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Abstract—In critical infrastructure (CI) sectors such as emer-
gency management or healthcare, researchers can analyze and
detect useful patterns in data and help emergency management
personnel efficaciously allocate limited resources or detect epi-
demiology spread patterns. However, all of this data contains
personally identifiable information (PII) that needs to be safe-
guarded for legal and ethical reasons. Traditional techniques for
safeguarding, such as anonymization, have shown to be ineffec-
tive. Differential privacy is a technique that supports individual
privacy while allowing the analysis of datasets for societal benefit.
This paper motivates the use of differential privacy to answer a
wide range of queries about CI data containing PII with better
privacy guarantees than is possible with traditional techniques.
Moreover, it introduces a new technique based on Multiple-
attribute Workload Partitioning, which does not depend on the
nature of the underlying dataset and provides better protection
for privacy than current differential privacy approaches.

Index Terms—Data privacy, protecting critical infrastructure
data, data analytics.

I. INTRODUCTION

Data analytics applied to critical infrastructure data can
potentially lead to a variety of societal benefits but also
comes with legal and ethical problems because such data
typically contains personally identifiable information (PII).
In the US healthcare sector, the Health Insurance Portability
and Accountability Act (HIPAA) places strict requirements
for protecting such information [1]. In the case of 911 calls,
such data can include PII involving healthcare data too (for
example, "a caller may have reported a cardiac emergency”) or
report a sensitive event such as a domestic violence situation.

Obscuring methods are applied to such datasets typically
during data cleaning and preparation to mask key identifiers,
quasi-identifiers, and other types of sensitive data and generate
a separate, cleaned dataset for mining [2]. However, this
dataset may still, when analyzed using different feature sets,
expose sensitive PII [3].

Maintaining individual privacy while making data avail-
able for statistical purposes continues to be a major focus
for data scientists. When some individuals have sensitive
information about particular datasets, many ways exist to
compromise individual privacy. For example, Sweeney showed
how such datasets could threaten individuals’ privacy when
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some datasets are joined to each other, and proposed the k-
anonymity model to prevent re-identification of any individuals
data contained in a dataset [4]. Under k-anonymity, a version
of a particular dataset can be released with privacy guarantees
that any individual whose data is a part of the original version
cannot be re-identified while preserving the usefulness of
the released data. To satisfy the k-anonymity property, any
individual cannot be re-identified between at least & — 1
individuals whose data within the released dataset [4]. On the
other hand, Machanavajjhala et al. [5] demonstrated that k-
anonymity is not sufficient to preserve individuals’ privacy in
cases where adversaries have additional background knowl-
edge about their targets. Even when the access to a particular
dataset is restricted, adversaries may be able to reconstruct
some parts of the sensitive data using a sequence of counting
queries. Multiple attribute counting queries could be more
dangerous because they can be used to target small fractions
of individuals’ data using unique attribute values that have
been known or obtained from public resources. For example,
shingles disease is unlikely to be found in adults under 60
years old. Suppose an adversarial actor accesses a particular
dataset containing health data of a 31 year-old woman that
is known to him, and he wants to know if this woman
is diagnosed with shingles. Using the answers of a set of
correlated counting queries can easily answer his question.
For instance, assuming the hidden dataset is the one that
shown in table I, the adversary may ask firstly about the
number of females who are between 30 and 40 years. Based on
this dataset, the answer is 1-which indicates that the targeted
woman is the only one who satisfies this condition. So, based
on this response, his second query will be "How many females
are in the dataset in the age between 30 and 40, and are
diagnosed with ’Shingles’. The response of 1 would verify
that the targeted woman has been diagnosed with this disease.
Thus, the sequential queries, coupled with some already known
data, expose this patient’s private information.

Differential privacy models have received considerable at-
tention, as they seem to be a more effective models at
preventing PII exposure while maintaining dataset utility [6],
including in the healthcare sector [7]. These models preserve
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TABLE I

AN ANONYMIZED PATIENT DATASET
ID | Gender Age Disease
1 M [25,35] Flu

2 F [55,100] Flu

3 F [25,35] Shingles
4 M [45,55] Bronchitis
5 M [55,100] Shingles

individual privacy while considering background knowledge
that adversaries may possess; for instance, anyone who can
query the dataset may be able to learn sensitive information
about individuals.

