
1888 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 7, JULY 2020

C3SRAM: An In-Memory-Computing SRAM
Macro Based on Robust Capacitive Coupling

Computing Mechanism
Zhewei Jiang , Student Member, IEEE, Shihui Yin , Student Member, IEEE,

Jae-sun Seo, Senior Member, IEEE, and Mingoo Seok , Senior Member, IEEE

Abstract— This article presents C3SRAM, an in-memory-
computing SRAM macro. The macro is an SRAM module
with the circuits embedded in bitcells and peripherals to
perform hardware acceleration for neural networks with bina-
rized weights and activations. The macro utilizes analog-mixed-
signal (AMS) capacitive-coupling computing to evaluate the main
computations of binary neural networks, binary-multiply-and-
accumulate operations. Without the need to access the stored
weights by individual row, the macro asserts all its rows simul-
taneously and forms an analog voltage at the read bitline node
through capacitive voltage division. With one analog-to-digital
converter (ADC) per column, the macro realizes fully parallel
vector–matrix multiplication in a single cycle. The network type
that the macro supports and the computing mechanism it utilizes
are determined by the robustness and error tolerance necessary in
AMS computing. The C3SRAM macro is prototyped in a 65-nm
CMOS. It demonstrates an energy efficiency of 672 TOPS/W and
a speed of 1638 GOPS (20.2 TOPS/mm2), achieving 3975× better
energy–delay product than the conventional digital baseline per-
forming the same operation. The macro achieves 98.3% accuracy
for MNIST and 85.5% for CIFAR-10, which is among the best
in-memory computing works in terms of energy efficiency and
inference accuracy tradeoff.

Index Terms— Analog-mixed-signal (AMS) computing, capac-
itive coupling, in-memory computing (IMC), machine learning
accelerator, neural network, SRAM.

I. INTRODUCTION

AS DEEP convolutional neural networks (DCNNs)
continue to demonstrate improvements in inference accu-

racies [1]–[5], deep learning is shifting toward edge comput-
ing. This development has motivated works on low-resource
machine learning algorithms [6]–[13] and their accelerat-
ing hardware [14]–[18]. The most common operations in
DCNNs are multiply-and-accumulate (MAC), which domi-
nates power and delay. MAC operations have high regularity

Manuscript received December 5, 2019; revised March 3, 2020; accepted
April 29, 2020. Date of publication May 18, 2020; date of current version
June 29, 2020. This article was approved by Guest Editor Sylvain Clerc. This
work was supported in part by the Wei Family Private Foundation, in part
by the Catalyst Foundation, and in part by NSF under Grant 1919233 and
Grant 1652866. (Corresponding author: Mingoo Seok.)

Zhewei Jiang and Mingoo Seok are with the Department of Electrical
Engineering, Columbia University, New York, NY 10027 USA (e-mail:
ms4415@columbia.edu).

Shihui Yin and Jae-sun Seo are with the School of Electrical, Computer
and Energy Engineering, Arizona State University, Tempe, AZ 85287 USA.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2020.2992886

and parallelism and, therefore, are very suitable for hardware
acceleration. However, the amount of memory access severely
limits the energy efficiency in conventional digital accelerators
[15]–[19]. As a result, in-memory computing (IMC) has
become increasingly appealing to DCNN acceleration.

IMC is the design approach that performs highly- parallel
computation inside the memory block without explicit row-
by-row memory access. Recent IMC works [19]–[33] show
significant energy efficiency and throughput advantages over
conventional architectures. These benefits come at the cost
of accuracy degradation from analog-mixed-signal (AMS)
computing non-idealities. Hence, robust computing mecha-
nisms and error-tolerant algorithms are the IMC design’s main
considerations and challenges [34].

This article presents an IMC SRAM macro based on
capacitive-coupling computing (C3), hence named C3SRAM.
The prototyped macro is 256 × 64 in size and computes
64 256-input binary-MAC operation (bMAC) in parallel. The
macros can be used in a modular fashion to support the
networks of arbitrary size. The 65-nm prototype chip demon-
strates 671.5-TOPS/W energy efficiency and 1-638 GOPS
throughput, which is 3975× improvement in energy–delay
product (EDP) than digital baseline. It achieves 98.3% accu-
racy for the MNIST data set and 85.5% for the CIFAR-10
data set. This article is an extended version of [35], providing
further discussion on design exploration, analysis of the IMC
computing mechanism and sources of variability, and addi-
tional simulations and measurements.

II. IMC OVERVIEW AND RELATED WORKS

IMC refers to memory architectures that support computa-
tions that take place inside the memory fabric, thus avoiding
the energy-intensive memory wall [36]. IMC works are not
exclusively MAC accelerators. For instance, designs in [19]
and [28] and neural cache [29] support two-row logic opera-
tions. Some IMC works support machine learning algorithms
other than neural networks, such as Ada-boost [21] and
Random Forest [26]. In this section, we provide an overview
of IMC designs for neural network acceleration.

A. Multi-Bit Weights in IMC Designs

Conventionally, in a neural network, both its activations and
weights are multi-bit values. Since the physical topology of

0018-9200 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 09,2020 at 18:17:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7893-9208
https://orcid.org/0000-0001-7186-0946
https://orcid.org/0000-0002-9722-0979

JIANG et al.: C3SRAM: IN-MEMORY-COMPUTING SRAM MACRO 1889

memory bitcells is independent at the array level, multi-bit
weight representation in IMC is implemented at the circuit
level instead of at architecture level. The following IMC works
are designed to support multi-bit weight neural networks [31],
[37]–[39]. For example, the Twin-8T design in [31] stores
multi-bit weights in multiple SRAM cells, where these bitcells
are numerically related to each other through the transistor
width ratio in the adjacent columns.

