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Abstract

Nature relies on a wide range of enzymes with specific biocatalytic roles to carry out

much of the chemistry needed to sustain life. Enzymes catalyze the interconversion of a

vast array of molecules with high specificity—from molecular nitrogen fixation to the syn-

thesis of highly specialized hormones and quorum-sensing molecules. Ever increasing

emphasis on renewable sources for energy and waste minimization has turned enzymes

into key industrial workhorses for targeted chemical conversions. Modern enzymology is

central to not only food and beverage manufacturing processes but also finds relevance in

countless consumer product formulations such as proteolytic enzymes in detergents, amy-

lases for excess bleach removal from textiles, proteases in meat tenderization, and

lactoperoxidases in dairy products. Herein, we present an overview of enzyme science

and engineering milestones and the emergence of directed evolution of enzymes for

which the 2018 Nobel Prize in Chemistry was awarded to Dr. Frances Arnold.
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1 | BACKGROUND

1.1 | Background of enzymes, enzymology, and
enzyme design

Biological systems are masterful chemists that build complex mole-

cules and systems from simple precursor compounds. At the heart of

this complex machinery are enzymes that account for ~4% of pro-

teins.1 The use of biocatalysts by humanity which emerged as an acci-

dental by-product of gathering wild grain dates at least back to the

ancient Egyptians (circa 10,000 BC) who used fermentation for bread-

making and brewing purposes. However, it was not until the 19th

century that fermentation was recognized as carried out by living

cells.2 In 1835, Swedish chemist Jacob Berzelius used the term “pro-

teins” to describe similar molecules extracted from egg-whites, blood,

serum, fibrin, and wheat gluten which all had atomic ratios of C:H:N:

O:S to be approximately 1:1.58:0.28:0.3:0.01 (experiments performed

by Johannes Mulder)3 and reported that some of the proteins are cat-

alytic. It was much later in 1878, that German physiologist Wilhelm

Kuhne coined the term “enzymes.” Figure 1 shows a chronological

compilation of 70 key events in the history of enzyme engineering

starting from the 1830s up to 2018 when the Nobel Prize in chemis-

try was co-awarded for the “directed evolution of enzymes” and

“phage display.” Edward Buchner in 1897 isolated an enzyme complex

which he called zymase from cell-free yeast extracts and successfully

demonstrated that it can catalyze the breakdown sugars in alcoholic

fermentation.4 During the same time, German chemist, Emil Fischer

postulated the “lock and key” hypothesis5 for enzyme activity where

the substrate (key) was thought to rigidly fit into the complementary

groove of the enzyme (lock). Figure 2 shows the lysozyme binding

pocket with a peptidoglycan substrate occupying the binding pocket.

However, most of enzymatic catalysis could not be adequately
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explained by the rigid enzyme model6 till 1958 when Koshland laid

out the “induced fit” theory7 for enzyme substrate action. The three

principal tenets of “induced fit” theory as explained in the article were:

“(a) the precise orientation of catalytic groups is required for enzyme

action, (b) the substrate causes an appreciable change in the three-

dimensional relationship of the amino acids at the active site, and

(c) the changes in the protein structure caused by the substrate brings

the catalytic groups into the proper alignment, whereas a non-

substrate does not.” Figure 3 shows the change in hexokinase struc-

ture (from closed to open) necessary for product release. In 1903,

French chemist Victor Henri derived a functional form8,9 of enzyme

kinetics from his investigations on the invertase enzyme that

hydrolyzes sucrose to glucose and fructose. However, a simplified and

more celebrated version of the equation that equated the rate of the

reaction with the rate at which the concentration of various species

involved in the reaction was formalized by Michaelis and Menten in

1913.10 About a decade later during 1930s, Sumner, Northrop, and

Stanley independently crystallized urease,11 pepsin,12 and nucleopro-

teins responsible for tobacco-mosaic virus activity,13 respectively, for

which they shared the Nobel Prize in chemistry in 1946. These struc-

tural studies were soon complemented with methods for discerning

the sequence of short peptide chains14 in 1950 by Pehr Edman and in

1952 Frederick Sanger reported the complete amino acid sequence of

polypeptide chains A and B of bovine insulin15,16 building on the work

F IGURE 1 Seventy notable events in the history of enzyme engineering starting with the Egyptians using wild grain for bread-making and
brewing to directed evolution and phage display techniques for which the Nobel Prize in chemistry was awarded in 2018. The computational
milestones are indicated as purple lines [Color figure can be viewed at wileyonlinelibrary.com]
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started by Charles Chibnall.17 Concurrently, William Stein and

