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Abstract
A major goal in neuroscience is to estimate neural connectivity from large scale extracellular recordings of neural activity
in vivo. This is challenging in part because any such activity is modulated by the unmeasured external synaptic input
to the network, known as the common input problem. Many different measures of functional connectivity have been
proposed in the literature, but their direct relationship to synaptic connectivity is often assumed or ignored. For in vivo
data, measurements of this relationship would require a knowledge of ground truth connectivity, which is nearly always
unavailable. Instead, many studies use in silico simulations as benchmarks for investigation, but such approaches necessarily
rely upon a variety of simplifying assumptions about the simulated network and can depend on numerous simulation
parameters. We combine neuronal network simulations, mathematical analysis, and calcium imaging data to address the
question of when and how functional connectivity, synaptic connectivity, and latent external input variability can be
untangled. We show numerically and analytically that, even though the precision matrix of recorded spiking activity does
not uniquely determine synaptic connectivity, it is in practice often closely related to synaptic connectivity. This relation
becomes more pronounced when the spatial structure of neuronal variability is jointly considered.
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1 Review of models and inference problems

A brief summary of our main results includes

– Conditioning on experimentally known cell types
improves inference

– The quality of reconstruction depends on system
parameters, such as the magnitude and variability of the
synaptic interactions

– More realistic models of network structure impart
greater variability to these estimates
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– Conditioning on orientation preference in visual cortex
can improve inference

– A linear estimate for ideal experimental length to
achieve optimal recovery in vivo

1.1 Introduction

Modern interest in connectivity inference in neuroscience is
quite broad in scope, ranging in scale from the microscopic
properties of dendritic arbors to macroscopic cooperation
across whole brain regions (Magrans de Abril et al. 2018).
Even at a single scale, there are at least two distinct types
of “connectivity” that are explored: functional connectivity
and actual synaptic connectivity.

Many studies focus on inferring functional connectivity,
which can broadly be defined as any statistical measurement
of the functional interaction between neurons or other units in
a neural system. A widely used method to infer functional
connectivity at the level of local neural circuitry is to fit
recorded neural activity to a generalized linear point-process
model (GLM) which incorporates non-linearities when esti-
mating effective coupling (Pillow et al. 2008; Paninski
2004). These non-linearities correct the neuron’s responses
to relate more to direct interaction and thus pertain more
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strongly to the underlying structure (Mishchencko et al.
2007). The accuracy of inference for GLMs has been evalu-
ated in silico using simulations of non-linear Hawkes process
models (Pernice et al. 2011). These models are idealized for
GLMs as they correspond exactly to the statistical assump-
tions of the GLM inference algorithms so accurate inference
of model parameters is to be expected. But the Hawkes
model itself lacks the biophysical details accounted for in
more mechanistic models such as networks of Hodgkin-
Huxley style or Integrate-and-Fire (IF) neuron models. As
such, functional connectivity inferred by GLMs applied to
Hawkes process models is often interpreted not to approxi-
mate actual synaptic connectivity, but rather to represent the
“effective” interaction between neurons with respect to the
model network (Feldt et al. 2011; Poli et al. 2016).

Abbreviation Definition

GLM Generalized Linear Model
IF Integrate-and-Fire
AdEx Adaptive Exponential Integrate-and-Fire
OU Ornstein-Uhlenbeck process
ROC Receiver Operator Characteristic
AUROC Area Under Receiver Operator

Characteristic folded to the interval
[0.5, 1] to account for anti-classifiers

ER Erdos-Renyi network model
CER Copulated Erdos-Renyi network model
HDin/HDout Heterogeneous in/out degree network model

Symbol Definition

K = J ◦ � Adjacency matrix of the recurrent network of
direct synaptic interactions, comprised of
weighted part (J) and binary edges (�).

W = ḠK̄ Matrix of ‘effective’ synaptic connectivity;
the direct effects weighted by the
post-synaptic target’s gain (G).

� Zero-frequency covariance matrix;
structurally equivalent to spike count
covariance taken over large time bins.

P = �−1 Zero-frequency precision matrix.
� Zero-frequency covariance matrix

of external inputs.
� = �−1 Zero-frequency precision matrix of external

inputs.
Ỹ Fourier transform of the kernel matrix

Y = G,K, etc.
Ȳ = Ỹ(0) The zero-frequency of the Fourier transform

of the kernel matrix Y.
Y Matrix of block-wise averages of the

matrix Y.

Large-scale inference of synaptic connectivity between
neuron pairs can be reliably performed using slice
reconstruction or genetic mosaic analysis (Chiang et al.
2011), but such reliable approaches are lacking for in vivo
applications. Less invasive extracellular recordings using
large-scale calcium imaging or micro-electrode arrays can
be performed relatively safely in vivo but do not provide
direct information about synaptic connectivity.

Previous work has evaluated the relationship between
functional and synaptic connectivity when GLMs are fit
to spiking data subsampled from simulations of networks
of leaky IF neurons (Lütcke et al. 2013; Zaytsev et al.
2015). Specifically, they assessed recovery of the ground
truth structure from the in silico biophysical model against
inferred coupling in the statistical model, but found
relatively low accuracy of recovery overall.

Several other studies have proposed various methods
for inferring synaptic connectivity, but since ground truth
connectivity is not typically known for in vivo recordings,
the accuracy of these methods has only been tested using
in silico simulations. This approach is necessarily sensitive
to parameter choices and underlying assumptions made in
the design of the simulations. One common and important
assumption in many such studies is a lack of correlated
input from outside the recorded network (Zaytsev et al.
2015; Kadirvelu et al. 2017; Mishchencko et al. 2007;
Pernice and Rotter 2013; Poli et al. 2016), which is not a
realistic assumption for in vivo recordings. Distinguishing
the effects of this “latent” correlated input from direct
connectivity – known as the “common input problem” – is
notoriously difficult (Paninski 2004; Pillow et al. 2008), but
is necessary for accurate inference of connectivity from in
vivo recordings.

Even when common input has been modeled in a net-
work, it has typically been incorporated not through explic-
itly correlated external processes but rather via subsampling
of the recurrent network (Brinkman et al. 2017; Lütcke
et al. 2013; Lin et al. 2017), with the unobserved part
inducing correlations only by way of the existing connec-
tions with the observed portion of the network. While this
does indeed generate external correlations to the observed
network, they have a different structure than correlations
coming from a feedforward external layer projecting onto
the entire recurrent population (Chambers et al. 2017).

An exact model of the relationship between connectivity
and activity statistics in neural circuits is not known and
most likely intractable, but there are simple mathematical
expressions that provide accurate approximations to this
relationship for various computational models (Krumin
et al. 2010; Pernice et al. 2011; Trousdale et al. 2012;
Baker et al. 2019) and these expressions can account for
correlated external input. We evaluate how well synaptic
connectivity can be inferred from estimates of spike train
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covariance under these approximations and how the quality
of this inference depends on modeling assumptions and
model parameters. We find that the precision matrix, i.e
the inverse of the covariance matrix, of neurons’ spiking
activity provides a better measure for inferring synaptic
connectivity. We also find that inference can be greatly
improved by accounting for the recorded neurons’ type
(excitatory or inhibitory), tuning similarity, or distance,
which are all quantities that can be measured or estimated
during multicellular in vivo recordings. We test our
conclusions using simulations of networks of adaptive
exponential integrate-and-fire (AdEx) neuron models.

We begin by considering some simple motivating models
and examples of functional measurements from them.
Some of these models or measures are less practical for
use in real data, and we will discuss their drawbacks
in detail. We will then proceed to provide analytical
details regarding the quality of network recovery based on
functional measurements of spiking activity aggregated over
large time windows. We then gradually introduce further
biophysically realistic features into the model, and examine
how the subsequent inference quality can be reduced or
improved based upon knowledge (or lack thereof) of these
covariates. Finally, we present a mean-field method for
inferring properties of external latent variability for a neural
circuit in mouse visual cortex.

1.2 Inferring connectivity from a simple stochastic
rate model

As a motivating example, we begin by considering a
simple linear dynamical model (Dayan and Abbott 2001)
in which synaptic connectivity can be derived directly from
observations of neuronal activity. The model is defined by

τr

dr
dt

= −r + gs

s = K̄r + Qξ(t) (1)

where rα(t) models the response of neuron α = 1, 2, . . . , N

as a low-pass filtered spike train or time-dependent firing
rate, sα(t) models the synaptic input to neuron α, K̄αβ is
the synaptic connection strength from neuron β to neuron
α, τr > 0 is a neural time constant, g > 0 is the
neurons’ gain, ξ(t) is N-dimensional standard Gaussian
white noise modeling intrinsic noise and external synaptic
input from outside the recurrent network, and QQT is the
covariance matrix of the noise. This model defines a multi-
variate Ornstein-Uhlenbeck (OU) process whenever gK̄− I
has eigenvalues with strictly negative real part (with I the
identity matrix), which we assume to be the case. The
stationary mean is

lim
t→∞E[r(t)] = 0,

so r(t) should be interpreted as a mean-subtracted measure
of firing rate. Correlations between neurons’ activity across
time can be measured by the cross-covariance matrix

R(τ ) = E[δr(t)δrT(t + τ)]
where δr(t) = r(t) − E[r(t)], expectation is taken in the
stationary state t → ∞, and rT is the transpose of r. We
wish to understand how the connectivity, K̄, can be inferred
from R(τ ). It can be shown that whenever K̄ is normal, i.e.
K̄K̄T = K̄TK̄, and Q = σ I is a multiple of the identity
(implying that neurons receive independent external input),
the off-diagonal entries of K̄ + K̄T satisfy

K̄ + K̄T ∝ R−1(0) (2)

where R−1(0) is the matrix-inverse of the zero-lag
covariance, known as the precision matrix (see Appendix
for proof), which is very often utilized in analyzing
functional recordings at macroscale levels such as fMRI and
EEG but is not quite as common a measure for inferring
synaptic level interactions. The diagonal entries of K̄ + K̄T

can be similarly derived, but we ignore them here because
we are interested in connections between neurons and all
of our network models lack self-connections. This can be
seen as a generalization of the theory of Gaussian Graphical
Models (GGM) wherein if K̄ is symmetric with normally
distributed non-zero elements, the exact precision perfectly
encodes the conditional interactions between the neurons.
However, connectivity in biological neuronal networks is
not symmetric (K �= KT ) and neurons are likely to receive
correlated external input (Q not diagonal). Therefore, the
functional connectivity inferred by the direct application
of GGM methods to neural data does not necessarily
correspond closely to synaptic connectivity. We further
discuss the issue of statistical sampling of the inverse
covariance in Section 7.

Fortunately, a regression theorem for OU processes (Gar-
diner 2009) yields a more general expression for the off-
diagonal entries of K̄ that is valid even when K̄ is not normal
and QQT is not diagonal,

K̄ = τr

g
R′(0)R−1(0) (3)

where R′(τ ) is the derivative of R(τ ) with respect to τ .
Indeed, this estimator of K̄ is analogous to estimates derived
by expectation-maximization and maximum aposteriori
(MAP) methods for multivariate first-order auto-regressive,
or AR(1), processes (Bishop 2007; Singh et al. 2017), which
are discrete-time analogues to OU processes. The derivative
form in Eq. 3 is also analogous to differential covariance
E[ d

dτ
δr(t)δr(t + τ)] which has also been extended to the

multivariate AR(2) process (Lin et al. 2017). Interestingly,
this expression for K̄ does not depend on Q at all, so it
is not affected by correlated external input. Hence, using
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Eq. (3), synaptic connectivity can in principle be inferred
directly from estimates of the cross-covariance between
neurons’ activity under the model from Eq. (1). However,
this approach has some critical shortcomings.