Alternatively, there are IMC designs based on emerging
non-volatile memory technologies that can store multi-bit
weight in a single bitcell, such as phase-change memory
(PCM) [37], [38] and resistive RAM (RRAM) [39]. However,
these devices exhibit variability and nonlinearity limitations
[42], [43], and the technologies are not yet mature enough.

B. Binary Weights in IMC Design

One of the chief algorithmic advancements that address
the difficulty in multi-bit weight IMC design is the binary
weight network (BWN) [8], in which the network weights
are binarized, but the input and output activations can remain
multi-bits. Weight binarization relaxes the storage constraint
and makes storing weights straightforward.

A subset of BWNs called binary neural networks (BNN)
binarizes both weight and activation to +1 and −1 such that
multiplications can be represented by simple XNOR operations
[9]–[11]. While early BNNs are not very accurate, recent
advances [12] show that BNNs can approximate high MAC
precision via weight duplication akin to stochastic computing,
achieving comparable accuracy with multi-bit DCNN at lower
hardware cost. As a result, many IMC works [21], [22], [25],
[26], [30], [32], [33] are designed to support BWNs or BNNs.

C. Multi-Bit Activations in IMC Designs

Computing with multi-bit activations can be done in digital
or analog domains. Digital representation can be done through
multi-cycle operations, such as in a prior work Vesti [33]. The
core IMC macro XNOR-SRAM [30] used in Vesti supports
only binary/ternary activation. However, with digital partial
sum output available from XNOR-SRAM, the Vesti architecture
can accumulate the partial outputs in digital peripheral to arrive
at the desired multi-bit activation MAC. This is, of course, at
the cost of longer latency and higher energy dissipation.

For the analog representation of input activations, IMC
designs have to perform the digital-to-analog conversion
(DAC) before actual computing can take place. Several IMC
works have employed DAC techniques to preprocess the input
activations, expressing the analog value in voltage or current.

Using the DAC circuits with voltage output, the Twin-8T
IMC design [31] can represent up to four levels of input
activations with four distinct voltage levels on the wordlines.
XNOR-SRAM [33] can similarly support up to three voltage
levels to perform ternary MAC computation. Voltage-level-
based DACs generally have limited resolution.

Current-based DAC circuits have been employed in designs,
such as [21] and Conv-SRAM [22]. Using pulsewidth mod-
ulation (PWM), the input activation is first converted into a
pulse. Within the window of the generated pulse, a charging

current is then applied to a capacitive element. It has two main
design challenges: 1) the PWM needs to be linear and 2) the
current source needs to be constant. Both of these challenges
would require area/energy tradeoff.

D. Compute in Current/Charge Domain

Analog MAC can be broadly placed in two categories:
1) current domain computing based on resistive voltage
divider, discharging rate, and so on and 2) charge domain
computing based on charge sharing, capacitive voltage divider,
and so on.

XNOR-SRAM [30] bitcells would each turn on pull-up/pull-
down transistors according to activation input and stored
weights. These paths are applied to the same MAC bitline
(MBL), creating a resistive voltage divider. The non-linearity
of transistor resistance creates high gain in the desired transfer
function region. However, this comes at the cost of high
crowbar current and device variability. Zhang et al. [21] imple-
mented its MAC operation by (dis)charging the wordlines,
such as PWM-based DAC. However, the current source is
a simple transistor and thus non-linear. To compensate, the
design uses additional transistors to calibrate current in various
conditions.

Valavi et al. [26] used charge sharing to perform
bMAC. Each bitcell has an individual capacitor that is
charged/discharged based on a bit-multiplication result. The
capacitors are then tied together to share the charges, perform-
ing accumulation. Conv-SRAM [22] also uses charge sharing
to perform MAC, where the charges (one row at a time) are
placed on the bitline and shared row-wise. However, the multi-
bit activation is derived from PWM-based DAC, and thus, the
charges being shared are already the result of current-domain
computing.

The proposed C3SRAM macro uses capacitive coupling to
compute bMAC in the charge domain. The detailed description
of architecture and operational procedures is presented in
Section III.

III. ARCHITECTURE AND OPERATION

A. Memory Array Operation

We present the C3SRAM architecture and the operations
in detail. Fig. 1 shows the architecture of the proposed
macro. C3SRAM performs a fully parallel vector–matrix
multiplication of 256 binary inputs and 256 × 64 binary
weights. The macro consists of a 256 × 64 memory cell
array, SRAM peripherals for read/write operations, input acti-
vation decoder/driver, and per-column flash analog-to-digital
converters (ADCs).

Fig. 2 shows the 8T1C bitcell layout of the proposed design,
a circuit diagram showing two bitcells in a column, and
the table of XNOR operands. The bitcell is 80% larger than the
conventional 6T bitcell in the same logic design rule, due to the
two additional pass transistors and one capacitor constituting
27% of the bitcell area. The capacitor is implemented as
MOSCAP for high capacitive density. A MOMCAP covering
the area of a C3SRAM bitcell (MOMCAP can be placed

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 09,2020 at 18:17:15 UTC from IEEE Xplore. Restrictions apply.

1890 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 7, JULY 2020

Fig. 1. Architecture of C3SRAM IMC macro.

Fig. 2. C3SRAM bitcell design and in-cell bMAC operand table.

on top of transistors with no area overhead) has 80% lower
capacitance than CC (∼4 fF).

