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While many studies have examined the structure, validity, and reliability of the Force Concept Inventory,
far less research has been performed on other conceptual instruments in widespread use in physics
education research. This study performs a confirmatory analysis of the Conceptual Survey of Electricity
and Magnetism (CSEM) guided by a theoretical model of expert understanding of electricity and
magnetism. Multidimensional Item Response Theory (MIRT) with the discrimination matrix constrained to
the theoretical model was used to investigate two large datasets (N; = 2014 and N, = 2657) from two
research universities in the United States. The optimal model identified by MIRT was similar, but not
identical, for the two datasets and had very good model fit with comparative fit indices of 0.975 and 0.984,
respectively. The most parsimonious optimal model required 23 independent principles of electricity and
magnetism and was significantly better fitting than a more general model dividing the CSEM into 6 general
topics. The optimal models for the two samples were quite similar, sharing 22 of a possible 26 conceptual
principles. Most of the overall item difficulties and discriminations were significantly different between the
two samples; however, the rank order of the overall difficulty and discrimination were generally similar.
There was much more similarity between the discrimination by item of the individual principles. Five items
had a difficulty ranking that was substantially different between the two samples, indicating that while
generally similar, relative difficulty does depend on the student population and instructional environment.
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I. INTRODUCTION

The Conceptual Survey of Electricity and Magnetism
(CSEM) was introduced nearly 20 years ago and has
become one of the most used conceptual instruments for
understanding conceptual knowledge of electricity and
magnetism [1]. The CSEM was developed following the
success of the Force Concept Inventory (FCI) [2] in
demonstrating the ineffectiveness of traditional instruction
in fostering conceptual learning [3]. Like the FCI, the
CSEM was developed to test student misconceptions as
well as their physics knowledge. The authors further
intended the instrument to serve as a broad summary of
student learning in electricity and magnetism rather than a
granular measure of student understanding [1]. The other
instrument commonly used to measure student conceptual
learning in electricity and magnetism is the 30-item Brief
Evaluation of Electricity and Magnetism (BEMA) [4].
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Pollock found the CSEM and BEMA to be equally
effective for evaluating conceptual learning with slight
variations in the content covered by each instrument [5].
These and other conceptual instruments have been very
important in physics education research (PER) and a
general overview of the use of these and other conceptual
inventories can be found in the recent synthesis of PER by
Docktor and Mestre [6].

The current study explored the structure of the CSEM
using Multidimensional Item Response Theory (MIRT) for
2 samples of students in university calculus-based physics.
This work replicates a similar study on the FCI, but uses
datasets from different institutions to determine whether
MIRT results can be considered general [7]. The previous
study as well as a large body of social science research
[8,9] argued that exploratory methods, where one does not
begin with a theoretical model and develops the model from
the data, such as factor analysis, identify accidental features
of the data and do not provide generalizable results.
Conversely, a confirmatory analysis begins with a theoretical
model and determines how well the data support the model.
As such, this study as well as the previous study of the FCI
presents confirmatory analyses beginning with introduction
of a theoretical model of the knowledge measured by the
instrument. Because the majority of research exploring the
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structure of conceptual physics instruments has been
exploratory and no such research has been performed on
the CSEM, an exploratory analysis is presented in the
Supplemental Material [10] to address this absence in the
literature. MIRT can be used for either exploratory or
confirmatory analyses; for exploratory analysis the MIRT
parameters are unconstrained, for confirmatory analysis
the MIRT parameters are constrained to the model. Little
previous research has compared the results of either explor-
atory or confirmatory analyses across multiple institutions,
so this work should advance the understanding of the
generality of MIRT analyses.

The previous study of the FCI showed that MIRT models
could be constrained to a theoretical model of Newtonian
mechanics and used to explore theoretically motivated
modifications of the model. The optimal model identified
contained only principles of physics such as Newton’s st
law and the definition of acceleration. The optimal model
did not contain qualitative statements about mechanics
derived from these statements; for example, “if the accel-
eration and the velocity are in the same direction, the object
speeds up.” Testing alternate models allowed for an
exploration of how students answered mechanics ques-
tions; for example, model fit did not improve when
Newton’s 2nd law was combined with the vector addition
of forces; illustrating that students have different facility
with these two mechanics principles.

A. Reliability and validity

The structure, reliability, and validity of PER conceptual
instruments is an active area of research; however, most of
this research has focussed on the FCI. Few studies have
analyzed the item-level validity, reliability, or fairness of
the CSEM.

Classical test theory (CTT) provides methods to examine
item validity though the calculation of difficulty and dis-
crimination. The difficulty of an item is defined as its average
score; a higher difficulty score indicates an easier item and
a lower difficulty score a harder item. The discrimination is
defined as the difference in the average score of the highest
performing students and the lowest performing students.
Items with either very high or very low difficulty or low
discrimination are “problematic” and present validity threats
to the instrument [11,12].

Maloney et al. reported CSEM item-level difficulty for
both algebra-based and calculus-based introductory elec-
tricity and magnetism courses [1]. Their study found four
problematic items with item 3 too easy for calculus-based
students (difficulty above 0.8) and items 14 (calculus and
algebra-based students), 20 (algebra-based students), 31
(algebra-based students) too difficult (difficulty below 0.2).
Though item discrimination was evaluated in the study,
the item-level results were not reported. Planinic identified
six conceptual areas measured by the CSEM in a study
comparing Croatian students to American students. These

were electric charge and force (items 1-3, 5, 6, and 8),
electric field and force (items 9 and 12-15), electric
potential and energy (items 11 and 16-20), magnetic field
and force (items 21-23, 25, 26, and 28), electromagnetic
induction (items 29-32), and Newton’s laws (items 4, 7, 10,
24, and 27). The conceptual areas were identified quali-
tatively by grouping the 11 conceptual areas identified by
Maloney et al. [1] to produce groups of items sufficiently
large for analysis. The difficulty of the items in each
conceptual area was calculated finding similar results for
both populations [13].

Other studies have focused on only a few items in the
CSEM. Meltzer investigated items 18 and 20 to explore
changes between pretest and post-test responses regarding
the intersection of electric field and potential concepts [14].
Leppévirta investigated CSEM items that probed Newton’s
3rd law (items 4, 5, 7, and 24) showing that 20% of students
had an alternative model of Newton’s 3rd law on the pretest
which was reduced to 10% on the post-test [15].

Gender differences in performance on the CSEM have
also been investigated. Kohl and Kuo [16] examined the
difference in the gender gap on the CSEM before and after
switching to studio physics, finding the course transition
reduced the gap in normalized gain. Studio physics is
an instructional model that integrates short lectures with
group work and hands-on activities in a classroom where
students are grouped around tables [17]. Kreutzer and
Boudreaux [18] also measured a difference in perfor-
mance by gender in the CSEM. Pedagogical changes such
as “affirming domain belongingness in women” greatly
reduced the gap. For a more complete synthesis of the
study of gender and conceptual inventories see Madsen,
McKagan, and Sayre [19].

B. Factor analysis

Extensive work on the factor structure of PER concep-
tual instruments has been performed; however, the majority
of this work has investigated the FCI [7,20-25] and the
Force and Motion Conceptual Evaluation (FMCE) [26,27].

Beyond the initial factor analysis conducted by Maloney
et al. [1] when constructing the CSEM, additional work
exploring the factor structure of the instrument has not been
reported. The factor structure found by Maloney et al. was
determined using principle component analysis and found
an optimal 11-factor model of the instrument. This model
was discarded as containing too many factors with too little
variance explained by each. The 11-factor model structure
was not reported.

The majority of the factor analyses have been performed
on the FCI and have used exploratory methods [exploratory
factor analysis (EFA)]. The EFA studies failed to establish
a single structure of the instrument and resulted in factor
models with 5 factors [23], 6 factors [25], and 9 factors
model [7]. An early model produced by Huffman and
Heller with a very conservative factor selection criteria
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identified only 1 factor [20]. There were some similarities
between the 5, 6, and 9 factor models but they were not
identical. Further, examination of the individual factors
showed that many did not make theoretical sense, mixing
items testing very different physical concepts. Stewart et al.
[7] demonstrated that much of the identified structure was
not grounded in physical principles, but instead was due to
question blocking or repetition of a few very similar items.

Ramlo explored the factor structure of the FMCE and
found 3 factors for the post-test [27]. In this study, items
involving similar conceptual topics largely loaded onto the
same factor.

