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Many studies have examined the structure and properties of the Force Concept Inventory (FCI);
however, far less research has investigated the Force and Motion Conceptual Evaluation (FMCE). This
study applied Multidimensional Item Response Theory (MIRT) to a sample of N = 4528 FMCE post-test
responses. Exploratory factor analysis showed that 5, 9, and 10-factor models optimized some fit statistics.
The FMCE uses extensive blocking of items into groups with a common stem; these blocks factored
together in most models. A confirmatory analysis, which constrained the MIRT models to a theoretical
model constructed from expert solutions, produced a model requiring only 8 principles, fundamental
reasoning steps. This was substantially fewer than the 19 principles identified in the FCI by a previous
study. Correlation analysis also demonstrated that the two instruments were very dissimilar. The reduced
number of principles and the repetition of items using a single principle allowed the extraction of eight
single-principle subscales, seven with Cronbach’s alpha greater than the 0.7 required for acceptable internal
consistency. The differences between the FCI and the FMCE suggest that the two instruments could
provide complementary, but different, information about student understanding of Newton’s laws with the
FCI measuring an integrated Newtonian force concept and the FMCE measuring details of that force

concept.
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I. INTRODUCTION

The Force and Motion Conceptual Evaluation (FMCE)
was introduced in 1998 to measure the understanding of
force and motion in one dimension [1]. The FMCE was
developed following the success of the Force Concept
Inventory (FCI) [2]. The FCI was critical in demonstrating
that traditional instruction did little to improve conceptual
understanding [3]. The FCI and the FMCE have been
exceptionally important to the development of physics
education research (PER). For an overview of the role of
these instruments in the development of PER, see the
synthesis of Doctor and Mestre [4].

A. Prior studies

This work replicates two prior studies which applied
constrained Multidimensional Item Response Theory
(MIRT) to the FCI and the Conceptual Survey of
Electricity and Magnetism (CSEM) [5]. These studies will
be referenced as study 1 and study 2 in this work.
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1. Study 1

Study 1 examined the item-level structure of the FCI [6].
Both exploratory analysis using unconstrained MIRT to
perform an exploratory factor analysis (EFA) and con-
firmatory analysis constraining the MIRT models to a
theoretical model developed from expert solutions were
presented. EFA identified a 9-factor solution as optimal on
some but not all fit statistics. Much of the factor structure
was shown to be related to the practice of “blocking” items.
We define an item block as a group of items each referring
to a common stem. An item’s “stem” defines the physical
system but does not pose a question. Each item in an item
block can then refer to this physical system. For example,
FCI items 21 to 24 all refer to a rocket that turns on its
engine while in space. Study 1, then, constructed a model
of the FCI from solutions collected from content experts.
These solutions were decomposed into individual reason-
ing pieces, called principles. Beyond the laws and defi-
nitions which define Newtonian mechanics, the expert
solutions contained many secondary qualitative principles
derived from these laws such as “if the acceleration and
the velocity are in the same direction, the object speeds
up.” The expert model was then fit to a large dataset
by constraining the MIRT parameter matrix to the model.
A small number of theoretically motivated changes to the
expert model were also fit, allowing the selection of an
optimal model of student reasoning about Newtonian
mechanics. The secondary principles were not included
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in the optimal model. The optimal MIRT model was also
shown to be substantially superior to the model proposed
by the authors of the FCI. The optimal model provides a
fine-grained picture of the reasoning required to solve the
FCI and the interconnection of items in the FCI. This model
will be used in the present work to examine differences
between the FCI and the FMCE.

2. Study 2

Study 2 applied the methods introduced in study 1 to the
CSEM using datasets drawn from 2 different institutions
[7]. The optimal models identified were similar but not
identical suggesting that while some differences exist, the
optimal models may be representative of student thinking
at a number of institutions. Unlike the model of the FCI
in study 1, both optimal models included some of the
secondary principles.

This study informs the present work by showing that
the results of MIRT have some generality across institu-
tions, as well as showing that for some instruments the
optimal models do contain secondary principles.

B. Research questions

The current work replicated both the exploratory and
confirmatory MIRT analyses performed in studies 1 and 2
for the FMCE. This produced a detailed model of the
knowledge measured by the instrument and allowed a more
thorough comparison of the FCI and the FMCE than was
previously possible.

In this paper, we seek to answer the following research
questions:

RQ1 What is the optimal model of the FMCE identified
using exploratory factor analysis? To what extent does
the blocking of items explain the factor structure?

RQ2 What is the optimal model of the FMCE using
constrained MIRT?

RQ3 How do the number of principles and connectivity
of the principles in the optimal MIRT models of the
FMCE and the FCI compare?

C. Item level analysis of the FMCE

Relatively little item-level analysis has been performed
on the FMCE unlike the more thoroughly studied FCI.
Multiple qualitative subdivisions of the instrument have
been proposed. Thornton and Sokoloff proposed four
subgroups of items: “Force Sled” questions (items 1-7),
“Cart on a Ramp” questions (items 8-10), “Coin Toss”
questions (items 11-13), and “Force Graph” questions
(items 14-21) [1]. The subgroup of items 27, 28, and 29
is represented by the notation 27-29. They identified some
items as problematic: items 5, 6, and 15. This led to the
modification of the subgroups; the force sled questions
became items 1-4 and 7 while the force graph questions
became items 14 and 16-21.

After the instrument’s initial publication, Thornton et al.
provided additional analysis which ultimately lead to the
suggestion of an alternate scoring scheme [8]. This scoring
scheme combined groups of items into clusters which
received two points if all the items in the cluster were
correct and zero points if any were incorrect. The clusters
identified were items 8_10, 11_13, and 27_29. A cluster of
items 27, 28, and 29 that is scored together is represented
by the notation 27_29. Six items were also eliminated from
the instrument in this analysis (items 5, 15, 33, 35, 37,
and 39) because students without a Newtonian under-
standing of physics often answered them correctly. Item
6 was also eliminated because content experts often
answered it incorrectly.

The subgroups introduced by Thornton and Sokoloff have
been further investigated and refined [9,10]. Wittmann
suggested a subdivision of the instrument into five subgroups
“Velocity” (items 40-43), “Acceleration” (items 22-29),
“Force (Newton I and II)” (items 1-4, 7-14, 16-21),
“Newton III” (items 30-32, 34, 36, 38), and “Energy” (items
44-47) [9]. By applying a resource framework, Smith and
Wittmann proposed a set of subgroups refining Wittmann’s
subgroups: Force sled (items 1-4, 7), reversing direction
(items 8-13, 27-29), force graphs (items 14, 16-21), accel-
eration graphs (items 22-26), Newton III (items 30-32, 34,
36, 38), velocity graphs (items 40-43), and energy (items
44-47) [9]. Note, all subgroups eliminate the items removed
in the revised scoring. Smith, Wittmann, and Carter later used
the revised subgroup structure to allow a deeper analysis of
the effect of instruction [10].

Ramlo explored the reliability and factor structure of the
FMCE [11]. For a sample of 146 students, the pretest
had Cronbach’s alpha of 0.742 and the post-test 0.907
showing the instrument had excellent reliability when used
as a post-test. Ramlo also examined the instrument with
exploratory factor analysis. The pretest factor structure
consisted of three factors. Each factor contained a mix of
items measuring different concepts and the same concept
was distributed among more than one factor. Thus, Ramlo
concluded that the FMCE pretest factor structure was
undefined. The post-test factor structure contained three
factors. These factors generally contained items testing the
same concept with 21 out of 29 questions measuring
Newton’s Ist or 2nd law in factor 1, 8 out of 10 questions
associated with Newton’s 3rd law in factor 2, and 8 out of 8
questions related to velocity in factor 3.