Stanford Moore collaborated on developing an analytical procedure to

determine the amino acid content of any protein at The Rockefeller

Institute of Medical Research. Stein and Moore used potato starch in

a column for fractionation of proteins from peptides along with simul-

taneous counting of the amino acids.18 Subsequently, they followed

up with a better and faster quantification approach19 of amino acids

in peptides. The next two decades saw isolation, purification, and

characterization of various enzymes ranging from myoglobin from

sperm whales20 to high resolution lysozyme structures from egg white

using X-ray crystallography.21 It was in 1978 when directed evolution

revolutionized the search for better enzymes.

Mutation followed by natural selection was established by

Darwin's On the Origin of Species in 1859 as the organizing principle in

biology. However, for thousands of years before humans unknowingly

exploited this process in selective breeding and domestication. It was

only in the late 1970s that evolution was brought inside the labora-

tory with the specific objective of discovering microbial phenotypes

for better utilization of desired carbon substrates. Lerner et al

designed a xylitol utilization phenotype22 of Aerobacter aerogenes in

1964. In 1967 Spiegelman et al performed in vitro reconstitution of

RNA templates with pure RNA replicase to study the effect of selec-

tive pressures for several generations in the famous “Spiegelman's

monster” experiments.23,24 Inspired by these, Francis and Hansche

performed “directed evolution” in yeast and achieved 30% higher

orthophosphate activity with a single mutation but with a growth rate

trade-off of 83%.25 This was soon followed by a more comprehensive

demonstration of directed evolution by Barry Hall where up to four

mutations in the β-galactosidase coding region in Escherichia coli cul-

tured with lactose as the sole carbon source yielded phenotypes span-

ning a wide range of growth rates.26 Within a decade, Eigen and

Gardiner proposed a cyclic “evolutionary machine”27 comprised of

genetic mutations, amplification and selection to produce stable

mutant proteins in vitro. The subsequent development of error–prone

polymerase chain reaction (PCR) for random mutagenesis enabled

generation of large-scale mutant libraries with >1010 designs and has

been a cornerstone in the history of enzyme engineering.28-31

1.2 | Methods for directed evolution

Enzymes (and proteins in general) are modular biopolymers composed

of 20 canonical amino acid monomers as encoded by their cognate

nucleotide sequences (genes). They have the potential to evolve

through changes in their amino acid sequence. This evolvability has

been exploited to explore the combinatorial sequence space for cata-

lyzing reactions with improved specificity, regioselectivity, and stereo-

selectivity.32 Thus, directed evolution of enzymes and binding

proteins is a synthetic procedure relying on molecular insights, which

emulates the natural evolution process in the laboratory at an expe-

dited rate. The procedure commits to intended variation of protein

sequences with prescribed randomness of amino acid choices. This is

F IGURE 2 Two different views of the
lysozyme binding site (marked in blue)
and the active site residues highlighted in
red. The peptidoglycan substrate is
shown as yellow sticks [Color figure can
be viewed at wileyonlinelibrary.com]

F IGURE 3 Conformational change in
hexokinase during product release. The
active site has been highlighted in bright
green. The substrate and products have
been marked as pink sticks. Accession IDs
for closed and open hexokinase
conformations are 2E2N, and 2E2Q
[Color figure can be viewed at
wileyonlinelibrary.com]
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further coupled to engineered screening and selection strategies. In

other words, directed evolution involves iterative identification of a

starting protein, diversification of its coding gene sequence, expres-

sion, and subsequent functional screening until an acceptable level of

enzymatic activity, binding affinity, or specificity is accomplished.

Sampling the entire combinatorically explosive mutational land-

scape for any protein is impossible as complete randomization of a

mere pentapeptide would yield ~1013 unique amino acid sequences.