C. Item Response Theory

Many studies have employed Item Response Theory
(IRT) to probe individual item performance on PER
conceptual inventories; however, again, the majority of
this research has focused on the FCI. Multiple unidimen-
sional IRT models have been published [28,29] and find
the FCI has generally excellent properties unlike some
other published instruments in engineering education
[12]. Unidimensional IRT models a student’s facility with
the material with a single ability parameter; MIRT uses
multiple ability parameters. Unidimensional models have
also been used to investigate gender fairness in the FCI
and multiple items have been identified as unfair with
the majority unfair to women [30,31]. A similar analysis
showed that few CSEM items are substantially unfair to
either men or women [32]. IRT has also been used to
produce modified versions of the FCI to reduce testing
time [33]. MIRT, as will be employed in this study, has
been used as an alternate method of performing factor
analysis on the FCI [7,24] producing similar but not
identical results to traditional EFA.

IRT has also been used to examine physics problems not
part of PER conceptual inventories. Changes in student
understanding of physics in online learning environments
[34] and how different patterns of feedback affect under-
standing have been explored.

D. The structure of knowledge

Experts tend to categorize conceptual problems in a more
deliberate way than novices, focusing on the hierarchical
structure of the knowledge starting with the most funda-
mental principles and branching out from there to the less
fundamental principles [35-39]. This more efficient way of
organizing understanding allows experts to more expedi-
ently solve physics problems from first principles [40—42].
Conversely, novices tend to focus more on the surface
features of the problem and their solutions often lack the
same deliberate structure of experts [35,36].

Multiple theoretical frameworks have been advanced to
understand the differences in expert-novice problem solving.
One model of student knowledge proposes that students
categorize knowledge into “ontological categories.” This
provides an explanation of the prevalence of commonly

held misconceptions where students miscategorized their
knowledge, storing it in overly broad categories [43—45].
Another model proposes “knowledge in pieces” where
knowledge lies not in broad principles, but in granular facts
that are activated as needed to solve problems [46—48].

Research has shown that novice problem solutions are
strongly context dependent and rely on how the current
problem relates to previous problems that the student has
solved [49-51]. This context sensitivity of problem solving
suggests that it may be appropriate to treat novice problem
solving as composed of granular knowledge pieces instead
of the broad knowledge structures probed by factor analysis
or cluster analysis.

The current work produced a fine-grained model of the
information needed to solve CSEM problems. A similar
model was created for the FCI by Stewart et al. [7]; these
models are similar to those produced by research into
complex problem solving by Simon and Newell [52]. Their
research paradigm dominated problem-solving research for
three decades and is summarized by Ohlsson [53]. Simon
and Newell constructed models that replicated the human
problem-solving sequence. This sequence was identified
by examination of think-aloud transcripts. The models were
sufficiently detailed that they could be converted to computer
code and executed to reproduce the sequence of steps taken
by the human solver. This method was productive in the
understanding of problem solving in kinematics and dynam-
ics and many other subjects [54,55]. In a related effort, Reif
and Heller created a detailed model of problem solving in
mechanics [40]. While not computationally executable, their
model was intended to be a prescription of expert problem
solving in mechanics.

The model we will construct for the CSEM has a similar
structure to the computational models of Larkin et al. [55]
and the model of Reif and Heller [40].

E. Research questions

This study seeks to answer the following research

questions:

RQ1: What is the optimal model of student knowledge
measured by the CSEM? Are the principles forming
the optimal model consistent across samples?

RQ2: Are the parameters of the optimal models con-
sistent between samples?

II. METHODS

A. Conceptual Survey of Electricity and Magnetism

The CSEM is a 32-question conceptual instrument
designed to measure student understanding of electricity
and magnetism. This instrument covers concepts often
found in introductory electricity and magnetism courses
such as the Coulomb force law, electric and magnetic fields,
induction, and electric potential [1]. The CSEM was
originally developed by Maloney et al. by combining
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the concepts from two prior surveys from Hiegeelke and
O’Kuma, which probe understanding of electricity and
magnetism separately [56]. These two surveys were com-
bined after many iterations and the resulting version of the
CSEM can be found at PhysPort [57]. A complete list of the
concepts the CSEM was designed to measure can be found
in Maloney et al. [1].

B. Sample

This study will examine two samples drawn from
different institutions in the United States.

Sample 1: Sample 1 was drawn from 14 semesters of
calculus-based introductory electricity and magnetism
courses at a large southern land-grant university serving
approximately 25000 students. The undergraduate popu-
lation had ACT scores ranging from 23 to 29 (25th to
75th percentile) [58]. The institution held a Carnegie
Classification of “Highest Research Activity” for all
semesters studied [59]. The overall undergraduate demo-
graphics were 77% White, 8% Hispanic, 5% African
American, 2% Asian with other groups each 3% or less.
The sample was primarily male (77%) [58].

For the entire study, the course was comprised of two
50-min lectures per week with an additional two 2-h
weekly laboratories. The CSEM was given as a laboratory
quiz pre- and postinstruction with the student’s scores
counting toward the course grade. The course was taught
and overseen by the same instructor for each of the 14
semesters included in this study. The aggregate dataset
contains 2014 students who completed the course for a
grade and received credit for the CSEM pretest and post-
test. The dataset were also analyzed by Henderson et al.
[32] to explore gender fairness.

Sample 2: Sample 2 was drawn from 13 semesters of
calculus-based introductory electricity and magnetism
courses at a large eastern land-grant university serving
approximately 30000 students. The undergraduate popu-
lation had ACT scores ranging from 21 to 26 (25th to 75th
percentile) [58]. The institution was first rated as highest
research activity a year prior to the completion of data
collection [59]. The overall undergraduate demographics
were 79% White, 8% Hispanic, 6% International, 5%
African American, 4% Hispanic, 2% Asian with other groups
each 4% or less. The sample was primarily male (81%) [58].

Unlike sample 1, the instructional environment for sample
2 was variable. For the first 4 years of the study, the course
was taught by 6 separate instructors with standings ranging
from full professor to late career graduate student. For this
period, the course was comprised of four 50-min lectures and
a single 2-h laboratory each week. A learning assistant (LA)
program was implemented to improve conceptual learning
[60]. Undergraduate students, LLAs, who had previously
completed the course were hired to work as helper instruc-
tors. The first hour of lab was dedicated to students working
on the University of Washington Tutorials in Introductory

Physics [61] with the LA serving as the lead lab instructor
with the assistance of a graduate teaching assistant (TA).
For second half of the laboratory, students performed tradi-
tional lab experiments under the instruction of the TA. LAs
were required to attend a course in science teaching from
an expert from the College of Education and were overseen
and further trained by an experienced physics instructor.
Once the LA program was discontinued at the end of its
funding in 2015, the course was modified to a different
structure with three 50-min lectures per week with one 3-h
weekly lab. After 2015, all courses were team taught by a pair
of experienced instructors. The CSEM grading policy was set
by the individual instructors. The aggregated dataset contains
2657 students who completed the course for a grade and
completed CSEM pretest and CSEM post-test. This dataset
was also analyzed by Henderson et al. [32].

As with any analysis, it is preferable to have a stable
research environment. Theoretically, IRT should be “sample
independent” and return the same results regardless of
population; however, this assumes all populations receive
relatively consistent coverage of the material so that the
ordering of items by the IRT difficulty parameter is con-
sistent for all students. The variability in sample 2 means this
assumption is unlikely to hold for this sample and we find
that the difficulty parameters are indeed different between
samples. It is also likely that this variability influenced the
standard deviations of the parameters in sample 2.

C. Unidimensional Item Response Theory

Unidimensional IRT uses a logistic function to model
the effect of a single latent trait called “ability” on the
probability of a student successfully answering an item
[62]. The simplest form of IRT is called the Rasch model
where the probability z;; of a student i correctly answering
an item j is given as a function of the latent trait ; and the
item difficulty b;. The Rasch model is often extended by
the addition of a discrimination a; for each item to form
the two parameter logistic (2PL) model:

o - =XPla;(0;i—b))]
Y 1+ expla;(0; - b))

(1)

The Rasch model is the 2PL. model with the discrimination
constrained to one, a; = 1. This model can be further
extended to the 3PL model, which includes a parameter for
random guessing. The 3PL model has also been used to
understand the properties of the FCI [28].

D. Multidimensional Item Response Theory

Unidimensional IRT uses a single ability trait; however,
conceptual inventories like the CSEM are designed to
probe multiple topics such as electric fields, magnetic force,
and induction. MIRT extends the IRT model to include
multiple latent ability traits. If k latent traits are to be

020107-4



MULTIDIMENSIONAL ITEM RESPONSE THEORY ...

PHYS. REV. PHYS. EDUC. RES. 15, 020107 (2019)

modeled, then student i’s ability becomes the kK component
vector @;. Each item has k discrimination parameters given
by the vector a;. MIRT models can be constructed in two
forms: compensatory and noncompensatory. The compen-
satory form of MIRT assumes that the solution does not
depend on the latent traits independently and that a
deficiency in one trait can be compensated for by a strength
in one of the other traits. The compensatory MIRT model is

o expla; - 0; +d;]
v 1 +eXp[aj '01' +dj] ’

(2)

where d; is related to the difficulty of the item and is
assumed to be the same for each of the latent traits. In the
2PL model, dj = —ajb It Conversely, the noncompensa-
tory model limits the degree to which one latent ability
can compensate for the lack of another. This model
does not assume the same difficulty for each item and
provides an independent difficulty for each latent trait.
Noncompensatory models require a doubling of the
parameters estimated and, in our analysis, these models
failed to converge.

