Infusing Principles and Practices for Secure Computing
Throughout an Undergraduate Computer Science Curriculum

Jean R. S. Blair
United States Military Academy
West Point, New York, USA
Jean.Blairi@westpoint.edu

Rajendra K. Raj
Rochester Institute of Technology
Rochester, New York, USA
Rajendra. K. Raj@rit.edu

ABSTRACT

In recent years, all computing disciplinary communities and curricu-
lar guidelines have increased their expectations of and requirements
for incorporating cybersecurity into their discipline, For computer
science, this has been a daunting task for a number of reasons,
including the fast-paced evolution and expansion of the discipline,
the perceived challenge of finding space in the curriculum, and the
difficulty of selecting the best content.

This paper takes the position that infusing security concepts
pervasively into an undergraduate Computer Science program is
a crucial and attainable best practice. A five-step methodology is
presented to incorporate cybersecurity into a traditional computer
science curriculum in a way that maintains disciplinary integrity
without adding significant new curricular content. This method-
ology is consistent with the philosophy and recommendations of
the latest computer science and cybersecurity curricular guidelines,
The paper also illustrates the application of these techniques to a
typical Computer Science program.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion; Model curricula; Accreditation.

KEYWORDS

Computer science education; cvbersecurity education; security ed-
ucation; curriculum development.

ACM Reference Format:

Jean E. 5. Blair, Christa M. Chewar, Rajendra K. Raj, and Edward Sobiesk.
2020 Infusing Principles and Practices for Secure Computing Throughout
an Undergraduate Computer Science Curriculum. In Proceedings of the 2020
ACM Conference on Innovation and Technology in Compud er Science Education
(ITICSE "20), June 15-19, 2020, Trondhetm, Norway. ACM, New York, NY,
USA, 7 pages. hitps-/'doi.org/10.1145/3341525. 3367426

ACM acknow ledges thal this contribution was authored or co-authored by an employes,
contractor, or affiliate of the United States government. As such, the United States
government retaing a nonexclusive, royvalty-free right to publish or reproduce this
article, or to allow others to do so, for povernment purposes only,

ITHCSE 20, June 15- 1%, 2020, Trondheim, Norway

i 2020 Association for Computing Machinery,

ACKM ISBN 578-1-1503-6874-2/ 20/ 046, .. $15.00

hittpa:fdol.oeg/ 10,1 145/3341525. 3357425

Christa M. Chewar
United States Military Academy
West Point, New York, USA
Christa.Chewar@westpoint.edu

Edward Sobiesk
United States Military Academy
West Point, New York, TTSA
Edward.Sobiesk@westpoint.edu

1 INTRODUCTION
This paper presents a philosophy and approach for infusing cy-
bersecurity content into an undergraduate Computer Science (C5)
program. Our central premise is that good computing practices
already within a modern CS curriculum provide substantial ele-
ments of cyhersecurity content, and hence it is not necessary to add
significant new content. The key insight is that many CS programs
are simply missing a set of guiding cybersecurity principles that are
purposefully and prominently linked throughout the curriculum,

We seek to dispel the mindset that CS fundamentals and cyberse-
curity are disparate. Furthermore, while most C5 educators would
agree that cybersecurity should be included in the CS curriculum—
and might even argue that cybersecurity is a civic responsibility—
Wolffe [24] states the uncomfortable truth that many C5 programs
do not require security coursework mainly because CS faculty mem-
bers do not know what is needed or how to teach it. This paper
provides an effective methodology to address this shortcoming,

We advocate that cybersecurity content should be threaded
throughout a curriculum. However, finding ways to add security
content along with the multitude of other evolving CS disciplinary
topics and requirements can be daunting, Although some C5 pro-
grams found early success with specialized security electives, such
as Digital Forensics and Cybersecurity Engineering, sacrificing
elective choices intended to provide breadth and depth seemed
inappropriate. Additionally, our view is that it is not sufficiently
effective to add security topics at the periphery of a curriculum
such as in a networking course, a database course, or a professional
seminar. Security must be fully integrated and should be present
wherever the preponderance of the curriculum is taught.

Three salient questions are addressed in this paper:

(1) What security principles are most important for a given CS
program?

(2) What existing content from required C5 courses already
contributes to coverage of security?

(3) How should security principles and associated practices be
cohesively applied across the breadth and depth of a given
CS program to be more memorable and, through sufficient
repetition, more nuanced?