Another difference stems from the kind of interaction re-
searchers have with datasets. Traditional techniques for privacy
preservation, such as anonymizing datasets and releasing them
for analysis, are fundamentally non-interactive. Differential
privacy, however, can be applied to be an inferactive model,
which is a more realistic scenario that restricts data usage
and provides more privacy than a non-interactive setting while
providing more accurate analysis of the datasets.

This paper discusses how differential privacy can be used in
CI sectors and introduces an interactive mechanism that can be
incorporated with infrastructure systems to obscure PII while
making their data available for the use of statistical analysis.

II. MOTIVATION

Although PII is present in data used or generated in every
CI sector, this section explores PII in two sectors—emergency
management and healthcare—to show that current anonymiza-
tion does not protect individual privacy, thus motivating the
use of differential privacy for protecting PII in data.

PII in 911 Data

Emergency calls contain PII in several different forms.
While we automatically assume PII is present in 911 calls that
result in ambulance dispatch, other types of calls also expose
personal information. For example, a traffic accident, even
without injuries, captures a person’s name, address, driver’s
license number, phone number, and insurance carrier. Fire
emergencies expose the person’s name, address, and medical
information about injuries sustained by the residents. Even
security checks on industrial buildings contain names and
phone numbers of the building’s owner or caretaker. PII about
first responders are also included in these records: for example,
beats, badge numbers, and workplaces of the police officers,
EMTs, and firemen are often included in the full transcript
of an event. Eliminating or obscuring PII in these records
is difficult to automate due to the variety of ways used to
record this information. Figure 1 shows a part of the data
that have been collected from 911 calls. Observe that the
obvious PII such as names, phone numbers, and addresses
were removed from this dataset snippet. However, releasing the
other information may still expose individual PII. For instance,
the combination of code (which is the category of emergency)
and lat/long can expose specific neighborhoods or even homes,
as in the domestic violence call in the third record .
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PII in Healthcare Data

In addition to the pieces of PII mentioned above (e.g.,
name, address, phone number, social security number, or in-
surance carrier), healthcare data may include other identifiable
information such as biometrics (fingerprints, retina scan, voice
signature, facial geometry) or x-rays. It may also include the
date of birth, weight, activity levels, information about specific
health conditions, medical history, and prescribed medications.
Sometimes, individual pieces of information might seem harm-
less on their own, but in combination with other types of data,
they can compromise the privacy of an individual.

Alnemari et al. [8] provide a motivating example that shows
patient privacy is easily lost based on queries that can uniquely
identify a patient with a certain disease, even if their names
are anonymized. With access to other databases or attacker
knowledge, the individual will be totally identified. The paper
also shows that range searches on anonymized data can reduce
privacy loss but not remove it altogether. The paper uses a
dataset of patients who were diagnosed with ’cervical cancer’
[9] as an example for these privacy issues. Even though this
dataset has more than 800 records, an adversary can easily
find unique records by querying the ’age’, and the 'number
of pregnancies’ attributes. For example, only one record each
matched the ’age’ attribute for values of 13, 79, and 84. So,
with some additional background about the dataset, such as the
name of the hospital that provided this data, an adversary could
identify the individuals satisfying these values even though age
is not an obviously sensitive attribute.

III. USING DIFFERENTIAL PRIVACY FOR PROTECTING PII
IN CRITICAL INFRASTRUCTURE DATA

Differential privacy was originally proposed by Dwork [6]
as a property of a randomized algorithm such that no indi-
vidual whose data is included in a particular data set has
a noticeable effect in the distributional outcome produced
by this algorithm. As a result, an adversarial analyst who
monitors the differentially private release should not be able
to learn any information that is too specific to any individual
in the dataset. Thus, the outcome produced by a differentially
private algorithm should remain almost the same while adding
or removing a record to the underlying dataset. Given an
arbitrary query ¢ and an e-differently private algorithm M
that is designed to answer ¢, then for any two neighboring
datasets D and D’ that differ in one element, and any output
S € Range(M) the algorithm M should satisfy the following

property:
Pr[M,(D) = 8] < ¢*.Pr[M,(D') = S]

