = ha = 24. (15)

Notice that

Lg, hi(x) = Lg,h1(x) = Lg, Lyhi(x) = Lg,Lshi(x) =0,
Lg, ho(x) = Lg,ho(x) =0

and that the matrix

_ (Lo Lihi(@) Lg,Lim(x)
C(wo) = <Lg1th2(w) Lg,Lgha(x)) |,_,,

_ [cos(z1 —x5) 1 (11
B 0 1) ey \0 1)7

is non-singular. Therefore, (14) with output (15) has vector
relative degree m = (71, m2) = (3,2) satisfying 71 + mo =
34 2 =5, which is indeed the dimension of the state space.
From (12), we obtain the change of coordinates

)

hl(:v) r1 — T5
thl(:v) xTo
T(x) = L%hl(m) = | 23 — 2124 + 2475 (16)
hg(w) XTq
thg(m) x5

In this case, (8) and (10) yields
_ (L)) _ (0
(C(@)~" = <1/cos(~’81 —x5) —1/cos(1;1;1 — x5)> |

which, following (9), result in the feedback law

Y <_xg / cos(ay — x5))

3
é(x)
17
(1/(305(:101 —1x5) —lcos(xy — :v5)> (17)
+ 0 1 v.

T'(x)

Hence, we have constructed a triple (§(x),I'(x),7(x))
given by (16)-(17), that transform (14) into

01000 00

00100 00
2=10 000 0|lz+]|1 0w (18)

00001 00

00000 0 1

————

A B



III. MINIMUM ENERGY DENSITY CONTROL
A. Stochastic Optimal Control Problem

Given system (1), and two prescribed endpoint PDFs
po(x), p1(x), we consider the following minimum energy
finite horizon stochastic optimal control problem:

. 'l
o B[ Jueogad,  as
subject to = = f(z) + G(z)u (19b)
2(0) ~ pol@) (1) ~ pr(@), (1)

where the state space is X C R”, v € R™ and (19b) is
feedback linearizable. The infimum is taken over the set
of admissible controls with finite energy, i.e., U = {u :
R™ x [0, 1] = R™|||u||3 < oo}, and the expectation operator
E{-} in (19a) is w.r.t. the controlled joint state PDF p(x, t)
satisfying endpoint conditions (19c¢). The objective is to steer
the joint PDF p(«,t) from the given initial PDF pg at t = 0
to a terminal PDF p; at ¢t = 1 while minimizing the expected
control effort.

The problem (19) can be recast into a “fluid dynamics”
version [25], which is the following variational problem:

inf / / —||u(z, )3 p(z, t) dz dt, (20a)

Py

subject to a——i—V “(p(f(z) + G(z)u)) =0, (20b)
p(x,t=0)=po, plx,t=1)=p1. (20c)

Here, the infimum is taken over P(X) x U, where P(X)
denotes the space of all joint PDFs supported on X. We
note that (20b) is the Liouville PDE [26] associated to the
dynamical system (19b).

B. Reformulation in Feedback Linearized Coordinates

In our recent work [27], we considered the problem (19)
for the single-input case, i.e., the case G(x) = [g1 ()] € R”,
and the input w is scalar-valued. The main idea in [27]
was to recast (20), which is in state-control pair (x,u),
into an equivalent formulation in feedback linearized state-
control pair (z,v). This was made possible by using the
diffeomorphism 7 : & +— Z to pushforward the endpoint
PDFs pg,p1 to PDFs o0g,0; supported on the feedback
linearized state space Z. Specifically,

pi(T71(2))
|det(vm7-m:7-*1(z)| ’

and Z := {z e R"|z = 7(x),x € X}.

0i(2) == Typi = i€{0,1}, (21)

Since T is a diffeomorphism, the PDFs {o;};=0,1 sup-
ported on the feedback linearized state space Z, are well
defined, i.e., spt(o;) C Z provided that spt(p;) C X.

To generalize the reformulation in [27, Sec. III.B] for
the multi-input case, we proceed by setting

0 =dor !, T, :=Tor ! (22)
where § and T are as in (9). Using u(z) = 6, (2)+I'~(2)v,
we now transcribe (20) into

inf / / —L(z,v) o(z,t) dz dt, (23a)
subject to 6_ + V.- ((Az + Bv)o) =0, (23b)
o(x,t=0)=00, o(xz,t=1)=01, (23c)

where

L(z,v) := [|0+(2) + T (2)v]l3.