The next section sets the stage with an overview of the C5 and
cybersecurity curricular guidelines that are most relevant for a mod-
ern C5 curriculum. Section 3 describes our proposed methodology

https://doi.org/10.1145/3341525.3387426
https://doi.org/10.1145/3341525.3387426

to infuse security throughout a “typical” CS program and demon-
strates application of our approach. Section £ highlights additional
related work and the paper ends with some concluding remarks.

2 RELEVANT CURRICULAR BACKGROUND

Two significant curricular guidelines are most germane to this pa-
per. Computer Science Curricula 2013 (C52013) [5] teck a major
step forward to ensure that information security and assurance (the
then common term for cvbersecurity) would receive the needed at-
tention within undergraduate CS curricula. In fact, C52013 provides
much of the foundation for integrating security across a modern un-
dergraduate CS curriculum. Four years later, the cybersecurity com-
munity published Cybersecurity Curricula 2017 (CSEC2017) [15],
providing guidelines for cybersecurity undergraduate education.
The CSEC2017 curricular model includes a disciplinary lens through
which cvbersecurity knowledge and skills are gained. When viewed
through a C5 lens, CSEC2017 provides a complementary perspec-
tive of cybersecurity in a CS curriculum. The remainder of this
section highlights key aspects of C52013 and CSEC2017,

2.1 CS52013 and Cybersecurity

The Computer Science Curricula 2013 report (C52013) [5] was writ-
ten by a Joint Task Force with members from both the Association
for Computing Machinery (ACM) and the IEEE Computer Society,
Although the focus of the document is on recommended curricular
guidelines for undergraduate C5S programs in the form of a Body
of Knowledge, the publication also includes descriptions of the
processes and principles used in its creation, a description of 11
characteristics expected of C5 graduates, discussions of introduc-
tory courses and institutional challenges, advice on how to migrate
to C52013, 84 course exemplars, and five full curriculum exemplars.
As stated in the document, C52013 was written to provide guidance,
not to be a standard for evaluating a program [5]. C52013 organizes
its curricular recommendations into three categories: a C5 program
should cover 100% of the Core Tier-1 topics, around 80-100% of
the Core Tier-2 topics, and additional elective content to provide
breadth and depth. A number of “lecture hours™ is given for each
curricular topic, but there is no assumption that the developmental
experiences are provided through lecture format.

The recommendations in this Body of Knowledge are designed
to be an “elegant interplay bebween theory, software, hardware, and
application” presented through 18 Knowledge Areas (KAs). Each
KA is further divided into Knowledge Units (KUs), and each KU has
a list of curricular topics as well as suggested learning outcomes.

The C52013 Information Assurance and Security (LAS) KA is:

.. the set of controls and processes, both technical and
policy, intended to protect and defend information
and information systems by ensuring their confiden-
tiality, integrity, and availability, and by providing for
authentication and non-repudiation.
The KA also inchides the need to question the state and validity of
any inherited data, systems, or networks.

The TAS KA consists of only nine hours of Tier-1 and Tier-2
recommended content covering foundation concepts in Security,
Principles of Secure Design, Defensive Programming, Threats and
Attacks, Network Security, and Cryptography. Importantly, though,

SDF/Development Methods [10 Core-Tierl hours|
This unit builds the foundation for core concepts in the Software
Engineering knowledge area, most notably in the Software Processes,
Software Design and Software Evolution knowledge units,
Topics:
Program comprehension
« Program correctness
o Types of errors (syntax, logic, run-time)
o The concept of a specification
o Defensive programming (e.g. secure coding, exception han-
dling})
o Code reviews
o Testing fundamentals and test-case generation
o The role and the use of contracts, including pre- and post-
conditions
o Unit testing
Simple refactoring
Maodem programming environments
o Ciode search
o Programming using library components and their APIs
Debugging strategies
« Documentation and program style

Figure 1: The CS52013 Development Methods Knowledge
Unit - & of its 10 hours also serve as Information Assurance
and Security content [5].

the [AS KA identifies an additional £3.5 hours across 13 of the other
17 EAs that are evbersecurity best-practices and principles. Of these,
32 hours are Tier 1 topics and the remaining 31.5 are Tier 2. The
implication of this structure is that 7/8 of the cybersecurity content
in the C52013 Body of Knowledge is drawn from the other, more
traditional parts of a Body of Knowledge. It is this aspect of the KA
that makes it appropriate and straight-forward to continue teaching
CS5 as we have, but to infuse cybersecurity by explicitly making the
connections to cybersecurity thronghout the C5 curriculum.

