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ABSTRACT

Information flow analysis is an effective way to check useful se-
curity properties, such as whether secret information can leak to
adversaries. Despite being widely investigated in the realm of pro-
gramming languages, information-flow-based security analysis has
not been widely studied in the domain of cyber-physical systems
(CPS). CPS provide interesting challenges to traditional type-based
techniques, as they model mixed discrete-continuous behaviors
and are usually expressed as a composition of state machines. In
this paper, we propose a lightweight static analysis methodology
that enables information security properties for CPS models. We
introduce a set of security rules for hybrid automata that charac-
terizes the property of non-interference. Based on those rules, we
propose an algorithm that generates security constraints between
each sub-component of hybrid automata, and then transforms these
constraints into a directed dependency graph to search for non-
interference violations. The proposed algorithm can be applied
directly to parallel compositions of automata without resorting to
model-flattening techniques. Our static checker works on hybrid
systems modeled in Simulink/Stateflow format and decides whether
or not the model satisfies non-interference given a user-provided
security annotation for each variable. Moreover, our approach can
also infer the security labels of variables, allowing a designer to
verify the correctness of partial security annotations. We demon-
strate the potential benefits of the proposed methodology on two
case studies.

CCS CONCEPTS

« Security and privacy — Formal methods and theory of se-
curity; « Theory of computation — Timed and hybrid mod-
els; - Computer systems organization — Embedded and cyber-
physical systems.
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1 INTRODUCTION

Cyber-physical systems (CPS) are networked computing devices
communicating with each other and interacting with the physical
environment via sensors and actuators. CPS are characterized by
both continuous and discrete dynamics, so they are often consid-
ered as hybrid systems. Hybrid systems are increasingly utilized
in a variety of domains, modeling diverse systems such as smart
power grids or autonomous vehicles, and even mission-critical mil-
itary systems. The rapidly expanding field of CPS has precipitated
a corresponding growth in security concerns [6, 19, 21]. Among
of them, enforcing information flow security plays an important
role to guarantee the safety and and reliability of CPS. Information
flow properties such as non-interference [7], non-inference [13],
and non-deducibility [18] prevent public users from inferring any
high-level (secret) information by observing the low-level behav-
iors of a system. Violating information flow properties results in
compromised safety, integrity, and privacy as intruders can use the
secret information to gain insights into the system implementation.

Although information flow security has been widely investigated
and enforced in the context of programming languages [17], it has
not been studied extensively in the CPS domain. As CPS have mixed
discrete-continuous behaviors and are often complex, modeling and
analyzing information flow security of CPS is notably challenging.
In an industrial setting, CPS designers usually validate a system to
guarantee that its safety requirements are satisfied, but often neglect
or do not carefully test information flow properties. Consequently,
the system might expose information leakage during runtime and be
subject to certain classes of attacks where an attacker can physically
observe the system behavior and learn how to drive the system
toward unsafe behaviors [3, 9-12, 15, 16]. There is a strong need
for light-weight, inexpensive analysis methods that can efficiently
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identify information flow vulnerabilities to strengthen the security
of CPS models, especially as CPS continue to be applied in safety-
critical areas.

In this paper, we propose a methodology that can efficiently
detect violations of information flow properties for hybrid systems
that model CPS. We focus on the property of non-interference, which
requires that the states observed by low-security users remain un-
changed regardless of the actions taken by high-security users. We
introduce an algorithm that can generate a set of security constraints
over the structure of a hybrid system to enforce non-interference.
Given a hybrid system modeled as a parallel composition of hybrid
automata and a declaration of security labels for each variable, if
our static security checker accepts the annotated model, it is guar-
anteed to have the property of non-interference with respect to
the annotation. In addition, our algorithm can effectively infer the
security labels for variables that are not explicitly declared by a
user. Our algorithm works at a high level in three main steps: 1) a
hybrid system is decomposed into individual automata, 2) security
constraints are generated for each automaton and represented as a
directed dependency graph, 3) each individual graph is combined
into one graph, which is used to check for violations and deter-
mine the security labels for all variables in the model. The time
complexity of our algorithm is linear in the description size of the
hybrid system. It is worth noting that our algorithm can both check
a composite model for non-interference and infer security labels
without using the process of flattening, which increases description
size exponentially.

We evaluate the effectiveness of our approach to identify in-
formation flow leakage by applying it in two distinct domains:
gas transportation and smart power systems. The first case study
models the Russia—Ukraine gas pipeline system [5] in which at-
tackers were able to observe the change of gas flow rate in Ukraine
and compromise system operation. The second case study is the
FREEDM smart grid system [8], where an attacker can infer private
information about the status of a battery by observing the power
flow in and out of a macrogrid and use that information to inject
extra power, potentially causing the battery to explode. For both
case studies, we will present the original models in Simulink/State-
flow (SLSF) format, and then demonstrate how our method can be
used to detect non-interference security violations, as well as infer
valid security labels from a partial user specification. Our main
contributions are:

o A formal treatment of non-interference for a hybrid system
modeled as a parallel composition of hybrid automata.

o A light-weight static analysis technique to detect informa-
tion flow violations with complexity linear in the description
size of the system.

e An analysis tool that detects information leaks in real-world
hybrid systems. Our tool works on SLSF models that are
widely used in both industry and academia.

Related work. Until now, only a few results have been reported
for verifying information flow properties of hybrid systems. The
most relevant work to this paper is presented in [14], which in-
troduces a set of typing rules that enforces non-interference for a
hybrid system expressed as a programming language. In contrast,
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we generate security constraints over the structure of hybrid au-
tomata. Moreover, we implement a static security checker and use
it to verify non-interference property for two case studies while
the work proposed in [14] does not feature any real-world appli-
cations of their work. Whalen et al. proposed a model checking
approach that formalizes non-interference property through a no-
tion of trace equivalence and then utilizes model checking tools to
analyze non-interference property of Simulink models [22]. Other
works of [20] and [1] also apply model checking to verify infor-
mation flow properties for the discrete models of the gas pipeline
system and the FREEDM smart grid system, respectively. More-
over, the recent work of [4] introduces a hybrid dynamic logic for
verifying information-flow properties of a hybrid system modeled
as a hybrid program. Such logic is impressive; however, it is too
expensive to apply the corresponding analysis for larger-scale CPS.