To perform binary dot product, the cap is
charged/discharged by MAC wordlines (MWL/MWLB)
via the pass transistors, which are gated by the stored weight
and its complement. Since the pass transistors are NFETs,
there would be a highly variable threshold voltage (Vt) drop
across T7/T8 if the MWLs and the memory core have the
same voltage source. To avoid the variability problem, we
implement T7/T8 with LVT devices and set a separate source
VDR to drive the MWLs, at 200 mV lower than VCORE (e.g.,
0.8-V VDR for 1-V VCORE). We ran Monte Carlo SPICE
simulations, including only CC , T7, and T8 to isolate the
variation of the pass transistors’ effect on capacitor charge.
As shown in Fig. 3 (histograms), the x-axis (note the different
scales) shows the voltage level at the VC node. Given the
200-mV margin, the variation of VC has the small sigma of
only 0.36 mV. T7/T8 decouple memory function and compute
function to avoid potential read and write disturb [21], [25].

Fig. 3. Threshold voltage variability effects on charged capacitor voltage.

Fig. 4. Capacitive coupling based in-memory computation of bMAC.

The bMAC operation of C3SRAM is shown in Fig. 4. There
are two steps in this operation; each is completed in a half
cycle duration. In step 1, each column’s MBL is pre-charged
via the footer TFT to VRST = 0.5 · VDR. VRST is set near
the voltage corresponding to bMAC output of 0 (nominally
0.4 V). This is done to minimize the voltage swing on the
MBL nodes since typical bMAC outputs in BNNs have a
narrow distribution near 0 value. In the same step, MWL and
MWLB of each row are likewise reset to VRST such that there
is no voltage potential on bitcell capacitors. At this step, the
capacitors are effectively arranged in parallel where both nodes
are reset to the same voltage, as shown in Fig. 4 (bottom left).

In step 2, the footer is turned off. The 256 input activations
(denoted as Ini) are applied to 256 MWLs/MWLBs in parallel.
For Ini = +1(−1), MWL is driven from VRST to VDR (VSS),
whereas MWLB is driven to VSS (VDR). For Ini = 0, both
MWL and MWLB remain at VRST without consuming dynamic
power. When the weight is +1 (−1), the voltage ramping via
T7 (T8) induces a displacement current through capacitor CC

(∼4 fF) in the bitcell, whose magnitude is

IC = CC · dVMWL(B)/dt . (1)

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 09,2020 at 18:17:15 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: C3SRAM: IN-MEMORY-COMPUTING SRAM MACRO 1891

Fig. 5. (a) MOSCAP capacitance at TT corner simulation shows variation
across temperature as well as the gate voltage. (b) MOSCAP capacitive voltage
divider transfer function at various temperatures.

The charge transferred from the bitcell to MBL is

QCi =
∫ t1

0
IC dt = 1

2
CC VDR (2)

where t1 is the time it takes VMWL to reach VDR. The shared
MBL voltage is set to

VMBL = CC VDR

256∑
1

(XNORi)/(256CC + Cp) (3)

where XNORi is the XNOR output of the i th bitcell and Cp is
the parasitic capacitance of MBL plus the input capacitance of
the ADC. At this step, each column can be seen as two sets of
parallelly connected capacitors, which are in turn connected
in series between VDR and VSS, forming a capacitive voltage
divider as shown in Fig. 4 (bottom right).

MOSCAP’s high capacitive density provides bMAC transfer
curve a wider full-scale range (FSR) than using the less
capacitively dense MOMCAP [26]. Given the same level of
MBL parasitics, the FSR loss from using MOMCAP would be
∼80% higher than using MOSCAP. MOSCAP capacitance is
dependent on temperature and gate voltage. Fig. 5(a) shows the
CC change over temperature and gate voltage. Fig. 5(b) shows
the simulated transfer function of a capacitive voltage divider
composed of CC . The good news is that the temperature-
related non-ideality of MOSCAP has small impact on the
transfer function stability. The voltage-related non-linearity
gives the transfer function a slight sigmoidal shape, which
in fact could give some benefit to ADC (negligibly small in
our design) because the slightly steeper slope in the region of
interest provides slightly higher margins for reference voltages.

B. ADC Operation

The bMAC output of each column is a pre-activation partial
sum. To digitize these values, C3SRAM includes an 11-level
flash ADC per column. Each ADC consists of ten double-
sampling-based self-calibrating single-ended comparators [see
Fig. 6(top)]. Each comparator consists of an offset-canceling
capacitor followed by an inverter chain, where the first inverter
acts as an amplifier.

Fig. 6. Operation of the double-sampling self-calibrating single-ended
comparator.

The ADC operation has two steps (see Fig. 6): during
bMAC computation (step 2), MBL connects to the comparator
input capacitor. The input and output of the first inverter
are closed, placing the inverter in the high-voltage gain
region. In step 3, the input node of the capacitor switches
to the reference voltage, and the negative feedback path
is turned off. The voltage differential between VMBL and
Vref then causes (dis)charging on the capacitor. The inverter
previously balanced at the trip point is driven high or low
according to the direction of the induced current. The gain-
stage inverter chain completes the amplification to digital
domain.

C. Signal Switching Order

In the aforementioned three-step procedure, relevant signal
transitions in steps 1 and 3 are decoupled in separate modules,
meaning that while the digital output is being evaluated by the
ADC, the memory array can begin computing the next batch
of bMACs. This allows a half-cycle pipeline where step 1
(Fig. 4) and step 3 (Fig. 6) operate concurrently.