E. Model fit statistics

IRT uses maximum likelihood (ML) estimation tech-
niques to determine model parameters. The model is used
to calculate the likelihood function L representing the
probability that a specific observation occurred given the
model. ML techniques iteratively search the parameter
space for the values of the parameters which maximize L.
To determine if ML models fit the data well, several
statistics have been developed and should be used in
conjunction to evaluate models [63]. This paper will report
the Akaike information criterion (AIC), the Bayesian
information criterion (BIC), the root mean square error
of approximation (RMSEA), the comparative fit index
(CFI), and the Tucker-Lewis index (TLI).

Both AIC and BIC measure the relative information lost
when using the model in comparison to the “true” model
and correct for overfitting as additional parameters are
added to a model [64,65]. Smaller AIC or BIC represent
better fitting models. The definition of AIC [Eq. (3)] and
BIC [Eq. (4)] follows:

AIC =2k —2In(L), (3)
BIC = klIn(n) — 21n(L). 4)

where n is the sample size and k is the number of
parameters estimated. When interpreting AIC differences,
Burnham and Anderson [64] recommend a difference of
greater than 2 as significant and the model with signifi-
cantly lower AIC should be selected. BIC follows a similar
rule with Raftery defining differences of ABIC <2 as
“weak,” 2 < ABIC <6 as “positive,” 6 < ABIC <10

as “strong,” and ABIC > 10 as “very strong” [66]. Both
methods penalize the additions of parameters with BIC
doing so more strongly and representing a more conservative
estimate. Because of the similarity of the two measures,
we will adopt Raftery’s convention for both AIC and BIC.
The likelihood L is the probability that the measured data
were observed given the MIRT probability model. For most
multiple parameter models with a large sample, this prob-
ability is very small. AIC and BIC primarily depending
—21In(L), which tends to be large because L is very small.
As such, changes in AIC and BIC represent exponential
changes in the probability of the observed data being
represented by the model. If the sample size and number
of parameters is constant, then a reduction of AIC or BIC
by 10, AAIC = —10 or ABIC = —10, means that the lower
AIC or BIC model is e3> = 148 times more likely.

The root mean square error of approximation is a badness-
of-fit statistic with values ranging from O to 1. Interpretation
of the RMSEA relies on an analysis of the 90% confidence
intervals (CI) of the statistic. When using the RMSEA, three
hypotheses are tested. The first is the exact fit hypothesis Hy:
RMSEA = 0, which is rejected if the lower bound of the CI
includes zero. The second is the “not-close-fit” hypothesis
Hy: RMSEA > 0.05, which is rejected if the upper bound
of the CI is < 0.05, thus indicating a close fitting model.
Finally the “poor-fit” hypothesis Hy: RMSEA > 0.10 is
rejected if the upper bound on the CI is less than 0.10 [67].
The statistical software used in this analysis reports the more
common 95% confidence interval; we will use this more
conservative test in our analysis.

The final two fit statistics reported are closely related: the
CFI and TLI. These quantities are incremental-fit-index
goodness-of-fit statistics which measure the departure of
the tested model from the null model assuming independ-
ence, that all parameters are uncorrelated. There exists
some debate as to the appropriate cutoff values for good
fit using the CFI and TLI with Kline [67] recommending
0.90 as the minimum for acceptable model fit while others
[63,68] recommend that a CFI or TLI of 0.97 or greater
represents a good fit relative to the independence model
and 0.95 or greater is an acceptable fit. We will use the
more conservative and more common 0.95 cutoff for good
model fit.

F. Additional analyses

Bootstrapped means and standard deviations were calcu-
lated for the MIRT parameters a; and d;. Bootstrapping
generates many subsamples of the data with replacement and
runs the desired statistical test on each subsample to generate
a normal distribution of fit parameters from which the mean
value is calculated. For this work, 100 subsamples were
generated requiring one week on a modern personal com-
puter. All analyses were carried out using the “R” program-
ming language [69]. MIRT analysis and fit statistics were
generated using the “mirt” package [70]. The bootstraps
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were run using the “boot” package [71,72]. Visualizations of
the correlation matrix presented in the Supplemental Material
[10] were produced with the “qgraph” package [73].

G. Supplemental material

See the Supplemental Material [10] for exploratory
MIRT factor analysis of the CSEM and the ability corre-
lation matrices for the optimal models presented in
Table IV. An extension of this table with the standard
errors for all parameters is also presented.

III. RESULTS

A theoretical model of the CSEM expert solution structure
was constructed and tested using MIRT as a confirmatory
analysis. This model was then transformed with theoretically
justifiable modifications until a best fitting model was found.

Sample 1 contained N; = 2014 subjects with an aver-
age CSEM post-test percentile score of 63.7%. Sample 2
contained N; = 2657 subjects with an average CSEM
post-test percentile score of 44.7%.

A. Exploratory and confirmatory MIRT

MIRT can be used as both an exploratory and confirma-
tory method. For exploratory analysis, the discrimination
matrix @ is not constrained and each element may take on
any value. For each item j, a; is a vector of length k forming
a matrix with elements a ;. Each column in this matrix a;
represents a “factor.” The number of factors in the model is
incrementally increased. Successive models are compared
using fit statistics to identify the optimal number of factors.
An exploratory analysis of the CSEM is presented in the
Supplemental Materials [10]. A confirmatory analysis
begins with the selection of a theoretical model; the model
for this work is described in the next section. The model
identifies a small number of concepts covered by each
CSEM item. Each concept is associated with a column &
in a. If item j is not associated with concept k in the
theoretical model, the discrimination is constrained to be
zero, aj = 0, for the item. The constrained model is then
fit to the data and model fit statistics are examined. If fit
is acceptable, a small number of related models are then
explored to determine the optimal model. The set of models
to be investigated is outlined in a model transformation plan
before fitting the initial model.

B. Theoretical framework

A theoretical model of the knowledge structure measured
by the CSEM was developed using multiple expert sol-
utions of the instrument applying the same methods as
Stewart et al. [7]. Instructors in the classes studied and
members of the research team were asked to provide
detailed solutions to the CSEM. These solutions were
decomposed to the sentence level. Sentences expressing
the same physical reasoning were grouped together and a

general statement of that reasoning, called a principle, was
constructed. Table I presents the list of principles identified.
Each principle was classified as a law (L) representing
important physical laws such as Newton’s 2nd law, as a
definition (DF) introducing an important new quantity, or
as a fact (F) representing knowledge about the universe that
did not rise to the level of a law. From these fundamental
pieces of information, corollaries (C) were derived as
important secondary results. The expert solutions contained
a number of qualitative statements that interpreted the laws,
definitions, and corollaries; these were called lemmas
(LM). Table I shows the classification of the principles
into laws, definitions, facts, corollaries, and lemmas as well
as the higher order principle from which a lower order
principle was derived. As was found for the FCI, expert
solutions did not contain all the higher order principles
from which the lemmas and corollaries were derived; these
higher order principles were inferred and added to the
model. Table I also presents the CSEM items requiring each
principle for their solution.

The theoretical model in Table I differs from the models of
Planinic [13] and Maloney et al. [1] because it is grounded in
the reasoning found in expert solutions. A course-grained
model related to that of Planinic [13] is presented, but has
substantially worse model fit than the model described
above.

This process was substantially less straightforward for
the CSEM than for the FCI. There were two sets of
principles that could not be distinguished by the items in
the instrument because they all loaded on the same items.
A principle will be said to “load” on an item if it is required
for the solution of the item following the terminology of
factor analysis. The principles ‘“charge is conserved” and
“charge does not rapidly escape to the environment” both
were used only in items 1 and 2 and are labeled L3.
Faraday’s law and the definition of magnetic flux both
loaded on items 29, 30, and 32 and are labeled LS.
Corollaries C3 and C4, involving the behavior of con-
ductors, were coded as single principles, but could be
derived from a number of other principles not independ-
ently tested within the instrument. As such, they were left
without a derivation because their structure could not be
further resolved by the instrument. There were insufficient
items in the instrument to separate the addition of electric
and magnetic fields (L9), so these were combined. The
instrument is ambiguous about the items involving the
magnetic fields of currents (23, 24, 26, 28, and 30). While
some items are represented as three-dimensional wires
(24, 30), some are simply shown as current into or out
of the page. The expert solutions all addressed these
problems using the field of an infinite straight wire and
the form of the right-hand rule for this system (grab wire with
right hand, fingers curl in the direction of the field). Both the
field of the wire and the right-hand rule are derived from
the more general Biot-Savart law (L6) and the right-hand
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TABLE L

Theoretical model of electricity and magnetism as tested by the CSEM. The optimal model column indicates the samples for
which the principle was included in the optimal model; M 1-6 for sample 1 and M2-6 for sample 2. For items with two possible solution
paths, the item number is followed by parentheses which enclose the solution path number.