2 HYBRID SYSTEMS MODELING

Hybrid automata [2] are a popular modeling formalism used to
model hybrid systems which include both continuous dynamics
and discrete state transitions. A hybrid automaton is essentially a
finite state machine extended with a set of real-valued variables
evolving continuously over time.

DEFINITION 1 (HYBRID AUTOMATA). A hybrid automaton is a tuple
Az (V, Mode, Trans, Init) which includes the following components:

o V: the finite set of variables, partitioned as X U U, where X
is the finite set of n state variables, and U is the finite set of
m input variables. We denote x € R" as the valuations (i.e.,
a function mapping each variable to a point in R) of state
variables. The valuations of m input variables are assigned by
an input signal u.

e Mode: the finite set of discrete modes. For each mode m €
Mode, m.inv is a Boolean expression over V which denotes
the invariant of mode m, and m.flow is a set of differential
equations (e.g., in which the left-hand side is x and the right-
hand side is an expression over V) that describes the rate
of change of state variables. A state s is a pair (m, x), where
m € Mode and x € R". We denote Q C Mode X R" as the
state-space of A.

o Trans: the finite set of transitions between modes. Each tran-

sition is a tuple T 2 (src, dst, grd, rst), where src is a source
mode and dst is a target mode that may be taken when a guard
condition grd, which is a Boolean expression over X U U, is
satisfied; and rst is an assignment of X after the transition.

e Init C Q: the set of initial states.

Here, we assume that the output variables of A are the same as
its state variables. We use the dot (.) notation to refer to different
components of tuples of the transitions and modes, e.g., 7.grd refers
to the guard of a transition 7, and m.inv refers to the invariant of
a mode m. Also, an expression e on the right hand side of a flow
equation (x = e) and a reset assignment (x = e) can be a variable, a
constant, or an arithmetic combination of constants and variables.
The valuation of an expression e at time ¢, denoted [e](x(¢), u(t)),
is obtained by substituting each input and state variable in e by
their corresponding value from u(#) and x(t).
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The semantics of a hybrid automaton A can be defined in terms
of executions, which are alternating sequences of continuous trajec-
tories and discrete transitions starting from an initial state sy € Init
following an input signal u over a time interval [0, §).

DEFINITION 2 (EXECUTION). Given an initial state sy € Init, an
input signalu, an execution is a sequence 7r(so, W) = Y0, T, Y1, T2, - « - »
Tn—2, Yn—1 corresponding to the sequence of time points t;, where
i€{0,...,n},t0=0,t, =9, and t; < tiy+1 such that:

o y; € Traj is a continuous trajectory which is a mapping func-
tiony; : [ti, ti+1) — R”™ such that for every t € [t;, ti+1):

o a mode m € Mode corresponding toy; does not change,

o x(¢) = [m.flow](x(¢), u(t)), ie., the continuous evolution
is consistent with the flow dynamics of the corresponding
mode, and

o [m.inv](x(¢), u(t)) is true, ie., all states along the trajectory
must satisfy the invariant at every time point.

e 7; € Trans is a transition which models an instantaneous
update from the current state s = (m,x) to the next state

q = (mgq,xq) att; such that:

o r.src=mAT.dst = mgq,

o [r.grd](x(8;), u(t;)) is true, and

o xg(t;) = [r.rst](x(t;), u(t;)).

An execution always starts in an initial state, and can be infinite
or finite. If an execution r is finite, it ends in a trajectory. An ex-
ecution fragment of x is any alternating sequence of continuous
trajectories and discrete transitions appearing in . If an execution
fragment of 7 is finite and includes an initial state, it is also con-
sidered as a prefix of 7. We write 7 = 7 o 7y to denote that an
execution 7 can be concatenated by its prefix 7, and execution
fragment s, where the last state of 7p is the first state of np. We
denote Exec(A) as the set of all executions of a hybrid automaton
A.

DEFINITION 3 (STATE SIGNAL). Given an input signal u and an
initial state sy = (mo, Xo), we define 2(xo, u) as a state signal which
captures the evolution of the state variables starting from xo and
following along the execution 7(sp, u).

We assume that given an input signal and an initial state, there
always exists a corresponding state signal. During the execution
of a hybrid automaton A, the updates of its modes are internal
and only the updates of its state variables are observable. In what
follows, we use the notion x to represent for the state of s = (m, x).
In this paper, we focus on a deterministic hybrid automaton whose
behavior is unique according to an input signal u and an initial
state xg.

DEFINITION 4 (DETERMINISTIC HYBRID AUTOMATON). A hybrid
automaton A is deterministic if the following conditions hold:

o For every transition T € Trans, T.grd N (T.src).inv =0, ie,
the guard condition of every outgoing transition of a mode is
not intersected with its invariant.

o For every pair of transitions 71, 7o € Trans, if 71.src = 13.57¢C,
then r1.grd N 1o.grd = 0.

o For every mode m € Mode, m.flow is a Lipschitz continuous
function over the state and input variables so that the solution
of m.flow is unique.
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Intuitively, a hybrid automaton is deterministic if at most one
of its outgoing transitions can be taken when the mode invariant
is violated, and the solutions of the flows equations are unique.
Hence, any execution and state signal of a deterministic hybrid
automata corresponding to an input signal u and an initial state xq
is uniquely defined.

Next, we define a hybrid system as a parallel composition of
multiple hybrid automata. Given two hybrid automata A, = (W,
Mode, Transy, Init1), and Ay 2 (Va, Modey, Transy, Initz), if X1 N
X, = 0, then A; and Ay are compatible and can be composed.