The bMAC operation is timing sensitive. To minimize
analog non-idealities, concurrent signal switches described in
Sections III-A and III-B must follow a strict order, as shown in
Fig. 7. We implemented timing control circuitry with minimal
delay elements to guarantee the correctness of the signals’
order. The relevant transitions from steps 1 and 3 to step 2
follow this order.

1) The reference voltage must be disconnected from the
comparator input capacitor before MBL leaves reset,
and otherwise, the reference voltage source would inject
charge onto the MBL floating node.

2) The negative feedback on the inverter stage must turn
on before MBL is connected to the input capacitor, and

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 09,2020 at 18:17:15 UTC from IEEE Xplore. Restrictions apply.

1892 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 7, JULY 2020

Fig. 7. Signal transition order for reducing analog non-idealities.

otherwise, VMBL will be affected by the induced current
of inverter gates driven to the trip point.

3) MBL must be connected to the comparator input capac-
itor before MBL leaves reset, and otherwise, the charge
differential of reference voltage stored on the capacitor
will be injected into the floating MBL.

4) MWL cannot be driven until MBL is floating, and
otherwise, some coupling current would be discharged.

The relevant transitions from step 2 to steps 1 and 3 follow
this order.

1) MBL must disconnect from comparator input before
MWL drivers switch to reset voltage, and otherwise, the
input changes will induce current on the MBL.

2) Also, MBL needs to disconnect before MBL reset footer
turns on, and otherwise, VMBL stored on the input
capacitor would begin to reset as well.

3) Also, MBL needs to disconnect before the negative
feedback is turned off since the act of disconnection
can disturb the inverter input which is at the sensitive
trip point.

4) The negative feedback needs to switch OFF before refer-
ence voltage is connected to the comparator input, and
otherwise, the charge differential would be (dis)charged
via the feedback path.

IV. ALGORITHM-HARDWARE SPECIFICATION

In this section, we determine the design specification per-
taining to algorithmic support: activation precision and pre-
activation quantization levels.

A. Activation Bit Precision

Operating using the same IMC hardware, inference accuracy
loss of a BNN is found less than that of a BWN with multi-bit
activation [33]. One reason is that the analog representation
of multi-bit activation requires additional domain conversion
through DAC [31]. Another reason is that network models
trained at higher precision are more sensitive to AMS error.
As the study in [44] suggests, robustness is a benefit of weight
redundancy. In similarly accurate models, error in multi-bit
MAC is more severe than bMAC due to BNNs’ weight
duplication scheme.

We examine this issue by applying various levels of sto-
chastic error during the inference of the MNIST data set.

Fig. 8. MLP on the MNIST data set inference accuracy losses at various
levels of activation precisions.

Fig. 9. MNIST and CIFAR-10 inference accuracies increase as quantization
resolution of pre-activation partial sum (256 input) increases.

The network topology used in this examination is a binary-
weight multi-layer perceptron (MLP) consisting of three fully
connected (FC) hidden layers, each with 512 neurons. The
network is trained at various activation precisions from 1 to
4 bits. The trained MLPs are then mapped on the C3SRAM
for testing inference accuracy, each time with decreasing the
pre-activation resolution to simulate the increasing level of
stochastic noise. Here, we use the digital representation for
activations as in [33], i.e., activations are fed in a bit-serial
fashion and outputs are accumulated using digital adders. As
shown in Fig. 8, at the same level of stochastic error, networks
trained at higher precision degrade more. We conclude that for
IMC hardware running multi-bit activation BWN to achieve
comparable accuracy as BNN, the hardware may need more
resources to compensate for AMS errors and this could result
in inefficiencies. For this reason, the proposed C3SRAM
primarily supports BNN acceleration.

B. Partial Convolution Quantization Levels

In practical neural networks, a typical convolution filter is
too large to fit in a column of memory cells and, therefore,
would be split into several C3SRAM arrays. In such cases,
each array produces partial convolution results that are then
accumulated in digital peripheral to produce the final output.

For the 256-row C3SRAM, the full resolution of partial
convolution results is 8 bit. For an ADC to achieve this high
resolution, it would incur considerable area, power, and latency
overhead. The objective here is to use a lower resolution ADC
design that is still able to maintain the final accuracy.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 09,2020 at 18:17:15 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: C3SRAM: IN-MEMORY-COMPUTING SRAM MACRO 1893

Fig. 10. bMAC distribution of MLP for MNIST and quantization in limited
ADC range.

To find the appropriate ADC resolution that can maintain
inference accuracy, we examine the effect of quantization
on the MNIST and CIFAR-10 data sets. We use the same
MLP described in Section IV-A for the MNIST data set. For
CIFAR-10, we use a VGG-like convolutional BNN [9], with
six convolutional layers and three FC layers. For partial convo-
lution results in these network models, we apply several quan-
tization levels, successively reducing �Vref . Fig. 9 shows the
effect of quantization on the task accuracy. We find that in both
cases, the accuracies reach saturation at ∼30-mV �Vref that
corresponds to 5-bit resolution given the 640-mV FSR. This
is consistent with results in [22] where 5-bit ADC is used to
achieve high accuracy on the MNIST data set using LeNet-5.

To further reduce the cost of the ADC, the pre-activation
distribution can be exploited to reduce unnecessary hardware.
Partial convolutions are not uniformly distributed for the entire
range of the activation function input. Rather, they are usually
narrowly distributed around 0 that is the point of nonlinearity
in common BWN/BNN activation functions’ ReLU/binary
step. Fig. 10 (top) shows the MLP bMAC distribution. Since
the data are distributed in a small region of the FSR, the
ADC range can be confined to this region without accuracy
loss. Fig. 10 (bottom) shows an illustration of an ideal transfer
function and linear quantization levels in a confined range.
The x-axis is the bMAC output value; the y-axis is VMBL

corresponding to the bMAC output. In the voltage region
corresponding to bMAC value from −120 to +120, only 11
reference levels (�Vref = 30 mV) are needed to match ∼5-bit
ADC resolution.