Optimal
Label model Derived from CSEM No. Principle
Mechanics
DF1 1,2 6,8,9 (1) The net force is the vector sum of the forces (forces add as vectors).
L1 1,2 10, 31 Newton’s 2nd law.
L2 1,2 7(1), 24 Newton’s 3rd law.
Cl Objects moving in a curved trajectory will experience centripetal
acceleration.
C2 1,2 Cl1, L1 22 If a particle is turning in some direction, there is a force in
that direction.
Electrostatics
L3 1,2 1,2 Charge is conserved.
Charge does not rapidly escape to the environment.
F1 1,2 2 Charge cannot move through an insulator.
C3 1,2 13, 14 A conductor shields its interior from the electric field and force.
C4 1,2 1 Charge spreads out over the outer surface of a conductor.
L4 1,2 3,7Q2) Coulomb’s law for the electric force (1?7 = qu‘%?).
L5 1,2 Coulomb’s law for the electric field (E = ];—3?).
LM1 L4 6,7,8,9(), 14 Opposite charges attract and likes repel.
DF2 1,2 9(1), 10, 12, 15, 19, 20  Definition of electric field (F = gE).
DF3 1,2 15 The electric field is tangent to electric field lines.
LM2 1,2 L5 9(2) Electric fields point away from positive charge.
Electric potential
DF4 1 Definition of electric potential (AV = % = - f Edx).
LM3 2 DF4 16 The electric potential contains an arbitrary constant.
LM4 2 DF4 17 Relation of work and electric potential (W, = gAV).
C6 1,2 DF4 18, 20 Relation of electric potential and field (E = —%56).
LM5 2 DF4 11, 19, 20 Electric field points to lower potential.
Magnetostatics B
L6 1,2 23,24 (2), 26, 28,30  Biot-Savart law (dB = {1457,
L7 1,2 22,24 (2), 25, 31 Lorentz force (F = g# x B or dF = Id? x B).
LM6 L7 21, 27 The magnetic force on a stationary charge is zero.
LM7 1,2 L6, L7, DF5 24(1) Like currents attract and opposites repel.
F2 1,2 29 The magnetic field of a permanent magnet weakens with distance.
DF5 1,2 22, 23, 24 (2), 26, 28,  Right-hand rule for cross products.
30, 31
DF6 1,2 25 Magnitude of the cross product (|A x B| = |A||B| sin6).
Induction
Faraday’s law (emf = —4®),
L8 1.2 29, 30, 32 Definition of magnetic ﬂlf)tc (@ = [ B - AdA).
Superposition
L9 1,2 9(2), 23, 28 Electric and magnetic fields add as vectors.

rule for the cross product (DF5). There were no items that
made the distinction between the infinite wire field and the
field of an infinitesimal current element, so the field of the
wire was combined with the Biot-Savart law and the right-
hand rule for a wire with the right-hand rule for the cross
product.

Two equally likely solution paths were identified for
three of the items: 7, 9, and 24. Both solution paths were

added to Table I and will be explored with MIRT. For these
items, the solution path number (1 or 2) was placed in
parenthesis next to the item number. For example, 7(2) in
row L4 means principle L4 is used in the second solution
path for item 7. If a principle was used in both solution
paths, the parentheses were dropped.

While many physics questions have multiple solution
paths and one goal of physics instruction is for students to
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see physics as a set of linked concepts, items with multiple
solution paths in an assessment instrument make it difficult
to determine what the instrument actually measures.
To resolve what an item with multiple common solution
paths actually measures, multiple related items as required
probing the same concepts in different ways. MIRT allowed
the exploration of the multiple solution paths and the
determination of the path measured by the instrument if
the principles in each path are sufficiently probed elsewhere
in the instrument.

Previous work on the FCI [7] showed that placing
problems in a group sharing a common stem could generate
correlations between the items which were not grounded in
the student’s understanding of the items. Their work
removed all but first item of each problem group. The
CSEM contains three problem groups: items 3, 4, and 5;
items 10 and 11; and items 17, 18, and 19. Each problem
group was examined to determine if spurious correlations
were likely. Items 4 and 5 both depend on the answer to
item 3 and cannot be treated independently. Items 4 and 5
were removed from the analysis. Item 11 depends on the
answer to item 10 and was also removed. Items 17, 18, and
19 can be answered relatively independently and were
retained.

Several additional items were removed from the first
stage of the analysis and only analyzed after an initial
optimal model was constructed: items 9, 14, 31, and 32.
Item 9 was the only item directly testing Coulomb’s law for
the electric field (LS5). The item could also be solved using
Coulomb’s law for the electric force (L4) and the relation of
force and field (F = ¢gFE) (DF2). Many items probe these
two principles. As such, first models were constructed to
determine the correct structure of the electric force prin-
ciples. Once this model was determined, the two solution
paths for item 9 were then investigated. Individual experts
produced multiple solution paths for items 14, 31, and 32.
Some of these solutions required multiple principles not
measured by other items in the CSEM. As such, items 14,
31, and 32 were not included in the initial analysis. We will
call these items “reserved” items. They were analyzed after
the optimal model was constructed by adding a separate
“unknown” principle which captured any additional rea-
soning needed to solve the item.

The principles in Table I will be mapped using MIRT
onto a set of latent traits ;; representing the ability of each
student i to apply principle k.

C. Model transformation plan

Confirmatory analyses first fit the most complete theo-
retical model for a system of data and then carry out a small
number of theoretically motivated transformations of the
model to potentially improve model fit. Following this
methodology, the most complete theoretical model (Table I)
of the CSEM was fit first. The expert solutions to the
CSEM identified two solution paths to items 7 and 24;

these alternate solutions were then explored and compared
to the most complete model. The first solution path,
indicated by the number in parentheses in Table I, was
fit as part of the initial model. The second solution path for
items 7 and 24 was then fit and the best model selected for
each. To test an alternate solution path, the MIRT parameter
matrix is changed, constraining the parameters of the first
solution path to be zero and allowing the parameters related
to the alternate solution path to be nonzero.

One of the fundamental questions about the structure of
student knowledge is how granular or fine grained the
knowledge is. This can be tested by determining if the
lemmas (LM) in Table I improve the model or if the model
improves if the lemmas are eliminated. When a principle,
such as a lemma, is removed from the model, the latent trait
0, representing that principle is no longer used in the
model. Removing a principle does not change the number
of items in the CSEM being modeled. For the next
sequence of transformations, lemmas were removed from
the model by replacing them with the higher level principle
from which they were derived. This was performed in three
stages. First, L5 (Coulomb’s force law) was combined with
LMI1 (opposites attract and likes repel). All items loading
on either LM1 or L5 were set to load on L5. Second,
lemmas involving electric potential (LM3, LM4, and LM5)
were collapsed to the principle from which they were
derived, DF4 (the definition of electric potential). Third,
LMG6 (the magnetic force on a stationary charge is zero) was
combined with L7 (the Lorentz force law). Each of these
was tested in turn; the order was arbitrary and could be
rearranged with no effect on the results.

Finally, a model using only the general categories
(mechanics, electrostatics, electric potential, magnetostatics,
induction, and superposition) from Table I was tested. This
represented a collection of principles within general topics
and was the model most closely related to previous work on
evaluating the structure of the CSEM [1,13].

D. Constrained MIRT

The complete model presented in Table I eliminating
blocked items 4, 5, and 11 and “reserved” items 9, 14, 31,
and 32, which will be explored later, was fit to each sample.
For items 7 and 24, where multiple likely solution paths
were identified, the first solution path was used in this
initial model. The model was fit by constraining the MIRT
discrimination matrix a; so that discrimination parameters
that did not conform to the model were zero. For example,
the discrimination parameter associated with conservation
of charge (L3) was constrained to be zero, a;3 = 0, except
foritems 1 and 2 (see Table I). Following Stewart et al., one
discrimination parameter a, was allowed to load on all
items. This parameter is associated with a general ability 0,
to solve conceptual electricity and magnetism questions.
The a;4, parameters then capture the additional discrimi-
nation of the item for an individual principle j. The initial
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TABLE II.  Sample 1 model transformation. Differences in AIC and BIC determine whether the models are statistically different; CFI,
TLI, and RMSEA indicate the quality of fit for each model.