DEFINITION 5 (PARALLEL COMPOSITION). Given two compatible
hybrid automata Ay and Ay, the parallel composition of Ay and Ay

is a hybrid automaton A, written as A 2 Aj1|| A2, whose components
are specified as follow:

e X =X{UXy,

o U= (U UU)\ KX,

e Mode = Mode, X Modey, and the invariant and flow dynamic
of each model m = m1 X my € Mode is the conjunction and
disjunction of the corresponding invariant and flow dynamic
of my € Modey and my € Modey, respectively,

o for each transition ry € Transy, and ty € Transy, there exists
a corresponding transition T € Trans such that:

o T.Src = T1.SrC X T2.8rC, T.dst = ty.dst X 1y.src, T.grd =
71.grd, and T.rst = 11.rst, or

o T.src = T1.Src X T2.8rC, T.dst = 7y.src X Tp.dst, T.grd =
72.grd, and t.rst = 1p.rst, or

o T.Src = T1.SrC X T2.SrC, T.dst = 7T1.dst X 1p.dst, T.grd =
71.8rd A 12.grd, and T.rst = 1y.rst U 1a.7st,

e [nit = Inity X Inits.

The state space of the composed automaton A is also a product
of the state space of each component A; and Ay, i.e, Q = Q1 X
Q.. Beside that, all executions of A are also executions of both
Aq and Ay, ie., Exec(A) |a,C Exec(A;) for i € {1,2}, where
Exec(A) |4, is a projection of Exec(A) on the component Aj;.
The parallel composition of hybrid automata is commutative and
associative. Multiple components can be composed transitively in
parallel by recursively composing two components with a third
one, and so on. It is worth noting that the parallel composition of
two deterministic hybrid automata is also deterministic.

DEFINITION 6 (HYBRID SYSTEM). A hybrid system H is a par-

allel composition of two or more hybrid automata, written as H =
Al Al - .- [[An.

3 NON-INTERFERENCE

In this section, we will define the non-interference property of a hy-
brid system based on the semantic execution of a hybrid automaton.
To do so, we first define a security annotation and low equivalence.

DEFINITION 7 (SECURITY ANNOTATION). A security annotation
for a hybrid system H is a function that maps each variable of H to
a security level of low or high.

A variable is annotated low if its value is observable, and high
if it is confidential. Without loss of generality, we only consider
two security levels of low and high, where low < high meaning
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Figure 1: Examples of two hybrid automata.

that a variable annotated as low is less confidential than the one
annotated as high. Input or state signals that are observable belong
to a low domain, and private signals belong to a high domain.

DEFINITION 8 (LOW EQUIVALENCE). Two states of a hybrid system
H are said to be low equivalent if their projections on the low domain
have the same value.

We use the notion of =;,,, to denote a low equivalence relation.
For instance, the notion xg =},,, X; means that initial states xo
and x; are equivalent on the low domain. The above definition
can directly be applied for state and input signals. Two state (or
input) signals are low equivalent if their low domain projections
are indistinguishable over time.

DEFINITION 9 (NON-INTERFERENCE). A hybrid system H is non-
interference secure iff for every pair of initial state values xo, x, € Init,
and a pair of input signals u, u’ € U for xo, x; respectively, the
following condition holds:

(Xo,ll) =low (X(/)’ ll’) S Z(Xo,u) =low Z(X(,)vu/)- (1)

Intuitively, the Condition 1 can be interpreted as: if two initial
states share the same values on a low domain, then the behaviors of
the system executed w.r.t the same low inputs are indistinguishable
by public observers.

Non-interference prevents two important kinds of information
leaks: explicit and implicit information flows. An explicit flow oc-
curs when the value of a low variable is directly derived from the
value of a high variable. For instance, an assignment x, = x1 causes
an explicit flow from a high variable x; to a low variable x3. On the
other hand, an implicit flow occurs when a low variable is updated
indirectly due to information read from a high variable. As an ex-
ample, a transition which has the following guard condition and
reset action: x1 > x2;x2 = 1 implicitly discloses the value of a high
variable x; to a low variable xo.

PROBLEM 1 (NON-INTERFERENCE CHECKING FOR HYBRID SYSTEMS).
Given a hybrid system H 2 A Azl . .. || Ay with a set of security
annotations S for all variables of H such that S = Sj41y U Shigh,
where Sy, and Spigp are the sets of low and high security anno-
tations for input and state variables, respectively, we want to check
whether H satisfies non-interference property.

EXAMPLE 1. We consider two hybrid automata Ay and Ay shown
in Figure 1, where the security annotations of their state and input
variables decide whether they satisfy non-interference. For Ay, the
valuation of a state variable x1 explicitly depends on the input u. If u
is high and x1 is low, the Condition 1 is violated as a state signal of
x1 is influenced by the input signal u. In the case that u is low and x1
is either low or high, A; is non-interference secure. Hence, to ensure
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that Ay is non-interference secure, the security level of u cannot be
higher than xi. For Ay, since the update of x implicitly depends
on x1, Ay only satisfies Condition 1 if the security label of x1 is not
higher than that of xy. The hybrid system H LA, || Az preserves the
same security constraints over the state variables x1, xo, and the input
variable u such that the security level of u is not higher than that of
x1, and the security level of x1 is not higher than that of x2. Thus, if
the security annotations provided by a user satisfy these constraints,
H is non-interference secure.

4 ANALYSIS

To detect information flow violations, we break up a composed
hybrid system into individual hybrid automata, recursively break
up each hybrid automaton into model components, and constrain
each component’s security labels to ensure no information leaks
can occur. Then, we check the validity of a user’s label annotations
against a graph representation of the component label dependencies
and see if any violation occurs. In the case of a violation, the flow
producing the information leak is returned. At a high level, our
algorithm is laid out as follows:

Algorithm 1 Non-Interference Violation Detection

Input: a hybrid system H, a set of security annotations S for

variables of H
1: procedure NON-INTERFERENCE CHECK

2: A < DECOMPOSE(H) > decompose a hybrid system
into constituent automata

3: G « foreach A; in A: BUILDDEPENDENCYGRAPHS(Aj;)

4 G’ « MERGEDEPENDENCYGRAPHS(G)

5 return CHECKFORVIOLATIONS(S,G’) v either OK or a

Violation
6: end procedure

4.1 Constraint Generation

For a hybrid system to have the property of non-interference, each
individual automaton composed in parallel must have the prop-
erty in isolation. The first step of our analysis is to verify a single
automaton in isolation. This is accomplished by breaking an au-
tomaton down into recursive components, assigning labels to each
component, and enforcing constraints between labels to eliminate
invalid annotations.