As an illustration of this concept, the [AS KA designates that
eight of the ten Core Tier-1 hours of the Development Methods
KU from the Software Development Fundamentals KA additionally
serve as IAS content; see Figure 1. This example reinforces our
major points that (1) most good security practices are simply good
computing practices and (2) cybersecurity should be taught across
the entire curriculum wherever situations requiring security are
encountered, not just as an add-on course that covers security as a
side topic to the curriculum.

2.2 (CSEC2017 and Computer Science

The Cybersecurity Curricula 2017 report (CSEC2017) was an oul-
come of the Joint Task Force of several computing organizations
— ACM, IEEE Computer Society, the Association for Information
Systems Special Interest Group on Information Security and Pri-
vacy, and the International Federation for Information Processing
Technical Committee on Information Security Education. CSEC2017
describes the cybersecurity discipline and cutlines a Thought Maodel
that includes knowledge areas (KAz), crosscutting concepts, and
a disciplinary lens. As shown in Table 1, the KAs organize the
cybersecurity content, with the first five (Data, Software, System,

Table 1: CSEC 2017 Knowledge Areas [15]

Knowledge Area Description
Data Protection of data at rest, during processing, and
Security in tranzit
Software Development and use of software that reliabhy
preserves the security properties of the protected
Security .
information and systems
Component ?ecurmr aspecrs ufthe design, plé‘m.ummt. te:st-
Security ing, analysis, and maimtenance of components in-
tegrated into larger systems
Connection Security of the connections hetween components,
Security both physical and logical
System Security aspects of systems that use software and
Security are composed of components and connections
Human Study of human behavior in the context of data
Security protection, privacy, and threat mitigation
-~ Protection of organizations from cyhersecurity
::..;E) tonal threats and managing risk to support successful
urity accomplishment of the organizations” missions
Societal Aspects of cybersecurity that broadly impact soci-
Security ety as a whole

Component, and Connection) generally representing technical con-
tent, while the remaining three describe the Human, Organizational,
and Societal dimensions. The KAs are not mutually exclusive; the
crosscutting concepts, described in Table 2, provide the basis for
interrelating knowledge areas into a “coherent view of cybersecu-
rity” [15].
CSEC2017 describes a disciplinary lens as:
... the underlying computing discipline from which
the cybersecurity program can be developed. The dis-
ciplinary lens drives the approach, depth of content,
and learning outcomes resulting from the interplay
among the topics. ... The application of the crosscut-
ting concept and/or the level of depth taught within
each knowledge unit may differ depending upon the
disciplinary lens [15].

Using the C5 disciplinary lens, CSEC2017 provides an additional
perspective on how to integrate cybersecurity content into a CS
curriculum. The eight KAs and six crosscutting concepts are viewed
and applied from a CS perspective, providing technical and non-
technical cybersecurity content appropriate for a CS curriculum.
For example, consider the impact of the C5 disciplinary lens on the
Drata Security KA. Here, the curriculum must include: encryption
algorithms for securing data at rest; secure networking protocols
for when data is in transit; access control techniques to ensure con-
fidentiality and integrity; and fault tolerance to ensure availability.

3 INFUSING SECURITY INTO A TYPICAL
COMPUTER SCIENCE CURRICULUM

To address the challenges described in Section | while maintaining
consistency with the precepts laid out in C52013 and insights from

Table 2: CSEC 2017 Crosscutting Concepts [15]

Concept Description

~onfid lity ;r;u';::&;m;‘;;:}rﬁem data and information to

Tnkegrity Assurance that the data and information are accu-
rate and trustworthy

Availability Diata, information and systems are accessible

Risk Potential for gain or loss

AVl pon o e ppei v werkin et
desired result

s I P s e e

Thinking

assured operations

CSEC2017, this section presents the following five-step methodal-
ogy for infusing cybersecurity into a typical C8 curriculum:

(1) Ldentify the appropriate security principles for the program's
constituents, taking into consideration the pervasive vulner-
ahilities and threats in the world today as well as existing
recommendations and guidelines.

(2) Map existing curriculum content to the principles — identify
where the curriculum already covers topics and practices
related to and supporting your selected security principles.

(3) Identify the gaps.

(4) Determine to what extent and how the gaps will be filled.

(5) Purposefully connect and articulate the security principles
and content throughout the curriculum.

The follow-on subsections will expand on and illustrate the
steps in this methodology. In describing a generic traditional CS
curriculum, we will nse four threads rather than specifving courses
in the generic curriculum. The threads group similarly focused
required coursework in a typical C8 curriculum. They are:

& Programming: programming fundamentals, data structures,
and software development.