Transformed Original

model Transformation model AIC BIC CFI  TLI RMSEA Superior
Mil-1 54,941 55,485 0.964 0.953 0.025(0.022,0.028)

MI1-2 Solution path 2 to item 7. Ml1-1 54,941 55,485 0.964 0.953 0.025(0.022,0.028) MI1-1
M1-3 Solution path 2 to item 24. Ml1-1 54,928 55,484 0.967 0.956 0.024(0.021,0.027) MI1-3
M1-4 Combine LM1 with L4. Ml1-1 54914 55458 0.969 0.959 0.023(0.020,0.026) M1-4
MI1-5 Combine LM3, LM4, LM5 with DF4. MI1-4 54,893 55,437 0.970 0.960 0.023(0.020,0.026) M1-5
M1-6 Combine LM6 with L7. Ml1-5 54,860 55,404 0.975 0.967 0.021(0.018,0.024) M1-6
M1-7 Collapse to general categories. M1-6 54,969 55434 0.948 0.936 0.029(0.027,0.032) M1-6

theoretical model was fit to both samples producing models
MI1-1 and M2-1 where the first number is the sample
number and the second number is the model number.
The results of fitting this model for sample 1 are shown in
Table II and sample 2 in Table III. The models are
referenced to the transformed model column in the tables.
For both samples, the models had good fit indices: CFI
> 0.96, TLI > 0.95, and RMSEA < 0.3.

A sequence of more parsimonious models was then fit
where transformations proceeded according to the model
transformation plan in Sec. III C. The first transformed
models, M1-2 and M2-2, investigated an alternate solution
to item 7 as indicated by the 7(2) notation in Table I, where
the 2 represents the solution path number. The original
model was fit with 7(1) constraints. Item 7 asks for the
magnitude and direction of the forces on unequal point
charges. Solution path 1 used opposites attract and likes
repel (LM1) and Newton’s 3rd law (L2). The second
solution path also used opposites attract and likes repel
but applied Coulomb’s force law (L4) to obtain the
magnitude. In sample 1, there was no difference in the
fit of the two solution paths. In sample 2, the model fit was
significantly worse for the second solution with an increase
in both AIC and BIC of 63, a very strong change using
Raftery’s classification [66]. As such, the model with the
first solution path was retained in both cases. Students solve
item 7 using the opposites attract and likes repel (LM1) and
Newton’s 3rd law (L2) rather than applying Coulomb’s law
to obtain the magnitude. Tables II and III show the fit

parameters for the transformed model, the model from
which it was transformed and is being compared (original
model), and which of the models was retained (supe-
rior model).

Models M1-3 and M2-3 investigated an alternate sol-
ution path to item 24. The first solution path, used in the
initial model, solved the item by applying like currents
attract and opposites repel (LM7) and Newton’s 3rd law
(L2). The second solution path began with first principles
from the Biot-Savart law (L.6) and applied the Lorentz
force law (L7) using the right-hand rule for the cross
product (DF5) to find the direction. Newton’s 3rd law (L2)
was again applied to find the second force. Solution
path 2 showed a significant improvement in AIC of 13
for sample 1, a very strong change, but no significant
change in BIC. For sample 2, the second solution path was
significantly worse with AIC increasing by 49 and BIC by
61, both very strong changes. With only the change in AIC
in sample 1 supporting solution path 2 and much stronger
changes in sample 2 supporting path 1, path 1 was retained
for all future models. As such, students solve item 24 by
applying like currents attract and opposites repel (LM7)
rather than the more fundamental Biot-Savart law.

Models M1-4 and M2-4 through M1-6 and M2-6 test
whether condensing some of the lemmas into broader
principles, laws, and definitions improves model fit.
Models M1-4 and M2-4 replace opposites attract and likes
repel (LM1) with Coulomb’s force law (L4) from which it
is derived. This significantly improved model fit over M 1-1

TABLEIII. Sample 2 model transformation. Differences in AIC and BIC determine whether the models are statistically different; CFI,
TLI, and RMSEA indicate the quality of fit for each model.

Transformed Original

model Transformation model AIC BIC CFI TLI RMSEA Superior
M2-1 77,330 77,901 0.983 0.978 0.021(0.019,0.024)

M2-2 Solution path 2 to item 7. M2-1 77,393 77,964 0.980 0.970 0.023(0.021,0.026) M2-1
M2-3 Solution path 2 to item 24. M2-1 77,379 77,962 0978 0970 0.025(0.022,0.027) M2-1
M2-4 Combine LM1 with L4. M2-1 77,282 77,853 0.983 0.978 0.021(0.019,0.024) M2-4
M2-5 Combine LM3, LM4, LM5 with DF4. M2-4 77,308 77,879 0.984 0.980 0.021(0.018,0.023) M2-4
M2-6 Combine LM6 with L7. M2-4 77,265 77,835 0.984 0.980 0.020(0.018,0.023) M2-6
M2-7 Collapse to general categories. M2-6 77,315 77,803 0.975 0.969 0.025(0.023,0.028) M2-6
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in sample 1 with AIC and BIC decreasing by 27, both very
strong changes. In sample 2, model fit was also improved
when compared to the model M2-1 with AIC decreasing
by 48 and BIC by 48, both very strong changes. As such,
transformed models M1-4 and M2-4 were retained as the
superior models. This change also served to collapse the
two solution paths for item 7 into one path. As such,
students understanding of the electric force was less
granular than initially represented in the theoretical model.

The next models, M1-5 and M2-5, combined several
principles of electric potential (LM3, LM4, LMS5) into the
definition of electric potential (DF4) from which they were
derived while retaining the changes made in models M1-4
and M2-4. This model was a significant improvement over
model M1-4 in sample 1 with AIC and BIC decreasing by
21, both very strong changes. However, in sample 2, model
M2-5 was significantly inferior to model M2-4 with AIC
and BIC increasing by 26, both very strong changes. As
such, model M1-5 was retaining for sample 1 as the
superior model, but not for sample 2. This marked the
first substantial deviation between the two datasets. For
sample 1, students had a more integrated understanding of
potential allowing the combination of LM3 (potential
contains an arbitrary constant), LM4 (the relation of work
and potential), and LMS5 (electric field points to lower
potential) into a single definition of potential (DF4).
Students in sample 2 had differing reasoning abilities on
these lemmas.

Models M1-6 and M2-6 combined the principle that the
magnetic force on a stationary charge is zero (LM6) with
the principle from which it is derived, the Lorentz force law
for magnetic fields (L7). This change significantly improved
model fit for model M1-5 in sample 1 with AIC decreasing
by 33 and BIC by 33, both very strong changes. In sample 2,
model M2-6, which made the same modifications to model
M2-4, significantly improved model fit with AIC decreasing
by 17 and BIC by 18, both very strong changes. As such,
models M1-6 and M2-6 were retained as the superior models.
The reasoning of students in both samples about stationary
magnetic force was not differentiated from reasoning about
nonzero magnetic force.

Models M1-6 and M2-6 represent the most parsimonious
models which the authors felt could be theoretically
justified. Many studies have sought to produce even more
general models of the FCI and the FMCE through explor-
atory methods such as factor analysis as described in the
introduction. These methods model the internal structure of
an instrument through a small number of factors thought to
represent subsets of the instrument that are conceptually
similar. To test whether this was the correct way to model
the CSEM, models M1-7 and M2-7 condensed models
M1-6 and M2-6 to the bolded general categories in Table I
(mechanics, electrostatics, electric potential, magneto-
statics, induction, and superposition). Model M1-7 had
significantly poorer fit than model M1-6 with an increase

in AIC of 109 and BIC of 30, both very strong changes.
Therefore, model 1-6 represents the optimal model of
student knowledge for sample 1. Model M2-7 made a
similar transformation to model M2-6; the model fit indices
to this transformation were mixed. AIC increased by 50,
but BIC decreased by 32, both very strong changes;
however, CFI, TLI, and RMSEA all support the choice
of model M2-6 as the optimal model for sample 2. For both
samples, the theoretical model grounded in specific prin-
ciples of physics was superior to a model using broad
general topics.

The sequence of models used progressively fewer
parameters; model fit usually increases with the addition
of parameters. AIC and BIC both penalize the addition of
parameters to correct for overfitting. BIC penalizes addi-
tional parameters more strongly than AIC.

E. Analysis of optimal models

The full optimal models for sample 1, model M1-6, and
sample 2, M2-6, are shown in Table V. Each item is reported
with the individual principles required for its solution. The
number in parenthesis is the discrimination, a , of item j on
principle k. The means of the discriminations were calculated
by bootstrapping with 100 subsamples. The standard error
of the mean was also calculated by bootstrapping and is
presented in the Supplemental Material [10]. The principle
discrimination aj, represents how well the item j discrim-
inates between high and low ability students above the
discrimination a;, of the item on a general facility with
conceptual electricity and magnetism. Table IV also reports
the results of a 7 test for each discrimination as a superscript to
determine if the discrimination parameter is significantly
different from zero. A Bonferroni correction has been applied
to adjust for the number of statistical tests performed.
The table also reports d;, the overall difficulty of the item.