The infimum in (23) is taken over the pair of transformed
PDFs and admissible controls (o,v) € P(Z) x V where
Vi={v:Zx[0,1] = R™||v]|3 < oo}.

(24)

u°P) for (20) can
v°P) of (23)

Remark 3: The solution pair (p°P,
be recovered from the optimal solution (g°Pt,
via the transformations

PPz, t) = 0P (1 (), t)|det Vi Te ()],
u®P(z,t) = 6(x) + T(x)vP (77 (), 1)

forx € X, and ¢ € [0, 1].

(25a)
(25b)

Example 2: To illustrate the reformulation (23), let us
reconsider the system (14). In this case, the inverse mapping
of (16) is given by

z=1"Y2):= (21 +t25 z2 Z3tziZa 24 25)T' (26)

Here, the determinant of the Jacobian of (16) is non-zero for
all vectors in R", i.e., Z = R"™. From (17) and (22), we have

8:(2) = (_Zg/ Cé’s(zl)) , @7)
<2
and
T, (2) = <1/COOS(21) _1/‘3108(21)) L@
The functional £(z,v) in (24) equals
2/ cos? -1
Y ) ERY C O
—z%/cOS(Zj)-l-Z%)T, )+ 25/ cos?(z1) + 25. (29)

Remark 4: Because feedback linearization guarantees
that the matrix pair (A, B) is controllable, any vector z; €
Z is reachable from any other vector zo € Z forall t € [0, 1]
via the flow of (13). This ensures that in (23c), the initial
PDF 0(z) can be steered to o1(z) via the flow o(z,t) of
the controlled Liouville PDE (23b). Thus, the constraint set
of (23) is non-empty, and the problem is feasible.



C. Optimality

To show the existence and uniqueness of minimizer for
(23), we set m := ov, and consider the change of variable
(o,v) — (0, m), transforming (23) into

inf / / J(o,m) dz dt, (30a)
subject to 6 2z (Azo +Bm) =0, (30b)
o(x,t =0) =09, o(x,t=1)=01, (30c)

where

$10-(2) + T (2) 2|30 if o >0,
J(o,m) =10 if (o, m) = (0,0),
+00 otherwise.

(€29)]

We note that J(o,m) is the perspective function of the
strictly convex map m s ||8,(z)o + 7 (z)m||3; therefore,
J 1is jointly strictly convex in (o, m). The constraints (30b)-
(30c) are linear in (o, m). Hence, (30) admits a unique min-
imizing pair, and equivalently, so does (23). The following
theorem summarizes how this optimal pair for (23), denoted
hereafter as (o°P*, v°P'), can be obtained.

Theorem 1: (Optimal control for (23)) The optimal
control v°P! for the problem (23), is given by

vPY(2,t) = (T1T,(2)) 'B'V.¢ —T;'(2)0-(2), (32)

where 1) solves the Hamilton-Jacobi-Bellman (HJB) PDE

0%
ot

+ %(vzw,B (T

+ (Vzw,Az> —
T (2))

Furthermore, if the optimal joint state PDF g°Pt
to the Liouville PDE

(Vz1p, BT '(2)6,(2))

B'V.)=0. (33)

is a solution

ao,opt
7 + Vz . ((AZ + B'UOpt)) = O, (34)
with boundary conditions o°P(z,0) = o5*'(2), and

oP(z,1) = 0°P"(2), then the pair (c°P*, v°Pt) solves the
problem (23).

Proof: The Lagrangian associated with (23) is

// —L(z,v)0(z,t) dzdt
+/z/o w(z,t)adtdz

term 1

[ o

Z(0,¥,v)

((Az + Bv) o) dzdt. (35)

term 2

In (35), we interchange the order of integration and perform
integration by parts w.r.t. ¢ in term 1, and w.r.t. z in term 2.

Since o(z,t) — 0 as z — 0Z, we can express .Z as
(Va, Az + Bv>} o(z,t)dzdt.

