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Abstract—Three essential criteria are important for social activity planning: (1) finding attendees familiar with the initiator, (2) ensuring

most attendees have tight social relations with each other, and (3) selecting an activity period available to all. In this paper, we propose

the Social-Temporal Group Query (STGQ) to find suitable time and attendees with minimum total social distance. We first prove that

the problem is NP-hard and inapproximable within any ratio. Next, we design two algorithms, SGSelect and STGSelect, which include

effective pruning techniques to substantially reduce running time. Moreover, as users may iteratively adjust query parameters to fine

tune the results, we study the problem of Subsequent Social Group Query (SSGQ). We propose the Accumulative Search Tree and

Social Boundary, to cache and index intermediate results of previous queries in order to accelerate subsequent query processing.

Experimental results indicate that SGSelect and STGSelect are significantly more efficient than baseline approaches. With the caching

mechanisms, processing time of subsequent queries can be further reduced by 50-75 percent. We conduct a user study to compare

the proposed approach with manual activity coordination. The results show that our approach obtains higher quality solutions with lower

coordination effort, thereby increasing the users’ willingness to organize activities.
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1 INTRODUCTION

TWO essential criteria for social activity planning are (1)
finding a group of attendees familiar with the initiator

and (2) ensuring most attendees have tight social relations
with each other. For the social activities of which the time is
not pre-determined, an additional essential criterion would
be (3) selecting an activity period available to all attendees.
For example, a person with some free movie tickets to share
may like to find a group of mutually close friends and a time
available to all. Nowadays, most activities are still initiated
manually via phone, e-mail, or texting. However, with a
growing number of systems possessing information needed
for activity initiation, new activity planning functions can be
provided. For example, social networking websites, such as
Facebook, Google+, and LinkedIn, provide the social rela-
tions, and web applications, such as Google Calendar,

Doodle,1 NeedToMeet,2 and Meetup,3 allow people to share
their available time and activity plans to friends. For manual
activity planning, finding socially close participants and a
suitable time can be tedious and time-consuming, due to the
complexity of social connectivity and the diversity of sched-
ules. Thus, there are demands for an effective activity plan-
ning service that automatically suggests socially acquainted
attendees and a suitable time for an activity.

To support the aforementioned service, we first formulate a
new query problem, named Social Group Query (SGQ), which
considers the relationships of the activity initiator and candi-
date attendees. Given an activity initiator, we consider her
social network for candidate attendees, and the closeness
between friends can be quantitatively captured as social dis-
tance [1], [2], [3]. Based on the criteria mentioned earlier, an
SGQ comes with the following parameters, (1) a group size p
to specify the number of attendees, (2) a social radius con-
straint s for the scope of candidate attendees, and (3) an
acquaintance constraint k to govern the relationships between
attendees. SGQ aims to find a group matching the group size
in (1), such that the total social distance between the initiator
and attendees is minimized. Additionally, the social radius
constraint in (2) specifies that all attendees are located nomore
than s edges away from the initiator, while the acquaintance
constraint in (3) requires that each attendee has atmost k unac-
quainted attendees. As such, by controlling s and k based on
the desired social atmosphere, suitable attendees are returned.

To support the planning service for the activities with
no pre-determined time, we further propose another new
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query problem, named Social-Temporal Group Query (STGQ),
which considers both of the available time and relationships
of candidate attendees. We assume that the schedules of
candidate attendees are available to the planning service
(e.g., via web collaboration tools). Besides the three parame-
ters in SGQ, STGQ has a fourth parameter for the temporal
dimension, which is (4) an availability constraint m to spec-
ify the length of activity period. STGQ aims to find a group
and time matching the group size in (1) and the activity
length in (4), such that the total social distance between
the initiator and attendees is minimized. Moreover, the
returned group of STGQ also satisfies the social radius con-
straint in (2) and the acquaintance constraint in (3). Example
A.1 in Appendix A.1, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2018.2875911, presents an illustrative
example of SGTQ. Note that, while possessing the required
information, all of the aforementioned web applications
(e.g., Doodle) still cannot automatically find the suitable
attendees and time for the initiators. To the best of our
knowledge, the STGQ problem has not been studied before.

In this paper, we first examine the processing strategies
for SGQ and then extend our study to the more complex
STGQ. Solving an SGQ may incur an exponential time
because SGQ is NP-hard, and processing an STGQ is even
more challenging due to the diversity of schedules. When
sequentially choosing the attendees at each iteration to form
a candidate group, giving priority to close friends of the ini-
tiator may lead to a smaller total social distance. However,
it may not necessarily satisfy the acquaintance constraint.
On the other hand, prioritizing a set of mutually close
friends to address the acquaintance constraint does not
guarantee minimum total social distance. Moreover, in
processing an STGQ, a group of mutually acquainted
friends with a small total social distance still cannot form a
solution if their available times do not overlap. Therefore,
the challenge comes from the strategical dilemma between
reducing the total social distance and ensuring that the solu-
tion follows the constraints both socially and temporally.
Based on the above observations, we propose an algorithm
called SGSelect that addresses both the social distance and
connectivity, and then extend it to STGSelect by incorporat-
ing various strategies for the temporal dimension. Com-
pared with the existing studies that focus on only the social
dimension to find densely-connected subgroups (e.g., [4],
[5], [6], [7], [8]), STGSelect can process both temporal and
social dimensions effectively and efficiently.

Note that it is difficult for a user to specify all the query
parameters right to find the perfect group of attendees and
time. Fortunately, with SGQ and STGQ, it is easy for the
user to tune the parameters to find alternative solutions. For
example, the initiator may decrease k to tighten the group,
or increase s to incorporate more friends of friends. Allow-
ing tuning parameters to try subsequent queries is a great
advantage of the planning service over the current practice
of manual planning. However, it has not been explored in
related works [4], [5], [6], [7], [8], [9], [10], [11], [12]. Some
existing studies [13], [14], [15], [16] on subgraph queries
return multiple subgraphs in one single diversified query.
However, without feedback and guidance from user-
specified parameters, most returned subgraphs are likely to
be redundant (i.e., distant from the desired results of users).
In realistic, users usually review the result obtained with

the current parameter setting, and then adjust the parameter
setting for subsequent queries.

A straightforward method to support a sequence of SGQs
is to answer each individual query with SGSelect. However,
anticipating that the users would not adjust the parameters
drastically, we envisage that exploiting the intermediate sol-
utions of previous queries may improve processing of subse-
quent queries. To facilitate the above idea, we propose
Subsequent Social Group Query (SSGQ), which aims to effi-
ciently support a sequence of SGQswith varying parameters,
and SSGQ can be extended to support a sequence of STGQs.
Accordingly we design a new index structure, namely,Accu-
mulative Search Tree, which caches the intermediate solutions
of historical queries in a compact form for reuse. To facilitate
efficient lookup, we further propose another new index
structure, called Social Boundary, which effectively indexes
the intermediate solutions required for processing each
SSGQ with specified parameters. We devise various node
selection rules to carefully select a sufficient and necessary set
of candidate subgroups for extracting the final solution. We
prove that the returned solution is optimal, even if SSGQ
only processes a small portion of candidate subgroups in a
social boundary.

Contributions of this paper are summarized as follows.

� We formulate two useful queries for social activity
planning, namely, SGQ and STGQ, to obtain the
optimal set of attendees and a suitable activity time.
These queries can be used to plan for various activi-
ties by specifying the social radius constraint s and
the acquaintance constraint k. We also prove these
two problems are NP-hard and inapproximable
within any ratio. That is, there exists no approxima-
tion algorithm for SGQ and STGQ unless P = NP.

� We propose Algorithms SGSelect and STGSelect to
efficiently find the optimal solution to SGQ and
STGQ, respectively. Moreover, we devise various
strategies, including access ordering, distance pruning,
acquaintance pruning, pivot time slots, and availability
pruning, to prune redundant search space and
improve efficiency. Our research results can support
social networking websites and web collaboration
tools as a value-added service.

� To support tuning of query parameters to find more
desirable results, we propose SSGQ and design two
new index structures, accumulative search tree and
social boundary, to accelerate a sequence of group
queries. The proposed index structures effectively
cache and index intermediate solutions in preceding
queries to support subsequent ones. Experimental
results show that the caching mechanisms substan-
tially reduce processing time.

� We conduct a user study to compare the proposed
planning service with manual coordination, and col-
lect feedbacks as a guidance to enrich our group
query service. The results show that the proposed
algorithms are able to obtain higher solution quality
with much lower coordination effort, increasing
users’ willingness to organize activities.