The optimal models for sample 1 and sample 2 differ
slightly because of the way electric potential was modeled.
For sample 1, only DF4 was included (model M1-5), but
in sample 2 DF4 was expanded into lemmas LM3, LM4,
and LM5 (model M2-4). These differences were retained
as optimal models M1-6 and M2-6 were constructed.
To determine how similar the models are, a single model
must be selected. Because model M 1-6 is the more parsimo-
nious, it was selected for comparisons between the two
samples. This model was fit to sample 2 and bootstrapping
was repeated. A comparison of the fits of this model for
the two samples is shown in Table V where the mean fit
values for sample 2 have been subtracted from those obtained
from the fit of sample 1 to form Aaj and Ad;. The
significance of the differences between the parameters
was calculated with ¢ tests with a Bonferroni correction.
Significance values are reported as superscripts. The differ-
ence in overall discrimination, Aa ), and difficulty, Ad;, is
statistically significant (ps < 0.001) for the majority of the
items. Many of the principle discriminations aj; were not
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TABLE IV. Optimal MIRT model for samples 1 and 2. The first column shows the CSEM item number (No.). Not all CSEM items
were modeled. The number in parenthesis is the discrimination a ;. for principle k of item j. aj is the discrimination for a factor loaded
on all items and d; is related to the overall difficulty of the item. Both parameters are also rank ordered from smallest to largest.
The significance of a ¢ test with Bonferroni correction to determine if the difficulty and discrimination are different from zero is reported
as a superscript. A superscript of “a” represents the corrected equivalent of p < 0.05, “b” p < 0.01, and “c” p < 0.001.

Sample 2

a dj  ap 4

Principles Rank Rank

Sample 1

ajo dj ap 4
No. Principles Rank Rank
1 C4(0.16)° L3(0.48)° 0.68° 2.67° 8 12
2 F1(0.23)° L3(0.46)° 0.58° 0.98° 5 10
3 L4(0.67)° 0.81° 2.04° 12 19
6 L4(0.41)° DF1(0.08)° 1.23° 2.05° 22 20
7 L4(—0.15)° L2(0.15)° 1.25° 1.23° 23 15
8 L.4(0.26)° DF1(0.13)° 0.86° 1.15° 15 12
10 L1(0.31)° DF2(0.23)° 1.09° 0.23° 19 5
12 DF2(0.28)° 0.78° 2.66° 11 21
13 C3(0.21)° 0.94° 1.57° 18 17
15 DF2(0.07)° DF3(0.26)° 0.93° 0.72° 16 9
16 DF4(0.31)° 0.82° 0.54° 13 7
17 DF4(0.19)° 0.69° 1.36° 9 16
18 C6(1.06)° 0.40° 1.18° 3 14
19 DF2(0.13)° DF4(0.91)° 1.13° 2.80° 21 24
20 DF4(0.45)° DF2(0.02) C6(1.00)° 0.49°—0.62° 4 1
21 L7(1.03)° 0.75° 1.68° 10 18

0.38° —0.49° 1 2
1.12° 2.79° 20 23

22 C2(0.20)° L7(0.19)° DF5(0.23)°
23 L9(0.01) DF5(0.26)° L6(0.44)°

24 L2(0.13)° LM7(0.27)° 0.85°-0.15° 14 3
25 L7(0.30)° DF6(0.33)° 0.93° 0.49° 17 6
26 DF5(0.39)° L6(0.52)° 1.64° 3.71° 25 25
27 L7(0.68)° 0.67° 1.18° 7 13
28 19(0.24)° DF5(0.18)° L6(0.09)° 0.40° 0.64° 2 8
29 L.8(0.33)° F2(0.23)° 1.27°-0.10° 24 4

30  DF5(0.08)° L6(0.08)° L8(0.24)° 0.66° 1.02° 6 11

0.82° 1.38° 11 23
0.59° —0.66° 6 9
0.66° 1.58° 7 24
1.39° 0.99° 21 21
2.03°-0.05° 25 15
0.97° 0.62° 15 19
1.30°-0.50° 19 11

C4(0.22)° L3(0.47)°
F1(0.27)° L3(0.49)°
L4(0.32)°
L4(0.33)° DF1(0.18)°
L4(—0.01) L2(0.59)°
L4(0.22)° DF1(0.20)°
L1(0.25)° DF2(0.10)°

DF2(0.15)° 0.94° 1.68° 13 25
C3(0.25)° 0.81°-0.97° 10 7
DF2(0.06)° DF3(0.22)° 1.26°-0.94° 18 8
LM3(0.27)° 0.95°-1.16° 14 5
LM4(0.27)° 1.15°-0.31° 16 13
C6(0.82)° 0.30° 0.32° 2 17

1.40°-0.05° 22 14
0.55° -2.10° 4 1
0.40° —1.40° 3 4
0.02° -0.53° 1 10
1.42° 0.74° 23 20
1.35°-0.97° 20 6
1.16°-0.48° 17 12
1.69° 1.22° 24 22
0.72° —1.55° 9 3
0.56° 0.57° 5 18
0.84°-1.83° 12 2
0.68° 0.16° 8 16

DF2(0.12)° LM5(0.50)°
DF2(0.17)° C6(0.75)° LM5(0.39)¢
L7(0.61)¢
C2(0.23)° L7(0.04)° DF5(0.08)°
L9(0.21)° DF5(0.25)° L6(0.45)°
L.2(0.58)° LM7(0.31)°
L7(0.37)° DF6(0.32)°
DF5(0.25)° L6(0.45)°
L7(0.54)

L9(0.21)¢ DF5(0.07)° L6(0.08)°
L8(0.23)° F2(0.17)°
DF5(0.06)° L6(0.03)° L8(0.31)°

significantly different between the samples, suggesting that
many of CSEM items perform similarly at different institu-
tions once overall differences in ability are removed.

For sample 1, items 3, 12, 13, 16, 17, 18, 21, and 27 load
on a single principle and probe six individual concepts: L4,
DE2, C3, DF4, C6, and L7. These questions could be used
to investigate student knowledge about these concepts
independent of other principles. The remaining 19 items
load on multiple principles; however, many have a single
principle that has a discrimination at least twice as large in
absolute value as the next largest (items 1, 2, 6, 8, 15, 19,
20, 24, and 30). These items could be used to characterize
student knowledge on the high discrimination principle.

For sample 2, items 3, 12, 13, 16, 17, 18, 21, and 27 also
load on a single factor. The remaining 18 items load on
multiple principles; however, many have a single factor that
has a discrimination at least twice as large in absolute value
as the next largest (items 1, 7, 10, 15, 19, 22, 28, and 30).
These items could be used to characterize student knowl-
edge on the high discrimination principles.

F. Analysis of reserved items

Item 9 was initially withheld from the analysis because
the expert solutions provided two equally plausible solution
paths, one relying primarily on reasoning using electric
force, the other relying on reasoning using the electric field.
Only item 9 directly probed the electric field of a point
charge (LS5). As such, an optimal model for other principles
was identified before exploring item 9. Two models were
tested using the two possible solutions to item 9 as shown
in Table I. The first solution path used a positive test charge,
opposites attacts and likes repel (LM1, now L4), the vector
addition of forces (DF1), and the relation of force and field
(DF2). The second solution used that electric field points
away from positive charge (LM2) and the vector addition of
fields (L9). Solution path 1 involving electric force pro-
duced the optimal model for sample 1 with very strong
changes in AIC and BIC. Solution path 2 involving electric
field produced the superior model for sample 2 with a
positive change in AIC and a strong change in BIC. Model
fit statistics and the solution path selected for analysis in
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TABLE V. The difference in parameters between samples 1 and 2 using the optimal model for sample 1 (model
M1-6). The number in parenthesis is the difference in discrimination Aaj, for item j. Aaj is the difference in
discrimination for a principle loaded on all items and Ad; is the difference in the difficulty of the item. The standard
error of each parameter is also reported. Each difference was ¢ tested with a Bonferroni correction. A superscript of
“a” represents the corrected equivalent of p < 0.05, “b” p < 0.01, and “c” p < 0.001.