V. MEASUREMENTS AND ANALYSES

The C3SRAM macro is implemented in a 65-nm CMOS.
Fig. 11 shows the micrograph of the test chip. The macro has
a capacity of 16 kb at the footprint of 0.081 mm2.

A. Energy and Throughput

The memory macro has 2-kB capacity. For bMAC computa-
tions, the macro operates at a maximum frequency of 50 MHz,

Fig. 11. Prototype chip micrograph.

Fig. 12. C3SRAM energy and delay comparison with XNOR-SRAM [30]
and digital ASIC with traditional SRAM and ALU.

limited by minimally sized footer discharging ADC input
capacitors. The macro computes 64 independent 256-input
bMACs per cycle. The throughput is 2•256•64/20 ns =
1638 GOPS. The compute density is thus 20.2 TOPS/mm2.
At the operating voltages of 1-V core supply (VCORE), 0.8-V
driver (VDR), and 0.6-V ADC (VADC), it consumes 49 pJ
excluding input–output data movement, reaching an energy
efficiency of 671.5 TOPS/W, a ∼3975× improvement in EDP
over the digital baseline formulated in [33], and ∼14× over
XNOR-SRAM (see Fig. 12). Fig. 13(a) shows the power break-
down measurements: 38.7% of the total power is consumed
by driving the MWL and bitcell capacitors, 22.0% by ADCs,
and 39.3% by all other digital peripherals, including MWL
decoder and partial sum accumulation.

To fully benefit from the speed and power improvement
of C3SRAM, striding and other dedicated input movement
circuits such as those in the implementation of Vesti [33] are
also needed to prevent the memory macros from stalling to
wait for the next input arrival. Otherwise, it would impose
significant overhead in activation data movement. Hence,
C3SRAM is better utilized in a stand-alone module than a
direct replacement of SRAM in conventional von Neumann
architecture.

Table I shows the comparison of recent IMC works for
neural network acceleration. C3SRAM achieves high energy
efficiency and throughput. Note that some designs support
higher activation precision.

B. Transfer Function

In this section, we measure and analyze the transfer func-
tion characteristics of C3SRAM under the same operating

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 09,2020 at 18:17:15 UTC from IEEE Xplore. Restrictions apply.

1894 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 7, JULY 2020

TABLE I

COMPARISON TO PRIOR IMC WORKS

Fig. 13. (a) Measured power consumption breakdown between the three
supplies powering bMAC compute (blue), partial sum accumulation (red),
and ADC (green). (b) Area breakdown of the C3SRAM module.

Fig. 14. Measured VMBL transfer curve shows a lower FSR from ideal
curve due to charge sharing with ADC input capacitors.

condition as in Section V-A. The transfer function is measured
according to the following steps. First, we set all weights to
zero and then apply known input pattern corresponding to a
target bMAC output, resulting in a determinate voltage output
on the MBL which we then measure. We set the off-chip flash
ADC reference voltages such that we observe the result of a
single comparator, i.e., set all but the first reference voltages
beyond the VDR range. Then, sweep the reference voltage of
the comparator to find the value at which the result flips.

Fig. 15. (a) ADC output offset due to comparator gain-stage mismatch.
(b) VMBL error variation measurement. (c) RMS error of the macro.

This trip point corresponds to the bMAC output. We repeat
these steps at each bMAC value to construct the transfer func-
tion. As shown in Fig. 14, the transfer function measurement
shows good linearity and stability, while the FSR is reduced
due to ADC input capacitors and MBL wire parasitics.

C. Variability Measurement

In this section, we characterize C3SRAM variabilities. The
box chart in Fig. 15(a) shows the various measurements

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 09,2020 at 18:17:15 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: C3SRAM: IN-MEMORY-COMPUTING SRAM MACRO 1895

Fig. 16. ADC power increases exponentially as ADC power supply increases;
the trip point variation increases linearly.

of the ADC comparator offset. The data include the offset
statistics of 10 chips, each with 64 columns and 10 com-
parators per column. The variation is resultant from charge
leakage, input/reference signal noise, and device mismatch.
Monte Carlo simulations at TT corner show ∼5-mV sigma
in comparator variations, consistent with measurements. The
charge leakage that most significantly affects comparator out-
put is during the capacitor input switch. As described in
Section III-C, if the level of leakage or noise is greater than the
delta between VMBL and reference during the input capacitor
switch, the comparator output can be corrupted. After the input
stage, the device mismatch dominates the variation. It causes
trip point differential in the inverter chains. Fig. 16 shows
that the lower the operating voltage is, the trip point variation
becomes less prominent. Since the post-input offset voltage is
dominated by the trip point delta between the first and second
inverters divided by the gain of the first, we operate the ADC
at a lower voltage of 0.6V and use the long-channel device
for the first inverter to achieve high gain. This also helps with
power reduction, as shown in Fig. 16.

Fig. 15(b) shows the measured variation of bMAC oper-
ations. The main sources of variation are CC mismatch.
The mismatch variation of a single CC has σC/CC of 4.2%
according to the Monte Carlo simulation. We determine the
deviation on the transfer function using the propagation of
uncertainty rule

σMBL = n

256

√
n ·σ 2

C

n2 ·C2
C

+ 256·σ 2
C

2562·C2
C

= n·σ C

256·CC

√
1

n
+ 1

256
. (4)

The variation of VMBL from the confined region of −120
to +120 has a sigma ranging from deviation is ∼0.91 to
∼1.77 mV, based on the ∼600-mV FSR from Fig. 14, con-
sistent with Fig. 15(b) (which also includes intra-chip ADC
offset variation).