The rest of this paper is summarized as follows. In
Section 2, we introduce related works. In Section 3, we then
formulate SGQ, explain the details of Algorithm SGSelect,
and extend SGSelect to STGSelect for STGQ. After that, we
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introduce SSGQ and the caching mechanisms used to sup-
port the subsequent queries in Section 4. We then detail the
construction and maintenance of the caching mechanisms
and proof the solution optimality in Section 5. The SSGQ is
extended to support the temporal dimension in Section 6.
Finally, we present the experimental results in Section 7 and
conclude this paper in Section 8.

2 RELATED WORK

Although some web applications have been developed to
support activity planning and coordination, they require
users to manually identify the activity time and partici-
pants. For example, with the Events function on Facebook,
an activity initiator can specify an activity time and select
friends to invite. These friends then reply with whether
they can attend or not. Some popular activity/event plan-
ning websites and apps, such as Doodle,4 Pick,5 Rallly,6

UFr.ee,7 Boomerang Calendar,8 Time Zone Ninja,9 MeetO-
Matic,10 WhenIsGood,11 and NeedToMeet,12 are devel-
oped to help an activity initiator to collect the available
times of potential event participants in order to find a
suitable activity time slot and choose an appropriate
group for the activity. More details of these services are
provided in Appendix A.2, available in the online supple-
mental material.

Note that the aforementioned services are quite popular
and have been widely adopted in everyday life for activity
organization. For example, Doodle serves 20 million users
per month,13 and NeedToMeet has 30 million users.14 How-
ever, these apps still have space for improvement. Notice
that the initiator needs to manually decide a desired activity
time and the corresponding participants, especially when
the target social atmosphere is considered. As a research to
explore new ideas, in this paper we propose STGQ to com-
plement the existing exercises in the aforementioned web
applications in order to automatically find a group of close
friends for planning some social event at a suitable activity
time. The result of a user study (see Appendix E.4 , available
in the online supplemental material) confirms that STGQ
obtains higher quality solutions with much lower coordina-
tion efforts, thereby increasing users’ willingness to foster
different kinds of activities.

By minimizing the total social distance among the attend-
ees, we aim at forming a cohesive subgroup in the social
network. Related research on extracting dense subgraphs
includes the clique, k-plex, k-core, k-truss, k-clan, and
k-club [4], [5], [6], [7], [8], [17], [18], [19], [20], [21], [22], [23],
[24]. However, most of them focus on enumerating maximal
cohesive subgroups or finding the maximum cohesive sub-
group. For example, the k-core [17], [18] finds the largest

subgraph with the degree of every vertex at least k within
the subgraph. However, the group sizes of the returned sol-
utions in the above studies are not controllable, and this
size tends to be relatively large when the social network is
not sparse. In contrast, the proposed SGQ allows the activity
initiator to specify the desired group size, whereas the tem-
poral dimension is further examined in STGQ.

Moreover, group formation [1], [25], [26], [27], team for-
mation [9], [10], [11], group query [12], [28], [29], community
search and social circle discovery [30], [31], [32] have been
studied for various applications. More specifically, long-
term evolution of social groups in global social networks has
been analyzed in [1]. Group formation [25], [26], [27] aims to
find a group of members with high similarity on a certain
activity topic. Team formation [9], [10], [11] focuses on find-
ing a group of experts covering all required skills and mini-
mizing the total communication cost. Moreover, group
queries [12], [28], [29], are designed to find a socially cohesive
group. Community search [30] extracts a compact commu-
nity with the objective to maximize the minimum degree of
certain nodes in the community. In reality, however, there
are various types of activities with different social atmo-
sphere requirements. Therefore, instead of maximizing the
minimum degree, we allow activity initiators to specify the
suitable social constraints s and k based on their desired
social atmosphere accordingly. Another types of community
search [31] aims to identify effective structures to detect the
densely linked communities, and the social circle discover-
ingmodel [32] extracts social circles ofmembers having com-
mon properties. However, the sizes of communities and
social circles are not restricted. Moreover, none of them
incorporates the temporal dimension to find a suitable activ-
ity time, and subsequent queries with different parameter
settings are not considered in the abovework.

On the other hand, diversified queries [13], [14], [15], [16]
return multiple subgraphs with diverse graph characteris-
tics. However, since these studies are not specifically
designed for activity planning, the social tightness is not
ensured, and many returned subgraphs in the diversified
query are inclined to miss the user requirements on social
atmosphere. On the other hand, session query and rein-
forcement learning in retrieval (e.g., [33], [34], [35]) that
allow users to tailor the query have attracted increasing
attentions. However, these studies are designed for docu-
ment retrieval, instead of social graphs and user schedules.
Therefore, these aforementioned research works are not
applicable for automatic activity planning.

3 SOCIAL GROUP QUERY

In Section 3.1, we present the problem formulation and
research challenges of SGQ, and prove that SGQ is NP-
hard. We then propose an algorithm that effectively
prunes redundant search space to obtain the optimal
solution in Section 3.2. Finally, we extend SGQ to STGQ
in Section 3.3.

3.1 Problem Definition
Given an activity initiator q and her social graph G ¼ ðV;EÞ,
where each vertex v is a candidate attendee, and the
distance on each edge eu;v connecting vertices u and v
represents their social closeness. A social group query
SGQðp; s; kÞ, where p is a group size, s is a social radius

4. The Doodle website. http://doodle.com/.
5. The Pick website. http://www.pick.co/.
6. The Rallly website. http://rallly.co/.
7. The UFr.ee website. http://ufr.ee/.
8. The Boomerang Calendar website. http://boomerangcalendar.

com/.
9. The Time Zone Ninja website. http://timezoneninja.com/.
10. The MeetOMatic website. http://www.meetomatic.com/.
11. The WhenIsGood website. http://www.whenisgood.net/.
12. The NeedToMeet website. http://www.needtomeet.com/.
13. The statistics are reported on the Doodle website. http://doodle.

com/press/milestones/.
14. The statistics are reported on the NeedToMeet website. http://

www.needtomeet.com/pdf/NeedToMeet%20Add-
in%202.0%20Release%20Notes.pdf.
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constraint, and k is an acquaintance constraint, finds a set F
of p vertices from G to minimize the total social distance
between q and every vertex v in F , i.e.,

P
v2F dv;q, where dv;q

is the length of the minimum-distance path between v and q
with at most s edges, such that each vertex in F is allowed
to share no edge with at most k other vertices in F .

The initiator can specify different s for various activities.
Specifying s ¼ 1 ensures direct acquaintance between the
initiator and attendees, while s > 1 allows for friends of
friends. The initiator can also vary k for different activities,
using a small k for intimate gathering or a large k for a more
diverse event. Indeed, processing SGQ is NP-hard and inap-
proximable within any ratio. In other words, there is no
approximation algorithm with a finite ratio unless P = NP.
Fortunately, while challenging, the problem is still tractable
when the size of s and p are reasonable.

Theorem 1. SGQ is NP-hard and inapproximable within any
ratio.

Proof. We prove the theorem in Appendix D.1, available in
the online supplemental material. tu

3.2 Algorithm Design
In this section, we propose an algorithm, SGSelect, to effi-
ciently solve SGQ. Our idea is to first derive a feasible
graphGF ¼ ðVF ;EF Þ fromG, such that there exists a pathwith
at most s edges from q to each vertex in GF . Starting from q,
we then iteratively exploreGF to derive the optimal solution.
At each iteration, we keep track of the set of vertices that sat-
isfy the acquaintance constraint as the intermediate solution
obtained so far (denoted as VS). Initially, we set VS ¼ qf g, and
let VA denote the set of remaining vertices in VF , i.e.,
VA ¼ VF � VS . We select a vertex in VA and examine whether
it is feasible (i.e., follows the acquaintance constraint) tomove
this vertex to VS at each iteration, continuing until jVSj ¼ p.

In constructing candidate groups, judicious access order
of vertices is crucial. It is essential to avoid vertices that sig-
nificantly increase the total social distance or lead to a viola-
tion of the constraint. It is also important to prioritize
vertices likely to form high-quality feasible solutions, to
facilitate effective early pruning. Additionally, social radius
and acquaintance constraints can be exploited to prune
unqualified vertices. Finding the optimal solution to an
SGQ may incur an exponential time because SGQ is NP-
hard. However, by employing the proposed strategies, the
average running time of Algorithm SGSelect can be effec-
tively reduced, as to be shown in Section 7. In the following,
we present the details of the proposed algorithm.