DEFINITION 10 (SECURITY LABELING). A security labeling is a
function: sl : H — {low, high} mapping each component of H to a
security level of low or high.

We note that the security labeling for the hybrid system H
subsumes the security annotations for its variables provided by a
user. Security labeling indicates the security domain in which a
component can be executed corresponding to given security levels
of variables.

A component with a certain label is valid only if it executes in
the label’s security context. This allows us to reject labelings based
on the semantics of the hybrid system being executed. Components
impose constraints on their subcomponents, restricting the set
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of valid executions. For instance, specifying a transition as high
prevents low variables from being written in its reset equations,
which creates further labeling restrictions on the variables and
expressions in each of the reset flows.

The two different constraints that can be generated between
components a, b are sl(a) = sl(b) or sl(a) < sl(b). We decompose a
hybrid automaton into different components: variables, expressions,
flows, invariants, modes, transitions, guards, resets, and models,
and then generate constraints for each component that determine
valid security labels.

4.2 Component Rules

We assume that the set of variables of a hybrid automaton A can
be partitioned as V = Vy;gp U Vipy corresponding to a given
set of security annotations, where Vp;4p and V)., are the sets
of high and low input and state variables, respectively. We intro-
duce the syntax-directed security rules for a hybrid automaton that
enforces non-interference security policy. These security rules de-
scribe what labels can be assigned to different components of a
hybrid automaton to prevent information flowing from high to low
variables. Given h € Vy,;4p, and € € V), as the instances of low
and high level variables, our security rules are described as follows.

Expression rule: given an expression e and Vars(e) which denotes
the set of variables in an expression e, Yu € Vars(e), sl(v) < sl(e).
Thus, the security level of an expression (including a Boolean ex-
pression such as an invariant and a guard condition) is at least as
restrictive as that of every variable in it.

Assignment rule: for an assignment a : x = e, we have that
sl(a) < sl(e) < sl(x). The assignment rule prohibits explicit flows
of information from high to low domains. An assignment of a low
variable is secure only if the expression on the right-hand side is
low, e.g., an assignment £ = ¢ + 1 is allowed, but an assignment
¢ = his not.

Flow equations rule: A flow equation is a sequence of assign-
ments a = aj;ay;. ..;ay, where a; : X; = ¢; such that its security
label is restricted as Vi € {1,. .., n}, sl(a) < sl(a;). In other words,
the security levels of the flow equations of a mode is equal to the
lowest security level of an individual assignment.

Mode rule: for every mode m € Mode, sl(m) < sl(m.inv) <
sl(m.flow). The security level of a mode depends on its invariant
and flow dynamics. If a mode has a high invariant, its flow equations
must be high. In this case, a mode can be either high or low.

Reset rule: the resets (updates) of variables of a transition is also a
sequence of assignments a = ag;ay; . ..;an where a; : x; = e; such
that sl(a) < sl(a;).

Transition rule: To specify the security level for a transition 7 €
Trans, we first investigate whether z.src =,,, 7.dst. Here, we abuse
the notion of =/,,, to specify the observational equivalence of the
source and destination mode of a transition when projecting them
on a low domain. For instance, if the source and destination modes’
flows both contain low expressions as £ = 1, they are equivalent
to a public observer. High modes are implicitly observationally
equivalent in a low domain. For every tradition 7 € Trans,
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e Case 1:if 7.src =,,, 7.dst is true, then sl(r) < sl(r.grd) <
sl(z.rst),

e Case 2: if r.src =}, 7.dst is false, then sl(z) < sl(r.grd) <
sl(z.rst) A sl(t.grd) < sl(r.src) < sl(r.dst)

We note that instead of arbitrarily forcing source and destination
modes to be high if the conditional guard is high, observational
equivalence makes our analysis less conservative. Intuitively, if a
transition with a high guard does not either cause an instantaneous
update or disrupt the continuous update of low variables, then
information will not leak.

Consecutive transition rule: for two transitions 71, 72 € Trans,
if 71.dst = 1p.s7c A 11.5rC # T2.dst, then sl(r1) < sl(r2). Intuitively,
if the preceding transition 77 is low, the following transition 7,
can either be low or high. However, if 7; is high, 72 must be high
as well. As a result, if any transition 7 in the chain of transitions
is high, every transition following 7 in the chain must be high.
Such a restriction prohibits any update of low variables based on a
preceding high condition, ensuring that there are no implicit flows
along the path.

4.3 Translating Constraints into a Dependency
Graph

To check whether or not a hybrid system obeys non-interference,
we need to examine the data flows between various components
of the model. We will represent this data flow information in a
dependency graph, and it will provide some nice analysis properties
that we can use to detect security leaks.

DEFINITION 11 (DEPENDENCY GRAPH). A directed dependency
graph G = (V, E) consists of nodes v € V where each v; is assigned
a security label l;, and edges e € E where e = (vj, vj) implies that
l;i < lj. Additionally, G also contains one unique node per security
level specified, these labels represent the security levels themselves.

Note that there are implicit edges from the lowest security level
to all other nodes in a dependency graph, as well as edges from
every node to the highest security type. A dependency graph has
two useful properties:

PROPERTY 1. Given a dependency graph G, if there is a path from
l; tolj, thenl; < lj.

This property directly follows from the definition of a depen-
dency graph and transitivity on the security label relation.

PROPERTY 2. Any nodes in the same strongly connected component
(SCC) of G must have the same security type.