First, the model defined by Eq. (1) ignores the timescales
of synaptic filtering, neuronal filtering, and external input
variability that exist in biological neuronal networks. More
specifically,

1. The model assumes that neural activity is transferred
instantaneously to synaptic input, s = K̄r, which
ignores the temporal filtering imposed by synaptic
kinetics.

2. The model assumes that neural activity is proportional
to synaptic input, r = gs, which ignores the temporal
filtering imposed by neural membrane dynamics.

3. The model represents external input as Gaussian white
noise, whereas external input to biological neuronal
networks comes from the spiking activity of pre-
synaptic neural populations, which is correlated across
time.

The accuracy of Eq. (3) depends sensitively on these
assumptions because the independence of Eq. (3) on Q
relies on the fact that the contribution of Q to R′(0) and
R(0) is the same, so Q cancels out in Eq. (3), but the same
is not true of the contribution of K̄. This difference is due to
the timescales over which Q and K̄ affect r.

Secondly, note that Eq. (3) requires evaluating R(τ )

at small values of τ . This is problematic because fine-
timescale dynamics are exactly what the model gets wrong
(as outlined above), but also because large-scale multicel-
lular recordings – such as those obtained from calcium
imaging – often have low temporal resolution (though
finer timescale dynamics can be inferred by deconvolu-
tion methods (Friedrich et al. 2017; Pnevmatikakis et al.
2017)). This makes it difficult to obtain accurate estimates
of R′(0) and R−1(0) from data. Even in electrophysio-
logical recordings that have fine temporal resolution, spike
train correlations are often quantified from spike counts over
long time windows (∼250ms) due in part to the inherently
low signal-to-noise ratio of spike train data (Cohen and
Kohn 2011).

With that said, high accuracy in inferring synaptic
interactions has been shown to occur when exact spike
times can be observed and fit to a biophysically realistic
model of activity (Ladenbauer et al. 2019; Nykamp 2007).
This accuracy does, however, decay quickly when temporal
resolution decreases to the levels considered in the majority
of this study.

We next consider a more general model that can capture
arbitrary timescales of synaptic filtering, neuronal filtering,
and external input correlation then consider inference
methods that do not depend on these timescales.

1.3 Synaptic interactions cannot be computed
from spike train covariability under a general
linear model

We now consider a more general linear model of the form

r = G ∗ s

s = K ∗ r + x (4)

where ∗ denotes matrix multiplication with each product
replaced by a convolution over time (Trousdale et al. 2012),

[K ∗ r]j (t) =
∑

k

∫
Kjk(τ )rk(t − τ)dτ,

and where x(t) is some stochastic process modeling synaptic
input from outside the local network. The synaptic connec-
tivity kernel,K(τ ), is anN×N matrix that accounts for synap-
tic weights as well as the time-course of synaptic filtering.
The N ×N diagonal matrix, G(τ ), accounts for the filtering
imposed by neural transfer of synaptic currents, s(t), to neu-
ral activity, r(t). This model resolves issues 1–3 mentioned
above by accounting for arbitrary timescales of synaptic
filtering, neuronal filtering, and external input noise.

To recover the OU process model in Eq. (1) from the
more general model in Eq. (4), take

x(t) = Qξ(t) G(τ ) = gI
1

τr

e
− τ

τr H(τ) K(τ ) = K̄δ(τ )

where H(τ) is the Heaviside function and δ(τ ) is the Dirac
delta function.

The second moments of this model over any timescale are
determined completely by the cross-spectral matrix, defined
as the Fourier transform of the cross-covariance matrix,

R̃(f ) =
∫ ∞

−∞
R(τ )e−2πif τ dτ

which can be written in closed form as

R̃ = (G̃−1 − K̃)−1R̃x(G̃−1 − K̃)−∗ (5)

where ·−1 is the matrix inverse and ·−∗ is the inverse of the
conjugate-transpose, ·̃ is the Fourier transform, and we have
omitted the explicit dependence of G̃(f ), K̃(f ), R̃(f ), and
R̃x(f ) on frequency, f , for notational convenience. The
N × N matrix, R̃x(f ), is the cross-spectral matrix of x(t),
defined as the Fourier transform of the cross-covariance
matrix, Rx(τ ) = E[δx(t)δxT(t + τ)].

From Eq. (5), it can be seen that the same cross-
spectral matrix, R̃, can be produced by two different
connectivity matrices, K̃, together with different matrices,
G̃ and R̃x. Hence, without knowledge of G̃ and R̃x or
additional assumptions on model parameters, one cannot
infer K̃ directly from measurements R̃. In practice, one does
not typically have knowledge of pairwise external input
correlations or neural response properties to constrain G̃ and
R̃x in neural recordings.
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Furthermore, K̃ cannot be derived from R̃ even when
G̃ and R̃x are known. To see this, consider the case where
G̃ = R̃x = I (corresponding to G(τ ) = Iδ(t) and
x(t) = ξ(t)) and note that derivation of K̃ is equivalent to
derivation of A = I − K̃. But � = A−1A−∗ is invariant to
unitary transformations of A, i.e., to multiplication of A by a
matrix, U, satisfying UU∗ = I. Hence, multiple connectivity
matrices, K̃, produce the same correlation structure, R̃,
even when G̃ and R̃x are fixed. This was pointed out in
previous work (Pernice and Rotter 2013), which assumed
diagonal R̃x and inferred K̃ under an assumption of sparsity.
However, high quality inference of K̃ in that study was only
possible when sparsity was lower than that observed in local
cortical circuits (Jiang et al. 2016; Levy and Reyes 2012)
and, perhaps more importantly, the assumption of diagonal
R̃x – which implies uncorrelated external input – is not
justified in cortical populations.

Note that R̃(f ) uniquely determines R(τ ) and other
measures of spike train correlation such as spike count
covariance and spike count correlation. Therefore, since K̃
cannot be derived exactly from R̃(f ), it cannot be derived
from any of these other measures of spike train covariability
either.

Equation (5) was derived for the linear model in Eq. (4),
which is arguably more biologically realistic than the
model in Eq. (1), but is still a gross simplification of real
neural circuit dynamics. Specifically, the model in Eq. (4)
does not account for the nonlinearity of neural transfer.
However, Eq. (5) has been shown to provide an accurate
approximation for more biologically realistic networks of
spiking neuron models (Baker et al. 2019; Trousdale et al.
2012) and non-linear Hawkes process models (Krumin et al.
2010; Pernice et al. 2011). Hence, we conclude that, under
a wide class of models, synaptic interactions cannot be
derived explicitly in terms of spike train covariance in the
presence of unknown external input covariance. This is an
example of the common input problem (Soudry et al. 2013)
under which common or correlated input to neurons cannot
be distinguished from direct synaptic connectivity between
them.

A precise derivation of synaptic connection strengths
in terms of spike train covariance is therefore perhaps
too ambitious of a goal. Below, we weaken this goal to
argue that, in practice for networks of randomly connected
neurons, Eq. (5) allows us to infer the presence or absence
of synaptic interactions between pairs of neurons with a
determined accuracy.

1.4 A simpler goal: inferring undirected sparsity
structure from precision

Instead of trying to infer the entire connectivity kernel,
K(τ ) or K̃(f ), we aim only to infer its sparsity structure,

i.e., which neuron pairs are connected. First note that the
zero-frequency connectivity kernel,

K̄ = K̃(0) =
∫

K(τ )dτ,

represents the matrix of total synaptic strengths. We then
decompose K̄ as

K̄ = 1√
N
J ◦ �

where ◦ is the element-wise (Hadamard) matrix product
of synaptic weights, J, with a binary adjacency matrix, �.
The 1/

√
N scaling permits stability of network dynamics

when � and J are random matrices and promotes excitatory-
inhibitory balance and asynchronous dynamics for large
N (Van Vreeswijk and Sompolinsky 1996; van Vreeswijk
and Sompolinsky 1998; Renart et al. 2010). There is
evidence that synaptic weights in cultured populations of
cortical neurons scale similarly (Barral and D’Reyes 2016).

We then evaluate Eq. (5) at f = 0 and rescale all terms
by G̃ to obtain the simpler expression

� = (I − W)−1�(I − W)−T (6)

where � = R̃(0) is the low-frequency covariance between
neural activity,

W = ḠK̄

is the normalized synaptic weight matrix,

� = ḠR̃x(0)Ḡ

is the normalized external input covariance matrix, and
Ḡ = G̃(0) is the diagonal matrix of gains. Note that
the inverse-conjugate-transpose, ·−∗, in Eq. (5) is replaced
by an inverse-transpose, ·−T, in Eq. (6) because the
zero-frequency cross-spectral density between real-valued
processes is real-valued (Yaglom 1962). Note also that,
since Ḡ is diagonal, W has the same sparsity structure as K̄,
which is captured by �.

The matrices �, �, and W have natural interpretations.
Since low-frequency susceptibility, Ḡαα , represents the gain
of neuron α, i.e., the derivative of the neuron’s f-I curve,
Wαβ represents the connection strength from neuron β to
neuron α scaled by the post-synaptic neuron’s sensitivity
to inputs. Similarly, �αβ represents the low-frequency
covariance between external inputs to neurons α and β

scaled by the sensitivity of both neurons.
Finally, �αβ is proportional to the spike count covariance

between neurons α and β over long time windows, which is
a widely used measure of correlated variability (Cohen and
Kohn 2011; Doiron et al. 2016). It is also proportional to
the low-frequency covariance between the neurons’ firing
rate fluctuations. This means that � can be estimated
using low temporal resolution measures of neural activity,
such as those approximated by calcium imaging. Therefore,
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focusing on low-frequency interactions resolves the issue of
temporal resolution described above.

Motivated by the theory established in Sections 1–3,
we seek to infer connectivity using measurements of the
low-frequency precision matrix,

P = −�−1 = −(I − W)T�(I − W) (7)

where � = �−1. Note P is distinct from the zero-lag
temporal precision in Eq. (2) that is analogous to classical
GGM theory. We will consider P our primary functional
measure of interest throughout the remainder of this
paper. Motivation for this choice comes from the fact that
many functional measures of connectivity are functions of
P (Kadirvelu et al. 2017; Lin et al. 2017; Yatsenko et al.
2015; Pernice and Rotter 2013; Poli et al. 2016). In addition,
for the classes of random networks we consider, the entries
of P are approximately normally distributed for large net-
work size (N), shown in Appendix, which makes inference
easier to describe and understand. Also, P can be easily
estimated from multicellular recordings by numerically
inverting the sample spike count covariance matrix or low-
frequency cross-spectral matrix between neurons’ activity.
We discuss the estimation of P from data in more detail in
Section 7 and in the Discussion. Until then, we evaluate the
ability to infer connectivity from a perfect estimate of P.

Our main goal is then to infer the matrix of undirected
binary connections, � + �T from knowledge of precision,
P, under the assumption that Eq. (7) is satisfied and that �

is the binary adjacency matrix for W. We do not enter into
this problem with expectations of fully recovering � + �T

for any network, but rather we seek to understand the under-
lying factors that contribute to a high degree of association
between � + �T and P under different network models.