3.2.1 Radius Graph Extraction

Algorithm SGSelect first extracts the vertices that satisfy the
social radius constraint to prune redundant candidates. A
simple approach is to find the minimum-edge path (i.e., the
shortest path with the minimum number of edges) between
q and every other vertex, and then remove the vertices that
have minimum-edge paths with more than s edges. To
address this, we define the notion of i-edge minimum dis-
tance, which represents the total distance of the minimum-
distance path with no more than i edges. The i-edge mini-
mum distance between two vertices v and q is div;q ¼
minu2Nvfdi�1

v;q ; d
i�1
u;q þ cu;vg, where Nv is the set of neighboring

vertices of v, and cu;v is the weight of edge eu;v. Based on
dynamic programming, the i-edge minimum distance

between v and q is computed by iteratively deriving div;q in

terms of di�1
u;q of each neighboring vertex u, for 1 � i � s.

After that, each vertex v with dsv;q < 1 is extracted to con-
struct a feasible graph GF ¼ ðVF ;EF Þ, and dsv;q is adopted as

the social distance between v and q. In the feasible graph,
every vertex is guaranteed to satisfy the social radius con-
straint, and we consider GF in evaluating the SGQ for the
rest of this paper.

3.2.2 Access Ordering

After constructing GF , Algorithm SGSelect iteratively
explores it to find the optimal solution. Initially, we set VS ¼
fqg and VA ¼ VF � fqg. At each iteration afterwards, we
select and move a vertex from VA to VS to expand the inter-
mediate solution. The set VS represents a feasible solution
when VSj j ¼ p and its vertices satisfy the acquaintance con-
straint. Next, our algorithm improves the feasible solution
by backtracking the above exploration procedure to previ-
ous iterations and choosing an alternative vertex in VA to
expand VS . A branch-and-bound tree is maintained to
record the exploration history.

To reduce running time, the selection of a vertex at each
iteration is critical. Naturally, we would like to include a
vertex with the smallest social distance. However, the con-
nectivity of the selected vertex imposes additional require-
ments for satisfying the acquaintance constraint. Thus, we
introduce interior unfamiliarity condition and exterior
expansibility condition to test the feasibility of examined
vertices to the acquaintance constraint. When expanding VS ,
SGSelect prioritizes the vertex that has the minimum social
distance and satisfies both the interior unfamiliarity and
exterior expansibility conditions.

Definition 1. The interior unfamiliarity of VS is

UðVSÞ ¼ max
v2VS

VS � fvg �Nvj j;

where Nv is the set of neighboring vertices of v in GF .

The interior unfamiliarity describes the connectivity
within VS , with a smaller value representing more densely
connected vertices. In generating candidate groups, it is
preferable to first include a well-connected vertex that pro-
duces an intermediate solution set with low UðVSÞ to facili-
tate selections of other vertices in later iterations. Based on
this observation, we leverage the interior unfamiliarity condi-

tion, i.e., UðVS [ vf gÞ � k½ VS[ vf gj j
p �u, where u � 0 and VS[ vf gj j

p is
the proportion of attendees that have been considered, to
ensure that the interior unfamiliarity value remains small
when the vertex v is selected. Note that the right-hand-side
(RHS) of the inequality reaches its maximum (i.e., k) when u
is fixed as 0. With u ¼ 0, there is flexibility in finding a ver-
tex v with a small social distance. However, if a vertex v
resulting in UðVS [ vf gÞ ¼ k is selected, the vertex with k
non-neighboring vertices in the set VS [ vf g is required to
connect to all future vertices chosen. This decreases the fea-
sibility of selecting other qualified vertices in later iterations.
In contrast, a larger u allows SGSelect to choose a vertex
from VA that connects to more vertices in VS to ensure the
feasibility at later iterations. The algorithm reduces u if there
exists no vertex in VA that can satisfy the above condition.
When u decreases to 0 and the above condition still does not
hold (i.e., UðVS [ vf gÞ > k), Algorithm SGSelect stops
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expanding the new intermediate solution set VS ¼ VS [ fvg,
because adding any vertex from VA does not generate a fea-
sible solution, as shown by the following lemma.

Lemma 1. Given that

UðVSÞ > k; (1)

there must exist at least one vertex v in VS violating the
acquaintance constraint for every possible selection of vertices
from VA.

Proof. If UðVSÞ > k, then we can find at least one vertex v in
VS such that jVS � fvg �Nvj > k, which means v is
already unacquainted with more than k other vertices in
VS . Note that adding a vertex from VA to VS does not
increase the connectivity between the existing vertices in
VS . When we expand VS by adding any vertex u from VA,
the number of vertices that are unacquainted with v
remains unchanged if u and v are connected, and
increases by one if not. That is, v still has more than k
unacquainted vertices in VS , which violates the acquain-
tance constraint. The lemma follows. tu

Definition 2. The exterior expansibility of VS is

AðVSÞ ¼ min
v2VS

f VA \Nvj j þ ðk� VS � fvg �Nvj jÞg; (2)

where the first set (i.e., VA \Nv) contains the neighboring ver-
tices of v in VA and the second set (i.e., VS � fvg �Nv) con-
tains the non-neighboring vertices of v in VS .

The exterior expansibility counts the number of options
when selecting vertices from VA to expand VS , and a larger
value represents more options satisfying the acquaintance
constraint. Specifically, since the number of existing non-
neighboring vertices of v in VS is VS � fvg �Nvj j, we can
select at most k� VS � fvg �Nvj j extra non-neighboring
vertices of v from VA to expand VS ; otherwise, vertex v
would have more than k non-neighboring vertices in VS and
violate the acquaintance constraint. Therefore, there are at
most VA \Nvj j neighboring vertices and k� VS � fvg �Nvj j
non-neighboring vertices can be selected, and their summa-
tion must be no smaller than the number of attendees
required to be added later (i.e., p� jVSj). Therefore, SGSelect
chooses the vertex v from VA that satisfies the exterior expan-
sibility condition, i.e., A VS [ vf gð Þ � p� VS [ vf gj jð Þ. If the
inequality does not hold, the new intermediate solution set
obtained by adding v is not expansible, as shown by the fol-
lowing lemma.

Lemma 2. Given that

A VSð Þ < p� VSj jð Þ; (3)

there must exist at least one vertex v in VS such that v cannot
follow the acquaintance constraint for every possible selection
of vertices from VA.

Proof. If A VSð Þ < p� VSj jð Þ, there is at least one vertex v in
VS such that VA \Nvj j þ k� VS � fvg �Nvj jð Þ < p�ð
VSj jÞ. Since VS � fvg �Nvj j is the number of non-neigh-
boring vertices for v, k� VS � fvg �Nvj j represents the
”quota” for v to choose non-neighboring vertices from VA.
For any possible selection bVA � VA, let b�A denote the
number of neighboring vertices of v in bVA. Sinceb�A � VA \Nvj j, p� VSj jð Þ � VA \Nvj j � p� VSj jð Þ � b�A.

We can derive that k� VS � fvg �Nvj jð Þ < p� VSj jð Þ�b�A, meaning any possible selection exceeds the quota for
v and violates the acquaintance constraint. The lemma
follows. tu

3.2.3 Distance and Acquaintance Pruning

In the following, we exploit two pruning strategies to
reduce search space. Our algorithm aims to obtain a feasible
solution early since the total social distance of this solution
can be used for pruning redundant candidates. At each iter-
ation, the distance pruning strategy avoids the vertices in
VA that do not lead to a solution with a smaller total social
distance.

Lemma 3. The distance pruning strategy stops selecting a vertex
from VA to VS if

D�
X
v2VS

dv;q < ðp� VSj jÞmin
v2VA

dv;q; (4)

where D is the total social distance of the best feasible solution
obtained so far. The distance pruning strategy can prune the
search space with no better solution.

Proof. If the above condition holds, the total social distance
of any new solution must exceed D when we select
p� VSj j vertices from VA, whichmeans exploring VA yields
no better solution. AsD improves at later iterations, we are
able to derive a tighter bound on the LHS, and thus prune
a larger search space. The lemma follows. tu
We also propose an acquaintance pruning strategy that

considers the connectivity of vertices in VA. Note that all
vertices in VA can be excluded from expansion if

P
v2VA j

VA \Nvj < ðp� jVSjÞðp� jVSj � k� 1Þ. The LHS of the
inequality is the total inner degree of all vertices in VA,
where the inner degree of a vertex in VA considers only the
edges connecting to other vertices in VA. The RHS corre-
sponds to the minimum required value of the total inner
degree on any set of vertices extracted from VA that can
expand VS into a solution satisfying the acquaintance con-
straint. This strategy can be further improved by replacing
the LHS with

P
v2MA

jVA \Nvj, where MA denotes the set of

p� jVSj vertices in VA with the largest inner degrees. SinceP
v2MA

jVA \Nvj �
P

v2VA jVA \Nvj, our algorithm is able to
prune off more infeasible solutions. Specifically, the
acquaintance pruning is specified as follows.

Lemma 4. The acquaintance pruning strategy stops selecting a
vertex from VA to VS if

X
v2MA

jVA \Nvj < p� jVSjð Þ p� jVSj � k� 1ð Þ; (5)

and the acquaintance pruning strategy can prune the search
space with no feasible solution.