Since any two nodes v;, v; in the same SCC have paths to each
other, we know that [; < [; A l; < I;. The only way this can
be true is if /; = I;. The dependency graph captures constraints
between different security labels and provides an efficient check for
violations. For a hybrid automaton A, the dependency graph G #
expresses constraints between various components of the model.

Dependency graph construction. Given a set of constraints gen-
erated from A, we can create its dependency graph G4 by first
adding every unique component as a node, and then rewriting each
constraint as edges in G#. A constraint v; < v; is expressed by
adding an edge e = (vj,v;) to G, and v; = v; is expressed by
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adding edges e; = (v;,v;) and ez = (vj,v;) to G#. Representing a
set of constraints as a dependency graph will allow us to efficiently
determine if there are any violations.

THEOREM 1. Given a hybrid automaton A with a set of security
annotations S for all variables of A, if the security constraints of all
components of A are satisfied, then there is no path from high to low in
the corresponding dependency graph of A, i.e., A is non-interference
secure.

Proor. We need to prove that if for any pairs of initial states
and input signals of A such that (xo, u) =4, (X, '), then we have
%(X0, @) =104 2(X;, u’). Since an execution of a hybrid automaton
is an altering sequence of 1) a continuous evolution of state variables
associated with a mode, and 2) a discrete evolution of state variables
corresponding to a transition, we will first prove that Condition 1
holds over each mode, transition, two consecutive transitions, then
inductively show that it holds for the entire model.

Case 1 (Mode): for a mode m € Mode, we have that sl(m) <
sl(m.inv) < sl(m.flow). If an invariant is high, then the flow equa-
tions of a mode contain only high variables on the left-hand side.
Thus it is apparent that the non-interference property holds as
there are no updates of low variables.

Otherwise, we consider a case where an invariant is low. Assume
there exists at least one differential equation of the form £ = e. Based
on the security rules of flow dynamic sl(e) < sI(£), meaning that
an expression e does not contain any high variable. In addition, the
solution of a different equation £ = e is unique corresponding to the
same initial states and input signals. Therefore, for every ¢ € [0, 6],
we have x(t) =},,, X’(t). Moreover, x(t) and x’(t) both satisfy an
invariant with respect to the trajectory semantics. Hence, we have
that %(xo, u) =14, Z(x(, u’) is true.

Case 2 (Transitions): According to the security rule of transition,
if the guard condition is low, then the reset component, source
and destination modes can be either high or low. We assume that
there is at least one low variable £ has been updated by a transition.
Since an instantaneous update £ = e is low which means that an
expression e is low, i.e., e does not contains any high variables.
Because [e]|(x(¢), u(t)) =jow [e](x(2),u’(2)), the value of a low
variable updated by a transition at time ¢ € T is only dependent on
its previous value. Moreover, applying the proof of the mode case
to the source and destination modes of a transition, the Condition
1 is trivially true.

On the other hand, if the guard condition is high, then the reset
component must be high. Thus, there is no instantaneous update
of low variables. In that case, the source and destination modes are
observational equivalence on a low domain which means there is
also no continuous update of low variables. Thus, the Condition 1
certainly holds.

Case 3 (Consecutive transitions): Assume that 7; and , are two
consecutive transitions, so sl(7y) < sl(rz). Let m(x9,u) = m1 o 72,
where 1 is a prefix 7 corresponding to 71, and 7 is an execution
fragment of 7 corresponding to 7z, we need to show 7(xj, u’) =
| o 7, are equivalent to 7(xo, u) on a low domain. If 71 is high, so
does 72. Thus, all states along the executions with the same initial
state are identical on a low domain as there are no updates of low
variables, then 77(xo, u) =,,, 7(x(, u’) is always true. In the case
that 77 is low, 73 can either be low or high. From the proof of the
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case of individual transition, 71 is low that implies 71 =4, 7;. As
the result, 75 and ”2/ share the same first state on a low domain, so
T2 =]ow Ty regardless whether 7 is either high or low. Thus, we
have 7(xg, u) =}, 7(xg, 0’), implying that 3(xo, u) =145, Z(x(, n’)
always holds.

Now we apply the induction hypothesis on an arbitrary exe-
cution 7 = mp o 7y over the time interval [0, ), where 7 is
a prefix of 7 over the time interval [0, tp), and nf is an execu-
tion fragment of 7 over the time interval [t,5). Assume that
7p(X0, 1) =104 7p(X(, '), we need to prove that ¢ (u,Xo,) =jou
ﬁf(u’ , x(')f), where xq = and x(’)f are the first states of 7 and n]’,.

Since x(tp) = x’(tp) and the last state of 7, is the first state of mp, it
is apparent that Xo, =/ x(’)f, respectively. Without loss of gener-
ality, we assume that 77 is a continuous trajectory corresponding
to a mode. Thus, for every t € [tp, 8), (u(t), Xo,) =10 u’(t), X(’)f),
we have 7¢(0,X0,) =jow nj}(u’,x(’)f) by applying the proof for
Case 1 (mode). As a result, £(xXo, ) =14y Z(Xg,0’) is true over
the time interval [0, §). Considering 7y as an execution fragment
corresponding to a transition and two consecutive transitions,
the similar proofs can also be derived according to the proofs of
Case 2 and Case 3. Thus, given any pairs of initial states and in-
put signals of H such that (xp,u) =14y, (x),u’), then we have
Z(X0, U) =1y 2(xg, 1"). m]

4.4 Non-interference Checking

For an individual automaton, a path from high to low in its cor-
responding dependency graph represents a non-interference vi-
olation, and the components along that path together allow an
information leak. If there is no such violation, we can use Property
2 to determine the inferred security labels of various components
by computing the SSC that contains each node with high and low
labels. Any components that are not in a component containing a la-
bel type cannot be inferred, we call these components “remainders”.
The presence of remainders means that we cannot definitively tell
if the model satisfies non-interference or not based on the partial
annotation; the designer must further specify additional labels to
complete the analysis.