Differential privacy can be achieved while answering
queries by adding amounts of noise to their true responses.
So, for a given query ¢ and a dataset D, if y is the true
answer of ¢, then the private answer of ¢ is y + «, where «
is a random noise. To satisfy differential privacy, the random
noise can be drawn from Laplace distribution with mean 0
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EventlD | Date| Time Lat Long Name Phone Address Dispatched Details CrossRef
1| 4/3|12:30a.m.f 43.21508| -77.4224|***** Ak kR Hhdoxk Unit4 Vehicleon fire El
2| 4/3|12:40a.m.| 43.21508| -77.4224 | ***** . Hhkk Vehicleon fire E1l

Says husband *** ** hit her with fist.
Officers *** (Badge **) and Schell (Badge
**) responding. Complainant has black
3| 4/4|10:30p.m| 43.1686| -77.6215|****=* hokk ok ak Hohakx Unit 2 eye, does not want to press charges E3
4| 4/5(1:10a.m. | 43.1686( -77.4313|***** NA Pump 1 **+%_ Called manager Wm. Price ***-**** |E4
Collision with auto driven by **** NYS
drivers license********; progressive
5| 4/5|8:00a.m. | 43.1686| -77.6218 |***** HEERRRE oo Unit 3 insurance. No injuries. E5
Rear-ended by vehicle driven by*****,
NYS drivers license*******; Al|state
Insurance. Has pre-existing back
6| 4/5|8:00a.m. | 43.1686| -77.6218|***** Rk ok Hohrkx Unit 3 condition. EMS called by Officer (Badge**) |E5

Fig. 1. Part of a dataset collected from 911 calls. PII is represented by the symbol *

and scale Af, where Af is the sensitivity of ¢ which is the
maximum difference between M,(D) and M,(D’), and € is
the privacy parameter (to achieve more privacy a smaller value
should be chosen for € but the accuracy would be decreased
as € became smaller) [10].

Differential privacy models assume a trusted curator holds
a particular dataset and releases statistical information about
the data while maintaining individuals’ privacy. For the non-
interactive models, the curator may prepare some sort of sum-
mary about the underlying dataset and release it for analytical
use. The curator may receive analytical requests interactively
as queries and answer them privately. Although the sensitive
datasets remain under the control of the curator, ensuring that
the released data does not leak sensitive information about
the underlying dataset is not a trivial task. According to
Vadhan, releasing private responses for an unlimited number
of sequential queries may allow reconstructing the sensitive
dataset from anonymized responses [11]. Therefore, limiting
the number of the given queries or, giving all of them as a
workload ensures better privacy while generating the private
responses.

Counting queries allow statistical analysis to be performed
on a dataset. The expected response of a counting query
is the fraction of the entries in a dataset that meet certain
conditions [12]. Counting queries may lead to the develop-
ment of statistical learning models [13]. Therefore, designing
models that answer this kind of queries accurately under
differential privacy is a critical issue that has attracted many
researchers recently. Since most of the infrastructure databases
are highly dynamic, using an inferactive deferentially private
model would be more practical than the non-interactive models
which need to update their releases periodically.

Differential Privacy in CI Systems

CI systems are built over databases that contain different
kinds of data. Although most of these systems restrict PII
access, some parts of the data are considered to be insensitive
and may be released with no access constraints. At the same
time, with auxiliary information known to an adversary about
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the underlying dataset, the released parts of the dataset may
lead to individual data loss. Differential privacy over data with
no obvious PII may contribute to the preservation of individual
privacy. Unlike traditional anonymization techniques, differen-
tial privacy does not perform any change over the original data
to hide individual data. Instead, differential privacy models
generate or return statistical summaries about the underlying
dataset such as, for example, anonymized histograms that
represent the frequencies of each attribute. Moreover, this
approach can be implemented to work interactively while
preserving needed privacy for individual data by allowing data
analysts to provide their statistical queries and returning an-
swers after ensuring that no sensitive information is revealed.