Fig. 15(c) shows the rms error of the macro-performing
bMAC operations. As pre-activation varies greatly in dis-
tribution variance, there is no universal input set that
can characterize C3SRAM for neural networks in general.
A uniform input set is used for the measurement. This
result includes all non-idealities previously described, and
the additional errors from unary-to-binary conversion, which
has no error-correction feature for low area overhead. Thus,
simple bubble error can cause deviations at the final output
larger than the signal variation level. This error can be

Fig. 17. Mapping convolutional neural networks to C3SRAM-based IMC.

mitigated with additional error correction circuitry in future
works.

D. Evaluation on Neural Network Tasks

In our evaluation for BNN accuracy, C3SRAM is responsi-
ble for the computations of convolution layers and FC layers,
and all other operations of the BNN are performed in digital
simulation. To evaluate the accuracy performance of C3SRAM
for deep neural networks, C3SRAM computes all bMAC
operations from the first hidden layer. A weight-stationary
mapping scheme optimized for data reuse is adapted in our
experiments. The mapping of FC layer weights in C3SRAM
is as such; weights of a layer are organized column-wise
and inputs/activations are applied at each row. On the other
hand, convolutional layer mapping is an extension of the
FC layer mapping. Mapping a 3 × 3 × 256 filter from a
convolution layer is the same as mapping nine 256-neuron
FC layer weights. The channels are organized in column
orientation, and each channel’s kernel is distributed across
multiple macros. The partial sums produced by ADCs are
accumulated to generate the pre-activation for each neuron.
The mapping of a representative 256-channel 3 × 3 kernel
filters is shown in Fig. 17.

As detailed in Table II, we evaluated the inference accuracy
of C3SRAM for MNIST and CIFAR-10 data sets. Max pooling
and batch normalization are performed in the digital domain
with the bit precisions of 12 and 10, respectively. The accuracy
for MNIST is 98.3%, against the digital baseline result of
98.7%. This accuracy result was obtained from direct measure-
ments of the entire network. For CIFAR-10, due to test chips’
limited throughput, the accuracy is evaluated from simulations
based on the measured error probability. We injected AMS
and quantization errors in the inference of CIFAR-10 test
images. At 20 runs with random seeds, the average accuracy
is at 85.5%, whereas the digital baseline accuracy is 88.6%.
This accuracy can be improved with a better trained model,
as research works [12], [44] have found that BNN conversion

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 09,2020 at 18:17:15 UTC from IEEE Xplore. Restrictions apply.

1896 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 7, JULY 2020

TABLE II

ACCURACY COMPARISON

with wider topology improves both robustness and accuracy.
As [12] demonstrates the algorithmic advances of BNNs, the
scalable mapping of C3SRAM could be used as computational
primitive for larger BNNs for more complex machine learning
tasks.

VI. CONCLUSION

The IMC concept is developed to meet the challenge of
memory bottleneck in neural network inference in conven-
tional hardware. It can achieve high parallelism and throughput
via memory cell density and achieves low power from analog
computing and substantial reduction in data access. IMC
faces the design challenges of its own in the form of analog
computing robustness issues, from process variation to system
noise. Design decisions, such as error-tolerant algorithms
and low-variation hardware, are important considerations. In
this article, we present C3SRAM, an IMC macro for neural
network acceleration. It supports noise-resistant BNNs, utilizes
low variability components, and is scalable to map large neural
networks in a modular fashion. Using a robust capacitive
coupling mechanism, the architecture can reach comparable
accuracy with the algorithmic baseline. The 16-kb prototype
in 65 nm achieves the energy efficiency of 671.5 TOPS/W and
the throughput of 1638 GOPS for bMAC operations.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2012, pp. 1097–1105.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proc. Int. Conf. Learn. Repre-
sent. (ICLR), 2015, pp. 1–14.

[3] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[4] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. 32nd
Int. Conf. Mach. Learn. (ICML), 2015, pp. 448–456.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[6] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio, “Quantized neural networks: Training neural networks
with low precision weights and activations,” 2016, arXiv:1609.07061.
[Online]. Available: http://arxiv.org/abs/1609.07061

[7] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proc. 32nd Int. Conf.
Mach. Learn. (ICML), 2015, pp. 1737–1746.

[8] M. Courbariaux, Y. Bengio, and J. David, “Binaryconnect: Training deep
neural networks with binary weights during propagations,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), 2015, pp. 3123–3131.

[9] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Proc. Adv. Neural Inf. Process. Syst.
(NIPS), 2016, pp. 4107–4115.

[10] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), 2016, pp. 525–542.

[11] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-
net: Training low bitwidth convolutional neural networks with low
bitwidth gradients,” 2016, arXiv:1606.06160. [Online]. Available:
http://arxiv.org/abs/1606.06160

[12] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolutional
neural network,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2017,
pp. 345–353.

[13] T. Guan, X. Zeng, and M. Seok, “Recursive binary neural net-
work learning model with 2.28b/Weight storage requirement,” 2017,
arXiv:1709.05306. [Online]. Available: http://arxiv.org/abs/1709.05306

[14] P. A. Merolla et al., “A million spiking-neuron integrated circuit with
a scalable communication network and interface,” Science, vol. 345,
no. 6197, pp. 668–673, Aug. 2014.