& Theoretical foundations: discrete math, CS theory, algorithms
and complexity, and programming language concepts,

& Systems: computer organization and architecture, operating
systems, networking and communication, and parallel and
distributed computing.

e Compuling in practice: information management, profes-
sional seminar, and a major project,

As an exemplar of this generic modern C5 curriculum, the West
Point CS program begins in the sophomore year and includes a
bypical C5 1 course that is taken during the first semester at the
same time as cvbersecurity fundamentals; the latter provides early
exposure to the computing in practice and information manage-
ment topics, as well as risk and adversarial thinking. The second
semester coursework includes data structures, discrete math, and
embedded systems with digital logic, while the third semester cov-
ers computer organization, programming language concepts, and
networking, Building on this foundation is coursework in algo-
rithms, CS theory, and software development and testing during

the fourth semester. Seniors take operating systems and profes-
sional considerations, along with a few electives, and complete a
year-long interdisciplinary capstone project.

3.1 Step 1: Identifying Security Principles

Each C5 program will have its own constituents and associated
areas of emphasis and/or distinctive topics. As such, the program
should explore, select, and organize the security principles that
provide the best fit. This subsection describes our selection for the
typical, traditional CS program at West Point.

We considered security content from several sources including
{a) C52013 [5] and CSEC2017 [15], (b) the Security Fundamental
Principles knowledge unit of the National Security Agency’s Center
for Academic Excellence in Cyber Operations criteria [£], (c) the
Open Web Application Security Project’s Security by Design Prin-
ciples [14], and (d) a modernized form of Saltzer and Schroeder’s
security principles [18]. From these sources, we distilled and se-
lected the following seven security principles.

(1) Confidentiality, Integrity, and Availability - the traditional
security pillars

(2] Open Design — no security through obscurity

(3) Economy of Mechanism — simplest possible solution for
smaller attack surface

(4) Least Privilege and Complete Mediation — user access to
data/tools is as restricted as possible; every access to every
resource must be validated

(5) Fail Safe Defaults - resource access is closed unless granted

(6) Defense in Depth — layered approach to resource access

(7) Psychological Acceptability — security cannot be overly dif-
ficult for users

To determine these principles, we selected those that worked
best for our program and purposefully chose not to include other
excellent candidates that are less important for our constituents,
The CS community may benefit from further efforts to develop
consensus on the most appropriate set of principles for textbooks
and common use. Of course, each program would still be at liberty to
include principles that would be most meaningful in their program's
context and exclude those that are less appropriate. For instance, a
program catering to the corporate or financial software industries
might opt to include security principles related to mitigation of
conflicts of interest under the Chinese Wall security model [9].

3.2 Steps 2-5: Integrating the Principles

Omnee the set of principles is established, the important process of
mapping the principles to the C5 curriculum must take place. Table 3
shows a step 2 mapping of relevant CS practices and concepts from
each of the four curricular threads in the generic traditional CS pro-
gram to our security principles. This particular mapping assumes
previous introductory coverage of the following topics: malware,
denial of service, social engineering, risks, threats, vulnerahilities,
trust, social media, maintaining security updates, appropriate user
interfaces, and trustwaorthiness of information.

A finer-grained mapping of a specific C5 program might use
courses rather than threads. It is interesting to note that for the

mapped program, every required course would have at least a few

practices/topics that it contributes to the overall security knowledge,
skills, and attributes.

Addressing steps 3-5 for the program, one might determine that
maost of the needed security content was already present throughout
the courses in the threads, although in response to the mapping,
courses should be adjusted to explicitly frame and motivate the C5
content, relating it to the security principles.

3.3 Example: Evolution of a Software
Development Course at West Point

Steps 3-5 of the process will vary greatly and step 5 in particular
may take ime to reach a steady state as courses evolve and respond
to changes in prerequisite and follow-on courses. To illustrate the
evolution of a course in the West Point CS program over the past
several years (both to update content and to integrate coverage of
security topics), we look at what is now the Software Testing and
Deevelopment course. It has long been an advanced programming
topics course, with a general goal of preparing students with the
knowledge and skills needed to be an effective team member in their
capstone projects. Several years ago, the course was named Object-
Oriented Concepts and included heavy coverage of design patterns
to exercise ideas like inheritance, composition, encapsulation, ab-
straction, and concurrency, with the challenge of working on a
medium-sized codebase that is iteratively developed over several
weeks. Specification writing, front-end design, and documentation
continue as supplemental themes, despite several language changes
and inclusion of web and database integration.