Proof. Since we will only extract p� jVSj vertices from VA to
join VS , the upper bound of total inner degree of the
extracted vertices is

P
v2MA

jVA \Nvj. If these p� jVSj
extracted vertices follow the acquaintance constraint, each
of them must be acquainted with at least p� jVSj � k� 1
extracted vertices, which means the inner degree will be at
least ðp� jVSjÞðp� jVSj � k� 1Þ. When the acquaintance
pruning happens, even the upper bound of total inner
degree of the extracted vertices is smaller than ðp� jVSjÞ
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ðp� jVSj � k� 1Þ, which indicates that there is at least one
vertex unacquainted with more than k vertices. Therefore,
the pruned search space contains no feasible solution. The
lemma follows. tu
In the following, Theorem 2 proves that Algorithm SGSe-

lect with the above strategies finds the optimal solution.
Moreover, Example A.2 in Appendix A.1, available in the
online supplemental material, provides an illustration of
Algorithm SGSelect.

Theorem 2. SGSelect obtains the optimal solution to SGQ.

Proof. We prove the theorem in Appendix D.3, available in
the online supplemental material. tu

3.3 Extensions in Temporal Dimension
Social-Temporal Group Query (STGQ) generalizes SGQ by
considering each candidate attendee’s available time via the
availability constraint, which ensures that all selected attend-
ees are available for the activity period. Specifically, given
the social graph G of an initiator q, a social-temporal group
query STGQðp; s; k;mÞ finds a time slot t and a set F of p
vertices from G to minimize the total social distance
between q and every vertex in F , i.e.,

P
u2F du;q, where du;q is

the length of the minimum-distance path between u and q
with at most s edges, such that each vertex u in F is allowed
to share no edge with at most k other vertices in F , and u is
available from time slot t to tþm� 1.

STGQ is an NP-hard problem because STGQ can be
reduced to SGQ if every candidate attendee is available in
all time slots. An intuitive approach to evaluate STGQ is to
sequentially explore each time slot t and the candidate
attendees available from t to tþm� 1 (i.e., m consecutive
time slots). However, running time grows significantly
when the number of time slots increases. Therefore, we
devise Algorithm STGSelect, which explores the following
features in the temporal dimension to reduce running time.

Pivot Time Slot. A time slot is a pivot time slot if its ID is
im, where i is a positive integer. Note that any feasible solu-
tion to STGQ must include one pivot time slot; otherwise,
the returned activity period would be shorter than m and
violate the availability constraint. Therefore, instead of con-
sidering every interval from t to tþm� 1 for each time slot
t, our algorithm leverages the pivot time slots to efficiently
explore the solution space. For each pivot time slot im,
Algorithm STGSelect extends SGSelect by considering the
temporal information when selecting a vertex from VA. Spe-
cifically, let TS denote the set of consecutive time slots avail-
able to all vertices in VS , and TS must contain slot im. After
certain iterations, if VS includes p vertices satisfying the
acquaintance constraint, and jTSj � m, VS and TS together
form a feasible solution.

Temporal Extensibility. When selecting a vertex from VA,
Algorithm STGSelect considers not only the social distance
but also the temporal availability of the vertex to avoid ver-
tices that lead to a small increase of the total social distance
but end up disqualified by the availability constraint. There-
fore, in addition to the interior unfamiliarity and exterior
expansibility discussed in Section 3.2, we further consider
the temporal extensibility of VS , which is defined as
XðVSÞ ¼ TSj j �m. A larger temporal extensibility implies
that more vertices in VA of good quality can later be selected
by our algorithm.

Availability Pruning. The availability pruning strategy ena-
bles our algorithm to stop exploring VA if there exists no
solution that can satisfy the availability constraint. Specifi-
cally, for each pivot time slot im, let t

þ
AðnÞ and t

�
AðnÞ denote

the time slots closest to im, such that at least n vertices in VA

are not available in the two time slots, where t
þ
AðnÞ > im

and t
�
AðnÞ < im. The availability pruning strategy stops

considering VA when

t
þ
AðjVAj � pþ jVSj þ 1Þ � t

�
AðjVAj � pþ jVSj þ 1Þ � m:

In this case, there are at most p� VSj j � 1 vertices of VA

available in each of the above two slots, and the interval
starting from t

�
A þ 1 to t

þ
A � 1 contains fewer than m time

slots. Consequently, we never find a feasible solution with
this VA because Algorithm STGSelect is required to choose
p� VSj j vertices from VA for a common available interval
with at leastm time slots.

To find the optimal solution, STGSelect is expected to have
an exponential-time complexity because STGQ is NP-hard. In
the worst case, all candidate groups in all time slots may need
to be considered. However, as shown by the experimental
results, the average running time of the proposed algorithm
with the above strategies can be effectively reduced.

4 SUBSEQUENT SOCIAL GROUP QUERY

In real situations, users usually prefer to adjust the query
parameters in order to retrieve better results. Moreover,
according to the feedback from a user study (see Appendix
E.4, available in the online supplemental material), initiators
are inclined to adjust social constraints to consider varying
recommendations, thus tend to issue a sequence of social
group queries. Nevertheless, the above important need is
largely ignored in related works [4], [5], [6], [7], [8], [9], [10],
[11], [12]. A naive method to process the subsequent SGQs
is to solve each SGQ independently with SGSelect. How-
ever, as these SGQs are fine-tuned by the same initiator
with slight changes in parameters, we can improve the effi-
ciency of subsequent SGQs by caching intermediate solu-
tions for reuse. Therefore, we propose two mechanisms,
Accumulative Search Tree (AST) and Social Boundary (SB), to
support processing of Subsequent Social Group Queries
(SSGQs). Instead of repeating the traversal for each individ-
ual SGQ, AST caches the intermediate solutions for different
parameters in a single tree to process a sequence of SGQs
from the same initiator. SBs then index the nodes in AST to
facilitate lookup in the processing of new SGQs. Since the
nodes not indexed by any SB are not used in subsequent
SGQs, a large portion of nodes in AST can be discarded, sig-
nificantly reducing caching overhead and processing cost.
Moreover, duplicate searches are reduced because AST and
SB enable the query processing of subsequent SGQs to start
with intermediate solutions. In the following, Section 4.1
first introduces AST and SB. Section 4.2 then presents how
to exploit AST and SB to answer SSGQs efficiently. We then
detail the construction and maintenance of the caching
mechanisms and proof the solution optimality in Section 5.
After that, we will extend SSGQ to support the temporal
dimension in Section 6.

4.1 Accumulative Search Tree and Social Boundary
Fig. 1 illustrates two search trees T1 and T2 corresponding to
two SGQs with slightly different parameters ðs; kÞ ¼ ð2; 1Þ
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and ð2; 2Þ, respectively. It can be observed that T1 and T2

share many nodes in common, including G1�G4, G6, I1,
S1, D1, and E2. Nevertheless, some nodes are different due
to various pruning strategies. For example, G5 in T1 does
not appear in T2 due to the distance pruning (thus it is
marked as D2 in T2). Meanwhile, G7 in T2 does not appear
in T1 because of the acquaintance pruning (thus it is marked
as A1 in T1). In addition to the distance pruning and
acquaintance pruning, the interior unfamiliarity condition
with u ¼ 0 and the exterior expansibility condition also
avoid traversing redundant branches, and here we refer
them as interior unfamiliarity pruning (IU pruning) and exte-
rior expansibility pruning (EE pruning), respectively. It is
important in the design of AST to cache not only the com-
mon parts but also the different parts of T1 and T2, in order
to support different SGQs with a variety of query parame-
ters subsequently in the future. Also, to support quick tra-
versal of the tree in the subsequent queries, we propose
SB to index the nodes in AST. For example, indexing I1
in T1 allows future queries with parameter k ¼ 3 to start
with this node, instead of the root G1, to avoid traversing
unnecessary nodes. In the following, we first introduce
AST to cache the intermediate results of historical queries
in a compact way.

Definition 3. An accumulative search tree is a tree structure that
includes (1) internal nodes (i.e., the nodes successfully expanded
in historical queries), (2) pruned nodes (i.e., the nodes where
prunings happen and act as the roots of pruned branches), and
(3) solution nodes. Each tree node contains the information gen-
erated during query processing, such as VS and VA.

The initial AST is the search tree generated in the first
SGQ. Taking Fig. 1 as an example, the first query is with
parameters ðs; kÞ ¼ ð2; 1Þ, and the initial AST is T1, where
A1 is a pruned node since there is a branch pruned by
acquaintance pruning. Nodes Gi and Si stand for an inter-
nal node and a solution node, respectively. When process-
ing the subsequent query, AST is updated by replacing the
pruned node with an internal node to explore the branch
not considered in the previous query. For example, the

second query is with parameters ðs; kÞ ¼ ð2; 2Þ, and A1 in T1

is replaced byG7 in T3, implying that the previously pruned
branch is explored in the new query.