Most literature on inferring connectivity in neuronal
networks has focused on the simple case of uncorrelated
external input (� and � diagonal) (Zaytsev et al. 2015;
Kadirvelu et al. 2017; Mishchencko et al. 2007; Pernice and
Rotter 2013; Poli et al. 2016) and we will initially follow
suit by assuming � ∝ I. We will later relax this assumption.
In this case Eq. (7) reduces to

P ∝
bidirectional︷ ︸︸ ︷
W + WT − WTW︸ ︷︷ ︸

shared targets

(8)

for the off-diagonal elements. The first term represents bidi-
rectional connectivity in that it is non-zero at an entry only
if there is a connection between the corresponding neurons,
in at least one direction, i.e., only if � + �T is non-zero at
that entry. An entry of the second term is non-zero when-
ever the corresponding neurons share some post-synaptic
targets. More generally, this term is larger in magnitude
when the two neurons share more post-synaptic targets.
Knowledge of the first term would give perfect inference of

bidirectional connectivity, so the second term can be consid-
ered a source of noise when trying to infer � + �T from P.
A main intuition from Eq. (8) is the roughly linear relation-
ship between P and W + WT, as demonstrated in Fig. 1a,b
with similar results previously observed in studies of general
linear point-process models (GLMs) (Mishchencko et al.
2007). This relationship is construed by the error term which
arises from shared post-synaptic targets.

We test this relationship by generating W according to
various random graph models, initially with gains fixed at
unity (G = I) for simplicity. All of the network models
we consider contain Ne excitatory (e) and Ni inhibitory (i)
neurons and obey Dale’s law (with N = Ne + Ni , qe =
Ne/N = 4/5, and qi = Ni/N = 1/5). The connectivity
matrix can be decomposed into four blocks where Kab

αβ

denotes connections from neuron β in population b = e, i

to neuron α in population a = e, i. We start with a simple
block-wise Erdos-Renyi model with normally distributed
synaptic weights defined by

Jab
αβ ∼ N (jab, vab), �ab

αβ ∼ bern(pab) (9)

where all random variables are assumed to be independent.
Hence, jab denotes the mean synaptic strength, vab the vari-
ance of synaptic strengths, andpab the connection probability
from population b = e, i to population a = e, i. We enforce
Dale’s Law on the synaptic strengths by truncating the
normal distribution onto the corresponding half-intervals of
R

+ for excitatory and R
− for inhibitory neuron types, but

this truncation has a small effect when |jab| � √
vab.

To quantify the performance of network recovery, we
utilize Receiver Operator Characteristic (ROC) curves,
which are a common and reliable metric. ROC curves
are generated by taking some set of values referred to
as the score and assigning positive and negative classes
by comparing the values against some threshold, and then
counting the true and false positive rates (TPR/FPR) as
the threshold itself varies to span the set of scores. In
our case, the values in the precision matrix serve as the
scores and the classes are initially partitioned into the simple
connected versus unconnected sets. It is important to note
that in the context of network recovery, the aforementioned
model details combine to generate an approximate mixture
distribution on the precision values. A randomly chosen
value in the precision matrix takes the form

Pab
αβ = πconn(Pab

αβ | �ab
αβ + �ba

βα �= 0)

+(1 − πconn)(Pab
αβ | �ab

αβ + �ba
βα = 0)

where πconn is a binary variable corresponding to whether
the randomly chosen pair is connected. This mixture model
form helps to further justify the appropriateness of the ROC
metric.

We now perform an initial analysis of structural recovery
using randomly generated networks following two basic
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Fig. 1 Inference in a simple model under a simple partition scheme
results in low AUROC. (a) Scatter plot of 3 × 104 randomly sam-
pled pairwise values from a randomly generated precision structure of
N = 2000 neurons versus the corresponding values of pairwise bidi-
rectional connectivity. (c) Total empirical density of the values in (a).
(e) Empirical densities of the values in (a) partitioned into connected

(dotted line) and unconnected (solid) pairs; the connected distribution
is no longer down-weighted by the low probability of connection. (g)
ROC curve for distinguishing connected versus unconnected pairs in
(e), with the dashed line as reference to a random classifier. (b,d,f,h)
Same as (a,c,e,g) but in a higher noise, stronger strength regime.
AUROCs: (g) 0.6084, (h) 0.5904

regimes under which the coefficient of variation of J
(CVab ≡ √

vab/jab) is near-zero or near-one, which we
will refer to as the low-noise and high-noise regimes.
The scatter plots in Fig. 1a,b reflect this escalation in
noise, which ultimately causes the multi-modal mixture
distribution structure apparent in Fig. 1c,e to collapse to two
or fewer observable modes in Fig. 1d,f. The multi-modal
shape of these distributions of precision values are due to the
mixing of excitatory and inhibitory neurons as well as uni-
and bi-directionally coupled motifs, all of which are later
considered as additional information used by other partition
schemes in Section 2.

The ROC curves for this initial partitioning are shown
in Fig. 1g,h. As observed, recovery of network structure is
quite poor under this setting, yielding area under the ROC
curve (AUROC) of around 0.6 in both cases. While there
is some loss of information in reducing the full ROC curve
to a single scalar value, the AUROC nonetheless provides
a robust and widely used measure for quantifying the
accuracy of recovery as parameters of the networks change.
Note that all discussion and use of AUROC throughout
this paper is in a folded sense, that is AUROC ∈ [0.5, 1]
where any AUROC which would originally return a value
in [0, 0.5) is folded back into the rightward interval. This
convention accounts for situations in which a given method
or measure is interpreted more appropriately as an anti-
classifier. Alternative metrics are discussed towards the end
of the discussion section.

Figure 1g,h demonstrate that inferring connectivity by
thresholding all pairs of precision values simultaneously
yields poor recovery of synaptic connectivity. Figure 1e,f
demonstrate why this occurs: either there is a great
deal of total overlap between the connected (dotted)
and unconnected (solid) distributions, or the unconnected
sub-groups are alternately dispersed between the peaks
of the connected density. We next show that inference
of connectivity from precision can be improved by
conditioning on cell type.

2 Using cell-type labels can improve
inference of connectivity

Above, we showed that simple thresholding of precision, P,
can give poor inference of connectivity (Fig. 1d,h). How-
ever, this conclusion was reached under the assumption that
we had no information about whether the recorded neurons
were excitatory or inhibitory. Indeed, the multimodal den-
sities of precision values (Fig. 1b,c,f,g) are partly due to
their representing multiple pre- and post-synaptic cell types.
We will now show that by conditioning on this additional
information, we can vastly improve our quality of inference.

In neural recordings, estimates of cell type can often
be obtained by genetic labeling or classification of spike
waveforms. To illustrate how inference can be improved by
accounting for contextual data such as cell type, we utilize
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several families of data masks analogous to those used in
Lin et al. (2017) to explicitly specify how the elements of
the precision matrix may be partitioned based on conditional
information. A family of masks M(a, b; m) parameterized
either by sub-populations a, b and/or by connection type m

defines the set of values from the precision matrix which
correspond to motifs of the selected type. These sets give
rise to distributions over their elements and, so utilization of
different masks will always specify a different set of ROC
curves, each illustrating differing levels of inference quality.

If cell and connection types are known, then the richest
contextual set of masks is

M1(a, b; m) =
{
Pa′b′

αβ | a′ = a, b′ = b, �ab
αβ + �ba

βα = m
}

where m = 0 corresponds to the precision values between
unconnected neurons, m = 1 corresponds to the precision
values computed between pairs of uni-directionally coupled
neurons, and m = 2 to the precision values between
bidirectionally coupled neurons. Information regarding cell-
type is granted through specification of sub-populations
a, b ∈ {e, i}, which further restricts the conditional
precision values to the block of the matrix which
corresponds to that neuron type. For a given sub-
population, inference using M1 allows the comparison
of distributions M1(a, b; 1) or M1(a, b; 2) against the
shared null (unconnected) group M1(a, b; 0) within the
ROC analysis. For example, the ROC curve computed by
comparing the distribution of values in M1(e, e; 0) to those
in M1(e, e; 1) (denoted e → e in figure legends) quantifies
how well uni-directionally connected pairs of excitatory
neurons can be distinguished from unconnected pairs of
excitatory neurons when bi-directionally connected pairs
have been removed and excitatory neurons are labeled.

Mask M1 is only applicable in situations where ground
truth is available (since one needs to know which neurons
are bi- versus uni-directionally coupled) and hence is
generally only applicable to in silico network simulations.
It is however useful for explaining the behavior of the other
masks. A more reductive mask is then

M2(a, b; m)

=
{
Pa′b′

αβ | a′ = a, b′ = b, �ab
αβ + �ba

βα = H(m)
}

where H(·) is the Heaviside step function. As such, m in
M2 may only take the values zero or one denoting the null
(unconnected) and positive (connected) groups, thus caus-
ing the bidirectional motifs to be combined into the same set
of values as the unidirectional. The null groups are still sep-
arated on a sub-population basis however, which is arguably
the most important aspect. So mask M2 distinguishes
only cell type, and combines the values across connected
pairwise motifs. For example, the ROC curve omputed by
comparing the distribution of values in M1(e, e; 0) to those

in M1(e, e; 1) quantifies how well connected pairs of exci-
tatory neurons can be distinguished from unconnected pairs
when excitatory neurons are labeled. This corresponds to
the situation faced when inferring connectivity from exper-
imental recordings in which units are labeled by cell type.

Finally, the simplest mask is

M3(m) =
{
Pab

αβ | �ab
αβ + �ba

βα = H(m)
}

which is a common mask used on in vivo data (Vinci
et al. 2018; Yatsenko et al. 2015) as well as in silico
experiments following Dale’s Law (Pernice and Rotter
2013; Lin et al. 2017; Poli et al. 2016; Chambers et al. 2017;
Lütcke et al. 2013). Like mask M2, it only distinguishes
null and positive connections, but now it does so without
knowledge of sub-population membership. The ROC curve
computed by comparing the distribution of values in M3(1)

to those in M3(0) quantifies how well connected pairs can
be distinguished from unconnected pairs when neurons have
not been labeled by cell type, which is how the ROC curves
in Fig. 1g,h were computed. In this case, there are three
different null groups interspersed within the original eight
positive (connected) classes from M1. It is this multitude of
classes distinguished by M1 which are responsible for the
multiple modes in the distributions from Fig. 1.