CSEM
No. Principles Aajy Ad;
1 C4(—0.06 £ 0.01)" L3(0.02 £ 0.02) —0.13+0.01° 1.28 +0.02°
2 F1(=0.10 + 0.02)° L3(=0.02 & 0.02) —-0.02 £ 0.01 1.65 +0.01°
3 L4(0.38 £ 0.02)° 0.18 +£0.01° 0.50 &+ 0.02°
6 L4(0.07 + 0.01)" DF1(—=0.11 £ 0.01)° —0.14 £ 0.01° 1.07 + 0.02°
7 L4(—0.16 £ 0.01)° L2(—0.45 4+ 0.01)° —0.77 4+ 0.02° 1.29 +0.01°
8 L4(0.05 £ 0.01)* DF1(—0.06 & 0.01) —0.10 £ 0.01° 0.56 +0.01°
10 L1(0.04 £ 0.02) DF2(0.13 £ 0.01)° —0.21 £ 0.01° 0.73 £ 0.01°
12 DF2(0.13 + 0.01)° —0.154+0.01° 0.99 + 0.02°
13 C3(0.01 £0.01) 0.15+0.01° 2.53+0.01°
15 DF2(0.02 + 0.01) DF3(0.05 + 0.02) -0.34 4+ 0.01° 1.67 +0.01°
16 DF4(0.18 + 0.01)° —0.01 £0.01 1.59 £0.01°
17 DF4(0.05 4 0.01)° -0.32 +£0.01° 1.65 4+ 0.01°
18 C6(0.22 + 0.02)° 0.10 +£0.01° 0.87 +£0.01°
19 DF4(0.60 + 0.02)° DF2(—0.05 + 0.01) —0.12 +0.02° 2.87 +£0.03°
20 DF4(0.12 + 0.01)° DF2(-0.22 + 0.01)° C6(0.25 £ 0.02)° —-0.02 £ 0.01 1.50 &+ 0.02°
21 L7(0.39 4 0.02)° 0.37 £0.01° 3.10 +0.02°
22 C2(-0.01 4 0.01) L7(0.16 4 0.01)° DF5(0.15 £ 0.01)° 0.36 +0.01° 0.03 £ 0.01°
23 L9(-0.20 + 0.01)° DF5(0.00 + 0.02) L6(0.03 4 0.02) -0.28 +£0.01° 2.07 +0.02°
24 L2(-0.46 £ 0.01)° LM7(-0.03 £ 0.02) —0.48 +£0.01° 0.83 +£0.01°
25 L7(-0.07 £ 0.01)° DF6(0.06 & 0.02) —0.23 +£0.01° 0.97 +£0.01°
26 DE5(0.11 + 0.02)° L6(0.11 + 0.02) —0.05 +£0.02 2.52 +0.04°
27 L7(0.13 £0.01)° —0.07 £ 0.01° 2.73 £0.01°
28 L.9(0.06 4 0.01)* DF5(0.11 + 0.01)° L6(0.02 + 0.01) -0.154+0.01° 0.09 +0.01°
29 L.8(0.08 & 0.01)° F2(0.04 + 0.01) 0.41 +£0.01° 1.78 £ 0.01°
30 DF5(0.00+0.01) L6(0.07 & 0.01)¢ L8(~0.07 + 0.01)° —0.03 £0.01 0.87 +£0.01°
TABLE VI. Sample 1 and 2 reserved item comparisons. Differences in AIC and BIC determine whether the
models are statistically different; CFI, TLI, and RMSEA indicate the quality of fit for each model.
CSEM Solution Superior
No. path AIC BIC CFI TLI RMSEA path
Sample 1
9 Path 1 56,675 57,247 0.973 0.965 0.022(0.020,0.025) Path 1
Path 2 56,691 57,258 0.973 0.964 0.022(0.019,0.025)
14 Path 1 57,184 57,750 0.970 0.961 0.022(0.019,0.025) Path 1
Path 2 57,188 57,760 0.971 0.962 0.022(0.019,0.025)
31 Path 1 56,925 57,492 0.967 0.957 0.024(0.021,0.027) Path 2
Path 2 56,910 57,482 0.967 0.957 0.024(0.021,0.027)
32 Path 1 57,661 58,221 0.970 0.961 0.022(0.019,0.025) Path 1
Path 2 57,680 59,246 0.970 0.961 0.022(0.020,0.025)
Sample 2
9 Path 1 80,398 80,998 0.986 0.982 0.019(0.017,0.022) Path 2
Path 2 80,393 80,988 0.986 0.982 0.019(0.017,0.022)
14 Path 1 79,457 80,051 0.987 0.983 0.018(0.015,0.020) Path 1
Path 2 79,497 80,097 0.986 0.981 0.019(0.016,0.021)
31 Path 1 79,073 79,667 0.987 0.983 0.018(0.016,0.021) Path 2
Path 2 79,044 79,644 0.985 0.981 0.019(0.017,0.022)
32 Path 1 80,703 81,291 0.985 0.981 0.019(0.017,0.022) Path 1
Path 2 80,725 81,319 0.984 0.979 0.020(0.017,0.022)
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this section are shown in Table VI. Note, AIC and BIC for
this section cannot be compared directly to values in
Tables II and III because the number of items fit have
changed.

Items 14, 31, and 32 were investigated by adding a
separate unknown principle to their model in Table I.
Expert solutions were quite varied for these items and often
contained additional principles not tested elsewhere in the
instrument. Models with this additional principle were tested
independently and compared for each item. The unknown
principle was used to capture any reasoning not already
captured by the principles included in Table I. First, the
loadings for items 14, 31, and 32 presented in Table I were
added to the already identified optimal models M1-6 and
M2-6 and model fit recalculated. These models are identified
as solution path 1. The fit of this model was then compared
to a model that added the unknown principle to one of the
reserved items, solution path 2. In both sample 1 and
sample 2, the addition of the unknown principle only
improved the model fit for item 31, implying the students
were using additional reasoning beyond L7 (Lorentz force)
and DFS5 (right-hand rule for cross products) to solve the item.

MIRT allows the estimation of the ability for each principle
for each student. Stewart et al. [7] used the correlations of
these abilities as a method to explore the degree to which
student knowledge is integrated. The correlation matrices for
the student abilities @; are presented in the Supplemental
Material [10].

IV. DISCUSSION

This study investigated two research questions; they will
be discussed in the order proposed.

RQI1: What is the optimal model of student knowledge
measured by the CSEM? Are the principles forming the
optimal model consistent across samples? The optimal
model for sample 1 required 23 principles, while the optimal
model for sample 2 required 25. The optimal models had
22 principles in common. As such, while there were some
differences between the two optimal models, in general they
were very similar despite large differences in instructional
environment and the student’s overall performance on the
CSEM.

The optimal model for sample 1 was comprised of a
model with most of the lemmas collapsed into the higher
level principles from which they were derived. Two
lemmas, LM2 and LM7, were retained in optimal model
M1-6. The collapse of LM2 into L5 could not be inves-
tigated because the CSEM did not contain other items
which employed LS. For this sample, student knowledge
of electricity and magnetism is better represented by the
general laws, definitions, facts, and corollaries defining the
topic without the additional set of qualitative principles.
This observation is consistent with a similar result found
for the FCI [7].

The optimal model for sample 2 included three addi-
tional lemmas (LM3, LM4, and LMS5) rather than the
general definition of electric potential (DF4). In all, 5 of the
original 7 lemmas were retained in optimal model M2-6.
Students in sample 2 have a less integrated understanding
of electric potential than students in sample 1, perhaps
explained by their overall weaker performance on the
CSEM. For these students, a model with detailed coverage
of the implications of the general laws better fit the student
understanding of electricity and magnetism. The under-
standing of these students is less well integrated than that of
students in sample 1.

Collapsing the optimal models further to very general
categories such as electrostatics or magnetostatics (models
M1-7 and M2-7) reduced model fit and, as such, student
knowledge of electricity and magnetism is more granular
than these broad topics.

The models of the two samples also differed for reserved
item 9; this may have resulted from the instruction provided
to students in the two samples. The lead instructor for
sample 1 reported presenting the material from the stand-
point of inserting a positive test charge; the solution path
using electric force produced the optimal model for item
9 in sample 1. Conversely, many instructors taught the
classes in sample 2 and presented the addition of electric
field in many different ways. In this case, the solution using
the principle that fields point away from positive charges
produced the superior model. This suggests that MIRT
could be used to probe differences in the effect of specific
instructional choices on student understanding.

Exploration of the rest of the reserved items (14, 31,
and 32) through the addition of an unknown principle
showed that these items could reasonably be explained
using the theoretical model already developed for this
instrument. With the exception of item 31, none of the
models including the unknown factor performed better than
the ones without it. Again, the optimal models for the two
samples were similar but not identical.

The differences between the optimal models for the two
samples shows the optimal model for the CSEM does vary
somewhat between institutions. The difference, however,
was restricted to the decision to retain lemmas LM3, LM4,
and LMS5. Further, unlike the FCI, both optimal models of
the CSEM did include one lemma, LM7, and potentially a
second lemma, LM2; combining LM2 with L5 could not be
tested because of the structure of the instrument. While
model M2-5 and models M1-3 and M2-3 were significantly
less well fitting, they still possessed excellent fit character-
istics with CFI > 0.96, TLI > 0.95, and RMSEA < 0.25.
As such, variations between institutions were present, but
these variations produced models with similarly excellent
fit. As such, it may be reasonable to use the model of the
CSEM eliminating all lemmas when comparing results
between institutions.