Talbot [12] investigated the item-level difficulty and
discrimination of FMCE items finding some items outside
of the preferred range established in classical test theory
[13]. Ttems 11, 12, 36, and 38 were problematic on the
pretest; many items were problematic on the post-test
because of a ceiling effect. The sample was very high
performing with 51 of 336 students receiving perfect
scores. Recent studies of the FMCE have explored the
ranking of incorrect responses to show how student ideas
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TABLE I. MIRT fit statistics for an exploratory factor analysis
of the FMCE.

Factors AIC BIC RMSEA TLI CFI
1 170 746 171298 0.109 0.90 0.90
2 161277 162099 0.086 0.94 0.94
3 156 928 158013 0.074 0.95 0.96
4 152 050 153392 0.055 0.97 0.98
5 149 663 151255 0.053 0.98 0.98
6 148 329 150 164 0.126 0.86 0.90
7 147 744 149 817 0.128 0.86 0.90
8 147 345 149 649 0.130 0.85 0.91
9 147 088 149617 0.131 0.85 0.91
10 147037 149 784 0.158 0.78 0.88
11 147 146 150 104 0.144 0.82 0.90
12 147 250 150414 0.161 0.78 0.89

develop over the span of an introductory mechanics course
[14] and developed a hierarchy of responses [15]. Item
response theory was used to explore the responses to item
18 and develop a hierarchy of responses with the correct
answer (B) the best response, the incorrect response
(A) second best and responses (D), (G) or (H) weaker than
either (A) or (B) with responses (C) and (F) the weakest [15].

Thornton et al. [8] performed a detailed comparison of
pretest and post-test results of the FCI and the FMCE for a
large sample of students at many institutions and found a
strong correlation between the results of the two instru-
ments (r = 0.78). They, however, note that the coverage of
the two instruments is different with 22 of the 30 FCI items
outside of the coverage of the FMCE.

Henderson et al. [16] performed an analysis of the item-
level fairness of the FMCE for men and women. The majority
of the FMCE items were significantly more difficult for
women; however, few items were substantially unfair.

D. Factor analysis of the FCI

Many studies have examined the factor structure of the
FCI; however, no consensus on the structure of the instru-
ment has emerged from these efforts. Huffman and Heller
identified only one factor for a sample of college students
[17]. This was substantially different than the structure
suggested by the authors of the FCI [2], leading to a lively
debate about what the instrument actually measured [ 17-19].
In more recent work, Scott, Schumayer, and Gray reported a
model with 5 factors [20], Semak et al. found 6 factors [21],
and study 1 (Table I [6]) found 9 factors. The 5, 6, and
9-factor models have some similarities but are not identical.
Study 1 demonstrated that much of the identified factor
structure could be attributed to the blocking of items and
to the existence of a few repeated groups of conceptually
similar items.

E. Item Response Theory

While many studies have applied Item Response Theory
(IRT) to the FCI, little work has investigated the FMCE.

Unidimensional IRT uses a single ability parameter to
model a student’s facility with the material while MIRT
extends the unidimensional model with multiple ability
parameters. Several studies have reported unidimensional
IRT models of the FCI [22-25]. Item characteristic curves
(ICC) plot the IRT response models. The ICCs and model
parameters reported in these works showed that FCI items
were generally well functioning with positive discrimina-
tions in the desired range. Unidimensional IRT has also
been used to investigate the gender fairness of the FCI
[25,26] with multiple studies reporting many unfair items.
The majority of the unfair items were unfair to women. More
recently MIRT has been used to perform EFA on the FCI
finding the instrument contained from 5 to 9 factors [6,27].

F. The structure of knowledge

The current work produced a fine-grained model of the
reasoning needed to solve FMCE items. This model is
similar to those pioneered Simon and Newell [28] to
understand complex problem solving. Their methodology,
which built computationally functional models of reason-
ing, was central to problem-solving research for decades
[29]. Larkin et al. applied this methodology to understand
expert and novice differences in kinematics and dynamics
[30,31]. This methodology eventually lost favor because it
could not be used to understand general problem-solving
strategies. Reif and Heller created a related model of expert
problem solving in mechanics [32]; however, their model
was not computationally functional. The expert model of
the FMCE constructed in the current study shares many
features with the models of Larkin ef al. [31] and the model
of Reif and Heller [32].

The model of Newtonian mechanics produced in the
current work, as well as that of Reif and Heller or Larkin
et al., all represent only the correct Newtonian model.
Substantial work has shown that students also have robust
misconceptions and novicelike habits that are important in
their solution (often incorrectly) of physics problems.

Multiple theoretical frameworks have been constructed
to explain differences in expert-novice problem solving.
One framework explains expert-novice differences by the
existence of “misconceptions,” common sense beliefs
about how the world works developed through life expe-
riences [33—-35]. Another framework proposes “knowledge
in pieces” where student understanding consists of a
number of small segments of reasoning that are activated
to solve problems [36-38]. The “ontological categories”
framework explains novice reasoning as students catego-
rizing knowledge into incorrect broad categories [39—41].
Hammer proposed a unification of the misconception and
knowledge-in-pieces frameworks by introducing the con-
cept of a resource [38,42,43].

See study 1 [6] for a more complete summary of the
application of factor analysis and IRT to the FCI and a more
thorough exploration of the structure of student knowledge.
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II. METHODS
A. The FMCE and the FCI

The FMCE was constructed to test students’ under-
standing of Newtonian mechanics in one dimension. The
original instrument contained 43 items; a revised instru-
ment added 4 items to measure the understanding of
energy. These items are often not included in the score
of the FMCE and are not included in the analysis in the
current study. Each item has a minimum of six possible
responses with some items having nine responses. All items
include a “none of the above” response which may cause
psychometric problems [44]. Since all items include a none
of the above response, each item should suffer from having
a distractor which is preferentially not selected by the
student; thus no item will be affected more than other items.
This should have less effect than in other commonly used
conceptual instruments because of the large number of
distractors used in most items. The none of the above
response is not the correct answer for any item which may
serve to limit its negative effects. The instrument groups
items into 9 blocks where all items in each block refer to a
common stem. Only one item is not included in a problem
block. The revised version of the FMCE is available at
PhysPort [45].

The FCI is a 30-item multiple-choice instrument
designed to measure a student’s Newtonian force concept.
Each item has five possible responses. The items in the FCI
were developed to both probe Newtonian knowledge and
common misconceptions. The instrument uses limited
blocking of items with 13 of the 30 items in item blocks.

Both the FMCE and the FCI cover one-dimensional
kinematics and Newton’s laws, while the FCI also includes
two-dimensional motion under constant acceleration (para-
bolic motion), impulsive forces, and circular motion.
Unlike the FCI, the FMCE includes many items requiring
the interpretation of graphs.

B. Sample

The sample for this study was collected during 13
semesters from spring 2011 to spring 2017 at a large
eastern land-grant university serving approximately 30 000
students. The undergraduate demographics of the institu-
tion were 79% White, 7% international, 4% African
American, 4% Hispanic, 4% students reporting two or
more races, with other groups 1% or less [46]. The ACT
scores of the institution ranged from 21 to 26 (25th to 75th
percentile). The sample included 3719 FMCE post-test
responses (80% men) collected in the introductory, calcu-
lus-based mechanics class taken by scientists and engi-
neers. This sample was analyzed in an earlier work [16]
where it was referenced as sample 3A. The class was
presented by a variety of instructors; most used some form
of Peer Instruction in the lecture. The course also required
the students attend a laboratory each week; the laboratory

session presented a variety of interactive engagement
activities. The instructional environment for the sample
was discussed in detail in the previous study.

C. Item Response Theory

Item Response Theory produces statistical models of a
student’s responses to a test [47]. The unidimensional IRT
model employs the logistic function to model the proba-
bility of answering an item correctly as a function of a
single latent trait called ““ability.” Many unidimensional IRT
models have been used in previous PER studies. The most
closely related to classical test theory [13] is the two-
parameter logistic (2PL) model. The 2PL model uses two
item-level parameters: the item difficulty b; and the item
discrimination a;, where j is the item number. It assumes
that the probability 7;; of a student i correctly answering an
item j is given by the logistic function

S expla;(6; — b;)]
U 1 = exp[aj(e,- - bj)] ’

(1)

where the latent trait 6; measures the general ability of
student 7 to answer any item correctly.