After the publication of C52013, an overall curriculum audit of
our C5 program suggested refocusing this course toward more gen-
eral software development and testing topics. We deemed that the
Programming Languages course’s coverage of object-oriented con-
cepts as a contrast to other programming styles was sufficient. This
change allowed inclusion of new topics such as version control con-
cepts and practice, test-driven development (TDD) and automated
test harnesses, and an exposure to full-featured IDE tooling for de-
bugging, To enhance web development topics, we took TDD a step
further to continuous integration tools. While most of the design
patterns were put aside, the theme of assuring software maintain-
ahility, especially to facilitate teamwork and agile development,
remained a critical focus.

A few vears later, when security principles and practices be-
came required for all computing programs accredited by ABET [1],
we took another look at fully integrating security topics into the
Software Development and Testing course, Although it was easy
to identify in this course at least ten Core-tier 1 hours from the
C52013 SDF Development Methods knowledge unit (see Figure 1),
we found it more difficult to convinee external stakeholders and
students there was enough security focus; the course topics sim-
ply were not in the security-focused language that they expected.
There were a few quick wins, such as including code reviews that fo-
cused on OWASFP checklists [14] and mention of language-specific
vulnerabilities, but these felt tangential.

Ohur breakthrough came when we considered repackaging this
content to place primary focus on our security principles and dis-
cussing the principles in the order that best supported the pro-
gression of topics in the course. In other words, a lesson that had

Table 3: Security Practices in CS Curricular Threads

Security Principle Programming Theoretical Foundations Systems Computing in Practice
Redirecting Traffic Confidentiality [Privacy
Confidentiality Introduction to Concepts Traffic Analysis Diata Sanitization
Integrity Program Correctness Man-in-the-Middla Accessibility for All Users
Availability Maintainahle Software Spoofing Risks, Threats, and
Smiffing Vulnerabilities
Program Comments / Style
Maodularity for Readability
Variahle WNames . .
Abstract Data Types MB“;."““F Dﬁlﬁn . -
Generics for Simplicity Ethics of Vulnerability
Open Software Reuse Search Alg.mujms System Architecture Disclosure .
Desigm UML / Documentation Prog_ramnung Style Team Code Review
Invariants Design Paradigms
Test-driven Development Design Patterns
Remote Reposilories
Design Patterns
Coding Standards
Economy sDeslIB‘r: by Cunt::nlct
of IILEEP'-IJIFESE assEs Coding Standard
Meck R,Efsuzlunrfg .
Compaosition vs. Tnheritance
Strategy Pattern
MNon-Determinism from
Tnput Validation Parallelism
Least Garbage Collection Prohahility) Run-time M the
Privilage Interpret vs, Compile Interpret vs, Compilation) Call Stack a“dh eap
and Side Effects Grammars and Type Checking Memory Management
Complete Limiting Inheritance Parsing, Syntax, Ambiguity Memory Leaks
Mediation Encapsulation Manual vs. Automated DNS User Access
Sequence Diagrams Memory Management
Abstraction Implementation of Loops
and Hecursion
Use of APls
Exception Handling
Fail Unit Testing Program Comprehension &uﬁaﬂgﬁgﬂw Input Validation
Types of Errors Type-safe Languages " SQL Injection Defense
Safe) Race Conditions : .
Diefaults E‘un.structm' Options Integer EJ.-TCIIS Process Isolation Cross-site SI'_'I.'.lli.lt.lllE
Option Types Code Reviews Virtualization Vulnerabilities
Test Case Generation
Test-driven Development
Error Correcting Codes
Fault Tolerance
Correction Techniques
Defense Encryption Permutations, Combinations Exceptions
in Separation of Duties MVC) True Randomness Intrusion Detection S0 Injection Defense
Depth Information Hiding Choice of Lanpuage Honeypots
Firewalls
Boundary Security
Use of Cryptography
Peychologica Sl Moduls
Acceptability

Empirical Testing

been titled “Design by Contract]” which emphasizes single-purpose
class design and minimization of side effects, supports the security
principle of "Economy of Mechanism™ so we re-titled the lesson
and used the principle to motivate introduction of similar content,

After we began, this process became easier, but only after we
carefully reflected upon the broad meaning of each security prin-
ciple and identified its supporting course content. Some princi-
ples seemed like a stretch, but more than half were natural fits
within each identified course, For example, we easily identified
many course topics that supported Open Design, We became more
confident after seeing the complete mapping of topics within the
entire C5 program to the security principles. Not only were we able
to see a progression of topics within a given thread (i.e., all Pro-
gramming thread courses had topics supporting Open Design), but
we also found other courses that addressed principles that did not
fit within the Software Testing and Development course. We also
recognized the potential for repetition and nuance that came from
grounding applicable course topics in introduction/reintroduction
of the overarching principle. For instance, by the time students
reached this course, they would have been exposed to the impor-
tance of Open Design at least three times, and they would hear
ahout it again three more times the following vear in Systems and
Computing in Practice courses.