When the user specifies a tighter constraint, such as
k ¼ 0, not all the nodes in the existing AST (i.e., T3) are feasi-
ble for the tight constraint. On the other hand, although the
root node is always feasible, it is not efficient to start the
query processing with G1 because it leads to duplicate tra-
versal. Therefore, it is desirable to index the nodes of T3 for
different social constraints in order to support subsequent
queries, and we propose SB to address this issue.

Definition 4. An (sb; kb)-social boundary contains pointers to a
list of nodes in AST to accelerate the processing of the query
with s ¼ sb and k ¼ kb, such that expanding the nodes in the
list leads to the optimal solution to this query.

Note that, during the construction of the SBs for different
s and k, nodes that cannot lead to the optimal solution are
excluded.15 While a pruned node may be included in an SB
with a larger k for re-expansion, it may be excluded from
another SB with a smaller k due to violating the tighter
acquaintance constraint. In Fig. 1, there are two dashlined
regions in T3 representing (1,2)-SB and (1,3)-SB, respec-
tively. There are only two nodes in (1,2)-SB, since the other
five nodes in (1,3)-SB (i.e., I1, S2, E1, E2, and E3) violate
the acquaintance constraint with k ¼ 2 and thus are
excluded from (1,2)-SB. Therefore, to answer a new query
with ðs; kÞ ¼ ð1; 2Þ, we only need to expand the two nodes
in (1,2)-SB, instead of all the 15 nodes in T3. Specifically, the
SBs can be viewed as a table containing pointers to a set of
nodes, as shown in Table 1 with the query example in Fig. 2.
The content of this table is filled using the nodes in AST
after the first SGQ is processed. For each subsequent SGQ
with specified s and k, we are able to simply extract the
nodes in the corresponding (s; k)-SB and expand these
nodes to find the optimal solution. These nodes in the SB
can be treated as shortcuts on AST, where expanding them
directly can avoid traversing from the root of AST to reduce
the computation cost for new queries.

Finding the correct nodes for each SB is crucial due to the
following reasons. First, if the SB contains somenodes too close
to the root, it still needs to traverse some redundant internal
nodes in AST, leading to duplicate exploration. Second, while
a node close to the leaf nodes lowers traversal cost, the new
branch expanded from this node only covers a small portion
of the solution space, and the optimal solution is thereby not
guaranteed. Third, if the SB includes the nodes that do not gen-
erate feasible solutions under the new social constraints, it
incurs redundant caching overhead and computation cost.
Therefore, it is important to select a sound and complete set of
nodes for each SB. In the following,we first present how to effi-
ciently acquire the solution by leveraging AST and SB in Sec-
tion 4.2.Wewill then detail the construction of SBs in Section 5
and prove in Theorem 3 that the nodes indexed by (s; k)-SB are
sufficient for finding the optimal solution.

4.2 Solution Acquisition Using AST and SB

For each new SSGQ with a specified pair of s and k, we first
use the (s; k)-SB to quickly identify the corresponding nodes

Fig. 1. T1 and T2 are two dendrograms with different k, and T3 is the
accumulative search tree.

15. The range of possible s and k are 1 � s � smax and 0 � k � p� 1,
where smax is the largest possible s. According to the small world phe-
nomenon [36], smax does not need to be very large (e.g., 4), and users
can also specify a desired smax.
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in AST. Each node indexed by the (s; k)-SB is then expanded
to see if better solutions can be generated. The expansion
here is similar to the recursive function ExpandSG in
Algorithm SGSelect (pseudo code provided in Appendix
F, available in the online supplemental material): repeat-
edly expand the VS of the node by selecting and adding
the vertices from VA to VS , and then detect if the
expanded VS satisfies the acquaintance constraint. Newly
generated solutions are compared with the existing one
stored in the (s; k)-SB to choose that with the smallest
total social distance. While processing the SSGQ, if any
pruned node in the AST is successfully expanded, it will
be replaced by the branches generated during the expan-
sion. To update the SBs, the node removed from the AST
is also eliminated from the SBs to avoid duplicate expan-
sion. Nodes in the newly generated branches, on the other
hand, are incorporated into SBs for reuse. More details

about selecting the correct set of nodes for each SB will be
provided later in Section 5.

Example 1. In this example, v7 in Fig. 2a is the initiator.
After processing the first query with ðp; s; kÞ ¼ ð7; 3; 3Þ
using SGSelect, the initial AST is shown in Fig. 2b. Nodes
Gi, Pi and Si stand for an internal node, a pruned node
and a solution node, respectively. In Table 1, we list SBs
for different s and k, with the details of its construction to
be provided in Section 5. Assume that the initiator modi-
fies the constraint k from 3 to 2 for a tighter group. Instead
of examining all 43 nodes in the initial AST to obtain the
optimal solution, with the help of (3,2)-SB, we only need
to consider 11 nodes, which include 10 pruned nodes and
one solution node S1. Each pruned node has its VS and
VA, e.g., VS ¼ fv2; v6; v7; v8; v9; v11g and VA ¼ fv1; v4; v5;
v10g for P1. We examine these pruned nodes to see if they
can be successfully expanded to generate solutions, with
a procedure similar to that in SGSelect. Note that since
there is an existing solution S1 in (3,2)-SB, the distance
pruning strategy is effective at early stages in the expan-
sion and saves computation. If a pruned node is success-
fully expanded, it becomes an internal node that may
lead to new solutions and will be replaced by the newly
generated branches. The updated AST is shown in
Fig. 2c. For example, a distance-pruned node P4 in
Fig. 2b is successfully expanded into the internal node
G10 in Fig. 2c, which eventually is expanded into a new
solution node S6. After processing all the 10 pruned
nodes in (3,2)-SB, we obtain four new feasible solutions
(i.e., S6, S7, S8 and S9). Among them and the existing
solution (i.e., S1), S8 is returned as the optimal one since
it has the smallest total social distance.

5 INDEX CONSTRUCTION AND MAINTENANCE

Section 4 has illustrated how to exploit AST and SB to
answer SSGQs. In the following, we further detail how to
construct a table of (s; k)-SBs for various s and k. To effec-
tively reduce redundant node processing in SSGQs, it is cru-
cial to create SBs with the minimum number of nodes and
ensure solution optimality by considering each kind of node
(i.e., pruned nodes, solution nodes, and internal nodes) in

TABLE 1
The (s; k)-SBs Constructed after the First SGQ

(s; k) Nodes indexed by the (s; k)-SB

... ...
(2,0) P23, P27, P28, P29
(2,1) P20, P23, P27, P28, P29 [S1]
(2,2) P4, P11, P16, P18, P20, P22, P23, P27, P28, P29 [S1]
(2,3) P2, P4, P9, P11, P16, P18, P20, P22, P23, P27, P28,

P29 [S2]
(2,4) P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12,

P13, P14, P15, P16, P17, P18, P19, P20, P21, P22,
P23, P24, P25, P26, P27, P28, P29 [S2]

(2,5) ...
(2,6) ...
(3,0) P23, P27, P28, P29
(3,1) P20, P23, P27, P28, P29 [S1]
(3,2) P4, P11, P16, P18, P20, P22, P23, P27, P28, P29 [S1]
(3,3) [already processed]
(3,4) P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12,

P13, P14, P15, P16, P17, P18, P19, P20, P21, P22,
P23, P24, P25, P26, P27, P28, P29 [S2]

(3,5) ...
(3,6) ...
... ...

Fig. 2. An illustrative example for SSGQ. (a) The sample social network, (b) the initial accumulative search tree, and (c) the accumulative search tree
after the second query.
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AST. Here we address this essential issue by deriving a set
of node selection rules for building SBs under various query
parameters. We first focus on the acquaintance constraint k
and then return to the social radius constraint s.

Rule 1: node indexing for different k
(1) Pruned nodes. We categorize pruned nodes into four

types: IU-pruned nodes, EE-pruned nodes, acquaintance-pruned
nodes and distance-pruned nodes, which correspond to Eqs. (1),
(3), (5) and (4) in Section 3.2, respectively. Given s and k of
the first SGQ, we examine if a pruned node is needed in the
(s; k0)-SB for processing a new SGQwith k0 as follows.