D. Multidimensional Item Response Theory

Multidimensional Item Response Theory is an extension
of unidimensional IRT which uses multiple ability param-
eters for each student and multiple discrimination param-
eters for each item. The ability of student i becomes the k
component vector @; where each element of the vector
measures a different dimension of the student’s ability with
mechanics; k latent ability traits are estimated for each
student. The item discrimination a; is also modeled as a
vector with k components where j represents the item
number. The MIRT model of the probability z;; of a student

i correctly answering an item j is

. expla; - 0; + d|]
Y 1+expla;-0;,+d;]

(2)
where d; is the overall difficulty of the item.

E. Model fit statistics

The likelihood function L of a MIRT model represents
the probability that a specific observation occurred assum-
ing the model in Eq. (2). To fit the MIRT model, maximum
likelihood (ML) estimation techniques are used to find the
values of the parameters which maximize L. To determine
if the model fits the data well, several statistics have been
developed. Hu and Bentler recommend using multiple
statistics to evaluate models [48]. In this work, we report
the Akaike information criterion (AIC), the Bayesian
information criterion (BIC), the root mean square error
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of approximation (RMSEA), the comparative fit index
(CFI), and the Tucker-Lewis index (TLI).

AIC and BIC are minimized by the optimal model; BIC
penalizes the addition of parameters more strongly than
AIC. A difference of greater than 2 is considered significant
for the AIC [49]. For the BIC, Raftery suggested a
difference of 2 as “weak,” from 2 to 6 as “positive,” from
6 to 10 as “strong,” and above 10 as “very strong” [50]. The
AIC and BIC are mathematically very similar; we will also
use Raftery’s criteria for the AIC.

The root mean square error of approximation is a statistic
with values ranging from 0 to 1 that measures the badness
of fit. Well fitting models should have RMSEA less than
0.05 while poor fitting models have RMSEA greater than
0.1. CFI and TLI are incremental-fit statistics which
measure the difference of the tested model and a null
model. For good model fit, modern criteria suggest CFI
greater than 0.95 or TLI greater than 0.95. See study 2 or
Eaton and Willoughby for additional information on fit
statistics [24].

III. RESULTS

This study reports both exploratory and confirmatory
analyses of the FMCE. Exploratory methods do not
proceed from a theoretical model and allow the model to
emerge from the data. Confirmatory methods proceed from
a theoretical model and explore whether the model is
supported by the data. A substantial body of evidence
suggests that confirmatory methods are less likely to yield
spurious results [51,52]. While both study 1 and study 2
cautioned about the dangers of using purely exploratory
methods, virtually no exploratory results for the FMCE
have been reported, unlike the wealth of exploratory
research into the FCI. Exploratory methods were also
productive in study 1 to help understand the effects of
blocking on the properties of the instrument. As such, an
exploratory factor analysis of the instrument is reported.
A correlation analysis was then performed to help under-
stand the factor structure. The confirmatory constrained
MIRT methodology introduced in study 1 was then applied
to the FMCE. Expert solutions of the FMCE were used to
construct a theoretical model of the reasoning needed
to solve the instrument. An optimal confirmatory MIRT
model was constructed from this initial theoretical model
by making small, theoretically motivated changes to the
expert model. The optimal model suggested that the FMCE
might be productively divided into subscales; the properties
of these subscales were calculated.

A. Exploratory factor analysis with MIRT

An exploratory factor analysis of the FMCE was
performed using MIRT. Models with 1 to 12 factors were
fit; not all model fit statistics were optimized for the same
model. Table I shows the model fit statistics for each

number of factors. While the 10-factor model minimized
AIC, a 9-factor model minimized BIC. These models had
relatively poor RMSEA, CFI, and TLI. A 5-factor model
had superior RMSEA, CFI, and TLI statistics. As such, as
in study 1 (Table II [6]), the fit statistics did not clearly
select a single optimal model. The inconsistent identifica-
tion of the best model by different fit statistics is a result
of the different goals that went into the creation of the
statistics. AIC and BIC are related to the absolute fit of the
model with some penalty for the addition of parameters
(BIC penalizes additional parameters more strongly). Both
CFI and TFI are comparative indices which compare
model fit with a null model (a model assuming the items
are uncorrelated). RMSEA is a badness-of-fit statistic
designed to detect poorly constructed models. Table II
presents the S-factor model (varimax rotation) and Table I11
the 10-factor model, the most fully resolved model which
maximized any fit statistic. The first column of each table
shows the item number. Bolded item numbers represent the
first item of an item block. Factors are reported as columns
and labeled “FC.” For both the 5-factor and 10-factor
models, items in the same block generally have their
highest loading on the same factor. The last column of
the table reports the difficulty d; easier items have larger d.
The 10-factor model had two factors (FC8 and FC9) which
did not load strongly on any item. It also had one factor,
FC10, which had similar loadings to FC4 for the group
of items 27-29. This factor seemed to be splitting the
subgroup 8-13 and 27-79 into two subgroups. Factor FC6
also seemed to split the subgroup of items 30-39 in FC2
extracting the block of items 35-38. Neither of these
splittings were successful in that the loadings in the original
factor were generally commensurate to those of the new
factor. The constrained MIRT analysis which follows will
suggest these divisions are inappropriate; these additional
factors may have resulted from the blocking of the instru-
ment. The 5-factor model failed to separate the subgroup of
items 40—43 from the subgroup of items 22-26 in FC3;
constrained MIRT will also suggest this is inappropriate.

While not as detailed, many of the fit statistics suggest
the 5-factor model presented Table II as the superior model.
The problems noted above suggest the 10-factor model
should not be selected as the optimal model. The 5-factor
model combines some of the factors in the 10-factor model;
the optimal constrained MIRT model allows further explo-
ration of the relation of the 5-factor and 10-factor models
and is presented in the Sec. I'V.

Within the lens of the optimal MIRT model, the 5-factor
model seems to generally make conceptual sense. Factors
FC1 and FC5 both load most strongly on items testing
Newton’s 1st and 2nd law, with factor FC1 requiring more
graphical reasoning than FCS5. Factor FC2 loads most
strongly on Newton’s 3rd law items. Factor FC3 loads
most strongly on items using graphical reasoning to apply
the definition of acceleration. Factor FC4 loads most
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TABLE 1II. Factor loadings for the 5-factor model using
exploratory factor analysis with Multidimensional IRT (varimax
rotation). The bolded item numbers represent the start of item
blocks which are also separated by horizontal lines. Loadings of
magnitude greater than 0.3 are shown.

FMCE No. FC1 FC2 FC3 FC4 FC5
1 0.72 0.56
2 0.67 0.54
3 0.42 0.31 0.65
4 0.68 0.56
5 0.44 0.47
6 0.38 0.39 0.50
7 0.35 0.31 0.65
8 0.34 0.81

9 0.31 0.74

10 0.31 0.71

11 0.32 0.83

12 0.80

13 0.33 0.80

14 0.86 0.34

15 0.38

16 0.88

17 0.85 0.35

18 0.78 0.33 0.31

19 0.80 0.31

20 0.53 0.31

21 0.39 0.39 0.45

22 0.47 0.76

23 0.46 0.71

24 0.42 0.82

25 0.46 0.66

26 0.42 0.81

27 0.44 0.66

28 0.40 0.65

29 0.39 0.66

30 0.89

31 0.79

32 0.92

33 0.53 0.42

34 0.91

35 0.51

36 0.85

37 0.36 0.32

38 0.85

39 0.69

40 0.56 0.37
41 0.41

42 0.33 0.39 0.31
43 0.32

strongly on items involving motion under gravity. The only
substantial difference between 5-factor model and the
constrained MIRT model is the failure to resolve items
40 to 43 as a separate factor. This may be a result of the

generally weak properties of these items; when these items
were used as a subscale, they had substantially weaker
internal consistency than the other subscales.