The case for a hybrid system modeled as a parallel composition
of hybrid automata is more complex. The only way composed
automata can interact is through shared variables. If A; and A3
are independent hybrid automata (i.e., do not share any variables),
then it is apparent that no information can flow between either
one; whether or not there is an information leak that depends on
the results of checking each model individually. If the two models
share any variables however, this is not the case.

To address the case of two parallel automata sharing variables, we
rename the conflicting variables so they are unique and analyze the
automata separately, adding a constraint that the renamed variables
are equivalent. For example, given two automata sharing x would
result in one of them having x renamed to y and a constraint x = y
added. If there are violations in any of the individual models, those
will be reported first. If all of them pass, the constraints equating
renamed variables will ensure that no variable has been assigned
high that should be low in a different model.
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THEOREM 2. If two hybrid automata Ay and Ay both satisfy non-
interference property according to the set of security annotations Sy
and S, respectively, and Vx € V., S1(x) = Sa(x), where V, is a
set of shared variables, then the hybrid system H = A1|| Az also
satisfies non-interference property.

ProoF. Since A; and A; are non-interference secure, according
to the Condition 1 we have that:

(x01’u1) =low (X(/)l,ll;) S Z(Xol»ul) =low Z(X(’)l,lli),
(XOZ’UZ) =low (X(/)z,llé) Ed Z(on,llz) =low Z(X(’)Z,ll;),

where xq,, x(’)i is a pair of initial states, and u;, u; is a pair of in-
put signals for xo,, x(')i of Aj, i € {1,2}. Assume that the shared
variables of A; and Ay have the same security levels, we need to
prove that:

(%0, 1) =144y (X, u") = (%0, 1) =4y, (xg, 1),

where xo = xo, X X0,, X{, = x(’)1 X x(')z, u=(u; Uuyp) \ ((xq,,u1) U

Z(X(')Z, uz)), and u’ = (u; Uug) \ (Z(x(’)l, uj)u Z(x(']z, uy))).

Proof by contradiction. We assume that there is a case (X9, u) =79y
(x5, u’), but %(xg, u) #14,, Z(x(, u’). We now project the Condition
1 of a hybrid system H on each hybrid automaton A; and As. Since
the shared variables of A; and A, have the same security levels,
the projection of (xo, u) =4, (X, u’) on each automaton A and
A resultin (Xo,, 1) =14y (x(')l,u;) and (Xo,, U2) =j0y (x(’)z, uy), re-
gardless the shared variables are both low or both high. On the other
hand, the projections of X(xq, 1) #79y Z(x(’), u’) on each automaton
A and A result in at least either 2(Xo,, u1) #}04y Z(X(’)l,u;) or
2(X0,,u2) #low 2(X(,.u5), or both are true. Since both A; and
Ajy are deterministic and have unique state signals correspond-
ing to given initial states and input signals. As a result, either
(x0,,u1) =pow (Xg.u) = E(X0;,u1) #low Z(xg.uj), or
(%0, U2) =1ow (x(’)z,ug) = 2(X0,, U2) #low Z(X(’)z,llé) are true.
Hence, at least one of the hybrid automaton A; and Aj is not
non-interference secure, which contradicts to the original assump-
tion that they both satisfy non-interference property. Therefore, if
A1 and Ay are non-interference and their shared variables have
the same security levels, their parallel composition H is also non-
interference secure. o

Intuitively, if two automata have conflicting restrictions on shared
variables to be non-interference secure, their composition cannot
be secure, since the security labels on each variable would clash.
This can be seen as refining the conjunction of label constraints on
shared variables, and keeping only the combinations where the con-
straints on the shared variables agree. Table 1 shows how certain
labeling assignments can be valid for each individual automata, but
are still rejected in the composed system. For instance, choosing x
as low forces x1 to be low, and choosing u as high forces x; to be
high. This would result in a conflict for the composed system, even
though each individual automaton is non-interference secure on
its own.

Figure 2 shows a part of the dependency graph of the hybrid
system H in Example 1 indicating the non-interference violation
corresponding to the annotations {xj : high, x3 : low} (u can be la-
beled either high or low). We can see that the violation contains only
the relevant components that contribute towards the information
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X1 X2 u | Ay | Ay | Aql|A2
low | low | low | vV | V v
low | low | high | X v X
low | high | low | vV | V v
low | high | high | X v X

high | low | low | V X X
high | low | high | v | X X
high | high | low | v | V v
high | high | high | v | V v

Table 1: Non-interference satisfaction of a hybrid system
H in Example 1 corresponding to different security anno-
tations for variables, where : satisfied, X: not satisfied

Figure 2: A part of the dependency graph of H in Example
1 showing the non-interference violation when x; is labeled
high, x3 is labeled low.

leak. In the example, the supplied label annotation is indicated by
the dashed blue line. This creates a leak, shown as the highlighted
red path from high to low. The leak results from the transition com-
ponent, since the high value can be inferred through the switching
condition of the guard expression.

REMARK 1 (SOUNDNESS). The proposed algorithm is sound as if
a hybrid system satisfies the Condition 1, then it is non-interference
secure. However, there exists a case that our algorithm may reject
non-interference hybrid systems (false positives). For instance, the
algorithm will report an assignment £ = h =0 as a violation. However,
such an assignment does not violate non-interference property as {
is always equal to 0. As another example, a transition which has the
following guard condition and reset action: h > h+2;{ = h is also not
allowed although it will never be executed. In this paper, we assume
that a hybrid automaton does not contain any spurious expression
likeh*0,h—h, orh > h.

4.5 Time Complexity

The run time of our algorithm is linear in the size of the hybrid
system. Each component of the model is assigned a unique label,
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and all constraints are expressed in terms of those labels. As we
have one node per component in the dependency graph, then the
total number of nodes is proportional to the model input. Since the
algorithm for detecting violations is a graph search, its runtime is
linear in the number of nodes and vertices, and therefore linear in
terms of the model input.

5 IMPLEMENTATION

We provide an implementation of the information flow analysis
written in Haskell that works on SLSF models. Hybrid systems are
expressed in SLSF using hierarchies, where a model may contain any
number of child models executed in parallel. Our tool converts the
hierarhical SLSF model representation into an equivalent parallel
composition of individual automata that fits our algorithm.