RQ2: Are the parameters of the optimal models con-
sistent between samples? The uniformly larger difficulty
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values, d;, in sample 1 indicate that the CSEM was a much
easier test for students in this sample. All differences in
overall difficulty Ad; were significant in Table V. This
difference was expected as the students in sample 1 were
generally higher performing with higher overall CSEM
post-test scores than students in sample 2. The instructional
environment in sample 1 was also more controlled and
enriched and should have lead to stronger learning out-
comes. While most of the overall discriminations a;, of
the items were significantly different between samples,
only items 7, 10, 15, 17, 21, 22, 23, 24, 25, and 29 had
differences in overall discrimination greater than 0.2,
approximately one-third of the items; therefore, most of
the discrimination differences were fairly small.

In general, most items had overall discriminations aj,
and principle discriminations a; that suggested the items
were both well functioning with positive discrimination
values. Only item 7 in sample 1 had a principle discrimi-
nation less than zero suggesting that it may not be
functioning correctly. While some items have principle
discriminations substantially different from zero, many
items had principle discriminations near zero. These items
do not contribute additional information about student
understanding beyond a general understanding of electric-
ity and magnetism.

The results for the principle discriminations aj, were
similar. Of the 47 discrimination parameters measured, 31
were significantly different between the samples (66%), 21
were significantly different at the p < 0.001 level (45%);
however, only 7 were different by more than 0.2 (15%).
Given the differences in student population and instruc-
tional environment, the measured discrimination parame-
ters were somewhat similar, suggesting the optimal models
produced may be of general applicability.

The difference in overall difficulty for the two samples
makes it challenging to interpret Table IV. To partially
eliminate the effect of overall difficulty, the items have been
rank ordered from lowest difficulty and lowest overall
discrimination to highest in Table IV. For most items the
order of difficulty was generally similar; however, items 13,
19, 21, and 27 had difficulty ranks at least 10 positions
higher in sample 1 than in sample 2 (they were much easier
for students in sample 1). Item 28 had a difficulty rank 10
positions higher in sample 2. In general, the average
absolute difference in difficulty rank was 4.7; if items
13, 19, 21, 27, and 28 are removed the average absolute
difference falls to 3.2 indicating most items were fairly
close to each other in rank; difficult questions in sample 1
were also generally difficult in sample 2. Only item 29 had
a difference in overall discrimination rank of over 10. The
average absolute difference in overall discrimination agj
was 2.8, which fell to 2.4 if item 29 was eliminated.

It is likely that some of the differences in the discrimina-
tion parameters were a result of the overall difference in
student performance for the two samples. While superficially

independent in the MIRT model, Eq. (2), the effective
window on the difficulty produces correlations between
difficulty and discrimination. Most difficulty parameters
are between —3 and +3; very easy or very hard items have
a limited range in which to discriminate between students.
This effect can be quantified by calculating the correlation
between the rank order of the difficulty and overall discrimi-
nation. For sample 1, the correlation is » = 0.33, a medium
effect size, and, for sample 2, r = 0.25, a small to medium
effect size.

This work replicated the method applied by Stewart et al.
[7] to the FCI. As noted above, the optimal models for the
CSEM contained more secondary principles (lemmas) than
the FCIL. Further, the principle discriminations a; were in
general smaller than those found for the FCI. Only 7
principle discriminations were of magnitude 0.5 or greater
in each of sample 1 and sample 2. For the FCI, 17 principle
discriminations were greater than or equal to 0.5, showing
the FCI provides better resolution of the individual prin-
ciples in its optimal model.

The selection of solution path 1 in models M 1-2 and M2-2
supports Leppédvirta’s identification of item 7 as a Newton’s
3rd law item [15].

V. IMPLICATIONS

The optimal theoretical model presented in Table I is a
very limited representation of the conceptual material
covered by an introductory electricity and magnetism
course. Many topics are missing or are weakly represented,
such as the electric field of a point charge or the dipole
nature of the magnetic field. Other topics are overrepre-
sented such as the magnetic force on a stationary charge.
Some items are difficult to interpret with experts producing
substantially different solutions. Through the lens of the
theoretical model in Table I, the CSEM seems a weak
instrument for a general evaluation of electricity and
magnetism. The combination of an exhaustive theoretical
model extending the model in Table I to include a more
complete coverage of introductory electricity and magnet-
ism and constrained MIRT may provide the appropriate
framework for creating more robust and reliably interpreted
instruments. The weak coverage could be identified by the
expert solution analysis alone, which can be performed
during instrument development. MIRT provided confirma-
tory evidence that the expert model was a good model for
student knowledge and allowed an optimal version of the
theoretical model to be developed.

Ideally MIRT models of an instrument would have
the same behavior across multiple samples; this was only
partially supported by this study. The overall optimal
models were very similar, differing only in a few principles.
The difficulty was very different due to the substantial
difference in performance of the two populations. Overall
discriminations were also different, but principle discrim-
inations were more similar. This suggests the parameters of
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the MIRT models are sensitive to student population and
instructional environment and cannot treated as universal.
The structure of the optimal models was more general
suggesting additional research will be able to identify a
model that has acceptable fit for most institutions.

Ideally, discriminations should be consistent across
populations, assuming the instrument was developed with
a sufficiently large and academically diverse population.
Difficulty will vary with the overall performance of the
different student samples. There is a relation between
difficulty and discrimination that arises when items are
either very high scoring or very low scoring because of
windowing effects. If the items average score is well away
from these extremes, then discriminations should be con-
sistent across populations because MIRT uses the relative
difficulty of the items to set the scale for the ability traits 8.
Topical coverage, however, could modify this relative
difficulty ranking and produce differences in discrimination
which may be the origin of the differences measured in
this study.

Instructors can use the results in Table IV to further
understand CSEM results. Items that have a high principle
discrimination are good measures of that principle. Items
that have a single principle or only one principle with a high
discrimination are particularly strong measures of that
principle. For example, using sample 1 and Table IV, items
3, 12, 13, 16, 17, 18, 21, and 27 all depend on a single
principle and have principle discriminations that are sig-
nificantly different from zero. The item difficulty d; for
these items allows the comparison of student understanding
for these principles; students understand L4, Coulomb’s
law for the electric force, (item 3, d; = 2.04) and DF2, the
definition of electric field, (item 12, d;, = 2.66) substan-
tially better than C6, the relation of potential and field,
(item 18, d;g = 1.18) and DF4, the definition of electric
potential, (items 16 and 17, d;s = 0.54, d;; = 1.36). Items
such as item 1, which have multiple principles but
discriminate more strongly on one principle can be used
to measure understanding of that principle. Items which
discriminate relatively equally on multiple principles may
be used to characterize understanding of that combination
of principles.

The large number of principles identified (26) for a
32-item instrument meant that many principles were only
included on small number of items and often mixed with
other principles on the same item. This makes identifying
what each individual item measures more challenging.

VI. LIMITATIONS

This work compared two large samples from two
institutions. Additional samples should be tested to

determine if the results are general, particularly from
institutions with different student demographics than the
institutions studied.

The theoretical model presented in Table I was con-
structed from the solutions of a small set of expert
practitioners. Other models are possible and should be
explored. Most experts would agree on some segments
of the model but there are other segments were multiple
different models are possible. This should not be viewed
as the end of the modeling process for the CSEM, but as
the beginning. We feel constrained MIRT is the proper tool
to explore alternate models. Any researcher interested in
testing a model on the datasets in this paper may request the
data from the corresponding author.

VII. FUTURE WORK

This analysis technique will be extended to the Force and
Motion Conceptual Evaluation (FMCE) [26]. The optimal
model for this instrument can then be compared to the
optimal model found by Stewart et al. [7] for the FCI.
Further work should investigate whether the results are
consistent for groups of students traditionally underrepre-
sented in physics classes.

VIII. CONCLUSIONS

This work examined models of the CSEM for two large
datasets drawn from different institutions. The optimal
models identified were similar but not identical, sharing 22
of the 26 principles included in either model. The optimal
models had excellent model fit characteristics for both
samples. Beyond the laws, definitions, facts, and corollaries
needed to define the physics content of the instrument, both
optimal models also contained additional qualitative prin-
ciples derived from the more general principles. The overall
difficulty and discrimination of the individual items were
significantly different in most cases; however, the principle
discriminations were more similar. The rank ordered over-
all difficulties were also similar, but five items stood out as
being more relatively difficult for the students in one of the
samples. Therefore, while the models had many similar-
ities, they were not identical; the optimal MIRT model for
the CSEM does vary between institutions.
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