B. Correlation analysis

To further understand the structure identified by EFA, the
correlation and partial correlation matrices were calculated.
Figure 1(a) presents a visualization of the FMCE correla-
tion matrix created with the “R” qgraph package [53]. Solid
lines (green) represent positive correlations greater than 0.3
(Cohen’s criteria for medium effect size); the thickness of
the lines represent the magnitude of the correlation coef-
ficient. There were no correlations less than —0.3. The
nodes are placed for visual effect only. The correlation
matrix has a clear clustered structure that largely follows
the structure of the item blocks with items in the same block
strongly correlated. The correlation matrix also provides
evidence of structure beyond item blocking with clusters
within the matrix formed of multiple item blocks. The
correlation matrix is strikingly different from that of the
FCI published in study 1 (Fig. 1 [6]). The FCI correlation
matrix was sparsely connected, while the FMCE matrix in
Fig. 1(a) contains two tightly connected subgroups; one of
which contains the majority of the items in the instrument.

Figure 1(b) shows the FMCE partial correlation matrix
controlling for total FMCE score; correlations with r > 0.1
(Cohen’s criteria for a small effect) are shown. The partial
correlation matrix is calculated by first regressing the total
FMCE score on the item score, then calculating the corre-
lation matrix of the residuals of these regressions. Items
within an instrument may be correlated because high
performing students tend to answer most items correctly;
a partial correlation matrix corrects for this effect. The
blocked structure of the instrument is evident in Fig. 1(b),
which contains groups of highly positively correlated items
within some item blocks; these items are negatively corre-
lated to items in other blocks. The combination of item blocks
into larger groups (for example, items 8§—13 and 27-29) is
also supported. In general, the negative correlations were
smaller than the positive correlations, and therefore, no
thick red dashed lines are shown. The negative correlations
presented in Fig. 1(b), but not in 1(a), represent pairs of
items that are anticorrelated after correcting for total test
score. While items within item blocks still vary together
after correcting for total test score, many blocks of items
are anticorrelated with items in other blocks after correcting
for the total test score; this may result from the item blocks
testing different physical concepts.

C. Theoretical model

Study 1 introduced a methodology for producing a
theoretical model of an instrument from expert solutions
of the instrument. First, solutions are collected from a set
of content experts. These solutions are textually decom-
posed into small fragments representing independent
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TABLE III. Factor loadings the for 10-factor exploratory factor analysis performed with multidimensional IRT
(varimax rotation). The bolded item numbers represent the start of item blocks which are also separated by
horizontal lines. Loadings greater than 0.3 are shown. Larger values of d represent easier items. The horizontal
header is repeated after item 21 to improve readability.

FMCE No. FC1 FC2 FC3 FC4 FC5 FC6 FC7 FC8 FC9 FC10 d

1 0.46 0.78 0.62
2 0.45 0.71 0.11
3 0.42 0.68 0.38
4 0.43 0.76 0.38
5 0.53 0.07
6 0.36 0.54 0.25
7 0.44 0.64 0.22
8 0.83 1.67
9 0.77 0.33 0.75
10 0.74 0.73
11 0.82 0.54
12 0.79 -0.02
13 0.80 0.55
14 0.81 0.35 —2.31
15 0.33 0.38 —0.17
16 0.83 0.32 -1.23
17 0.82 0.36 -1.73
18 0.72 0.35 0.31 -0.24
19 0.75 0.31 —0.68
20 0.47 0.34 —0.04
21 0.43 0.4 0.33 0.14
FMCE No. FC1 FC2 FC3 FC4 FC5 FC6 FC7 FC8 FC9 FC10 d

22 0.31 0.83 0.86
23 0.31 0.78 0.56
24 0.32 0.83 0.52
25 0.35 0.71 0.18
26 0.32 0.82 0.50
27 0.52 0.40 0.53 -1.29
28 0.53 0.31 0.57 -1.70
29 0.54 0.35 0.49 —1.17
30 0.85 0.08
31 0.76 —-0.06
32 0.9 0.43
33 0.58 0.37 —0.04
34 0.89 0.57
35 0.34 0.44 0.00
36 0.46 0.84 0.00
37 0.34 0.00
38 0.46 0.84 0.00
39 0.62 0.00
40 0.55 0.42 0.00
41 0.34 0.32 0.00
42 0.31 0.31 0.31 0.00
43 0.00

pieces of reasoning. Fragments representing similar  solutions were collected from the lead instructor and
physical reasoning steps are grouped; each group is then  the research team. Table IV shows the resulting model
identified with the general reasoning used. These groups  for the FMCE. Study 1 introduced a taxonomy of these
are called principles. For the current study, expert  principles:
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(a) Correlation Matrix

FIG. 1. (a) FMCE correlation matrix (|r| > 0.3) and (b) FMCE partial correlation matrix (|| > 0.1). Line thickness represents the size
of the correlation. Solid (green) lines represent positive correlations; dashed (red) lines negative correlations.

Definitions (DF) Definitions of physical quantities. For Corollaries (C) Secondary results derived from laws,
example, the definition of velocity v = dF/dt. facts, results, and definitions. For example, the in-
Laws (L) Physical laws. For example, Newton’s 1st law. stantaneous velocity is tangent to the trajectory.
Facts (F) Facts about the universe that are not as general Lemmas (LM) A qualitative specialization of a princi-
as a physical law. For example, a surface exerts a ple to a subset of items. For example, “if the force is in
normal force on an object. the direction of motion, the object speeds up.”
Results (R) Primary results derived from the laws, facts, Reasoning Steps (RS) Reasoning not specifically re-
and definitions specialized to some physical situation. lated to physics. For example, reading a graph.
For example, the three-dimensional constant acceler- The FMCE models did not require any results or
ation kinematic equations. corollaries. Each principle in Table IV is labeled with an
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TABLEIV. Theoretical model of Newtonian mechanics as tested by the FMCE. Principles in bold were included in the optimal model.

Label  Derived From FMCE No. Principle
Kinematics
DF1 40-43 Definition of velocity (v = d7/dr)
DF2 22-26 Definition of acceleration (@ = dv/dt)
Dynamics
L1 L2 2,5, 14, 15, 17 Newton’s Ist law
L2 6 Newton’s 2nd law
L3 30-39 Newton’s 3rd law
LM1 L2, DF2 1, 4,16, 19, 20 A force in the direction of motion causes objects to speed up.
LM2 L2, DF2 3,7, 18, 20 A force opposite the direction of motion causes objects to slow down.
Properties of forces
L4 11-13, 27-29 Objects near Earth’s surface experience an approximately constant
force of gravity toward the center of Earth.
LM3 L4 8-10 An object on an incline experiences a constant net force down and parallel to
the incline.
F8 21 There is no contact force on an object after contact is lost.
Other
RS1 14-20, 22-26, 40-43  Reading a graph.

abbreviation for the type of principle and a number. The
items with labels printed in bold are the principles included
in the optimal constrained MIRT model. When possible,
the principles are labeled consistently with study 1. Study 1
identified seven facts used in the solution to the FCI; none
were required in the FMCE solution. As such, the fact
identified in the FMCE solution was labeled F8. Some
principles, called secondary principles, can be derived from
more fundamental principles. Each secondary principle is
also labeled with the set of more fundamental principles
from which it was derived.

While most principles in Table IV are fundamental to
Newtonian mechanics, a few require additional explana-
tion. The reasoning step, RS1, was added because there is a
strong delineation in the FMCE where a substantial subset
of the items use graphs for the answer choices. As such,
RS1 was added as an independent principle. Fact F8 (there
is no contact force after contact is lost) was added because
item 21 seems to explicitly probe student understanding of
this fact. Lemma LM3 (force down an incline) is shown as
directly derived from L4 (the law of gravitation); however,
a complete derivation would involve introduction of the
normal force and a resolution of the sum of the force of
gravity and the normal force into a force down the plane.
The FMCE does not include other items involving the
normal force or a resolution of a sum of forces in differing
combinations; therefore, these additional principles could
not be resolved.