Our evolution occurred across several vears for this course,
roughly at the same pace that cybersecurity guidelines were ini-
tially published and popularized. Had we begun with the insights
outlined in Section 3, the infusion of security principles might have
taken a matter of months. Although, similar to the agile software
development methodology, we advocate multiple iterations of our
five step process.

3.4 Security in the RIT CS Curriculum

To meet the recent ABET requirement for coverage of security
principles and practices [1], the RIT C5 curriculum is being revised,
Unlike West Point, RIT's program focuses on preparing graduates
for a wide variety of careers, primarily in industry, and requires
a cooperative education component. Albeit different in terms of
courses, most topics required by BIT are also required at West Point,
and are likely present in any modern C5 curriculam,

In short, the proposed five-step methodology, along with the
breakdown shown in Table 3, can directly be applied to RIT's CS
program. Rather than covering artificial intelligence, data manage-
ment, and parallel and distributed computing in other courses as at
West Point, RIT has a full course for each topic. These courses add
further opportunities to identify security topics in FIT s curriculum.

4 RELATED WORK

All six computing disciplines recognized by the ACM now have
some form of cybersecurity content significantly integrated into
their recommended curricular guidelines [4-7, 15, 17].

Sewveral special editions of jowrnals [10, 11, 2] have been devoted
to cybersecurity education. Conferences and workshops focused on
cybersecurity education have come into being, for example, the Col-
loquinm for Information Systems Security Education (CISSE) [12].
In recent years, the annual ACM Technical Symposium on Com-
puter Science Education (SIGCSE) [2] and the ACM Conference on

IT Education (SIGITE) [3] have also had several papers, panels and
workshops focused on cybersecurity. The focus however, with a few
exceptions discussed below, has not been to extract and emphasize
cvhersecurity within existing C5 curricula.

Various authors have explored how security content can be in-
tegrated into C5 curricula, developing advice, best practices, and
recommendations. Specifically, Null's seminal effort [16] looked at
the entirety of Computing Curricula 2001-Computer Science [13]
and suggested how security could be incorporated into C5, as it
existed then. Much later, Siraj et al. [19] discussed an approach for
integrating security across C5 by exposing students to computer
security concepts in several existing courses in their regular pro-
gram of study. Taylor and Kaza showed how secure coding concepts
could be injected into introductory C5 courses [21], exposing C5
students to integer overflow, buffer overflow, and input validation.
Weiss et al. explored how CS educators could work as a community
to teach cybersecurity [22] and subsequently integrate hands-on
cybersecurity exercises into the CS curriculum [23].

5 FINAL REMARKS

This paper presented a philosophy and approach for infusing cy-
bersecurity content into a traditional undergraduate CS program
using a five-step methodology. The key aspects of our methodology
are that programs should identify the cybersecurity principles they
want to adopt, map their current curriculum against them, iden-
tify and mitigate gaps, and purposefully connect and articulate the
security principles throughout their curriculum.

A cenfral premise was that good computing practices already
existing in the curriculum provide substantial cybersecurity con-
tent, which implies that it mav not be necessary to add a significant
amount of new content. We strongly advocate that good security
practices are now simply good computing practices and that cyber-
security should be taught across an entire curriculum.

As for future work, we see cybersecurity becoming ubiquitous
throughout CS education. Instead of asking where should T teach
cybersecurity, the question may become: where do I not teach cyber-
security — with the answer to this latter question presumably being
almost nowhere. Additionally, the weakest link in any attack surface
will continue to be humans, and this will impact best practices
and curricular content as well. Although cybersecurity already en-
compasses many tools, human-machine teaming (using Al) will
grow ever more prevalent as will securing the many emerging tech-
nologies of the 21st Century, all of which will impact C5 curricula,
Finally, a much needed area of research is to explore educational
pedapogy and content on the topic of the trade-offs between secu-
rity and other goals.

ACKNOWLEDGMENTS

Blair, Raj and Sobiesk acknowledge innumerable cvhersecurity
education discussions with CSEC2017 co-authors Joseph]. Ekstrom,
David Gibson and Allen Parrish. Raj acknowledges support by the
Mational Science Foundation under Awards 1433736 and 19221649,

The views expressed in this paper are those of the authors and
do not reflect the official policy or position of the 1.5, Military
Academy, the Department of the Army, the Department of Defense,
or the 175, Government.