Our proposed mechanism can be used over CI databases
to enable data analysts to interact with these databases and
obtain the information needed to conduct their studies. Data
analysts must prepare their requests as a workload of counting
queries and give it to our mechanism. Based on the sensitivity
of the given queries, the mechanism performs the needed
anonymization over the actual response and returns it back
to the analyst. Our proposed mechanism is effective for CI
databases, as it does not require data storage for private
information that gets updated often. The responses do not
require performing a complex set of operations as do other
interactive mechanisms.

IV. THE WORKLOAD PARTITIONING MECHANISM FOR
MULTI-DIMENSIONAL DATASETS

In this section, we discuss an extension to the Workload
Partitioning Mechanism [8] that takes a workload of count-
ing queries and anonymizes their responses based on their
sensitivity. The mechanism identifies the sensitive areas of
the data distribution from the ranges of the given queries.
The frequencies within these areas are injected with sufficient
noise to ensure individual privacy. This strategy contributes to
enhanced utility of the produced results [8].

Multiple attribute range queries are more useful for ana-
lysts since they capture the relationships between attributes
values and those relationships help to discover significant
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TABLE 11
TINY PATIENT DATASET
Age | Number of Pregnancies
18 1
15 1
52 4
26 3
59 0
79 5
84 11
TABLE III
THE PARTITIONED HISTOGRAM OF THE PATIENT DATASET
Age Number of Pregnancies | Count
1 | [15,40] [0,4] 3
2 | [15,40] [4,6] 0
3 | [15,40] [6,11] 0
4 | [40,50] [0,4] 0
5 | [40,50] [4,6] 0
6 | [40,50] [6,11] 0
7 | [50,84] [0,4] 1
8 | [50,84] [4,6] 2
9 | [50,84] [6,11] 1

contributing factors. However, adopting the workload par-
titioning mechanism to handle multiple attributes counting
queries is likely to be prohibitive since the mechanism works
over a histogram representing the underlying dataset, and the
size of the required histogram grows exponentially by the
dataset dimensions. A multiple-attribute histogram would have
[T, m; records where n is the number of attributes and m;
is the number of values that attribute ¢ has. Many researchers
have developed models to handle multiple attribute counting
range queries [14]-[16]. However, in addition to being data
dependent, these models also suffer from the curse of dimen-
sionality, where the histogram size increases exponentially as
the number of attributes increases. To tackle this issue, we
propose a mechanism that handles multiple attribute counting
queries without the need to build a full histogram to represent
the underlying dataset.

Our proposed mechanism takes the workload first and then
builds a partial histogram based on the ranges of the given
queries. This histogram only includes the involved areas in
the given workload. That approach shrinks the size of the
produced histogram because instead of considering all the
attributes’ values we only need to involve the given ranges
which are much fewer than the attributes’ values. Since the
proposed mechanism adapts the noise to the given workload’s
ranges, we can build and partition the histogram at the same
time using the given queries’ ranges instead of building the
histogram and then partitioning it. The ranges of the given
queries are extracted firstly, and then the ranges of each
attribute are intersected to generate a set of disjoint ranges.
This process ensures that there are no overlapping areas of the
data distribution involved in the given workload, preventing
using the anonymized responses to infer private information
about any specific area. Thus, the disjoint ranges of each
attribute are the actual partition of the dimension representing
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that attribute and each range represents an entry of the private
histogram. An example of generating the private responses
to a given workload W of two queries g1, and go over the
tiny dataset shown in table II. The first query asks about
the count of the patients whose age is between 15 and
50, with fewer than 6 pregnancies. The second query asks
about the counts of the patients aged 40 years or more with
more than 3 pregnancies. We would represent ¢; and ¢o as
follows: ¢1 = {[15,50];[0,6]}, and ¢2 = {[40,84];[4,11]}.
Based on these two queries, we have two ranges over each
attribute. Over the age attribute we have the ranges [15, 50] and
[40, 84]. Therefore, after intersecting these ranges we now have
three ranges [15, 40], [40, 50], and [50, 84]. Repeating the same
process over the extracted ranges for the "Number of Pregnan-
cies’ attribute would produce these three range [0,4], [4, 6],
and [6,11]. The next step is to generate the partitioned
histogram using these ranges. The histogram should consider
all possible combinations of the attributes’ values that fall
within the generated ranges. Table III illustrates the partitioned
histogram that has been built based on the intersected range of
each attribute. To answer the given queries under differential

privacy, the counts of the partitioned histogram need to be
anonymized by injecting small amounts of noise to each count.