D. Model transformation plan

A confirmatory analysis proceeds by first fitting a
theoretical model and then by exploring a small set
of theoretically motivated transformations of that model.
By starting with and relying on a theoretical model,

confirmatory methods are less susceptible to mistaking
random fluctuations in the data for real effects.

RST does not specifically involve applying reasoning
unique to physics; we tried removing it from the model.
The optimal model in study 1 (Tables III and VII [6])
contained no lemmas. The optimal models in study 2
contained fewer lemmas than the initial expert model. As
such, lemmas were removed from the model by replacing
each lemma with the more fundamental principles from
which it was derived as identified in Table IV. Finally,
Newton’s 1st and 2nd laws are related. We attempted, first,
to replace Newton’s 1st law with Newton’s 2nd law and
the definition of acceleration. We, then, replaced Newton’s
Ist law with Newton’s 2nd law alone. Finally, LM3 and L4
are related; we tried combining them. Table V shows the
process of transforming the model.

E. The optimal model

The model transformation process and the superior
models selected at each stage are shown in Table V. The
starting point, model 1, was the theoretical model shown in
Table IV.

To map the theoretical model onto the MIRT model, the
MIRT parameter matrix is constrained so that only the
principles that theoretically (based on Table IV) should be
involved in the solution of the item are nonzero. The model
is then transformed by replacing secondary principles with
more fundamental principles according to the model trans-
formation plan. For RS1, this involved removing the latent
ability trait and the item discrimination associated with RS1
from the model. For the other transformations, the items
that “loaded” on the principle to be removed were set to
load on the principles from which it was derived. The term
“load” is used in analogy to the factor loadings in EFA.
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TABLE V. The MIRT model transformation process.

Transformed Original Superior
model Transformation model AIC BIC RMSEA TLI CFI  model
1 150549 151486 0.05 0.98 0.98

2 Remove RS1. 1 152101 152935 0.05 0.98 0.98 1

3 Replace LM1 and LM2 with L2 and DF2. 1 150827 151808 0.05 0.98 0.98 1

4 Replace LM1 with L2 and DF2. 1 150468 151437 0.05 0.98 0.98 4

5 Replace LM2 with L2 and DF2. 1 150617 151580 0.05 0.98 0.98 1

6 Replace L1 with L2 and DF2. 4 150033 151034 0.05 0.98 0.98 6

7 Replace L1 with L2. 4 149906 150875 0.05 0.98 0.98 7

8 Replace LM3 with L4. 7 149247 150216 0.05 098 0.98 8

When a principle is removed from the model, the latent trait
0, representing that principle is no longer used in the
model. For example, in model 4, the latent trait associated
with LM1 is removed, and all items where the discrimi-
nation associated with LM1 was allowed to be nonzero
were adjusted so the discriminations of L1 and DF2 were
nonzero.

The initial model, model 1, implementing the model of
the instrument in Table IV was fit and, then, the model
transformation plan was carried out. All models had
exceptional fit statistics with RMSEA = 0.05, CFI =
0.98, and TLI = 0.98. Removing RS1 (reading a graph)
did not improve model fit producing very strong changes,
by Raftery’s criteria [50], in AIC and BIC. As such, RS1
was retained in the model. Replacing LM1 (force in the
direction of motion causes an object to speed up) and LM2
(force opposite the direction of motion causes an object to
slow down) with L2 (Newton’s 2nd law) and DF2 (def-
inition of acceleration) also produced very strong increases
in both AIC and BIC over the full model (model 1); these
changes were not retained. Next, each lemma was exam-
ined individually. Replacing only LM1 with L2 and DF2
did improve model fit (strong improvement in AIC and
BIC); however, replacing only LM2 with L2 and DF2 did
not improve model fit. Lemma LM2 (applying a force
opposite the direction of motion causes speed to decrease)
seems to be separate in student thinking from Newton’s 2nd
law (L2) and the definition of acceleration (DF2). As such,
LM2 was retained as a separate principle, while LM1 was
not, to form model 4. Model 4, including LM1 but not
LM2, was then transformed to remove L1 (Newton’s 1st
law) in two alternate ways. Model 6 replaced L1 with L.2
(Newton’s 2nd law) and DF2 (definition of acceleration)
and was a significant improvement over model 4. Model 7
transformed model 4 by replacing L1 with L2 alone and
produced improved AIC and BIC (both strong changes);
these changes were stronger than the changes between
model 4 and 6. As such, model 7 was retained. As such,
students’ reasoning did not require different abilities with
Newton’s 1st and 2nd law. Finally, model 7 was trans-
formed by replacing LM3 (motion down an incline) with
L4 (the force of gravity) which improved model fit

substantially (both strong changes in AIC and BIC).
The principles included in the optimal model, model 8§,
are shown in bold in Table IV.

Table VI shows the item-level MIRT parameters for the
optimal constrained model (model 8). Following study 1
and 2, an overall discrimination a, was added to each item
to capture a general ability with Newtonian mechanics.
The “principles” column presents the discrimination of
each principle on each FMCE item as well as its standard
error. For example, the discrimination of FMCE item 1 on
Newton’s 2nd law (L2) is 6.21 4 0.04 and on the definition
of acceleration (DF2) is 0.20 &+ 0.01. These discriminations
represent the additional discrimination of the item on the
principle above the item’s discrimination of a general
ability with Newtonian mechanics measured by ay,.
The table also presents the overall difficulty d of each
item. The standard error of each parameter was calculated
by bootstrapping with 1000 replications using the “boot”
[54] package in the R software system.

F. Comparison with the FCI

The optimal model for the FMCE (model 8) is strikingly
different from the optimal model for the FCI presented in
study 1 (Table III [6]). While the FCI required 19 principles
for its description, the FMCE required only 8. The
principles retained in the optimal models of both the
FCI and the FMCE are shown in Table VII; the number
of items using each principle is also presented. The FCI
analysis retained only the first item in a problem block to
correct for spurious correlations produced by blocking;
this was not possible in the FMCE where all but one item is
blocked. This was done under the assumption that the
students generally address the items in an instrument in the
order given, and as such, the first item in an item block
would not be affected by other items in the block. The
correlations produced by item blocking or “chaining” have
been explored by authors [55]. Recently, clusters of
incorrect answers in item blocks have been identified in
the FCI where the second item is the correct answer if the
incorrect answer to the first item had been the correct
answer [56]. If the additional FCI items were retained, 4
additional principles would be required. As such, measured
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TABLE VI.  Optimal MIRT model (model 8). The number in parenthesis is the discrimination a j; for the principle on the item. ay is the

discrimination for a factor loaded on all items and d is the difficulty of the item. Values are presented as the mean = the standard error of
the mean. Items students find more challenging have smaller values of d. In general, well-functioning items will have a positive overall
discrimination a,. Items measuring the principles identified in the expert model should have positive principle discriminations a . that

are substantially different from zero. Bolded item numbers represent the first item in an item block.