Utilizing mask M1 to distinguish between cell types
and connection types provides a clear separation between
the precision densities of each type (Fig. 2a-f, compare
to Fig. 1a-f) and a dramatic improvement of inferred
connectivity (Fig. 2g,h; compare to Fig. 1g,h). In the
network with less synaptic variability, an AUROC of around
0.6 when using M3 was improved to multiple AUROC
values all near 1 (near perfect classification) when using
M1. For the network with greater synaptic variability,
AUROC values were also generally improved by using M1

in place of M3 (see Fig. 2h caption).
In neural recordings, even if we know cell types, we

typically do not know whether a particular pair value in
precision corresponds to a bidirectional or unidirectional
motif, so the application of mask M1 is not realistic for
real neural data. The application of mask M2 in Fig. 2i
represents the ROC curves that are produced in a more
realistic setting in which recorded cells are labeled, but the
nature of the connected motif is unknown. This is still a
substantial improvement over the unlabeled data (Fig. 1e-h).
It is important to note however that by combining the cross-
population distributions (excitatory-inhibitory pairs; a = e,
b = i or vice versa), there is substantial loss of inference in
the strict sense because the null group is nested between the
three connected groups. Such behavior is detectable as the
ROC curve crossing the diagonal reference (Fig. 2i, solid
purple curve), but this is correctable by taking the absolute
value of the centered precision as the score to be thresholded
(Fig. 2i, dotted curve).
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Fig. 2 Utilizing more informative partition schemes (masks) improves
inference quality. (a-c) Scatter plots of 26,335 precision values versus
corresponding bidirectional synaptic strength for the same structure
used in Fig. 1, but now separated by excitatory/inhibitory subgroups
(mask M1). Black always represents the null (unconnected) group for
each subtype, but note this group is now different across subtypes
whereas in Fig. 1 it was shared across all distributions. (d-f) Empiri-
cal densities of partitioned precision values in a-c. (g) ROC curves for
distributions shown in d-f. (h) ROC plots of a similar network under a

higher noise, stronger strength setting; same as values in Fig. 1b sub-
ject to mask M1. (i) ROC curves resulting from applying mask M2 to
values in Fig. 1b (higher noise, stronger strength). Dotted line repre-
sents the absolute value of the centered cross-population. AUROCs to
second decimal place, in order consistent with legend: (g) 1, 1, 1, 1,
1, 1, 0.98 (h) 0.73, 0.89, 0.85, 0.98, 0.95, 0.89, 0.66 (i) 0.74, 0.85,
0.54, as well as 0.83 for the dotted line. The networks are identical
to Fig. 1

In summary, accounting for additional information
within the model, such as cell type labels or motif structures
can improve the inference of synaptic connectivity.

3 An analytical expression for AUROC
clarifies its dependence on parameters

This finding that the use of additional model information
improves inference in simulations is encouraging, but we
also wish to understand how sensitive inference quality can
be as a function of the chosen parameter values. Thankfully,
for the model we consider, this problem is analytically
tractable and results in a direct function relating our model
parameters to the area under the ROC curve. This function
also directly reveals a number of qualitative features, many
of which were previously discovered via in silico studies.

The AUROC may be calculated analytically if applied to
normally distributed scores (see Appendix for a review of
this theory). For the network types considered within this
paper, the resulting precision values under mask M1 will
be approximately normally distributed in the large network
limit, a result proven in Appendix. We may thus explain
the resultant AUROC for M1 as a bijective function of
discriminability D (a.k.a, sensitivity index, signal-to-noise
ratio, Fisher’s criterion, Rayleigh’s quotient)

AUROC = 1

2
erfc

(
−|D|√

2

)

Dab(m) = E[M1(a, b; m)] − E[M1(a, b; 0)]√
V[M1(a, b; m)] + V[M1(a, b; 0)] (10)

where erfc(·) is the complementary error function. We
have defined our discriminability in terms of mask M1

whereby we distinguish unidirectional, bidirectional, and
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unconnected distributions from one another over all cell
types. It may theoretically be possible to extend this theory
to the other masks as well, however some difficulty which
arises in this extension is the fact that the measures become
more complicated mixtures of normal distributions for
which similar expressions may not always be easily re-
derived.

Under certain network architectures, we may describe D

as a direct function of the underlying network parameters
by evaluating the moments in Eq. (10) for the precision
structure specified by Eq. (7).

Under the Erdos-Renyi assumptions of Eq. (9) together
with the case of cell-type specific independent external
white noise [R̃x]aαα = σ 2

a and randomly distributed inverse-
gains with the first two moments parameterized as E[1/

Ga
αα] = ga and V[1/Ga

αα] = ua , we derive the required
quantities for D in Supplemental Section 3, giving

DER
ab (m) = signal(DER

ab (m))
√

noise(DER
ab (m))

(11)

where

signal(DER
ab (m)) = 1

σ 2
a

jabga + 1

σ 2
b

jbagbδm,2

and

noise(DER
ab (m)) = 1

σ 4
a

(vabua + j2
abua + vabg

2
a)

+ 1

σ 4
b

(vbaub + j2
baub + vbag

2
b)δm,2

+
(

2 − 4

N

) ∑

c=e,i

qc

σ 4
c

pcapcb

[
(vca+j2

ca)

× (vcb + j2
cb) − pcapcbj

2
caj

2
cb

]

Here, δm,n is the Kronecker delta. Some studies have
numerically explored how the AUROC changes as functions
of the parameter space: (Kadirvelu et al. 2017) showed how
AUROC decreases for larger network sizes and Pernice and
Rotter (2013) showed that it tends to increase for sparser
networks. A direct analysis of Eq. (11) confirms these
qualitative features and uncovers several dependencies of
discriminability on other parameters, which we now review.

AUROC is monotone decreasing in N . The dependence
of noise(DER

ab (m)) on network size, N , as well as the inde-
pendence of signal(DER

ab (m)) on N implies that discrim-
inability will always be larger for smaller networks. One
interpretation is that smaller network size in conjunction
with the high sparsity levels (p � 1) leads to fewer actual
realizations of post-synaptic targets in the network, which
forms the major component to the confounding variance
across the precision distributions. For real neural networks
however, N is likely to be quite large and so we will focus

on the thermodynamic limit (N → ∞) of Eq. (11), which
is accurate for even moderately large N .

AUROC is monotone decreasing in the variance of
synaptic weights. The dependence of noise(DER

ab (m)) on
synaptic weight variance, vab, as well as the independence
of signal(DER

ab (m)) on vab implies that increased variance
of synaptic weights reduces discriminability. This is a very
straightforward result pertaining to the prevalent modeling
practice of having randomly distributed synaptic weights,
with (Poli et al. 2016; Lütcke et al. 2013; Pernice and Rotter
2013) being among the few studies that utilize fixed (zero
variance) synaptic strengths.

AUROC exhibits nontrivial dependence on the mean of
synaptic weights. For non-random synaptic weights, the
discriminability is monotone decreasing in jab, implying
that weaker synaptic strengths lead to better inference.
Intuitively, this is due to the fact that as jab → 0, the signal
between the connected and null distributions goes to zero
at a slower rate than the noise. The situation becomes more
complicated when synaptic weights are variable (vab > 0),
where discriminability now achieves a maximum at some
particular value of jab determined by the other parameters
of the network (see Supplemental Section 4.1) and vanishes
as jab → 0 or ∞. Thus, variability of synaptic weights
changes the qualitative dependence of discriminability on
the mean synaptic weight, and in the presence of synaptic
variability, there exists some level of synaptic strength ideal
for inference.

AUROC depends on neuron type. There are several items
to note with respect to differences in discriminability over
multiple neuron types. For even populations, that is when
a = b, bidirectional connections will always be easier to
distinguish than unidirectional connections from uncon-
nected neurons (a very visible property in Fig. 2a-c). The
opposite holds for the odd populations a �= b where bidi-
rectional connections induce a “cancellation” at the level of
the signals, due to the fact that jie > 0 and jei < 0.

AUROC exhibits nontrivial dependence on network
sparsity. It has been shown numerically (Pernice and Rotter
2013) and follows from analysis of Eq. (11) that the AUROC
→ 1 as p → 0. More interesting behavior emerges for
intermediate levels of sparsity, tending to dense networks.
Supplemental Section 4.2 provides the analysis which leads
to the following results. Under the reparameterized form
of Eq. (11), the equation will have a minimum somewhere

within the interval p ∈
[
1/

√
2, 1

]
so long as the relative

magnitude of synaptic variance is sufficiently weaker
than the mean synaptic strengths. For settings involving
larger variances, the discriminability will become monotone
decreasing for denser levels of connectivity.

From these qualitative properties, or directly from
Eq. (11), we may use our a priori knowledge to generate
a random network that gives any pre-specified AUROC
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level. This makes it difficult to compare the effectiveness
of various classification methods when each is taken over a
different set of parameters. We cannot, for instance, directly
compare and contrast the results in Kadirvelu et al. (2017)
and Pernice and Rotter (2013) as they possess different sets
of network parameters. Furthermore, all observed AUROC’s
from all purely in silico studies are a result of choices of
numerous parameter values. This raises the concern that
each individual method or measure may perform better or
worse within different regions of the parameter space.

4 The effects of network structure
on inference of connectivity

The Erdos-Renyi assumption of the previous section greatly
simplifies the analysis, but real neural networks possess prop-
erties directly opposed to the strong assumptions of that
model (Song et al. 2005). To account for some of these
descrepencies, we will extend the analysis to frameworks that
account for two cases: when there are correlations between
the average strength and the out-degree of a neuron, and
when the in- or out-degrees follow a heavy-tailed distribu-
tion. The results show that inference is made more difficult
by including these more biophysically realistic features.

So far, we have only considered networks with a simple
block Erdos-Renyi connectivity structure. We now consider
two additional network models which incorporate more
realistic features of neural networks. The first is the copu-
lated Erdos-Renyi model (CER), motivated by some exper-
imental results that suggest correlations between synaptic
strength and connection probabilities (Jiang et al. 2016) and
defined by

Jab
αβ | ηab

β ∼ fJ (ηab
β ) �ab

αβ | dβ ∼ bern

(
dβ

N

)

(ηab
β , dβ) ∼ c(Fη(η

ab
β ), Fd(dβ))fη(η

ab
β )fd(dβ)

which obtains specifiable correlation levels ρ between
average synaptic strengths and out-degrees for some some
collection of arbitrary marginal densities f with cumulative
distributions F bound together by some specified copula
density c. For this model we do require that connection
probabilities be homogeneous across the network (pab = p)
however the only other requirements we place on the general
case involve the moment matching or parameterization of

E[Jab
αβ ] = jab E[dβ ] = Np

V[Jab
αβ ] = vab V[dβ ] = Np(1 − p)

cor(ηab
β , dβ) = ρ

to induce consistent first and second order statistics with the
simpler Erdos-Renyi model considered before. Though this
general model could potentially apply to any dependence

structure, for the purposes of our analysis we will assume
Gaussian copulae and marginals for ease of analysis.

The previous discriminability analysis may be repeated
for this model, revealing the following modification to
Eq. (11)

DCER
ab (m) = signal(DER

ab (m))
√

noise(DER
ab (m)) + ∑

c=e,i

fc(ρ)
(12)

where the signal and noise are the same as those in
Eq. (11). The form of the sub-population dependent
function fc(ρ) in terms of the copulated correlation ρ is
derived in Supplemental Section 3.1, and is rather large
and complicated but is positive for our parameters and
thus acts as an additional decrement to discriminability.
Hence, correlations between neurons’ out-degrees and their
synaptic weights can make accurate inference of synaptic
connectivity more difficult. This point is demonstrated
numerically in Fig. 3 (compare red to blue).