[15] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[16] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envi-
sion: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable Convolutional Neural Network processor in 28nm
FDSOI,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2017, pp. 246–247.

[17] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “DNPU: An 8.1TOPS/W
reconfigurable CNN-RNN processor for general-purpose deep neural
networks,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2017, pp. 240–241.

[18] P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, and
G.-Y. Wei, “A 28nm SoC with a 1.2GHz 568nJ/prediction sparse
deep-neural-network engine with >0.1 timing error rate tolerance for
IoT applications,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2017,
pp. 242–243.

[19] Q. Dong et al., “A 0.3 V VDDmin 4+2T SRAM for searching and in-
memory computing using 55nm DDC technology,” in Proc. Symp. VLSI
Circuits, Jun. 2017, pp. 160–161.

[20] M. Kang, S. K. Gonugondla, and N. R. Shanbhag, “A 19.4 nJ/decision
364K decisions/s in-memory random forest classifier in 6T SRAM
array,” in Proc. 43rd IEEE Eur. Solid State Circuits Conf. (ESSCIRC),
Sep. 2017, pp. 263–266.

[21] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of a
machine-learning classifier in a standard 6T SRAM array,” IEEE J.
Solid-State Circuits, vol. 52, no. 4, pp. 915–924, Apr. 2017.

[22] A. Biswas and A. P. Chandrakasan, “CONV-SRAM: An energy-efficient
SRAM with in-memory dot-product computation for low-power convo-
lutional neural networks,” IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 217–230, Jan. 2019.

[23] S. K. Gonugondla, M. Kang, and N. Shanbhag, “A 42pJ/decision
3.12TOPS/W robust in-memory machine learning classifier with on-chip
training,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 490–492.

[24] W.-H. Chen et al., “A 65nm 1Mb nonvolatile computing-in-memory
ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN
AI edge processors,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018,
pp. 494–496.

[25] X. Si et al., “A dual-split 6T SRAM-based Computing-in-Memory unit-
macro with fully parallel product-sum operation for binarized DNN edge
processors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 11,
pp. 4172–4185, Nov. 2019.

[26] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A mixed-signal
binarized Convolutional-Neural-Network accelerator integrating dense
weight storage and multiplication for reduced data movement,” in Proc.
IEEE Symp. VLSI Circuits, Jun. 2018, pp. 141–142.

[27] M. Kang, S. Lim, S. Gonugondla, and N. R. Shanbhag, “An in-memory
VLSI architecture for convolutional neural networks,” IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 8, no. 3, pp. 494–505, Sep. 2018.

[28] J. Wang et al., “A compute SRAM with bit-serial integer/floating-point
operations for programmable in-memory vector acceleration,” in IEEE
ISSCC Dig. Tech. Papers, Feb. 2019, pp. 224–226.

[29] C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration of deep
neural networks,” IEEE Micro, vol. 39, no. 3, pp. 11–19, May 2019.

[30] Z. Jiang, S. Yin, M. Seok, and J. Seo, “XNOR-SRAM: In-memory
computing SRAM macro for binary/ternary deep neural networks,” in
Proc. IEEE Symp. VLSI Technol., Jun. 2018, pp. 173–174.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 09,2020 at 18:17:15 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: C3SRAM: IN-MEMORY-COMPUTING SRAM MACRO 1897

[31] X. Si et al., “A twin-8T SRAM computation-in-memory macro for
multiple-bit CNN-based machine learning,” in IEEE ISSCC Dig. Tech.
Papers, Feb. 2019, pp. 396–398.

[32] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile 2.4-
mb In-Memory-Computing CNN accelerator employing charge-domain
compute,” IEEE J. Solid-State Circuits, vol. 54, no. 6, pp. 1789–1799,
Jun. 2019.

[33] S. Yin, Z. Jiang, M. Kim, T. Gupta, M. Seok, and J.-S. Seo, “Vesti:
Energy-efficient in-memory computing accelerator for deep neural net-
works,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 1,
pp. 48–61, Jan. 2020.

[34] N. Verma et al., “In-memory computing: Advances and prospects,” IEEE
Solid StateCircuits Mag., vol. 11, no. 3, pp. 43–55, Sum. 2019.

[35] Z. Jiang, S. Yin, J.-S. Seo, and M. Seok, “C3SRAM: In-Memory-
Computing SRAM macro based on capacitive-coupling computing,”
IEEE Solid-State Circuits Lett., vol. 2, no. 9, pp. 131–134, Sep. 2019.

[36] M. Horowitz, “1.1 Computing’s energy problem (and what we can do
about it),” in IEEE ISSCC Dig. Tech. Papers, Feb. 2014, pp. 10–14.

[37] G. W. Burr et al., “Experimental demonstration and tolerancing of
a large-scale neural network (165 000 Synapses) using phase-change
memory as the synaptic weight element,” IEEE Trans. Electron Devices,
vol. 62, no. 11, pp. 3498–3507, Nov. 2015.

[38] S. Kim et al., “NVM neuromorphic core with 64k-cell (256-by-256)
phase change memory synaptic array with on-chip neuron circuits for
continuous in-situ learning,” in IEDM Tech. Dig., Dec. 2015, p. 17.

[39] P. Chi et al., “PRIME: A novel Processing-in-Memory architecture for
neural network computation in ReRAM-based main memory,” in Proc.
ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 27–39.

[40] F. Parveen, Z. He, S. Angizi, and D. Fan, “HielM: Highly flexible in-
memory computing using STT MRAM,” in Proc. 23rd Asia South Pacific
Design Automat. Conf. (ASP-DAC), Jan. 2018, pp. 361–366.