FMCE No. Principles ao d

1 L2(6.21 +0.04) DF2(0.20 + 0.01) 8.54 £0.05 -3.49 £0.02
2 L2(1.79 + 0.00) 3.53£0.01 —1.68 £ 0.00
3 LM2(1.90 £+ 0.01) 4.22 £0.01 —0.40 £ 0.00
4 L.2(2.25 4+ 0.01) DF2(0.03 + 0.00) 3.56 £0.01 —1.65 £ 0.00
5 L.2(0.52 4+ 0.00) 1.74 £ 0.00 0.23 +£0.00
6 L.2(0.24 £+ 0.00) 2.14 £ 0.00 —2.11 £0.00
7 LM2(1.67 +0.01) 3.66 £0.01 0.01 £ 0.00
8 L4(2.01 £0.01) 3.48 £0.01 -3.17£0.01
9 L4(1.30 & 0.00) 2.23 +£0.00 —1.63 £ 0.00
10 L4(1.10 £ 0.00) 1.86 £ 0.00 —0.41 £ 0.00
11 L4(2.39 +£0.01) 3.93 £0.01 —1.07 £ 0.00
12 L4(1.75 4+ 0.00) 2.84 £ 0.00 —0.50 £ 0.00
13 L4(1.82+0.01) 3.00 £ 0.01 0.51 £ 0.00
14 L2(2.04 +0.01) RS1(4.04 £ 0.02) 6.07 £ 0.03 —2.84 £0.01
15 L2(-0.27 4+ 0.00) RS1(-0.02 £ 0.00) 0.78 £ 0.00 3.58 £0.00
16 L2(1.56 +0.01) DF2(—0.56 + 0.01) RS1(2.62 +0.01) 4.51 £0.01 —-1.49 £ 0.01
17 L2(1.38 +0.01) RS1(3.34 +£0.01) 4.22 +0.01 -3.52£0.01
18 LM2(0.19 + 0.00) RS1(1.62 £ 0.00) 3.36 £0.01 —1.78 £ 0.00
19 L.2(0.77 + 0.00) DF2(—0.41 £ 0.00) RS1(1.38 + 0.01) 2.83 £0.00 —1.72 £ 0.00
20 L.2(0.26 4+ 0.00) LM2(0.01 &+ 0.00) DF2(—0.15 4 0.00) RS1(0.41 + 0.00) 1.61 £ 0.00 —0.90 £ 0.00
21 F8(0.13 £ 0.00) 2.35£0.00 —0.88 £ 0.00
22 DF2(1.85 £0.01) RS1(1.28 £0.01) 4.15 £ 0.01 2.75 £ 0.01
23 DF2(1.36 £ 0.00) RS1(0.98 + 0.00) 3.34 £0.01 0.95 £ 0.00
24 DF2(2.20 £ 0.01) RS1(1.67 + 0.01) 443 +0.01 2.514+0.01
25 DF2(0.86 £ 0.00) RS1(0.77 + 0.00) 2.48 £0.00 0.37 +£0.00
26 DF2(2.13 £0.01) RS1(1.50 £ 0.01) 4.33 +£0.01 2.93+£0.01
27 L4(0.70 & 0.00) 3.07 £ 0.00 0.71 £ 0.00
28 L4(0.64 & 0.00) 2.36 +0.00 0.44 £+ 0.00
29 L4(0.73 4+ 0.00) 2.89 £ 0.00 1.16 £ 0.00
30 L3(2.91 £+ 0.00) 1.86 £ 0.00 1.90 £+ 0.00
31 L3(1.88 £+ 0.00) 1.65 £ 0.00 1.79 £ 0.00
32 L3(5.56 +0.01) 4.43 £0.01 3.78 £0.01
33 L3(0.77 = 0.00) 1.16 £+ 0.00 4.07 £ 0.00
34 L3(6.15 4+ 0.02) 5.11 £0.02 3.73 £0.01
35 L3(0.74 4+ 0.00) 0.79 £ 0.00 0.77 £ 0.00
36 L3(2.42 4+ 0.00) 1.56 £ 0.00 —1.81 £0.00
37 L3(0.37 £+ 0.00) 0.97 £ 0.00 1.57 £0.00
38 L3(2.40 & 0.00) 1.50 £ 0.00 —1.70 £ 0.00
39 L3(1.35 4+ 0.00) 1.60 £ 0.00 1.86 + 0.00
40 DF1(3.20 £ 0.02) RS1(0.16 + 0.01) 3.74 £0.02 9.27 £ 0.05
41 DF1(0.46 £+ 0.00) RS1(—0.01 4 0.00) 1.18 £ 0.00 1.43 +£0.00
42 DF1(1.40 £ 0.00) RS1(0.11 + 0.00) 2.08 £ 0.00 3.56 +£0.01
43 DF1(1.53 £0.00) RS1(0.13 + 0.00) 1.47 £ 0.00 4.97 £0.01

by the number of principles required by experts to solve the
instrument, the FCI has a much more thorough coverage of
Newtonian mechanics. The difference in coverage between
the two instruments was also noted by Thornton et al. [8].
The distribution of principles within the instruments is also
very different. Of the 20 FCI items analyzed (keeping only
the first item in a block), only 4 required a single principle.

Of the 43 FMCE items analyzed, 25 required only one
principle. An additional 9 items required similar combi-
nations of principles. As such, the items in FCI are much
more interconnected by principles they share than the items
in the FMCE.

Table VII indicates that neither instrument directly used
R2; this principle was retained because principle C4 is
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TABLE VII. Comparison of the optimal model of Newtonian mechanics as tested by the FCI and the FMCE. The number of items in
each instrument using the principle is also presented.
Label No. FMCE items No. FCI items Principle

Kinematics
DF1 4 3 Definition of velocity (v = dr/drt)
DF2 10 1 Definition of acceleration (d = dv/dr)
R1 - 4 Trajectory @ = constant [F(r) = 7y + Vot + 3 ar]
R2 . . Velocity @ = constant [#(t) = ¥yt + dt]
Cl 1 Instantaneous velocity is tangent to the trajectory.
C2 2 Objects moving in a curved trajectory will experience centripetal acceleration.
C3 2 ID trajectory a = constant, [x(¢) = xo + vt + %atz]
C4 1 1D velocity a = constant, [v(f) = vy + at]

Dynamics
DF3 2 The net force is the vector sum of the forces (forces add as vectors).
L1 e 4 Newton’s Ist law
L2 11 4 Newton’s 2nd law
L3 10 3 Newton’s 3rd law
LM2 4 e A force opposite the direction of motion causes objects to slow down.

Properties of forces
L4 9 11 Objects near Earth’s surface experience a constant downward
force or acceleration of gravity toward the center of Earth.
Fl1 1 An object in contact with a surface experiences a normal force.
F2 3 An object does not necessarily experience a force in the direction of motion.
F3 2 Air pressure does not exert a net downward force.
F4 1 The wind can exert a force on an object.
F5 2 Air resistance is negligible for a compact object moving a short distance.
F6 e 1 The force of gravity is approximately constant near Earth’s surface.
F8 1 e There is no contact force on an object after contact is lost.
Other

RS1 16 Reading a graph.

derived from it. The FCI contains a lemma related to FMCE
lemma LM2; however, the lemma was stated in terms of
acceleration, not force. This lemma was not retained in the
optimal model in the FCI. The table also indicates that the
FMCE does not require Newton’s 1st law; this resulted
from Newton’s 1st and 2nd law being combined in the
optimal model for the FMCE. Newton’s 1st and 2nd law
were not combined in the optimal model for the FCI.
Figure 2 shows a visualization of principle structure of
the optimal models for both the FCI (study 1) and the
FMCE. The nodes represent principles, edges represent
how many times two principles are used in the same item.
For example, in the FMCE, five items use both L2 and DF2.
The number near the curve connecting the same node
represents the number of times the principle is the only
principle for an item. Facts and reasoning steps were not
included in the figure. For the full figure including facts see
the Supplemental Material [57]. For the FMCE, the number
with a star indicates the number of items using only the
labeled principle with RS1 (reading a graph). The FCI
includes 6 facts and the FMCE 1 fact; both instruments
include one reasoning step. The reasoning step in the FCI is
used in only one item and was not included in the optimal
model; however, the reasoning step in the FMCE is used in
a substantial subset of the items. The principles shared by

both instruments were named consistently in both the
current work and study 1; Table VII presents a list of
the principles and their labels.

Figure 2 shows that most FCI items included multiple
principles while most FMCE questions were designed to
test one particular principle. Further, different FCI items
employed different combinations of principles producing a
connected network; the FMCE often either used a single
principle or the same combination of principles producing a
disconnected network. This implies, as the FCI authors
intended [2], the FCI measures an integrated Newtonian
force concept. The FMCE measures dimensions of this
force concept, but these dimensions are far less integrated.