� IU-pruned nodes. All IU-pruned nodes do not appear
in any (s; k0)-SB with k0 � k, since k0 represents a
tighter acquaintance constraint. On the other hand,
when k0 > k, an IU-pruned node is not included in
any (s; k0)-SB if k0 < UðVSÞ since insufficient social
tightness within VS prevents this node from becom-
ing a solution. Therefore, an IU-pruned node only
appears in the (s; k0)-SB where

k0 � maxfUðVSÞ; kþ 1g: (6)

Example 2. Fig. 2b presents an illustrative example
with an IU-pruned node P1 to identify the corre-
sponding SBs. P1 is generated in the first query
with ðs; kÞ ¼ ð3; 3Þ, and its VS and VA are
fv2; v6; v7; v8; v9; v11g and fv1; v4; v5; v10g, respec-
tively. It is not necessary to calculate UðVSÞ here,
since UðVSÞ ¼ 4 was derived when solving the first
query. According to Eq. (6), when s remains
unchanged,P1 only needs to appear in the (3,k0)-SBs
with k0 � 4, which are (3,4)-SB, (3,5)-SB and (3,6)-SB.

� EE-pruned nodes. As with the IU-pruned nodes, all
EE-pruned nodes will not appear in any (s; k0)-SB
with k0 � k for the same reason. Moreover, an EE-
pruned node will be pruned again in any (s; k0)-SB if
k0 � k < p� jVSj �AðVSÞ, since the social connectiv-
ity between VS and VA is still too small with respect
to k0. Therefore, an EE-pruned node only appears in
the (s; k0)-SB where

k0 � maxfp� jVSj �AðVSÞ þ k; kþ 1g:
� Acquaintance-pruned nodes. An acquaintance-pruned

node is included in an (s; k0)-SB only if k0 > k andP
v2MA

jVA \Nvj � ðp� jVSjÞðp� jVSj � k0 � 1Þ (i.e.,
Eq. (5) does not hold to trigger acquaintance prun-
ing). That is, an acquaintance-pruned node only
appears in the (s; k0)-SB where

k0 � maxfp� jVSj � 1�
X
v2MA

jVA \Nvj=ðp� jVSjÞ; kþ 1g:

Note that the value of
P

v2MA
jVA \Nvj has already

been derived in the first query and does not change
when k is replaced by k0, and exploiting these
unchanged parts helps reduce computation when
processing SSGQs.

� Distance-pruned nodes. In contrast, distance-pruned
nodes need to appear and may be expanded in the
(s; k0)-SB when k0 < k, since k0 represents a tighter
acquaintance constraint, and the solutions that trim
off the distance-pruned nodes may not be feasible.

However, including every distance-pruned node in
all (s; k0)-SBs in this situation is not necessary.
Instead, we employ the distance pruning strategy
again to filter out the distance-pruned nodes that
never become a better solution in each SB. Specifi-
cally, if the solutions generated in the previous
queries are feasible under k0, the one with the small-
est total social distance is kept in the (s; k0)-SB, and
this total social distance is then employed to update
D in distance pruning for filtering. On the other
hand, distance-pruned nodes are not included in
(s; k0)-SBs when k0 � k, because the original solutions
that trim off these nodes are still better solutions.

In the above cases, we explored whether a pruned node
appears in (s; k0)-SB according to its original pruning type.
However, taking a distance-pruned node as an example,
when it is included in an (s; k0)-SB with k0 < k, it may vio-
late the new tighter interior unfamiliarity condition and be
trimmed off by IU pruning. To further reduce the number
of nodes, we examine each type of pruned nodes for the
other three types of pruning strategies with the correspond-
ing s and k0. These examinations are almost the same as in
Section 3.2, except that some parts of the inequalities have
already been derived and can be reused directly.

(2) Solution Nodes. It is desirable for the SBs to include
solution nodes to facilitate early pruning in the new query.
A solution node here can be any node with jVSj ¼ p, e.g.,
any feasible solution (not necessarily the optimal one). Spe-
cifically, any solution node can be selected in an (s; k0)-SB if
k0 � UðVSÞ, since the solution node still satisfies the acquain-
tance constraint k0. Nevertheless, if there is already another
solution node in the (s; k0)-SB, we only need to keep the one
with the smaller total social distance to facilitate distance
pruning afterwards.

(3) Internal Nodes. To effectively minimize the storage
overhead, no internal node is included in (s; k0)-SBs, since
all feasible solutions expanded from an internal node either
are the solution nodes in its sub-tree or can be expanded
from the pruned nodes in its sub-tree.

Rule 2: Node Indexing for Different s
(1) Pruned nodes.

� IU-pruned nodes. No IU-pruned node needs to be
included in any (s0; k)-SB, since changing the social
radius constraint does not increase the connectivity
between the existing vertices in VS . Thus, all the IU-
pruned nodes are infeasible with any s0.

� EE-pruned nodes. In contrast to the IU-pruned nodes,
some EE-pruned nodes may be successfully
expanded to generate new sub-trees when s0 > s,
since new candidate attendees may appear in VA.
Therefore, if s0 > s, it is necessary to derive the cor-
responding V s0

A (i.e., the candidate attendees within
s0 hops from the initiator) for an EE-pruned node.16

We then update the social distance according to dif-
ferent s0 to keep track of the status of the pruned
node.17 An (s0; k)-SB includes an EE-pruned node

16. The tightest social radius constraint that allows a vertex v to be
included as a candidate can be identified from the radius graph extrac-
tion procedure, and it is the smallest i such that div;q < 1.

17. The social distance of any vertex in V s0
A for different s0 can also be

derived from the radius graph extraction procedure, since the social
distance of a vertex v for s0 is exactly div;q with i ¼ s0.
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only if its V s0
A is large enough such that AðVSÞ � p �

jVSj, implying that Eq. (3) does not hold and prevents
EE pruning.

Example 3. Fig. 2b presents an illustrative example
with an EE-pruned node P5 to identify the
corresponding SBs. P5 is generated in the first
query with ðs; kÞ ¼ ð3; 3Þ, and its VS and VA are
fv3; v6; v7; v8; v9g and fv1; v4; v5; v10; v11g, respec-
tively. According to Rule 2-(1), an EE-pruned
node is only considered for the (s0; k)-SBs with
s0 > s. Since smax ¼ 4, where smax is the largest
possible s0, P5 may only stay in the (4,3)-SB. Note
that the tightest social radius constraint that allows
a vertex v to be included as a candidate can be
identified from the radius graph extraction proce-
dure. Therefore, V 4

A ¼ V 3
A. Since V s0

A is unchanged,
AðVSÞ will remain the same when s0 ¼ 4, which
indicates that Eq. (3) still holds to trim off P5
again. By excluding P5 from the (s0; 3)-SBs, the
node selection rules effectively reduce the process-
ing time of subsequent queries.
Note that, although VS contains the same set of ver-

tices under different s0, the social distances of the verti-

ces in VS may change and affect the later distance

pruning. Therefore, in addition to tracking each node’s

V s0
A for different s0, we update the corresponding VS for

different s0, denoted as V s0
S . Moreover, V s0

S or V s0
A for the

same node under different s0 tend to share many com-

mon vertices. Therefore, to efficiently maintain V s0
S and

V s0
A under different s0, we hierarchically save the differ-

ence among them. That is, we first save a base node for

V s0
S or V s0

A with the smallest s0. When new candidates

join or when the social distance of any vertex becomes

smaller for a larger s0, these new candidates or the dif-

ference of social distances will be recorded in a delta

node. With the base node and the delta nodes, we can

dynamically generate the corresponding V s0
S and V s0

A of

the specified s0 for further expansion as shown in Exam-

ple A.3 of Appendix A.1, available in the online supple-

mental material.

� Acquaintance-pruned nodes. Similar to the EE-pruned
nodes, some acquaintance-pruned nodes may be
expanded into new sub-trees when s0 > s, since
new candidate attendees may appear in VA. Specifi-
cally, an (s0; k)-SB includes an acquaintance-pruned
node only if its V s0

A is large enough such that

X
v2Ms0

A

jV s0
A \Nvj � ðp� jVSjÞðp� jVSj � k� 1Þ;

where Ms0
A is the set of p� jVSj vertices in V s0

A with
the largest inner degrees. The above inequality indi-
cates that Eq. (5) does not hold and the node is not
pruned.

� Distance-pruned nodes. In contrast, most distance-
pruned nodes, except those with V s0

S violating the
social radius constraint (i.e., max

v2V s0
S
hv > s0, where

hv is the number of hops from the initiator to a vertex
v), need to be re-considered when s0 changes. The
reason is that when s0 > s, the newly included verti-
ces in V s0

A may create shorter paths to the initiator.

Alternately, when s0 < s, the total social distance of
the solution in the previous distance pruning may
increase. In either way, the distance pruning condi-
tion may not hold, and its pruned nodes need to be
included in (s0; k)-SB for further examination.