Our mechanism generates the needed amounts of noise from
the Laplace distribution to ensure differential privacy. After
anonymizing the histogram frequencies, we can answer the
first query by summing up the counts of record number 1, 2,
4, and 5. The second query also can be answered using the
counts of the record number 5, 6, 8, and 9.

Complexity, Privacy, and Utility

Based on the previous example, our proposed model gen-
erated a histogram of 9 records to answer the given workload
of two queries, since each attributes was partitioned into three
buckets. On the other hand, the naive histogram [10] would
have H?Zl m; = 70 x 11 records in order to answer the same
given workload over the same tiny dataset. Even if a data
independent mechanism was used, the complexity would still
be worse than our proposed mechanism and the partitioned
histogram would have more than H?Zl m; = 7 * 6 records,
since it needs to be built based on the distribution of the
underlying dataset.

Unlike data dependent partitioning mechanisms which con-
sume the privacy budget in order to build the required data
structure, our partitioning strategy does not require any infor-
mation about the underlying dataset. Therefore, we only need
to use the privacy budget while building the private histogram
when retrieving the counts that represent its frequencies. That
is, as long as this histogram is built, the private response of
each given query can be retrieved from this histogram.

Our partitioning strategy provides more accurate estimated
statistics than the data dependent partitioning strategies es-
pecially for the multiple attribute range queries because in
the case of the data dependent partitioning, each dimension
is partitioned according to the uniformity of its frequencies.
Therefore, the estimated count of the involved dimensions
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would include the total of the estimated counts of the involved
parts (buckets) of each dimension. Observe that the beginning
or the end points of each given range may fall inside one
of the partition buckets; thus the count corresponding to this
range would involve extra noise corresponding to the unwanted
values that have been included in that bucket. On the other
hand, since our strategy partitions the data dimensions based
on the given ranges, we are sure that only the exact frequencies
will be involved in the generated response, which provides
better utility.

V. RELATED WORK

Since differential privacy was proposed, many differentially
private algorithms have been developed to preserve output
accuracy [10], [13]-[26]. However, these algorithms were pro-
posed for the non-interactive approach. Moreover, the released
data should be suitable for random numbers of queries and that
requires considering the very sensitive situations when a query
focuses on small areas of the sensitive dataset. Therefore,
these algorithms guarantee the privacy of the released data by
injecting amounts of noise to each part of the data histogram.
As a result, the utility of the released data may be lost for
some aggregated queries that involve large areas of the data
histogram.

Many researchers consider the inferactive setting to be
more protective for individuals’ privacy [24], [27]-[29], [29],
[30]. Even though these proposed mechanisms generate their
private releases based on the sensitivity of the given queries,
they require expensive operations, and the usefulness of the
provided answers can not be guaranteed for some kind of
queries. Alnemari et al. [8] proposed an interactive mechanism
that is able to identify the sensitive areas of the underlying
dataset through the ranges of the given queries to insure
individuals® privacy within these areas. Their results shows
that this mechanism could overcome the accuracy issue of the
non-interactive models while maintaining the privacy of the
provided responses. However, this mechanism works over a
histogram that represents the underlying dataset which makes
adopting this mechanism for multi-dimensional datasets very
costly. In this paper, we present our interactive mechanism that
lowers the cost of handling multiple attribute counting queries
over infrastructure data.

VI. CONCLUDING REMARKS

This paper presented and analyzed a differential privacy
based scheme for protecting personally identifiable informa-
tion in critical infrastructure data. As the described method
does not depend on the underlying dataset, it provides better
privacy guarantees than those provided by several existing
data dependent partitioning schemes, especially for multiple
attribute range queries.

Future work includes adapting the proposed scheme to
handle other kinds of queries such as counting queries over
categorical attributes. We also intend to investigate the effect of
increased workload size on overall performance and range size
while ensuring lower error rates. All of these improvements
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can make differential privacy viable in the protection of PII
within critical infrastructure data.
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