G. FMCE subscales

A fundamental challenge in applying the FCI to under-
stand learning is its lack of a consistent subscale structure
demonstrated by multiple studies identifying an inconsis-
tent and often unintelligible factor structure [17,20,21]. The
integrated network of principles shown in Fig. 2(a) serves
to explain why consistent subscales of the instrument
measuring identifiable dimensions of Newtonian reasoning
have not been extracted. This means that, while the FCI
measures an integrated force concept, it can provide little
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FIG. 2. Comparison of the network of principles of the (a) FCI
and the (b) FMCE. The nodes represent principles, edges
represent how many times two principles are used in the same
item. The number near the curve connecting the same node
represents the number of times the principle is the only principle
for that item. For the FMCE, the number with a star represents the
number of items using only the principle with reasoning step RS1
(reading a graph).

information about the details of that force concept. The FCI
cannot tell you if a student’s difficulty lies with Newton’s
laws or kinematics.

The repetition of single principles or the same combination
of principles across many items in the FMCE suggests that
the instrument should have identifiable subscales. This is
supported by the 5-factor exploratory model where factors
generally loaded most heavily within item blocks; the single-
principle or repeated-principle items also generally were
restricted to the same factor. Table VIII presents possible
subscales first using the set of principles in the original model
(model 1), then principle combinations suggested by the
optimal constrained model (model 8). For subscales combin-
ing multiple principles, a name for the combined scale is
suggested. The average and standard deviation for each set
of items is presented. For example, the average of FMCE
items 40-43, testing the definition of velocity (DF1), is
0.85 £ 0.2. Cronbach’s alpha, a, which measures the internal
consistency of the subscale, is also presented. Cronbach’s
alpha of 0.7 is considered adequate for low stakes testing,
while 0.9 is required for high stakes testing [58]. All but one
of the suggested subscales demonstrated adequate internal
consistency. The last two rows combine principles as
suggested by the optimal model and have excellent alphas.
Alpha generally grows as the number of items increases and,
therefore, the increased alpha might result from the larger
number of items in the combined subscales.

The subscale structure suggests that, rather than meas-
uring an integrated force concept, the FMCE might be more
productively employed to measure the details of that force
concept. For example, for the class studied additional
instructional resources might productively be directed
toward understanding motion under gravity.

The set of subscales with acceptable alpha values opens
the possibility that these subscales could be used as a model
for the instrument. A confirmatory factor analysis was
performed with these five subscales producing fairly poor
fit statistics (CFI = 0.80, TLI = 0.79, and RMSEA =
0.080). The optimal model 8 found by MIRT was a

TABLE VIII. FMCE subscales. Average score presented as mean =+ standard deviation; Cronbach’s a provides a measure of internal
consistency.
Principle FMCE No. Average a Description
DF1 40-43 0.85+0.2 0.66 Definition of velocity
DF2 22-26 0.61 £0.4 0.90 Definition of acceleration
L1 2,5,14, 15, 17 0.50 £0.3 0.78 Newton’s 1st law
L3 30-39 0.63 +0.3 0.84 Newton’s 3rd law
L4 11-13, 27-29 049 +04 0.88 Objects near Earth’s surface experience an approximately
constant
force of gravity toward the center of Earth.
LM1 1, 4, 16, 19, 20 0.36 £0.4 0.88 A force in the direction of motion causes objects to speed up.
LM2 3,7, 18, 20 0.40+0.4 0.80 A force opposite the direction of motion causes objects
to slow down.
LM3 8-10 0.32+04 0.83 An object on an incline experiences a constant net force
down and parallel to the incline.
L1/L2/LM1/LM2 1-7, 14-20 042403 0.93 Newton’s Ist and 2nd law
L4/LM3 8-13, 27-29 044 +04 0.91 Motion under gravity
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substantially superior model. Various additional combina-
tions of subscales were also modeled using CFA including
subscales which eliminated the problematic items flagged
by Thornton et al.; none produced CFI or TLI about 0.85.
The L1/L2/L.M1/LM2 subscale was identified ignoring
RS1 which does not involve reasoning specific to physics.
If RS1 were used to split the group, it would divide the
items in this group into the force sled and force graph
subgroups suggested by Thornton and Sokoloff [1].

IV. DISCUSSION

This study investigated three research questions; they
will be discussed in the order proposed.

RQ1: What is the optimal model of the FMCE identified
using exploratory factor analysis? To what extent does the
blocking of items explain the factor structure? An EFA
using MIRT showed that a 10-factor solution minimized
AIC, a 9-factor model minimized BIC, and a 5-factor
model had superior RMSEA, CFI, and TLI. For both the
5-factor and 10-factor model, most items in each item block
had their highest factor loadings in the same factor. Unlike
the FCI, this produced a set of factors containing items
generally representing the same physical principle. While
the 10-factor model separated more thoroughly into item
blocks; the 5-factor model generally combined items
identified as physically similar by the optimal constrained
MIRT model in Table VI. It seems likely that the 10-factor
solution was identified as optimal because it most closely
matched the blocked structure of the instrument. It also
seems likely that the 5-factor model had excellent fit
statistics because it most closely captured the groups of
items associated with the same principle or sets of
principles. While blocking seems to also be causing
correlations not supported by the general physical princi-
ples tested in the FMCE, it seems to be much less important
than in the FCIL

The factor structure extracted was dramatically different
than the only other reported factor structure of the instru-
ment. Ramlo reported only 3 factors [11]. The 3-factor
solution is curious. The blocked structure of the instrument
strongly suggests the 10-factor solution (9 blocks and 1
unblocked item). The correlation matrix and confirmatory
MIRT analysis strongly suggest 5 factors. It is difficult to
construct a theoretical reason to support 3 factors; it seems
quite likely that the sample size in Ramlo’s study (N = 146)
was insufficient to resolve the full factor structure.

In their introduction of the instrument, Thornton and
Sokoloff [1] discuss subgroups of items such as the force
sled items (items 1-7) or the coin toss items (items 11-13),
but do not discuss the overall blocked structure of the
instrument. Superficially, because the FMCE is divided into
9 blocks, where the items in each block measures a similar
physical concept, and one unblocked item, the instrument
seems to be designed to produce 10 factors. The 10-factor
model minimized AIC in this study; however, its other fit

statistics were fairly poor. Also, some of the factors in the
10-factor model failed to load strongly on any set of items.
The 5-factor model, which generally combined items into
subgroups based on common sets of principles identified
by constrained MIRT, had excellent fit statistics. The EFA
also provides support for the identification of 5, 6, 15, 33,
35, and 37 as potentially problematic; all had relatively low
factor loadings in the 5-factor model. The factor loading of
item 39 does not suggest it is problematic.

The correlation analysis partially supports the identifi-
cation of problematic items that were removed from
the modified scoring proposed by Thornton ef al. [8]. In
Fig. 1(a), items 15, 33, 35, and 37 are weakly correlated
with their items blocks; however, items 5, 6, and 39 are well
connected to their subgroups. In Fig. 1(b), item 15 is only
correlated with item 33 which is not strongly correlated to
the other Newton’s 3rd law items. Item 37 is negatively
correlated with all items that it connects to in the diagram.
Again, items 5, 6, and 39 do not appear problematic. This
pattern of correlations was unexpected based both upon the
blocks containing the items and the theoretical model of
the solution of the items. These correlations are consistent
with Thornton’s et al. [8] observation that these items are
often answered correctly by students who do not have an
understanding of Newtonian mechanics, unlike items in the
instrument not identified as problematic.

RQ2: What is the optimal model of the FMCE using
constrained MIRT? The principles retained in the optimal
constrained MIRT model are bolded in Table IV. As in both
study 1 [6] and study 2, only some of the lemmas found in
the expert solutions were included in the optimal model.
Unlike in study 1, the optimal model of the FMCE
combined Newton’s Ist and 2nd laws. While this may
be an artifact of instruction at the two institutions, it could
also be the result of Newton’s Ist and 2nd law items
appearing in the same item blocks.