REFERENCES

11

12]
1]
14]

I5

1]

17

17

[14]
(1]
(2]

[13]

ABET, Inc. 2019, Criterda for Accrediting Computing Programs, 20192020,
hittp:fwwacabet, orgwp-content oploads 20081 170001- 19- 30-CAC-Criteria-
11-24-18.pdf, Accessed: January 14, 2020,

ACM BIGCSE 1570, SIGCSE Anaual Technical Symgosium, ACM SIGCSE, hitps:
Jsigeseorg/sigose’events/symposia/indec html, Accessed Jamary 19, 2020.
ACM SIGITE 2000-, FGOSE Annuel Conference, ACM SIGITE, hitps:iwww,
sigite.org Toat=6, Accessed April 14, 2020,

ACKMATS Task Group on Information Systems Curricula. 2000, Tnformation Sys-
tems 2010, Technical Report. ACM Press. hitps://wrwwacmoorg binaries/ content/
asset/education)currieula- recommendations) ceB005- marchodfinal pdf,
Accessed November 06, 2018,

ACM/TEEE-CS Jodnt Task Force on Computing Corrécula. 2013, Comrder Seience
Curricula 2013, Technical Report, ACM Press and TEEE Computer Society Press,
e dodorg 10,1145/ 2534860 Accesasd: November 14, 2017.

ACMITEEE-CS Task Group on Computer Engineering Curricula. 2016, Comprber
Engineering Crrricula 3046 Technical Report. ACM Press and [EEE Compater So-
ciety Press. httpsdoi.org 1011453025098 hitpsyibedoiong 10,1145/ 40325008,
Accessed November 06, 2018

ACM/TEEE-CS Task Group on Information Technology Curricula, 2017, Infirma-
tion Technolopy Cuericula 2017, Technical Report. ACA Press and IEEE Computer
Soctety Press. hitps:/doborgf 1011453173161 hitps: dlacom. ong/eltation.cfm?
id=3173161, Accessed November 06, 2015

U5 Matiomal Security Agency. 2019, Academic Requirements for Designation as a
CAE in Cyber Operations. https:/ “wrersr.nsa govFesources/Students- Educators!
centers-academic- excellence cas- co- fundamental/ requirements/#ms, Acressed
Jam 18, 2020,

0. F C. Brewer and M.] Nash 1989, The Chinese Wall security palicy. In
FProceedings, 1989 [EEE Symgrosium on Security and Privacy, IEEE, Dakland, CA,
206-214.

Diana L. Burley. 2014. Cybersecurity Education, Part 1. ACW Inroads 5, 1 (March
2014}, 41. hittps:/doi.org/10.1145 2568195, 25682 10

Diana L. Burley, 2015, Cybersecurity Education, Part 2, ACM Tnrogds 6, 2 (May
2015), 58. hitps://dod.org'10.1145/27 46407

CIS5E 1997, The Colloquinm for Information Systems Security Edwcabion (CTSSE)
CISSE. hitp-//wowrw.cisse.infoy, Accessed January 19, 2020,

Joint Task Force for Computing Currieula 2000, 2001, Competing Curricula 2001
Computer Science—Final Repost. Technical Report. ACM Press and IEEE Computer

[14]

[15]

[16]

[17]

[14]

[19]

[20]

[21]

[22]

[#4]

[24

Society Press, hitpsy'snww,acm,org/binaries! content/assets/education/curricula-
recommendations/cc2001 pdf, Accessed Janoary 19, 2020,

OWASP Foundatiom, 2017, The Dpen Web Application Security Project (00WASF)
Security by Design Principles. https://wikiowasp.ong/index. php/Security_by_
Design_ Principles Accessed Jan 18, 2020,

Joint Task Force on Cybersecurity Education. 2017, Cybersecurity Curricula
2007 Technical Report. ACM, [EEE-CS, A1S SIGSEC, and IFIF WG 118, hiips:
Jidolorg 10.1145/31845%

Linda Null. 2004, Integrating Security across the Computer Science Currewlum.
I Comypnet. Sci. Coll 19, 5 (May 2004}, 170-178.

ACMIEEE-CS Task Group on Software Engineering Curricula. 2014, Software
Enpgineering 2014, Technical Report. ACM Press and IEEE Computer Society
Press.