Given a text file containing security annotations for variables in
the SLSF model and a .s1x or .MDL file, our tool will output whether
or not the model satisfies non-interference with respect to these
annotations. In the case of a violation, a detailed error message is
printed containing the offending components as a backtrace. The
user can use the information in this trace to pinpoint the exact
components of the original SLSF model that cause the information
leak. They can also provide a partial security annotation. If the
tool is not able to fully infer the security labels of all variables, the
variables whose security labels cannot be deducted are returned as
an error message, and the user is prompted to add more annotations
before re-running the analysis.

Our analysis tool is open-source and available on Github! for
researchers and model designers to use. Currently it supports a
restricted set of SLSF functionality that is sufficient to implement
hybrid automata matching our definitions in Section 2. Future im-
provements involve parallelizing the static analysis, as well as pro-
viding support for other modeling tools.

6 CASE STUDIES

Currently it is difficult to evaluate information flow analysis on
CPS because there are few existing models that have been analyzed
for security leaks. We chose the following case studies because they
have existing annotations that have been rigorously analyzed and
shown to be valid in previous literature. Though there are many
existing SLSF models to choose from, they lack an in-depth security
analysis, making them unsuitable for evaluating our tool.

We validate that our inexpensive analysis technique detects the
same security violations as existing tools. Additionally, the hybrid
systems we analyze are written in a standard state machine-based
modeling paradigm as opposed to the more obscure language-based
representation favored by existing approaches. Furthermore, our
tool is able to output the model components that cause a security
leak, making it easier for designers to repair the model.

6.1 Gas Pipeline System

The first case study is motivated by the Russia-Ukraine gas disputes
according to natural gas export and transit prices in 2005. Russia
accused Ukraine of utilizing leaked information during the gas
transit to illegally consume gas for domestic purposes without
payment [1, 5]. A similar natural gas pipeline system to the one in
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Communication
Network

High-security domain
5\ O

Ukraine |:| Low-security domain

Figure 3: The Russia-Ukraine natural gas grid with subnet-
works: C (Russia), B (Ukraine), and A (European Union).

the actual Russia-Ukraine gas dispute is illustrated in Figure 3. The
system begins in Russia and divides into two branches in Ukraine,
where one transfers gas to the European Union (EU) while the other
supplies gas for Ukraine. The transit gas flows are regulated by Flow
Controller Systems (FCS). Based on the change of flow demand at
Ukraine and the EU, their corresponding FCS 4 and FCSp will send
a message to FCSc¢ to request the increasing or decreasing of flow
supplied from C. All three FCSs are located in Ukraine, but Ukraine
has physical access only to FCSg. For simplicity, we assume that
1) the gas flow change at C is a result of either the change of the
gas demand at A or B 2) if the gas demand at B (or A) increases,
the additional gas can be transferred from A (or B) or C, depending
on the gas demand at A (or B), and 3) only the flow change at B is
observable.

SLSF model. We model a simplified version of the Russia—Ukraine
gas pipeline system as an SLSF diagram shown in Figure 4. The
model has four parallel components, each of them represents the
physical dynamics of the system and the flow controller at location
A, B and C, respectively. Each controller is modeled as a time au-
tomaton such that the time instance at which the gas flows in and
out at each location is relied on the change of the gas demand at
A and B. In the model, Vb and fb are state variables that denote
the gas volume and flow rate at B, respectively; an input signal eb
represents the change of gas demand at B; zb is a state variable
representing the local clock at B; tempB is a state variable captured
the value of eb at a time instance; Tcb and Tab are the required time
for gas being transferred from C and A to B, respectively. Other
notations w.r.t A or C such as Va, Vc can be interpreted in the same
fashion as that of B. Since the flow at B is observable, Vb, fb, zb,
tempB, and eB are considered as low variables. Other variables are
considered as high variables. The safety requirement of the system
is that fa + fb < fc always holds.

Non-interference detection. Our checker rejects the model as
there is an implicit flow from high to low. The update of low state
variable such as Vb, fb, zb, and tempB depend on the high input
signal ea. Intuitively, if the increased gas demand of B is less than
or equal to the decreased gas demand of A, gas will be transferred
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{PLANT \‘ I’
i du: i i
i Va_dot = fa; Va_out = Va; fa_dot = 0; fa_out = fa; i i
i Vb_dot = fb; Vb_out = Vb; fb_dot = 0; fb_out = fb; E i
i Vc_dot = fc; Vc_out = Vc; fc_dot = 0; fc_out = fc; i i

{fb =5; fc =10; fa=5;zb = 0; tmpﬁfio;j -
[Zb >= 1] I
{fb = fb+ tmpB;zb = 0;} v

{C_CONTROLLER

{zc = 0; tmpC = 0;}
-

{fb = fb+tmpB; zb = 0;}

[eb > 0 && eb+ea <= 0){tmpB = eb;}
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[zc >=1]
Y {fc = fc+tmpC; zc = 0;}

C1

[ea +eb >0 || ea + eb <0]

[zb >=Tba]

________________________________________________________

-

‘A_CONTROLLER
- {za = 0;tmpA = 0;}

ModeB1“ 2
/"{? 17 o
\ )
[eb<=0] ‘ I [zb >=Tcb]
{tmpB =eb;} | \{fb = fb+tmpB; zb = 0;}

[ea > 0&&eb+ea <= 0){tmpA = ea;}

[za >= Tba]
{fa = fa+tmpA; za = 0;}

[za >= ’]] |
{fa = fa+ tmpA;za = 0;} ModeA1
7FE . 1
/] du: !
( A=
\
[ea<=0] | =
{tmpA = ea;} i

T N\ {fa=fattmpA;za=0} |

~_ [ea > 0&&eb+ea > 0]{tmpA = ea;}

\\

Figure 4: The SLSF model of the simplified example of the Russia-Ukraine natural gas pipeline system.

from A to B. As the transfer time from A to B is less than that of
from C to A, i.e., Tab < Tcb, the flow rate into B may be increased
at different time instances. Thus, a low-level observer at B can infer
the change of gas demand of A based on observing the change of
gas demand of B. Based on this knowledge, an observer at B can
perform a man-in-the-middle attack to secretly transfer gas from A
to B without either A or C being aware of the attack. On the other
hand, in the case that the security levels of Vb, fb, zb, tempB, and
eB are not given, our tool infers that all of them should be high.