Table VI shows the difficulty and discrimination param-
eters of the optimal MIRT model. The number in paren-
thesis next to the principle label is the discrimination for the
principle. The items show a broad range for this parameter.
Many items measure only a single principle. Section III G
describes how these items can be formed into subscales.
Some items requiring multiple principles only discriminate
strongly on one of the principles; these items should be
good measures of the strongly discriminating principle.
For example, items 1 and 4 require two principles but
discriminate on one principle more strongly than the other;
items 1 and 4 should be good measures of Newton’s 2nd
law (L2). Items 22 through 26 require multiple principles
with commensurate and large discriminations. These items
measure multiple principles at the same time, but cannot
differentiate between the principles. Item 20 had small
discrimination values for all principles and, therefore, does
not contribute additional information about these princi-
ples. Item 15 had negative discrimination; this may indicate
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the item is problematic. Item 15 was one of the items
Thornton et al. removed in their revised scoring [8].

The optimal model can also be used to understand
previous research into the FMCE. Many of the items
removed by Thornton et al [8] had relatively weak
principle discrimination 5, 6, 33, 35, and 37; as above,
item 15 had negative discriminations. The clusters identi-
fied by Thornton et al. 8_10, 11_13, and 27_29 all involve
a single principle L4 (the law of gravitation) supporting
scoring them as a single item. The optimal model also
supports Smith and Wittmann’s proposal to combine items
8-10, 11-13, and 27-29 to form a single subgroup [9].
The optimal model also strongly supports Smith and
Wittmann’s identification of items 40-43 as a subgroup.
The analysis which retains RS1 (reading a graph) also
supports both Thornton and Sokoloff [1] and Smith and
Wittmann’s [9] division of the Newton’s 1st and 2nd law
items into distinct subgroups where one involves reading
graphs and the other does not.

RQ3: How do the number of principles and connectivity of
the principles in the optimal MIRT models of the FMCE and
the FCI compare? Examining either the initial or optimal
models in the present study (Table IV and Table VI), the
corresponding models in study 1 (Table IIT and VII [6]), or
the summary provided in Table VII show that the two
instruments have substantially different coverage. The initial
expert model of the FCI contained 34 principles while the
optimal model required 19 principles. These 19 principles
were distributed over 20 items. Study 1 analyzed only a
subset of the items in the FCI to remove the effect of item
blocking. The initial expert model of the FMCE contained
only 11 principles while the optimal model contained 8
principles. These 8 principles were spread over 43 items.

Figure 2 shows the sharp contrast between the principle
networks of the FCI and the FMCE. The FCI’s network is
generally connected while the FMCE network in generally
disconnected. The correlation and partial correlation matri-
ces of the two instruments are also dramatically different.
These observations are related to the very different use of
principles in the two instruments. Most FCI items use
multiple principles and very few combinations of principles
are repeated. This leads to the generally connected FCI
network in Fig. 2(a) and serves to explain the sparsely
connected correlation and partial correlation matrices
reported in study 1 (Figs. 1 and 2 [6]). The majority of the
items in the FMCE use a single principle; many other items
repeat combinations of principles leading to the generally
disconnected FMCE network in Fig. 2(b). This practice
serves to explain the strong connections in the correlation
matrix and the islands of connected items in the partial
correlation matrix of the FMCE. Of the 20 FCI items analyzed
in study 1, only 4 use only a single principle, 20%. Of the 43
FMCE items analyzed in the current study, 25 use only a
single principle, 58%. If RS1 is removed, an additional 13
items use only one principle, or 38 of the 43 items, 88%.

The interconnected nature of the FCI serves to explain the
failure of EFA to extract a factor structure that combined
items which theoretically tested the same underlying concept
[17-19]. There simply are not substantial groups of items in
the FCI that test the same underlying concept or concepts.
The only repeated set of single-principle items in the FCI,
which measure Newton’s 3rd law, do consistently factor
together in most exploratory studies [6,20,21]. Because the
FMCE has many groups of items either testing the same
principle or repeated groups of principles, it was possible
to extract a subscale structure. Table VIII shows possible
subscales either extracted from the initial expert model or
from the optimal model. Except for the subscale representing
DF1 (the definition of velocity), all have acceptable internal
consistency for low stakes testing [58]. The items in the DF1
subscale were proposed as an additional subgroup (40—43)
by Smith and Wittmann [9]. The low internal consistency of
this subgroup suggests that multiple other combinations
might provide more reliable measures of the facets of student
knowledge of mechanics.

V. IMPLICATIONS

This work showed a sharp contrast between the coverage
and connectedness of the FMCE and the FCI. While the
FCI measures an integrated force concept, the FMCE uses
the repetition of single principles or the same combination
of principles across many items to repeatedly measure
facets of that force concept. This allowed the identification
of subscales within the FMCE. Only a fraction of the
principles used in the FCI are represented in these sub-
scales. This suggests that, rather than providing symmetric
information about the understanding of Newtonian
mechanics, the FCI and the FMCE provide complementary
information. The FCI measures an overall Newtonian force
concept with stronger coverage than the FMCE; the FMCE
measures subdimensions of this force concept. The FCI can
provide instructors a broad measure of the overall con-
ceptual understanding of their students; the FMCE can
allow instructors to identify individual concepts where
students need improvement. This partially alleviates one
of the primary weakness of the FCI, the lack of a well-
defined subscale structure. While the subscale internal
consistencies were adequate, the low model fit of the
CFA suggests the instrument requires further refinement
to have a well-defined subscale structure.

Recent research by Traxler et al. [25] provided compel-
ling evidence that some items within the FCI are unfair to
either men or women. They proposed a 19-item version of
the instrument to eliminate validity and fairness problems;
instructors interested in using both the FCI and FMCE
should use this reduced instrument. Henderson et al
repeated the analysis for the FMCE and found few unfair
items [16].

Beyond the specific results reported, this study as well
as studies 1 and 2 demonstrated the additional insights that
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can be derived from evaluations of physical knowledge
using the fine-grained, expert-derived models presented in
these three works.

VI. LIMITATIONS

This work was performed with a single sample drawn
from a single institution. Additional samples should be
tested to determine if the conclusions are general. The
theoretical model presented in Table IV was constructed
from a sample of expert solutions at a single institution.
Other models should be constructed and explored. Any
researcher who wishes to explore an alternate model may
request the data used in this study.

VII. FUTURE WORK

The constrained MIRT method will be applied again to
both the FCI and the FMCE disaggregating the samples by
gender to attempt to understand the gender differences
identified in the FCI by Traxler ef al. [25] and the smaller
differences identified in the FMCE by Henderson et al.
[16]. Models will also be extended to include common
misconceptions to explore the competition of expert and
naive reasoning.

VIII. CONCLUSIONS

This work examined the structure of the Force and
Motion Conceptual Evaluation with Multidimensional

Item Response Theory. Exploratory analysis identified
S-factor, 9-factor, and 10-factor solutions as optimal on
some fit statistics. The loadings of both the 5-factor and
10-factor solution were generally consistent with the
blocked structure of the instrument. Problems identified
in the 10-factor model, as well as the superior fit statistics
of the 5-factor model, suggest the 5-factor model as the
best exploratory model. A confirmatory analysis using
MIRT constrained to a theoretical model was also
employed to determine the optimal model of the FMCE.
The optimal model contained only 8 principles of mechan-
ics compared to 19 principles in the optimal model for the
FCI; the FCI has much broader coverage of mechanics
than the FMCE. The distribution of principles in the
two instruments was also dramatically different. Very few
items in the FCI required only a single principle for their
solution while the majority of FMCE items could be
solved with a single principle. This repetition of single
principles and combinations of principles allowed the
identification of subscales within the FMCE; most sub-
scales identified had Cronbach’s alpha of at least the 0.7
required for low stakes testing.
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