Jerome H. Saltzer and Michael 1. Schroeder, 1975. The Protection of Information
in Computer Systems. In Froceedings of the IEEE, Vol 63. IEEE, Mew York, 1278
1308,

Ambareen Siraj, Blair Taylor, Siddarth Kaza, and Sheikh Ghafoor, 2015, Integrat-
g, Security in the Computer Science Curriculum, ACM Imroads 6, 2 (May 2015),
77-81. https./‘dol.org/10.1145/ 2766457

A Sobel, A. Parrish, and B K. Raf. 2019, Curricalar Foundations for Cybersecurity.
Computer 52, 3 (March 201%), 14-17. https.//doi.org/10.110%MC. 2019, 2098240
Bladr Taylor and Siddharth Kaza. 2016, Security Injections@ Towson: Integrating
Secure Coding into Introductory Computer Science Courses. ACM Trans, Compur.
Edue. 16, 4, Article 16 (June 2016), 20 pages. hitps:/dolorg/10.1145/2897441
Richard Weiss, Ambareen Siraj, Jens Mache, Elizabeth Hawthorne, Blair Tay-
bor, Siddharth Kaza, and Michael E. Locasto. 2017, Building and Supporting a
Community of C5 Educators Teaching Cybersecuriby in 2007 (Abstract Omly), In
Proceedings of the 2007 ACM SH0CSE Techrical Sympoziem on Compuler Science
Education (Seattls, Washington, USA) (SHFCOSE 7L Association for Computing
Machinery, New York, NY, USA, 732. https:/doLorg/ 10.1145/301 7680, 3022370
Richard Weiss, Ambareen Siraj, Jens Mache, Blair Taylor, Siddharth Koz, Ankur
Chattopadhyay. and Michael E. Locasta. 2018, Integrating Hands-on Cyberse-
curity Exercises into the Curriculum in 201 8: (Abstract Only). In Proceedings of
the 48th ACM Techrical Symposium on Computer Science Education (Baltimore,
Maryland, UEA) (SHGCSE '18). Assocmation for Compating Machinery, New York,
NY, USA, 1070, https:/dol.ong/10.1145/315%450.3 162195

Jozephine Wolffe. 2016, Why Computer Science Programs Don't Require Cyber-
security Classes. https://slate.com/technology: 2016/ why- computer- science-
programsa-dont - require- cybersecurity - classes himl, Accessed Janoary 15, 20200

http://www.abet.org/wp-content/uploads/2018/11/C001-19-20-CAC-Criteria-11-24-18.pdf
http://www.abet.org/wp-content/uploads/2018/11/C001-19-20-CAC-Criteria-11-24-18.pdf
https://sigcse.org/sigcse/events/symposia/index.html
https://sigcse.org/sigcse/events/symposia/index.html
https://www.sigite.org/?cat=6
https://www.sigite.org/?cat=6
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2005-march06final.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2005-march06final.pdf
https://doi.org/10.1145/2534860
https://doi.org/10.1145/3025098
https://dx.doi.org/10.1145/30325098
https://doi.org/10.1145/3173161
https://dl.acm.org/citation.cfm?id=3173161
https://dl.acm.org/citation.cfm?id=3173161
https://www.nsa.gov/Resources/Students-Educators/centers-academic-excellence/cae-co-fundamental/requirements/#m8
https://www.nsa.gov/Resources/Students-Educators/centers-academic-excellence/cae-co-fundamental/requirements/#m8
https://doi.org/10.1145/2568195.2568210
https://doi.org/10.1145/2746407
http://www.cisse.info/
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2001.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2001.pdf
https://wiki.owasp.org/index.php/Security_by_Design_Principles
https://wiki.owasp.org/index.php/Security_by_Design_Principles
https://doi.org/10.1145/3184594
https://doi.org/10.1145/3184594
https://doi.org/10.1145/2766457
https://doi.org/10.1109/MC.2019.2898240
https://doi.org/10.1145/2897441
https://doi.org/10.1145/3017680.3022370
https://doi.org/10.1145/3159450.3162195
https://slate.com/technology/2016/04/why-computer-science-programs-dont-require-cybersecurity-classes.html
https://slate.com/technology/2016/04/why-computer-science-programs-dont-require-cybersecurity-classes.html

	Abstract
	1 Introduction
	2 Relevant Curricular Background
	2.1 CS2013 and Cybersecurity
	2.2 CSEC2017 and Computer Science

	3 Infusing Security into a Typical Computer Science Curriculum
	3.1 Step 1: Identifying Security Principles
	3.2 Steps 2-5: Integrating the Principles
	3.3 Example: Evolution of a Software Development Course at West Point
	3.4 Security in the RIT CS Curriculum

	4 Related Work
	5 Final Remarks
	References