6.2 FREEDM Smart Grid System

In the second case study, we investigate the potential information
leakage of the NSF FREEDM smart grid system introduced in [8],
and further studied in [1, 4]. Particularly, we focus on the hybrid

model of the FREEDM system proposed in [4] which illustrates
the migration of power between two neighboring transformers
connected to a macrogrid over a shared line. Each transformer has a
separate battery that can store and supply power to the transformer.
Depending on if the battery is full or not, power is either drawn
from or sold back to the macrogrid. In this model, the macrogrid
power flow is assumed to be publicly observable.

SLSF model. In this paper, we represented the hybrid-dynamical
model proposed in [4] as an SLSF model, which is shown in Figure 5.
The model includes three different components that represent the
plant dynamics, migration controllers, and battery controllers of
two neighboring transformers. For each transformer, i € {1, 2},
Bi, b; are the energy and power of its storage battery. d; is the
gross power demand input, and r; and p; are the renewable energy
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{p1=0;b1=0; m=0; B1=Bmax;gr=0;t=0; p2=0; b2 =0; B2 =0.8"Bmax; grm = grm0; bm1 = 0; bm2 = 0;}

{'PLANT [B1<0] B1>Bmaxi{b1 =0; bm1 = 0}
Plan11 Plan12
du: ~{ du:

p1_dot =-m; B1_dot = b1;
b1_dot = bm1; gr_dot = grm;
t_dot=1;gr_out=gr;
B1_out = B1; p1_out = p1;
n1_out =d1 - (r1+p1);

1

1

1

|

| | p1_dot=-m; B1_dot = b1;
I | b1_dot = bm1;gr_dot = grm;
! |t dot=1;gr_out=gr;

1 | B1_out=B1; p1_out=p1;
i \n1_out=d1-(r1+p1);

1

1

[(B1<0] B1>Bmax)]

-

“

{ Migrate1

: [d1 - (r1+p1) >= thresh && d2 - (r2+p2) < 0]
{m = -maxm; }

Mode11 |~ Mode12 |,

[d1 - (r1+p1) < thresh || d2 - (r2+p2) >= 0}{m = 0;}

1
|
I
I
I

]
]
]
]
]
]
]
]
]
]
]
]
]
\
\

“

{ Migrate2
i[d2- (r2+p2) < thresh || d1 - (r1+p1) >= 0Km = 0;}

Mode21 :::-Mode22 SN

[d2 - (r2+p2) >= thresh && d1 - (r1+p1) < 0]

/BATTERY_CONTROLLER

To_bat1

8
o
o8
V)

{PLANT2 [B2 < 0] B2>Bmax]{b2 =0; bm2 = 0} i
Plan21 ~(Plan22
du: ~| du:

p2_dot = m; B2_dot = b2;
b2_dot = bm2;B2_out = B2;
p2_out = p2;

n2_out = d2 - (r2+p2);

p2_dot = m; B2_dot = b2;
b2_dot = bm2;B2_out = B2;
p2_out = p2;

n2_out = d2 - (r2+p2);

[(B2 <0 || B2>Bmax)]

I

| To_grid1

[(d1 - (r+p1) <= 0 && B1 < Bmax) || (d1 - (r1+p1)> 0 && B1 > 0)]
{b1 =-(d1 - (r1+p1)); bm1 = bm1+m;}

['(d1 - (r1+p1) <= 0 && B1 < Bmax) && !(d1 - (r1+p1) > 0 && B1 > 0)]
{b1=0;gr=gr-(d1-(r1+p1)); grm = grm + m;}

[(d2 - (r2+p2) > 0 || B2 >= Bmax) && (d2 - (r2+p2) <= 0 || B2 <= 0)]
{b2 =0; gr =gr- (d2 - (r2+p2)); grm = grm - m;}

I

To_grid2

[(d2 - (r2+p2) <= 0 && B2 < Bmax)|| (d2 - (r2+p2) > 0 && B2 > 0)]
{b2 =-(d2 - (r2+p2)); bm2 = bm2-m;}

Figure 5: The SLSF model of the FREEDM Smart Grid System proposed in [4].

resource supply and power draw, respectively. gr is the power of
the macrogrid, and variables which end in m denote migration rates.
Variables which include max are the upper bounds of their values.
In this model, we assume that an attacker can observe only the
power of the macrogrid, i.e., gr is a low variable and other variables
are considered high.

Non-interference detection. Our tool reports several security
violations in the battery controllers. An explicit flow occurs in the
assignment gr = gr — (d; — (r; + pi)), where the update of low
variable gr is based on the values of high variables d;, r; and p;.
Furthermore, there is also an implicit flow since the low variable gr
is updated following the transitions whose guard conditions depend
on the status of the battery, which is private. If public observers
see that the value of gr keeps increasing over time, they can infer
that either one or both batteries are at capacity.

7 CONCLUSION

In this paper, we proposed a lightweight approach to detect secu-
rity leaks in a hybrid system using static information flow anal-
ysis. We introduced a set of security rules for hybrid automata
that characterizes the non-interference property. Based on those
rules, we developed a scalable algorithm that can efficiently per-
form non-interference checking and inference for hybrid automata
corresponding to a given set of security annotations of its vari-
ables. We showed that the proposed algorithm is scalable and can
be used to analyze a hybrid system without flattening the model.

We demonstrated the applicability of our algorithm via two case
studies. For future work, we plan to extend our algorithm to cap-
ture other information flow properties such as non-inference and
non-deducibility.
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