Here we also create the base node and the delta
nodes for a distance-pruned node to compactly
maintain its V s0

S and V s0
A for different s0 to update the

social distance of any vertex, and then use the dis-
tance pruning strategy again to include only the
updated distance-pruned nodes that can generate a
better solution in the (s0; k)-SB.

(2) Solution Nodes. In order to facilitate early pruning for
the subsequent queries and avoid missing the optimal solu-
tion, (s0; k)-SB includes the solution nodes that follow the
social radius constraint. For each solution node, we update
the social distance with any vertex in V s0

S , so that it is associ-
ated with the correct total social distance. For each (s0; k)-SB,
we only keep the solution node of the smallest total social
distance to reduce the storage overhead.

(3) Internal Nodes. In contrast to the ðs; k0Þ-SB, internal
nodes in AST play a more important role in the ðs0; kÞ-SB,
because when s0 > s, new candidate attendees may join.
Therefore, the internal nodes of AST need to be cached for
the ðs0; kÞ-SBs with s0 > s, so that new candidates can be
added to the existing internal nodes without generating
them all over again. Similar to the pruned nodes, we mai-
ntain V s0

S and V s0
A of each internal node for different s0 using

the base node and the delta nodes, so that we can dynami-
cally generate the corresponding V s0

S and V s0
A of the specified

s0 for further expansion.
Although the node indexes for different k and different s

have been presented in Rule 1 and Rule 2, respectively,
when considering both s and k, carefully combining the
rules for k and for s can further reduce the number of nodes
to include in SBs. Moreover, when updating AST and SB
during the query processing for a new SGQ, the number of
nodes included in SBs can be minimized by considering the
s of all historical queries simultaneously. Therefore, Appen-
dix C.1, available in the online supplemental material, first
explores the generalized rule, and the updating procedure
of AST and SB is then detailed in Appendix C.2, available in
the online supplemental material.

Although we only process a small portion of nodes in
AST (i.e., the nodes indexed by the SB), the following theo-
rem proves that the solution is still ensured to be optimal.

Theorem 3. Processing the nodes in the (s0; k0)-SB obtains the
optimal solution to the SSGQ.

Proof. We prove the theorem in Appendix D.4, available in
the online supplemental material. tu
In Appendix D.5, available in the online supplemental

material, we further prove that all the nodes included in the
SB are feasible in Theorem 7. Additionally, we show that
the nodes included in the SB are sufficient and necessary in
Corollary 1.

6 EXTENSIONS IN TEMPORAL DIMENSION

The proposed AST and SB can be extended to support a
sequence of STGQs by considering the temporal dimension.
Specifically, it is only necessary to record TS (i.e., the com-
mon available time interval of all vertices in VS) for the
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nodes in AST and attach the available time to the vertices in
VA. As introduced in Section 3.3, when processing an STGQ,
instead of considering every interval from t to tþm� 1 for
each time slot t, our algorithm leverages the pivot time slot
im to effectively reduce the search space. Therefore, the
amount of ASTs can also be reduced from the number of
time slots to the number of pivot time slots.

Although the node selection rules in Section 5 were
derived for a sequence of SGQs, these rules can be directly
applied to a sequence of STGQs with no loss of solution
optimality. The reason is that, based on the proof of Theo-
rem 3, all the excluded nodes still cannot generate the opti-
mal solution to a subsequent STGQ with the same s0 and k0

as with the subsequent SGQ, since adding the availability
constraint m in the STGQ does not loosen the social con-
straints or decrease the total social distance of these nodes.

By considering candidates’ availability in the temporal
dimension, the size of each SB can be effectively reduced.
For example, if a node is pruned due to the lack of temporal
extensibility (i.e., XðVSÞ < 0), it is not required in any SB. A
lack of temporal extensibility implies a lack of consecutive
time slots for vertices in the VS of the node. The s0 and k0 of a
new query do not affect schedules, and the consecutive time
slots for vertices in the VS remain insufficient. Hence, this
node will again be pruned in the new query.

Similarly, if a node is pruned by availability pruning, it
does not need to be considered under most situations, since
the schedules of the vertices in VA are not affected. Note
that one exception is that when s0 of the new query becomes
larger, additional vertices may appear in VA, and these verti-
ces could form a feasible solution with VS if they have
enough time slots in common. Therefore, when exploiting
the temporal availability to further reduce the size of each
SB, we only discard the nodes that do not have enough new
vertices in VA to ensure the solution optimality while reduc-
ing the processing time.

7 EXPERIMENTAL RESULTS

In this section, we evaluate the performance and analyze
the solution quality of the proposed algorithms. First, we
describe the experiment setup in Section 7.1. We perform a
series of sensitivity tests to study the impact of query
parameters with real datasets and evaluate the performance
of Algorithms SGSelect and STGSelect in Section 7.2. In
Section 7.3, we further analyze experimental results of
SSGQ with the proposed caching mechanisms.

7.1 Experiment Setup
To evaluate the performance and analyze the solution qual-
ity of the proposed algorithms, we conduct various experi-
ments using real datasets. The existing approaches (e.g.,
[10], [11], [12]) cannot be applied to solve SGQ and STGQ
because their problem formulations do not include the tem-
poral dimension and social constraints s and k. Therefore,
we compare the proposed algorithms with three other
approaches: SGBasic (i.e., enumerating all possible candi-
date groups), KNN (i.e., selecting the p� 1 people with the
smallest social distances to the initiator), and DKS [37] (i.e.,
choosing the candidate group out of all possible ones that
maximizes the number of edges within the group). Note
that DKS is the core of the algorithms in the aforementioned
works [10], [11], [12] and correlated to [6], [38], [39].

The experiment includes two datasets: (1) the Coauthor

dataset [40] with 16,726 people and 117,082 days of schedule,
and (2) the YouTube dataset [31] with 1,134,890 people and
7,944,230 days of schedule. For the temporal information,
because there is no public dataset on real user schedules
(probably due to privacy concerns), we can only collect the
real user schedules from a user study with 194 participants
who shared their Google Calendar to us for research purpose.
The collected Google Calendar dataset from the user study
includes 6,790 days of real schedules. The temporal informa-
tion in the above Coauthor and YouTube datasets are ran-
domly selected from the 6,790 days accordingly. We
randomly select 5 weekdays and 2 weekend schedules to
form a 7-day schedule for each vertex in the social networks.
To evaluate SSGQ thoroughly, we conduct experiments with
various parameter settings for SSGQ. Specifically, the param-
eters are sequentially increased or decreased with different
rates.Moreover, we also conduct experimentswith randomly
parameter adjustment. The algorithms are implemented on
anHPDL580 serverwith four Intel E7-4870 2.4 GHzCPUs.

7.2 Performance Analysis of SGQ and STGQ
Analysis of SGQ.We first compare the running time of SGSe-
lect against SGBasic, KNN, and DKS with different group
size p. Fig. 3a presents the results with s ¼ 2 and k ¼ 3. The
trend in other parameter settings, such as s ¼ 1, is similar.
Results show that SGSelect outperforms SGBasic and DKS
more significantly as p grows, since SGBasic and DKS need
to examine numerous candidate groups, and the processing
effort of each group increases with p. In contrast, SGSelect
effectively prunes the solution space with the proposed
access ordering and pruning strategies.

Although KNN is fastest in Fig. 3a, Fig. 3b shows that
many solutions returned by KNN are infeasible to SGQ. Spe-
cifically, the feasibility ratio shows the percentage of feasible
groups returned by KNN drops quickly as p grows, since the
candidates close to the initiator do not necessarily know each
other. In addition, Fig. 3b compares the total social distances
of KNN and SGSelect. The distance ratio represents the total
social distance returned by KNN divided by that returned
by SGSelect. Note that the solution of KNN, with relaxed
social constraints, can be regarded as a lower bound on the
total social distance of SGQ. Fig. 3b indicates that the ratio
remains above 70 percent even for large p.

Fig. 3c presents the results with different social radius
constraints. As s rises, the number of candidate vertices (i.e.,
friends within s hops) increases quickly, and consequently,
the running time escalates. When s changes from 2 to 3,
the running time of SGBasic becomes nearly 1,000 times
greater while that of SGSelect only increases 11-fold, indicat-
ing the effectiveness of the proposed strategies. We also
compare these two approaches under different acquaintance
constraints. As shown in Fig. 3d, the running time of SGBasic
changes only slightly for different k, while the running time
of SGSelect is reduced for a smaller k, since the IU pruning,
EEpruning and acquaintance pruning becomemore effective.