[ fften-2-

Performing pointwise minimization of the above w.rt. v
while fixing o, we obtain

[T, v (z,t) = B'V.i(z,t) - T (2)8-(2). (37)

Taking the matrix inverse on both sides yield (32). Substi-
tuting v°P* back into (36) and equating to zero, we then get

/ / {— — — (V21, Az) + (Vo4 BT, (2)6-(2))

- 5<vz¢, B(T] (z)I‘.,.(z))lBTsz/J)}U(z, t)dzdt = 0.
(38)
Since (38) holds for arbitrary o, we arrive at (33). |

Example 3: (HJB for (29)) From (27)-(28), we have
(I‘I (Z)FT (z)),l _ <COSQ(21) COS;Zl)) (39)

cos(z1)

r =0, = ().

and
(40)

22
Substituting (39)-(40) into (33), and using the pair (A, B)
from (18), gives the HIB PDE
oY oY oY oY

9P
8+231+332+534 8
o

1 oy \ o\
+ 3 [6052(21)<8—i) + cos(zl)a—wa— +2 (3_i> } =0.
(41)

Remark 5: Computing the pair (0°P*, v°P') in Theorem
1 is challenging in general since it calls for solving a system
of coupled nonlinear PDEs (33)-(34) with atypical boundary
conditions. In the following Sections, we will provide further
reformulations of (23) to make it computationally amenable.

IV. STOCHASTIC DENSITY STEERING: REFORMULATION
INTO SCHRODINGER SYSTEM

Motivated by [9], we consider a generalized version of
(23) by adding a diffusion term to (23b):

inf / / —L(z,v)0(z,t) dz dt, (42a)
subject to 8_ + V.- ((Az + Bv)o)

=e€l" (D(z) ® Hess(0)) 1, (42b)

o(z,t=0)=00, o(z,t=1)=01, (42c)

where D(z) := BT !(2)(BT;!(2))". In particular, the

controlled Liouville PDE in (23b) is now replaced by a



Fokker-Planck-Kolmogorov PDE in (42b), having an addi-
tional diffusion term \/2¢ BT'Z'(z), where the parameter
€ > 0 (not necessarily small). Formally, this generalization
is equivalent to adding a stochastic perturbation to the
controlled sample path ODE 2z = Az + Bw, resulting in
the Ito6 SDE

dz = (Az + Bv)dt + V2eBI Y (z) dw,  (43)

where w(t) € R™ is standard Wiener process. In the special
case 0-(z) = 0 and I';(2) = I, problem (42) reduces to
the Schrodinger bridge problem with linear prior dynamics
[9, equation (49)]. Thus, (42) is a Schrédinger bridge-like
problem with a prior dynamics that has linear drift and
nonlinear diffusion coefficient.

The following Theorem characterizes the minimizing
pair (o°Pt, v°Pt) for problem (42).

Theorem 2: (Optimal control for (42)) The optimal
control v°PY(z, ) for (42) is given by (32), where 9 solves
the HIB PDE

‘?;f +(Vo1, Az) — (Vo1), BT (2)6,(2))
+ §<Vzw, D(2)V.9) + e(D(z), Hess(v)) =0, (44)

and the optimal joint state PDF o°P'(z, ) solves the con-
trolled Fokker-Planck-Kolmogorov PDE

af;pt + V. ((Az + BuP')oo")
—el" (D(z) ® Hess(c®"))1 =0, (45)
with boundary conditions
0Pzt =0) =P, Pz, t=1)=0P".  (46)

Proof: The proof proceeds similarly as in Theorem 1
except that we now have an additional term in the Lagrangian
(35) which we refer to as “term 3”, given by

1
- 6/ / P(z,t)17 (D(z) ® Hess(c°?")) 1dzdt. (47)
0o Jz

term 3

From the following chain of equalities:

[ (D). Hess()o™ (2. 1)z
5

1) o (z,t)dz

6zi82j
1,7=1
aw z t) opt
Z / D;;(z 32’18% (z,t)dz
i,j=1

(Dio™ (1))

Z / 81/1 Z t N dz
3zj 821

3,7=1
.. gopt

/1/) (2,1) d(D(z);j0 (zvt))d
Py 1 82]»821-

z

= / Y(z,t)1" (D(2) ® Hess(c°P")) 1dz (48)
z
we deduce that (47) is equal to
/ / ), Hess(1))oP (2, t)dzdt. (49)

So, the expression inside the curly braces in (36), now will
have an additional term —e(D(z), Hess(¢))) that is indepen-
dent of v. Therefore, pointwise minimization of (36) with
this additional term w.r.t. v, gives (32), and the associated
HJB PDE becomes (44). |

Next, we show that the so-called Hopf-Cole transform [28],
[29] allows to reduce the system of nonlinear PDEs (44)-(45)
with boundary conditions (46), into a system of boundary-
coupled linear PDEs, which we refer as the “Schrédinger
System”.