Yet another source of potential additional variability
comes from the assumed form of the degree distribution,
which in the Erdos-Renyi case is binomial. An existing gen-
eralization of Erdos-Renyi connectivity to allow specifiable
heterogeneous in- or out-degree (HDin/out) distributions is
used, most notably to include a power law in the form of a
generalized Pareto distribution (Pyle and Rosenbaum 2016)

Jab
αβ ∼ N (jab, vab) �ab

αβ | dβ ∼ bern

(
dβ

Nb

)

dβ ∼ trGP(μ, ξ, σ ; N)

where trGP(· · · ; N) denotes the Generalized Pareto distri-
bution truncated at a maximum value equal to the number of
neurons in the network. We will always hold μ and ξ fixed
then numerically estimate the value of σ which induces a
mean network density equivalent to the ER model (Np).
Note that without truncation this value would be σ = (Np−
μ)(1−ξ), but the truncation shifts it in a non-linear fashion.

Extending the discriminability analysis to this model is
only possible for Pareto distributions of in-degrees as the
out-degree model does not admit a Gaussian central limit as
disccused in Appendix. The in-degree case yields

D
HDin
ab (m) = signal(DER

ab (m))
√

noise(DER
ab (m)) + ∑

c=e,i

hc(ξ)
(13)

where hc(ξ) is the positive hyperparameter function from
the Pareto variability. As with Eq. (12), the additional terms
are positive and thus reduce discriminability. Hence, Pareto-
distributed in-degrees can make inference of synaptic con-
nectivity more difficult, as compared to an Erdos-Renyi
model. This point is demonstrated numerically in Fig. 3
(compare yellow to blue). While our analysis does not
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Fig. 3 Mean discriminability for ten randomly generated precision structures of N = 2000 neurons over the four network types, partitioned over
all subgroups. The slight increase in the bidirectional cross-population (e ↔ i) for HDout is due primarily to the non-Gaussian nature of the
distribution

extend naturally to Pareto-distributed out-degrees, a numer-
ical comparison of this case shows reduced discriminability
Fig. 3 (compare purple to blue).

In conclusion, network structure can affect discriminabil-
ity and, specifically, different deviations of connectivity
statistics from a simple ER structure can make the inference
of connections more difficult. This is an important conclu-
sion because local cortical circuits can deviate substantially
from an ER structure (Song et al. 2005).

5 Feedforward synaptic input
from unrecorded neurons canmake
inferencemore difficult

Another simplification often taken in many studies, and so
far here as well, is the assumption that external input to the
recorded network is uncorrelated (� and � diagonal). Local
cortical circuits receive input from other cortical layers and
cortical areas, and this input is likely to be correlated due
to overlapping synaptic projections and due to correlations
between the spiking activity in these upstream networks.
Though the discriminability of these systems is no longer
fully analytically tractable, we are still able to introduce
some qualitative features which can impact the numerically
estimated AUROC. We also introduce some additional
regimes for the precision and show how sensitive the the
resulting inference is to the parameters governing the non-
independent external input variability.

When external input is correlated, � is no longer
diagonal and we can expand Eq. (7) on an element-wise
basis to obtain

Pab
αβ = �a

ααW
ab
αβ + �b

ββW
ba
βα

+
N∑

γ=1
γ �=α,β

�ac
αγW

cb
γβ +

N∑

γ=1
γ �=α,β

Wcb
γβ�ac

αγ

−�ab
αβ −

N∑

γ1,γ2=1
γ1,γ2 �=α,β

Wc1a
γ1α

�c1c2
γ1γ2

Wc2b
γ2β

. (14)

The first two terms in this sum represent precision
inherited from direct connections, which are modulated
by the external input precision, �. The subsequent terms
represent precision inherited from common input, which is
modulated by connection strength. This expansion reveals
that while there remains a linear relationship between
the measure and bidirectional connectivity, it is now
additionally modulated by the diagonal parts of the external
input covariance. The term which had previously taken
the role of shared post-synaptic targets now also receives
additional variability from the sources arising from shared
pre-synaptic feedforward targets.

We model correlated external input as an external
population of Nx unrecorded neurons making random
synaptic projections onto the recorded network (i.e., the
external population is not included in the precision matrix).
When correlated external input is present, we will enforce
the random structure of the form

�corr = Wx〈sx, sx〉WT
x . (15)

This structure models a population of Nx external spike
trains with the Nx × Nx cross-spectral matrix, 〈sx, sx〉, that
sends feedforward input to the recurrent network through
a random N × Nx feedforward connection matrix K̄x ,
which is normalized by gains to obtain Wx = ḠK̄x (Baker
et al. 2019).

We also account for an independent noise current mod-
eling ion channel noise and other sources of independent
noise in neurons. Thus a model for the total external covari-
ance would be

� = �corr + �ind (16)

where �ind is a diagonal matrix representing the variance
of this additional source of independent white noise input
to the system. Since �ind is full rank, we may now recover
invertibility of � even when �corr has eigenvalues of zero,
which is the case whenever Nx < N . This model can
be re-expressed by way singular value decomposition of
�corr = UDV for some diagonal D which allows the

J Comput Neurosci (2020) 48:123–147134



Woodbury matrix identity to yield a linear combination of
the independent and additionally modified precision values

P = −(I − WT)�(I − W)

= (I − WT)�mod(I − W)

−(I − WT)�ind(I − W)

= Pind − Pmod (17)

where �mod = �−1
indU(D−1 + V�−1

indU)−1V�−1
ind and �ind =

�−1
ind. In some sense then, the information regarding network

structure inherent to Pind will remain present to some degree
in the total P with Pmod either adding extra information
about connectivity or corrupting the information from Pind

with additional noise. The first case is what is observed
in the first combination case of Fig. 4 (compare red
to blue). Without the regularizing independent source
of external noise, discriminability is markedly decreased
Fig. 4 (compare purple to others). This amplification is not
ubiquitous over the parameter space, as evidenced by Fig. 4
(compare yellow to red) which causes a decrease relative to
the purely independent case yet is still increased from the
case of purely correlated external noise.

To understand how discriminability can be reduced by
including more realistic parameters in the external network,
we steadily examine each compounding source of variabil-
ity beginning with the simplest. Until otherwise specified,
we will begin by assuming that 〈sx, sx〉 is diagonal in
Eq. (15), implying independent external spiking processes.

Random Sparsity. Holding synaptic strengths constant
and homogeneous, we will grant a random Erdos-Renyi
style form of sparsity onto the feedforward projection
matrix K̄x . This causes additional variability since the
elements of � are now random dependent on the projection
structure.

Random Feedforward Synaptic Strengths. Similar to how
variability in the synaptic strengths for the recurrent layer
decreased discriminability, so too may the feedforward
synapses possess inherent variability in their strengths. This
will necessarily induce a greater variability in the values
of �.

Correlated Spiking. We may further extend the theory to
the case of correlated spiking in the external population by
allowing 〈sx, sx〉 to have non-zero off-diagonal elements.
This means that the external input covariance now becomes
modulated by its own spiking statistics, separate from that
of the randomness inherent to the network. Additionally, the
scale of the external input correlations now becomes much
larger: � ∼ O(N) compared to the uncorrelated � ∼ O(1)

case when 〈sx, sx〉 is diagonal (Renart et al. 2010; Baker
et al. 2019).

In conclusion, the relation between structure and function
in the presence of latent input can depend very sensitively
on both the specific model and the parameters of the
unobserved network. Without any independent source of
noise present in the model, the highly correlated external
activity can wash out the majority of direct synaptic
interactions in the recurrent network. If there is a source
of independent variability for each neuron, this can help to
restore and even amplify the discriminability in some cases.

6 Accounting for neuron distance
or tuning differences can improve
inference of connectivity

Connection probability in local cortical networks can
depend on the physical distance between neurons or on
their distance in tuning space, i.e., their tuning similarity.
For data obtained by imaging methods, the lateral distance
between neurons can be estimated directly. In multi-
electrode array recordings, distance can be approximated
by the distance between electrodes on which units were
recorded (Rosenbaum et al. 2017; Smith and Kohn 2008).
Distance in tuning space can be estimated by comparing
tuning curves of recorded neurons (Kohn 2005). For
example, orientation tuning difference in the primary visual
cortex can be defined as the distance between neurons’
preferred orientation. These distances provide an additional
type of information which can be used in conjunction
with precision to improve inference of connectivity. Some
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Fig. 4 Mean discriminability across ten randomly generated net-
works with four feedforward connectivity types: independent (blue),
a combination of rank-one and independent external input (red), a
second combination of low-rank and independent input of different

parameterization (yellow, see Appendix for values), and exclusive full-
rank external input corresponding to the correlated state (purple). The
same recurrent networks were used across all cases
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intuition for this is given by an example where a distant
pair of neurons is unlikely to be connected, even if their
precision value is large. We next extend our theory to
account for this extra source of information.

There are many variations on network models of spatial
dependence. We consider a network in which each neuron
is randomly assigned a preferred orientation, θ , and
connection probability (but not synaptic strength) depends
on the difference between neurons’ preferred orientations.
Specifically,

Jab
αβ ∼ N (jab, vab) �ab

αβ | θa
α , θb

β ∼ bern(G(θa
α , θb

β ; ςab))

θa
α , θb

β ∼ U

(
0,

1

2

)

G(θ1, θ2; ς) = pab

ςerf( 1
2ς

)
√

π
e
− d(θ1,θ2)2

ς2

d(θ1, θ2) = max {|θ1 − θ2|, 1 − |θ1 − θ2|}

where orientations in radial units (θ ∈ [0, π ] rad) have
been rescaled to arbitrary units on the interval [0, 1

2 ] and
the “wrapped” nature of the space has been maintained
by way of the distance function d . The parameter ςab

defines the widths of the projections within or between
the sub-populations a and b, i.e. the likelihood that more
dissimilarly tuned neurons connect. Note that the model
has unconditional sparsity levels equivalent to the standard
Erdos-Renyi model. This network structure can be extended
to two or more dimensions to model distance in physical
space, yielding similar overall dependence of correlations
on distance as well as replication of more realistic
phyisiological connetivity properties found in specific areas
of cortex (Rosenbaum et al. 2017).

If we were to use distance alone to infer connectivity,
it would give lower-quality inference for broader spatial
widths (Fig. 5d), an intuitive result since very large spatial
widths begin to approximate an Erdos-Renyi network in
that all connections are formed with near-equal probabilities
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Fig. 5 Using the knowledge of pairwise distance within spatial net-
works improves inference. (a-c) Two-dimensional heatmaps of the
KDE of each block of a randomly generated precision structure
from the spatial network type, all with unlabeled connectivity in the
order: (a) excitatory, (b) inhibitory, (c) mixed. (d) AUROC for the
e → e sub-population, based only on the marginal metric of dis-
tance and shown as a function of the spatial width. (e-g,i-�) Heatmaps
of the difference between the two-dimensional KDEs conditional
on connection type for each subgroup assigned as follows: (e) e → e,

(f) i → i, (g) i → e, (i) e ↔ e, (j) i ↔ i, (k) e → i, (�)
e ↔ i. Dashed red lines denote a linear classifier corresponding to
the ROC curve in (h), with threshold fixed at the point where the
sum of the number of true and false positives (i.e., assigned con-
nections) equals the total number of condition positive (i.e., actual
number of connections in the network). (h) Optimal ROC curves for
each subgroup over the joint space. AUROCs in (h) are reported
in Table 1. Colors are the same as in Fig. 2. For all networks, we
chose ςab = 0.2
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and thus the distance between pairs becomes a meaningless
quantity. For certain network parameters, connectivity in
each subgroup may be better inferred by one marginal
measure or the other (distance or precision; Table 1), and
there seems to be no simple way to decide a priori which
metric will necessarily be better for an arbitrary choice
of hyperparameters. But limiting ourselves to pairwise
choice between two one-dimensional measures misses the
larger implication that we are now able to classify based
on the joint space of the dual measures of precision
and distance seen in Fig. 5a-c,e-g,i-l. This represents
our first step away from single-thresholding of measures
towards the classification of connectivity by way of cluster
association or linear separability in a higher-dimensional
space consisting of multiple measures. This is similar to
the approach used by Chambers et al. (2017) to improve
classification by way of an ensemble of many functional
measures.