[41] M. Zabihi, Z. I. Chowdhury, Z. Zhao, U. R. Karpuzcu, J.-P. Wang, and
S. S. Sapatnekar, “In-memory processing on the spintronic CRAM: From
hardware design to application mapping,” IEEE Trans. Comput., vol. 68,
no. 8, pp. 1159–1173, Aug. 2019.

[42] A. Chen and M.-R. Lin, “Variability of resistive switching memories
and its impact on crossbar array performance,” in Proc. Int. Rel. Phys.
Symp., Apr. 2011, p. MY-7.

[43] T. Gokmen and Y. Vlasov, “Acceleration of deep neural network training
with resistive cross-point devices: Design considerations,” Frontiers
Neurosci., vol. 10, p. 333, Jul. 2016.

[44] G. Gambardella et al., “Efficient error-tolerant quantized neural network
accelerators,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI
Nanotechnol. Syst. (DFT), Oct. 2019, pp. 1–6.

[45] S. K. Gonugondla, M. Kang, and N. R. Shanbhag, “A variation-tolerant
in-memory machine learning classifier via on-chip training,” IEEE J.
Solid-State Circuits, vol. 53, no. 11, pp. 3163–3173, Nov. 2018.

Zhewei Jiang (Student Member, IEEE) received
the dual B.S. degrees in physics and in electrical
engineering from Adelphi University, Garden City,
NY, USA, and Columbia University, New York, NY,
USA, respectively, in 2013 and the M.S. degree
in electrical engineering from Columbia University
in 2015, where he is currently pursuing the Ph.D.
degree in electrical engineering.

He has been a Research Assistant with VLSI Lab,
Columbia University, since 2015. His research inter-
ests include neuromorphic computing architecture,

neural signal processing, in-memory computation for machine learning, and
other algorithm implementations.

Shihui Yin (Student Member, IEEE) received the
B.S. degree in microelectronics from Peking Univer-
sity, Beijing, China, in 2013, and the M.S. degree in
electrical engineering from Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA, in 2015. He is currently
pursuing the Ph.D. degree in electrical engineering
with Arizona State University, Tempe, AZ, USA.

His research interests include low-power biomed-
ical circuit and system design, and energy-efficient
hardware design for machine learning and neuromor-
phic computing.

Mr. Yin was a recipient of the University Graduate Fellowship from Arizona
State University in 2015 and the IEEE Phoenix Section Student Scholarship
for the year 2016.

Jae-sun Seo (Senior Member, IEEE) received the
B.S. degree in electrical engineering from Seoul
National University, Seoul, South Korea, in 2001,
and the M.S. and Ph.D. degrees in electrical engi-
neering from the University of Michigan, Ann Arbor,
MI, USA, in 2006 and 2010, respectively.

From 2010 to 2013, he was with IBM T. J.
Watson Research Center, Yorktown Heights, NY,
USA, where he worked on cognitive computing
chips under DARPA SyNAPSE Project and energy-
efficient integrated circuits for high-performance

processors. In 2014, he joined the School of Electrical, Computer and Energy
Engineering, Arizona State University, Tempe, AZ, USA, as an Assistant
Professor. In 2015, he was with Intel Circuits Research Lab as a Visiting
Faculty Member. His current research interests include efficient hardware
design of machine learning and neuromorphic algorithms and integrated power
management.

Dr. Seo was a recipient of the Samsung Scholarship during 2004–2009,
the IBM Outstanding Technical Achievement Award in 2012, and the NSF
CAREER Award in 2017.

Mingoo Seok (Senior Member, IEEE) received
the B.S. degree (summa cum laude) in electrical
engineering from Seoul National University, Seoul,
South Korea, in 2005, and the M.S. and Ph.D.
degrees from the University of Michigan, Ann
Arbor, MI, USA, in 2007 and 2011, respectively,
all in electrical engineering.

He was a member of the Technical Staff with
Texas Instruments Inc., Dallas, TX, USA, in 2011.
Since 2012, he has been with Columbia University,
New York, NY, USA, where he is currently an

Associate Professor of electrical engineering. His current research interests
include ultra-low-power system-on-chip design for emerging embedded sys-
tems, machine learning VLSI architecture and circuits, variation, voltage,
aging, thermal-adaptive circuits and architecture, on-chip integrated power
circuits, and nonconventional hardware design, including in-memory comput-
ing SRAM and DRAM.

Dr. Seok received the 1999 Distinguished Undergraduate Scholarship from
Korea Foundation for Advanced Studies, the 2005 Doctoral Fellowship
from the Korea Foundation for Advanced Studies, the 2008 Rackham Pre-
Doctoral Fellowship from the University of Michigan, the 2009 AMD/CICC
Scholarship Award for picowatt voltage reference work, the 2009 DAC/ISSCC
Design Contest for the 35-pW sensor platform design, the 2015 NSF CAREER
Award, and the 2019 Qualcomm Faculty Award. He is a Technical Program
Committee Member for several conferences, including the IEEE International
Solid-State Circuits Conference (ISSCC) and the IEEE Custom Integrated
Circuits Conference (CICC). He served as an Associate Editor for the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS from
2013 to 2015. He has been serving as an Associate Editor for the IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS since
2015 and the IEEE SOLID-STATE CIRCUITS LETTERS since 2017. He also
serves as a Guest Editor for the IEEE JOURNAL OF SOLID-STATE CIRCUITS.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 09,2020 at 18:17:15 UTC from IEEE Xplore. Restrictions apply.