Detailed Analysis on Proposed Strategies. In the following,
we first investigate the effectiveness of the access ordering
strategy. Fig. 4a shows that using only interior unfamiliarity
(see onlyIU) or exterior expansibility (see onlyEE) reduces
the running time, and the proposed access ordering strategy
that combines them yields the greatest improvement. Next,
Figs. 4b, 4c, and 4d analyze the pruning power of
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acquaintance pruning, distance pruning, IU pruning (i.e.,
the prunings contributed by Lemma 1), and EE pruning
(i.e., the prunings contributed by Lemma 2). Fig. 4b com-
pares the running time of SGSelect using different pruning
strategies. Fig. 4c then analyzes the effectiveness of these
pruning strategies by comparing their pruning counts. Dis-
tance pruning is the most effective one due to the help of
the access ordering strategy, i.e., the first feasible solution
with a small total social distance returned by access order-
ing can be exploited to facilitate effective distance pruning.
On the other hand, the pruning count of EE pruning exceeds
that of IU pruning as p increases, because under the same k,
the number of required edges inside a size-p feasible group
(i.e., pðp� k� 1Þ=2) increases as p grows, making it more dif-
ficult to satisfy the external expansibility condition.

Finally, Fig. 4d compares the pruned node count and the
pruning count with different strategies. Each pruning can
remove multiple nodes in the search tree, and the pruned
node count thereby can be larger than the pruning count.
The pruning ratio (i.e., the pruning count to pruned node
count) of distance pruning reaches 1 : 90. When a pruning
happens in a position closer to the root of the tree, it prunes
off a larger branch and the number of pruned nodes
increases. Therefore, we further investigate the position of
pruning in different strategies. Table 2 shows the percent-
age of prunings that occur when jVSj � bp2c, where a smaller
jVSj indicates proximity to the root. The IU pruning usually
occurs farther from the root because the pruning requires

the LHS of Eq. (1) to exceed the RHS, and the value of LHS
tends to increase as jVSj becomes larger. Nevertheless, the
IU pruning still plays an important role in SGSelect because
it prunes off the infeasible VS and ensures that the final solu-
tion satisfies the acquaintance constraint.

Analysis on Temporal Dimension. To evaluate the perfor-
mance on STGQ, we compare STGSelect with the following
algorithms: MultiSGSelect, MultiKNN, and MultiDKS, i.e.,
sequentially considering each candidate activity period and
solving the corresponding SGQ problem using SGSelect,
KNN, and DKS, respectively. Fig. 5a compares the running
time of these algorithms under different activity lengths m.
Note that the running time of MultiDKS is more than 7
hours and thereby not plotted in this figure. The results
show that STGSelect outperforms MultiSGSelect, especially
for a largerm, due to a significantly smaller number of pivot
time slots examined in STGSelect. For KNN, though Mul-
tiKNN is the fastest, it is not able to guarantee a feasible
solution. Fig. 5b shows that the percentage of feasible
groups returned by MultiKNN drops quickly as p grows,
and the distance ratio remains above 85 percent, better than
the simpler case of 70 percent in Fig. 3b.

Fig. 5c further presents the running time of STGSelect
and MultiSGSelect with varied users’ schedule lengths, and
STGSelect consistently outperforms MultiSGSelect. Fig. 5d
further analyzes the solution quality with various m. For
each p, the total social distance steadily increases as m
grows, because longer activity periods may necessitate the
candidates with larger social distances. To show the scal-
ability of proposed algorithms and provide further analysis
on solution quality, we also evaluate them in a larger You-
Tube dataset, and the results are provided in Appendix E.3,
available in the online supplemental material.

7.3 Performance Analysis of SSGQ
In the following, we compare the average query time for
processing SSGQs with and without the proposed index
structure for subsequent queries (i.e., SGSelectAST and

Fig. 3. Experimental results of SGQ (with the Coauthor dataset).

Fig. 4. Analysis on pruning ability of proposed strategies (with the Coauthor dataset).

TABLE 2
The Percentage of Prunings Located Near the

Root of the Dendrogram

Group Size IUP EEP DISP

p=7 0% 44% 61%
p=9 0% 52% 60%
p=11 0% 61% 64%
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SGSelect). Fig. 6a shows the results under varied numbers
of consecutive queries (in x-axis). The first query starts with
k ¼ 6 and k ¼ 12 for experiments with increasing k and
decreasing k, respectively. For example, the result for x ¼ 3
with a decreasing k represents the average query processing
time of three consecutive queries for k ¼ 12, 11 and 10. The
results manifest that the average query processing time of
SGSelectAST outperforms SGSelect because the proposed
AST and SB effectively avoid exploring duplicate search
space. For a decreasing k, the later queries are subject to
smaller k (i.e., stricter social constraints), and larger solution
space is more inclined to be pruned. This explains the
decrease of average query processing time for both SGSelect
and SGSelectAST. Similarly, for an increasing k, we can
infer that the average query processing time tends to
become longer as the number of consecutive queries
increases. Surprisingly, the average running time of SGSe-
lectAST still decreases consistently, and its improvement
over SGSelect becomes more significant as the number of
queries grows. Compared with SGSelect, the query process-
ing time of SGSelectAST is only 50 percent for two consecu-
tive queries and 25 percent for five consecutive queries. As
expected, AST preserves more information to effectively
trim the solution space required to be explored.

Fig. 6b evaluates the overhead of constructing and
updating SBs. The result manifests that the first query
incurs the largest overhead since all the SBs need to be care-
fully examined and created. The overhead in later updates
decreases quickly for an increasing k, because the number

of pruned nodes becomes smaller. Note that the total over-
head only contributes less than 0.1 percent of the query
processing time of the SSGQs and hence is quite ignorable.
Moreover, the construction and update of SBs may be per-
formed offline before a new query is issued.

Fig. 6c compares the running time under different s. When
s grows from 1 to 5, the average processing time for SGSelect
is boosted by 1162 times. In contrast, SGSelectAST only
increases by 71 times, indicating that the proposed AST and
SB can alleviate the growth of computational overhead signif-
icantly. Considering that the initiator may not always tighten
or loosen the social constraints by one at a time, we evaluate
SGSelectAST by increasing k in a faster rate in Fig. 6d.We fur-
ther consider amore dynamic case in Fig. 6e, where the initia-
tor first overly increases k from 6 to 12, and then slowly
decreases it to 8. In Fig. 6f, the s and k of each query are ran-
domized to simulate a case of random parameter tuning. In
all the above cases, SGSelectAST always outperforms SGSe-
lect. We also compare the algorithms in the large YouTube

dataset with an increasing and decreasing k in Fig. 6g. The
average query processing time of SGSelect becomes smaller
with a decreasing k but becomes larger with an increasing k.
In contrast, the average query processing time of SGSelec-
tAST steadily becomes smaller in both cases.

Fig. 6h shows the peak memory consumption of SGSelect
and SGSelectAST under different p in the Coauthor dataset.
For each p, there are three queries with k ¼ 6, 7 and 8. For
example, when p ¼ 13, the three SGQðp; s; kÞ queries issued
are SGQð13; 1; 6Þ, SGQð13; 1; 7Þ, and SGQð13; 1; 8Þ. SGSelect

Fig. 5. Experimental results of STGQ (with the Coauthor dataset).

Fig. 6. Experimental results of SSGQ (with the Coauthor dataset, except for Fig. 6g).
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processes the three queries separately as three SGQs,
whereas SGSelectAST builds AST according to previous
queries to speed up the subsequent queries. Fig. 6hmanifests
that the memory consumption of SGSelectAST becomes
larger when AST grows with p. However, the social bound-
ary and the derived node selection rules effectively avoid
storing redundant intermediate solutions, and the cached
intermediate solutions effectively reduce the computation
time as shown in Fig. 6a. Comparedwith SGSelect, the query
processing time of SGSelectAST is only 50 percent for two
consecutive queries and 25 percent for five consecutive
queries. Most importantly, AST only needs to be cached for a
short period of time during the activity planning.

8 CONCLUSION

To the best of our knowledge, there is no existing work in
the literature that addresses the issues of automatic activity
planning based on both the social and temporal relation-
ships of an initiator and attendees, especially for a sequence
of queries with different parameters from users to itera-
tively find more desired solutions. In this study, we first
define two useful queries, namely, SGQ and STGQ, to
obtain the optimal set of attendees and suitable activity
time. We show that these problems are NP-hard and inap-
proximable within any ratio. We then devise two algo-
rithms, SGSelect and STGSelect, to find optimal solutions in
reasonable time with effective query processing strategies,
including access ordering, distance pruning, acquaintance
pruning, pivot time slots, and availability pruning are
explored to prune redundant search space for efficiency. To
support and accelerate subsequent social group queries
(SSGQs), we further propose AST and SB. By effectively
caching and indexing the intermediate solutions of previous
queries, data lookup needed for SSGQs is facilitated. Experi-
mental results show that, with AST and SB, the running
time of SSGQs is reduced by 50-75 percent.
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