In analyzing the use of precision and distance as
dual measures for classification, we will examine the
parameterized family of ROC curves induced by classifiers
based on a linear combination of the two measures. That is,
we define a threshold method analogous to Maswadeh and
Snyder (2012)

tan(ω)d(θα, θβ) + Pab
αβ ≤ c

to classify connectivity, where c spans the entire classi-
fication space for each fixed angle ω ∈ [0, π ], thereby
generating ROC curves parameterized in terms of this angle.
This inequality can be interpreted as follows: Draw a line in
the joint space of distance and precision with slope tan(ω)

and intercept c (see dashed lines in Fig. 5). Pairs of neurons
with precision-distance values above this line are classified
as connected. It is useful to examine the dimensional reduc-
tion of the family of curves by way of the AUROC for each

Table 1 AUROC for each subgroup using each measure only in the
marginal sense

Subgroup Precision Distance Linear Radial

e → e 0.6022 0.8257 0.9601 0.8253

e ↔ e 0.5319 0.9131 0.9986 0.9129

i → i 0.9389 0.8228 0.9941 0.8602

i ↔ i 0.9983 0.9122 1 0.9572

e → i 0.6911 0.8261 0.9999 0.8241

i → e 0.9692 0.8249 0.9981 0.8310

e ↔ i 0.8155 0.9126 0.9494 0.9107

The greater of the two values is emboldened for visibility. The “Lin-
ear” column of values are the AUROC of the curves seen in Fig. 5h.
The “Radial” column of values are the AUROC of the curves seen in
Fig. 6h

slice as a function of the slope of the partitioning line; these
curves are displayed in Fig. 6a-g. They primarily reveal how,
for certain subgroups, the “optimal” classifier (i.e., the peak
of each curve) may be dangerously close to the worst lin-
ear classifier possible over the space (i.e., the minimum of
the curve). Some groups may also plateau in a more stable
fashion than others, implying robustness across sub-optimal
angles.

It should be noted that the marginal metrics represent
the perfectly vertical and horizontal slices of this space
and thus the family of curves further generalizes all
higher-dimensional linear classification methods, which can
include some unsupervised clustering methods such as
the k-means algorithm. Most notable from this approach
is that there exist several cases where the conditional
marginal distributions of neither precision nor distance are
themselves perfectly separable and yet their clusters in the
joint space are almost perfectly linearly separable.

While this result is encouraging towards the use of the
joint space for classification, it should be mentioned that
common unsupervised methods do not work very well due
to the non-linear and non-Guassian relationship between
precision and distance. Whilst supervised methods can
easily learn this relationship, these lack applicability to in
vivo data where ground truth, and indeed the true joint
relationship, remain unknown.

To alleviate the difficulty in choosing either a marginal
measure or the slope for a linear classifier, we further
introduce a basic heuristic which would be immediately
applicable to real data in which both precision and distance
are inferable. Our heuristic classifies connectivity (or anti-
connectivity) as the points which lie on the interior of a
circle centered at the peak of the unlabeled two-dimensional
kernel density estimate (KDE). More precisely, a pair of
neurons would be classified as connected if

∣∣∣
∣∣∣[d(θa

α , θb
β) Pab

αβ ] − [d0 P0]
∣∣∣
∣∣∣
2

≤ c

where || · ||2 is the Euclidean norm, and [d0, P0] is
the location of the peak (the argmax) of the empirical
KDE. Hence a pair of neurons is classified as connected
if their precision-distance value lies inside a circle of
radius c centered at the peak of the estimated joint
density of distance-precision values. This method is also
mathematically equivalent to directly thresholding the
likelihood of points transformed into a Gaussian/radial basis
with an identity covariance. But unlike the angular method,
this produces a single ROC curve without relying on the
choice of any other parameters (like ω from above), though
further improvement would undoubtedly be gained from
specifying or optimizing the covariance relation between
parameters within the Gaussian basis.
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Fig. 6 AUROC varies with respect to the angle of the projections. (a-g) AUROC as a function of the slope of a linear classifier over the joint space
of precision and distance from Fig. 5. (h) ROC curves for the radial heuristic. AUROCs for (h) are reported in Table 1

We assess this heuristic by varying the radius, c, of the
circle to span the classification space, generating the ROC
curves in Fig. 6h. As observed in Table 1, the AUROC
obtained from this heuristic is always less than the best
marginal measure, but always much better than the worst
one. It also tends to mimic distance as a measure in this
regard, being very similar in quality when distance is the
preferred measure. Thus the heuristic is convenient in that
it removes blind choice between marginal measures and the
arbitrary choice of a parameter like ω above, even though it
may sometimes be suboptimal.

Our conclusion for spatial networks is encouraging -
despite the increase in precision variability due to the spatial
configuration, the joint use with known distances greatly
improves the overall quality of inference and has direct
application to in vivo recordings.

7 Inferring connectivity from network
simulations

Up to this point in our study, we have only quantified the
quality of inference under an assumption that we have a
perfect estimate of the precision matrix. This will not be the
case for actual data generated from explicit dynamics, be it
in silico or in vivo. An account of the additional variability
from imperfect statistical estimation using inversion of the
covariance matrix is now given for Gaussian data reflecting
the structure of Eq. (8) using Erdos-Renyi networks
with independent external input. Our analysis will show
that in order to achieve near-optimal levels of inference
(near-optimal being relative to what the system itself
constrains the maximum theoretical AUROC to), very large
sample sizes are required, corresponding to experimental

recording lengths that may not always be feasible in
practice.

This analysis yields a total discriminability of

D
ER,P̂
ab (m) = signal(DER

ab (m))
√

noise(DER
ab (m)) + S2

ν

(18)

where ν is the number of samples used to estimate the
precision matrix, which is proportional to the duration of a
recording. The S2 term relates to the additional variability
from the statistical sampling, with an explicit form found
in Supplemental Section 6. As expected, this new form
indicates that inference on the estimate is always less
than the perfect case but increases monotonically with the
number of data points governed by the length of a recording
or simulation.

Note that as the number of samples, ν, tends to ∞,

D
ER,P̂
ab tends to the “optimal” discriminability DER

ab derived
under the assumption of a perfect estimate of P. This is
the value of discriminability discussed in previous sections
and represents the most one can recover about connectivity
from precision, but does not necessarily represent perfect
recovery of connectivity.

An interesting perspective is offered by solving the
full discriminability equations to obtain a direct relation
between the number of samples ν0 required to obtain a target
fraction, φ0, of optimal discriminability

φ0 ≡ D
ER,P̂
ab (m)

DER
ab (m)

ν0 ∝ φ2
0

1 − φ2
0

N (19)

which illustrates two important concepts: It grows linearly
with the number of neurons (N) and the nature of the
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rational function in φ0 necessitates disproportionately larger
values of ν0 (more samples) to achieve higher optimal
percentages.

This theory is explored first using simulations of an OU
process like the one defined in Eq. (1) whose parameters
are the same as the top row of Fig. 1. Estimates of inverse
sample covariance were obtained at regular intervals and
used to compute the convergence rates in Fig. 7a. The final
ROCs obtained are then displayed in Fig. 7b. Since the
network used in the OU simulations was the same as in the
majority of Fig. 2, the same nearly ideal ROC curves should
be observed as sample size tends to ∞. Thus all suboptimal
ROCs observed in Fig. 7b are the result of finite sampling
of the precision matrix. Further, the rate of convergence in
Fig. 7a is consistent with the rational expression in Eq. (19).
The rate of convergence for φ0 is also radically different
for each subgroup in Fig. 7a, a feature also explained
analytically by finding the constant of proportionality in
Eq. (19) as a function of the sampling variability S2,
derived in Supplemental Section 6. Of particular importance
then is the bulk of connectivity contained within the
excitatory population, which due to its relatively weak
synaptic proportions (see Appendix) produces very small

correlations, which in turn requires many more samples to
adequately estimate.

Yet another source of variability arises if, instead of
assuming a linear Gaussian model (OU process), we
consider a non-linear model such as that induced by a large
balanced network of adaptive exponential integrate-and-fire
(AdEx) neurons. This network is held in the aforementioned
correlated state by letting the external spike times tx be
correlated across pairs of feedforward projecting neurons,
giving O(1) mean spike train correlations in the recurrent
network (Baker et al. 2019). This scaling allows spike count
covariance to become much stronger than those produced
in the case of OU processes (Baker et al. 2019), leading to
more accurate estimation of precision and therefore better
recovery of connectivity (7c).

As we have now transitioned to a spiking model of
neuron activity, we must adjust our notion of covariance to
be taken over spike counts aggregated over time windows of
moderate size (∼ 250 ms). By aggregated spikes over time
windows larger than the decay of their autocorrelation, we
begin to approximate the zero-frequency structure of Eq. (6)
and the results implied by its inverse through the previous
sections.
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Fig. 7 The rate of convergence to the maximum obtainable AUROC
depends on neuron model. a Plot of mean φ0 versus number of sam-
ples (ν) for four networks of N = 500 neurons following an OU
rate process with independent noise. b The ROC curves of the final
point in time of the simulation. c Plot of the AUROC as a function
of time, normalized by the final endpoint, for a network of AdEx
spiking neurons in the correlated balance regime. d ROC curves of

the final point in time of the simulation. In both (a) and (c), the top
axis of equivalent time in rounded hours is shown for comparison to
ν, using an integrating time window of 250 ms. It should be noted
that the timescales for the OU process in (a) are subjective and may
not map directly to biophysical recordings; whereas the timescales of
the EIF in (c) are chosen to be realistic and time may be interpreted
directly
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However, the optimal AUROC in 7d is still hampered by
at least two new sources: i) the non-linear characteristics of
the model impart a certain deviation from the approximating
equations, and ii) even within the linear approximation, the
gains for each neuron (derivative of f -I curve) are no longer
fixed parameters – they become random variables following
a distribution with non-zero variance. While the variability
coming from the gains reduces inference, the mean value
may actually act to improve it beyond the simpler cases
previously considered. To exemplify, note the parameters of
the balanced network use identical synaptic proportions to
those in the OU process, but the magnitude of the average
synaptic strengths is nearly a hundred times stronger when
measured in consistent units. In the previous qualitative
analysis this would imply near-zero discriminability, yet
that considered only gain values fixed at unity. In the
AdEx simulation, the gains were estimated empirically by
a quadratic function fit to the f -I curve, similar to Ebsch
and Rosenbaum (2018). When compared in consistent units,
the corresponding synaptic strengths were found to be small
on such an order than returns the product W = ḠK̄ back
to a level we would expect reasonable discriminability. In
short, stronger recurrent synapses become modulated by
weaker gains, enabling a wider range of network parameters
to be viable in conveying structure via function as measured
by precision of spike count covariance over large time
windows.