Theorem 3: (Schrodinger System) Consider the Hopf-

Cole transformation (Pt v)) — (i, P):
o(z,t) := exp(¥(z,1)/2¢), (50a)
B(z,t) = 0P (2, t) exp(—1(z,t)/2¢), (50b)

applied to the system of coupled nonlinear PDEs (44)-(45).
The pair (p, @) satisfies the following system of linear PDEs:

Z—f +(Vop, Az — BT ['6.(2)) + €(D, Hess(p)) = 0,
(S1a)
02 9. (a2~ BI;'5,(2)) 9)
— €1 (D(z) ®Hess(¢))1 =0, (51b)
with coupled boundary conditions
po(2)@o(2) = 007 (2),  ¢1(2)@1(2) = 0™ (2). (52)
Proof: From (50a), ¢ = 2elog ¢, which yields
oY 2e0p _ 2e
o V=SV (53)
On the other hand, notice that
€(D(z), Hess(¢)))
= e(D(z), Hess(2¢elog ¢))
- 0% log ¢
—_ 2 ..
2 Z DU( ) 8z18zj
i,j=1
" 1 9%p 1 dp O
= 2¢2 D;; v - Zr7r
‘ uz::1 1) <90 Ozizj  ¢* 0z 32.7')
2¢? 2¢2
= ?<D(Z),HGSS(<P)> - FWZ%D(Z)VZ@- (54)
Substituting (53) and (54) into (44) yields
2¢ 0 2€
o 5 (Vep Az - BTN(2)5,(2)

ot



1 4€2 2¢2
+ 357 (Vzp,D(2)Vp) + r (D(2), Hess(p))
2¢2
_ ?

<vz907 D(Z)VQD> = 07
which gives (51a).

Next, let w(z) := Az — BT !(2)d,(z). We then have

Ve (pw(2) = (Vap,w(z)) + $V2 - w(2)
= exp (—1/2¢) ((VJ"pt,w(z» + 0PV, - (w(2))
~ 5 (V,ﬂb,u}(z))), (55)

and
T ~ _ 1/} T ont
€l (D @ Hess(¢))1 = exp % €l (D @ Hess(o°Pt))1
€

8(D1J (Z)O’Opt) 81/) 1 pt

el St A o e SN L0 ) H
e g~ 57" (D(z), Hess(v)

o

(V0. DEs0))

In (50b), taking the partial derivative of ¢ w.r.t. £, and using

(44)-(45) together with (55)-(56), we get

8o,opt O.opt 81/))

opt

+

(56)

2 — e (-uy20)

ot ot 2 ot

—wp@wma<—v4wmw@»—v4mevw

+ €1(D(z) ® Hess(o°P"))1 + U;:t (Ve w(z))
+ %<vz¢,p(z)vzw> + U;p (D(z),Hess(d;)})

= V. (¢pw(2)) + €1 (D ® Hess($))1,

which is indeed (51b). The boundary conditions (46) follow
directly from (50a)-(50b). [ |

Theorem 3 in principle allows
(42) in the following manner. Let (¢1,$0) =
(p(z,t=1),0(z,t =0)) denote the terminal-initial
condition pair for the system (51a)-(51b). By making an
arbitrary guess for the pair (¢1, ¢o), one can perform a fixed
point recursion on the Schrodinger system (51)-(52), and
the converged pair (1, $p) can then be used to compute the
transient pair (¢ (2,t), @ (z,t)). Then, by (50), we recover
(0°Pt,4)), and thus (o°P*, v°P*) from (32). Notice that this
procedure with small € > 0 will yield the pair (o°P*, v°P")
solving problem (23). Finally, the mapping (25) in Remark
3 recovers the solution (p°P*, u°P') for problem (20). This
algorithmic framework and its convergence will be the topic
of our future research.

solving problem

CONCLUSIONS

We considered the minimum energy joint state PDF
steering problem over finite time horizon subject to the multi-

input state feedback linearizable dynamics. We showed that
the density steering problem can be made amenable in the
feedback linearized coordinates. We derived the state feed-
back controller in terms of the solutions of a pair of coupled
HJB and Fokker-Planck-Kolmogorov PDEs. Furthermore, we
reduced this system of coupled nonlinear PDEs to a system
of boundary-coupled linear PDEs. Our results are expected to
lay the foundation for developing computational algorithms
solving the density steering problem.
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