In practice, we recognize that precision matrices are more
often estimated by way of far more rigorous regularization
techniques such as graphical-LASSO, shrinkage, or sparse-
latent (Yatsenko et al. 2015) methods to improve the quality
of estimation for small quantities of data by utilizing
the assumed sparsity of the matrix. Unfortunately, these
methods do not allow simple analytical properties such
as the variance of the estimator to be inferred and so
we use the general estimator here to establish an upper
bound for the sample size ν or, equivalently, the recording
length of T hours using the scale proportion T ≈ 7ν ×
10−5 using integrating time windows of 250 ms. It is
then assumed that proper use of regularization (i.e., ideal
choice of regularization strength) would offer a reduction
in this variance equating to smaller bounds on sample size
necessary to achieve target levels of inference.

In conclusion, accurate statistical estimation of precision
and the ensuing use of the measure for inference of
structural connectivity remains a very hard problem.
If a given neural region exhibits strong correlations
driven by external variability then it may be possible to
reach asymptotic levels of inference with relatively short
recording times, but the nonlinearities of that regime diverge
from the analytical theory developed in previous sections
and may lead to suboptimal inference within certain sub-
populations.

8Mean-field analysis of in vivo data suggests
exclusive sources of input for inhibitory
sub-populations

Following the analysis of inferring pairwise connectivity
from the precision matrix, we are left with the question of
what exactly can be inferred using in vivo data sampled at
low temporal resolution and at recording durations too short
for accurate estimation of the entire precision matrix. One
option left to us is to examine what can be inferred from the
mean-field statistics of the neuron cell type sub-populations,
i.e., from the cell-averaged values of each block in �. These
results will provide some interesting insight into the mean-
field structure of external projections onto an observed
recurrent layer.

A mean-field theory of correlated variability in balanced
networks shows that for large N (Renart et al. 2010;
Rosenbaum et al. 2017; Baker et al. 2019)

� ∝ K
−1Rx K

−T
(20)

where

� =
[

�ee �ei

�ie �ii

]

is the 2 × 2 matrix of cell-type averaged covariances with

�ab = avg
α∈a,β∈b

α �=β

�αβ

and similarly for the 2 × 2 mean-field external input
covariance matrix, Rx. The 2 × 2 mean-field connectivity
matrix is defined similarly with

Kab = jabpabqb

where qb = Nb/N is the proportion of neurons in
population b = e, i, and we remind that jab is the mean
synaptic strength of projections from b to a which occur at
a mean connection probability of pab. Importantly Eq. (20)
is independent of the gains that were present at the pairwise
level and implies then that

Rx ∝ K � K
T

. (21)

When a large number of cells are recorded from a short-
duration recording, � can be estimated more accurately
than the full matrix �. The mean-field connectivity, K,
still cannot be inferred without knowledge of Rx, which
is typically not known in experiments. However, the
connection probabilities, connection strengths, and sub-
population ratios that define Kab have been estimated from
intracellular recordings (Jiang et al. 2016). This allows us
to solve a reversed problem: Instead of inferring mean
connections, Kab, we can combine estimates of K from
intracellular recordings with estimates of � from multi-
cellular recordings in the same cortical area to obtain an
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approximate estimate of external input covariance, Rx, by
directly applying Eq. (21).

Specifically, we set qe = 0.8 and qi = 0.2
then used measurements of the maximal evoked post-
synaptic potential (units mV) from intracellular recordings
of connected pairs of Pyramidal and Basket Cells in L2/3 of
mouse primary visual cortex (Jiang et al. 2016) to constrain

J =
[

0.34 −0.48
1.6 −0.68

]

together with their corresponding estimates of connection
probabilities from Jiang et al. (2016)
[

pee pei

pie pii

]
=
[

0.018 0.352
0.186 0.468

]

Note that for any model with a single homogeneous
population of neurons providing external synaptic input to
the recurrent network, (including the previous AdEx spiking
network), the 2 × 2 matrix, Rx, of population-averaged
external input covariances is proportional to

Rx ∝ WxW
T
x

where Wx = [wex wix]T is the 2×1 mean-field feedforward
connectivity matrix defined similarly to W (Renart et al.
2010; Rosenbaum et al. 2017; Baker et al. 2019). As a
result, Rx is rank one (and therefore has determinant zero)
for any such model. Hence, the product of the off-diagonal
elements of Rx should be equal to the product of its diagonal
elements. We may therefore test the hypothesis that the
recorded network receives correlated external input from a
single homogeneous population of neurons by comparing
the product of the off-diagonal to the product of the diagonal
elements of the estimated matrix Rx.

We proceed to analyze a dataset of 11 recordings on 5
individual mice. In each recording session, between 163-
385 neurons were recorded via 2-photon calcium imaging
of mouse primary V1 cortex L2/3. Each recording consisted
of around 200 trials per presentation of 2 stimuli consisting
of lines oriented at either 0◦ or 90◦ angles. The fluorescence
traces from each trial were then deconvolved using the
fast non-negative deconvolution of Vogelstein et al. (2012).
For more details on experimental methods, please consult
Appendix. The covariance between neuron pairs at each
point in time was then calculated across trials for each
stimulus type, and subsequently averaged over time in
order to extract the noise, rather than stimulus, covariance.
Non-firing neurons were dropped from the covariance
estimation step. The mean-field was then taken over each
covariance matrix in each stimulus/experiment, using the
parvalbumin (PV) labeling to define the excitatory (PV-)
and inhibitory (PV+) cell types. We note that not all PV-
types are necessarily excitatory, as there are many types of
inhibitory interneurons in this region which are PV-, but the

sampling probability of these should be low enough to not
significantly affect our analysis.

These mean-field averages of the resulting noise covari-
ance matrices for each experiment are seen in Fig. 8c and are
subsequently passed through Eq. (21) using the previously
specified values to constrain the degrees of freedom. This
results in the values shown in Fig. 8d which do not appear
to obey a rank one property over all subjects. Treating each
point in Fig. 8e as a sample, we perform a simple hypothesis
of mean-equivalence using the Behrens-Fisher test to verify
this result. The null hypothesis that

E[(PV+/PV-)2] = E[(PV-/PV-)(PV+/PV+)]
is rejected with a p-value of 0.0143 and thus we cannot
claim that the mean-field external input covariance for
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Fig. 8 In vivo recordings indicate a deviation from an assumed model
of the external input. a Originally hypothesized model of external
input to the recurrent network, consisting of a single homogeneous
population. This is the structure used in previous EIF simulations. b
Alternate model to explain observed high-rank structure of in vivo
data, which uses two distinct external populations with one projecting
exclusively to inhibitory cell types. c Estimates of mean-field noise
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containing (PV-) subtypes over 12 total experiments (each a different
color), with standard error bars shown around each experimental
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with Eq. (21) and intracellular estimates of synaptic values. e Plot
of the product (PV-/PV-)(PV+/PV+) versus (PV+/PV-)2, where each
quantity is scaled by the arithmetic mean of the three values to
maintain visual perspective. Rank one matrices would have all values
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mouse V1 cortex L2/3 is rank-one. There are multiple
candidate models to explain the additional rank but one
of the simplest is the existence of exclusive input to the
PV+ sub-population illustrated in Fig. 8b, and first proposed
by Yatsenko et al. (2016).

There may be a question of how sensitive our conclusions
are if we consider the variability in estimating the mean
values for jab and pab. Thankfully, Jiang et al. (2016)
report standard deviations for the post-synaptic potentials
as well as the number of neuron pairs recorded for the
connection probabilities. Both of these can then be used
to construct a Monte Carlo approximation to the total
contributed variability in the final estimates of Rx . We find
that all perturbed versions of Fig. 8c-e do not qualitatively
change in any significant way, and indeed the distribution of
p-values for the previous statistical test is largely within a
range of less than 0.1 (Supplemental Figures 2–5).

9 Discussion

It remains an open question as to how our theory interacts
with subsampling (Brinkman et al. 2017; Paninski 2004;
Pillow et al. 2008), where external correlations are caused
not by correlated external spike trains but instead by latent
(unobserved) recurrent interactions. From an analytical
perspective, the term � which occurs in the inner part of
Eq. (6) would take a different form to incorporate network-
valued functions relating the observed and unobserved
parts, rather than simply being a parameter of the system.
While intuition indicates that recovery performance should
scale increasingly with the proportion of the recurrent
network observed, this has not been shown using our
functional measure nor our biophysical models. This would
be important to a future application of this research to in
vivo results, as it is uncommon to have techniques capable of
recording from an entire self-contained recurrent network.

There are many ways in which the theory we have
established could be improved by statistical methods. For
example, in estimating the sample precision we directly
inverted the covariance matrix, which is not a commonly
used method, but we chose it to glean analytical results
for the unconditional variance of the model. While this
ought to serve as a lower bound for more accurate methods
such as the graphical-LASSO family or neighborhood based
methods, it is unknown if there is an upper bound on how
well such numerical estimations could improve the quality
of inference.

A main implication of our results is that knowledge of
cell-types is extremely useful in untangling the full mixture
distribution. In this paper, we only distinguished primary
excitatory and inhibitory cell types in the two-population
model; real neural circuits contain a variety of neuron types

and subtypes with intricate connectivity properties (Jiang
et al. 2016; Pfeffer et al. 2013). A better model of a realistic
system would include multi-population network structure,
such as the type inferred by Stevenson et al. (2009) or
Gerhard et al. (2013).

We performed much of our analysis in the limit of large
network size assuming a 1/

√
N scaling of synaptic weights.

Asymptotically larger synaptic weights typically violate
stability conditions on the network dynamics at large N .
Some studies have considered sparsely or weakly coupled
networks (p ∼ O(1/N) or J ∼ O(1/N)). Our analysis
can be modified to these settings. In principle, inference
of synaptic connectivity from precision becomes perfect in
the limit of large network size under these scalings when
one has a perfect estimate of the precision matrix. However,
asymptotically weak coupling in this case implies that
asymptotically longer samples (as in Eq. (19)) are required
for accurate estimation of the precision matrix in this limit,
suggesting that inferring synaptic connectivity in weakly
coupled networks is difficult in practice.

Even aside from functional-effective measures and
ensembles thereof, there is also modern work showing that
introducing large targeted perturbations to nodes within
the network, and assigning connectivity based on observed
responses throughout system (Widloski et al. 2018). While
this has been shown to give good recovery for some in silico
regimes, it remains unknown how it depends on network
parameters similar to what we have examined. Another
aspect of these perturbational methods is the experimental
difficulty that would be required in application. While it
is possible to use intracellular stimulation in conjunction
with both calcium imaging and micro-electrode arrays,
the scalability of the perturbational methods would be
impractical for networks on the order of thousands of
neurons.

Another side topic of this paper is in regards to
sub-optimal thresholding methods in ROC generation.
Specifically, whenever the ROC curve dips below the
diagonal, there is indicated loss of information due to a
non-monotonic likelihood ratio between the two compared
distributions. The ideal method would then be to correct
the thresholding based on knowledge of this relationship,
seen in Supplementary Figure 1. Without this knowledge, a
simple way to enforce monotonicity is to take the absolute
value of the points being thresholded, much as we did in
Fig. 1h. Note however that doing so makes the underlying
mixture distributions non-Gaussian and so discriminability
analysis only serves as a lower bound on performance. Use
of such transformations in real data would ultimately be
a subjective choice, though possibly informed by in silico
results similar to this paper; nonetheless, it is difficult to
justify without making prior assumptions on the structure of
the real data.

J Comput Neurosci (2020) 48:123–147142



In addition to the radial heuristic we proposed for infer-
ring connectivity from precision and distance measure-
ments, the ROC curves of which are seen in Fig. 6h, there
are undoubtedly many other heuristics may consider either
alternate centerings or more complicated geometries such as
ellipses to account for the correlation within the measures
and these could certainly do better than ours. But allowing
more degrees of freedom to the model also increases its sub-
jectivity; we illustrate ours simply for the sake of example
to show how the transition into the higher-dimensional data
space may allow for more detailed thresholding heuristics
than exist in the univariate case.

Finally, some authors who perform in silico benchmark-
ing refrain from use of ROC curves and instead favor
precision recall (PR) curves, accuracy curves (ACC), or
their own custom metrics. It should be noted that PR curves
may only be reliably used under very sparse settings, and
even then may only compare the relative performance of dif-
ferent methods on an identical network. Notably, it is not
valid to vary parameters implicit to the model and examine
how a metric such as the area under the PR curve changes as
a result. Likewise, ACC curves are imbalanced to unequal
class sizes, and will show misleading recovery results in the
presence of high true negative to false positive ratio.
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Appendix

Experimental methods

All procedures were carried out in accordance with the
ethical guidelines of the National Institutes of Health and
were approved by the Institutional Animal Care and Use
Committee (IACUC) of Baylor College of Medicine.

The animals (n = 5 PV-Cre/Ai9 crosses on a C57Bl/6
background, labeled with the fluorescent marker tdTomato)
with an age range of p40 to p60 were initially anes-
thetized with Isoflurane (3%) and then anesthesia was main-
tained by either Isoflurane (2%) or a mixture of Fentanyl
(0.05 mg/kg), Midazolam (5 mg/kg), and Medetomidin (0.5
mg/kg) with anesthesia boosts consisting half of the ini-
tial dose every three hours. The body temperature of the
animal was maintained at 37C throughout the surgery using
a homeothermic blanket system (Harvard Instruments).
In some experiments we applied eye oil ointment (poly-
dimethylsiloxane) to prevent dehydration of the cornea.

Surgery and dye injections of the Oregon Green 488
BAPTA-1 AM (OGB1, Invitrogen) calcium indicator were
performed as previously described (Garaschuk et al. 2006).

We used stereotactic information to locate our recordings
to the primary visual cortex of the mouse (V1). In
some experiments we used intrinsic imaging to verify the
location of V1 (Kalatsky and Stryker 2003). We recorded
calcium traces using a custom built two-photon microscope
equipped with a Chameleon Ti-Sapphire laser (Coherent)
tuned at 800 nm and a 20x, 1.0 NA Olympus objective.
Scanning was controlled by a custom built acousto-optic
deflector system (AODs) (Cotton et al. 2013). The average
power out of the objective was kept less than 120mW.
Calcium activity was typically sampled at a mean of 260Hz
(min/max: 78-450 Hz). We recorded data from depths of
100-540 μm below the cortical surface.

The measured fluorescent traces were preprocessed
in order to reduce common mode noise related to
small cardiovascular movements (Cotton et al. 2013) and
the firing rates were estimated using by nonnegative
deconvolution (Vogelstein et al. 2012).

OU identity for normal K̄

For the OU system defined in Eq. (1), if KKT = KTK,
G = gI, and QQT = σ I we have

R(0) = σ 2g2

τ 2
r

0∫

−∞
exp

[
1

τr

(I − gK̄)s

]

×exp

[
1

τr

(I − gK̄)Ts

]
ds

= σ 2g2

τ 2
r

0∫

−∞
exp

[
1

τr

(2I − gK̄ − gK̄T)s

]
ds

= σ 2g2τr(2I − gK̄ − gK̄T)−1

⇒ K̄ + K̄T = 2

g
I − σ 2gτrR−1(0)

Relation between AUROC and discriminability
for normal distributions

It is well known that the area under an ROC curve may be
parameterized and solved to yield the identity

AUROC = P(X1 > X0)

for normally distributed scores in the positive and negative
classes X1 and X0, respectively. If these scores are normally
distributed then closure properties imply

P(X1 > X0) = P(X1 − X0 > 0) = P(Y > 0)

= 1 − P(Y ≤ 0) = 1 − FY (y)
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Y ∼ N (μ1 − μ0, σ
2
1 + σ 2

0 )

and so

AUROC = 1 − 1

2

⎡

⎢⎣1 + erf

⎛

⎜⎝− μ1 − μ0√
2
√

σ 2
1 + σ 2

0

⎞

⎟⎠

⎤

⎥⎦

and so by appropriately defining the discriminability D and
re-arranging we obtain

AUROC = 1

2
erfc

(
−|D|√

2

)

where the absolute value restricts the AUROC to
[

1
2 , 1

]

which corrects for anti-classifiers. The result is the bijective
mapping from D to AUROC, leading to the natural
invertibility between the two which is necessary for our
arguments.

Central limit of precision with independent external
input

Precision values from the case of independent external input
can be expressed element-wise as

Pab
αβ = Wab

αβ + Wba
βα −

N∑

γ=1

Wca
γ αW

cb
γβ

which in the thermodynamic limit of network size (N →
∞) leads the summation term to converge to the limiting
normal distribution, so long as all elements of W are
independent with finite variance. So long as we enforce
normal distributions on and zero-variance gains on the
synaptic strengths, and since the normal distribution is
closed under summation, elements of P will also be
normally distributed. All these assumptions hold under
the standard ER case as well as the CER case, whereby
correlations are specially constructed so that pairs of the
form Wca

γ αW
cb
γβ are independent across γ though not across

pairs of α, β. The only breakdown of the CLT independence
conditions occurs in the HDout case, as all such pairs are
now highly correlated across γ , giving an apparent power
law limiting distribution instead.

While the above requirements on J hold exactly only
if it is normally distributed, as long as � is Erdos-Renyi
this theory will still hold as a fair approximation since the
O(1) part of the precision distributions are determined by
the summation term with the direct strengths offering only a
O(1/

√
N) deviation. Even if synaptic weights are specified

from a one-sided distribution of finite variance, the induced
asymmetries against the limiting Gaussian will dissipate in
the large N limit. Any variance present in the gains will also
lead to small errors with an exact Gaussian, but these effects
will again decay for large N and so the discriminability

theory outlined in the paper should still hold as a good
approximation for the expected AUROC.

Simulation and figure parameters

For all simulations, we use an alternative parameterization
of synaptic strength which makes modulation easier to
control. We express the average synaptic weights as
[

jee jei

jie jii

]
= k1

[
ψee ψei

ψie ψii

]

where the synaptic proportions ψ are normalized by the
inhibitory component as ψab = jab/jii and the mean
synaptic magnitude k1 is then modulated while holding
the proportions fixed. Similarly, the synaptic variance is
parameterized as
[

vee vei

vie vii

]
= k2

[
ψ2

ee ψ2
ei

ψ2
ie ψ2

ii

]

where the magnitude of synaptic variance k2 is modulated.
For all figures and simulations, we use a version of the
synaptic proportions used in Pyle and Rosenbaum (2016)
that have been perturbed in order to give non-zero real part
to the eigenvalues. These proportions are
[

ψee ψei

ψie ψii

]
=
[

0.1 0.6
0.45 1

]

as well as the fixed synaptic ratios of qe = 0.8, qi = 0.2 and
the same fixed density of pab = p = 1.

In Fig. 1, we used σa = σ = 1, ga = g = 1, and ua =
u = 0 for both rows in order to simplify the interpretation.
For the top row we took k1 = 2.5, k2 = 6.25×10−5 and for
the bottom row, k1 = 12.5 and k2 = 1.25. The same exact
networks used in Fig. 1 are used in Fig. 2, though they are
partitioned according to the more informative mask.

In Fig. 3, all shared network parameters are identical to
Fig. 1, except k1 = 2.5, k2 = 1.25. The model specific
parameters are ρ = 0.2 for the CER model and μ = 5,
ξ = 0.25 for the HD models. As mentioned, σ for the HD
model is estimated numerically using the bisection method
to find the fixed point.

In Fig. 4, the same recurrent networks were used across
all cases. Shared recurrent parameters are consistent with
the top row of Fig. 1. Shared external input parameters
are pax = px = 0.1, jax = ψaxkx,1, vax = ψ2

axkx,2,
ψex = 1.333, ψix = 1. Individually modified parameters
are kx,1 = 0.2571, kx,2 = 0.6571, 〈sx, sx〉αα = rx =
10, 〈sx, sx〉αβ = c = 0.1 for α �= β in both the full-
rank correlated state and the correlated part of the first
combination. The first combination also had �ind = I for
the independent part. The second combination used kx,1 =
250, kx,2 = 0, rx = 10, c = 0, qx = 0.2, �ind = 10I.
Full-rank effects in the correlated case are induced by taking
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qx = 7 to give Nx = 14, 000 total external neurons,
making � invertible with high probability even without
regularization from the independent external source.

In Fig. 5, shared parameters are consistent with the top
row of Fig. 1 and used a spatial width of ςab = ς = 0.2.
The additional spatial variability inherent to these networks
accounts for the difference in AUROC using only precision
as a marginal metric between Fig. 2 and Table 1.

The membrane potential dynamics for the AdEx model
are

Cm

dV
dt

= −gL(V − EL) + gL�T e
V−VT

�T + T − w

τw

dw
dt

= a(V − EL) − w

subject to the rule that if a voltage exceeds the threshold
(Va

α(t) ≥ Vth) then it returns to reset (Va
α(t) → Vre), its

adaptation current is incremented (wa
α → w + b), and a

spike is recorded. The input terms stemming from recurrent
sources R and external sources X may be expressed as

T = Cm(X + R) + Q
dWt

dt

Ra
α =

∑

c=e,i

∑

γ∈c

Kac
αγ

∑

n

ηc(t − t
c,γ
n )

Xa
α =

∑

γ∈x

(Kx)
a
αγ

∑

n

ηx(t − t
x,γ
n )

where t
c,γ
n is the nth spike time of neuron γ in population

c = {e, i, x} and synaptic kinetics are modeled by the

filter ηc(t) = 1
τc

e
− t

τc �(t) where �(t) is the Heaviside step
function.

In Fig. 7, network parameters for the OU model are
identical to the top row of Fig. 1 and have independent noise
level σ = 0.1 and timescale τr = 1, discretized at the
level of dt = 0.1. Shared network parameters for the EIF
model are the same except for k1 = 250 and k2 = 0, as
well as the fact that the statistics of the gains are no longer
specifiable and are a consequence of the non-linearity of the
system. AdEx-specific parameters are as follows: Cm = 1,
gL = 0.0667, EL = −72, Vth = −50, Vre = −75, �T = 1,
VT = −55, τw = 150, τe = 8, τi = 4, τx = 10, a = 0, and
b = 0.1. External input followed: qx = 0.2, kx,1 = 250,
kx,2 = 0, and identical rx, c, ψ, px as from Fig. 4 purple.
The balanced network exhibited less than 20% relative error
to both the balanced rate approximation and the mean-field
covariance approximation from Baker et al. (2019).

All code pertaining to simulations and analysis may be
found at https://github.com/cb239/Inference-of-Synaptic-
Connectivity.
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