Gene diversification approaches are thus designed to perform an opti-

mal sparse sampling of the multidimensional sequence space, with the

objective of ascending in the landscape of desired phenotype by

accruing beneficial mutations. Several gene diversification methods

for directed evolution have been proposed over the last two decades.

These strategies typically integrate random mutagenesis, focused

mutagenesis, and homologous recombination.

1.3 | Random mutagenesis

Random mutagenesis starts by obtaining a library of point mutants

from a single parent sequence and transforming the library into a

strain to express the variant proteins. A high-throughput screen for

the desired phenotype then identifies the successful candidates.

Error-prone PCR (epPCR), first described by Goeddel et al33 utilized

the low-fidelity of DNA polymerases to make point mutations during

amplification of the gene that codes for the protein of interest.

Gheraldi et al34 and Kunkel et al35 were able to enhance the rate of

mutation (from 10−10 to 10−4) by adding mutagenic dNTP analogues

or increasing magnesium concentrations in the epPCR setup. Addi-

tional screening for properly expressed proteins by fusing the target

gene with a green-fluorescent protein reporter was soon demon-

strated by Tawfik et al.36 A modified epPCR was developed by Joyce

et al that used a combination of Taq polymerase, 0.2 mM dGTP,

0.2 mM dATP, 1 mM dCTP, and 1 mM of dTTP, higher MgCl2, and

0.5 mM MnCl2 to reduce polymerase fidelity without affecting gene

amplification and alleviated the strong bias toward A!G, and T!C

transitions as faced by Goeddel and co-workers. Arnold and co-

workers have documented several successes using random mutagene-

sis including introducing activity toward a wide range of native-like

substrates in cytochrome P450,37 and exploring novel carotenoid bio-

synthesis routes.38

1.4 | Focused mutagenesis

The probability of identifying active redesigns which emerge from syn-

ergism of simultaneous point mutations (which are themselves margin-

ally useful) is very low using random mutagenesis as the number of

possible unique sequences increase exponentially with the number of

randomized sites. To this end, focused mutagenesis uses phylogenetic

analyses of homologous proteins to identify specific amino acid substi-

tutions that are likely to improve substrate binding or catalysis. A

mutagenic oligonucleotide cassette39 containing degenerate codons

for a targeted amino acid change is inserted40 into a vector plasmid

for expression of a desired enzyme variant. Parra et al41 fed focused

mutagenesis library of xylanase to epPCR to identify 12 more thermo-

stable variants with the best mutant showing a 4.3�C increase in melt-

ing temperature.

1.5 | Homologous recombination

An alternate strategy to access beneficial combinations of mutations

is achieved using homologous recombination. This is a mimic of the

natural process of biological evolution. One of the early approaches,

DNA shuffling, involved a DNase-mediated fragmentation of a target

gene, followed by random re-stitching using a PCR setup. Monticello

et al42 replaced the random priming of DNA fragments by a sophisti-

cated random chimeragenesis technique (RACHITT). They were able

to achieve several folds of higher recombination than any other

method in a dibenzothiophene monooxygenase gene. The expressed

proteins not only exhibited higher than wild-type activity, but also

showed 20-fold higher affinity for several hydrophobic nonnatural

substrates. Arnold et al43 also reported an optimized DNA shuffling

workflow to control the point mutagenesis rate to as low as 0.05% by

adding Mn2+ and Mg2+ ions during DNase I digestion of the gene and

appropriate choice of DNA polymerase to effect high-fidelity recom-

bination. A number of modeling frameworks were developed44 for

estimating the occurrence of mutations in error-prone PCR after mul-

tiple generations45 and the location of crossovers in directed evolu-

tion experiments.46,47

Recent trends in directed evolution has seen attempts and suc-

cesses at improving proteins with the biological proviso of still being

relevant to the metabolic pathways they belong to, thus creating

novel whole cell chemical factories for synthesis of value-added

chemicals.48-50 More recently, biochemists have aimed at dialing in

novel functionalities in enzymatic proteins which are not seen in

nature.51,52 A decade old review by Toscano et al53 on active site

redesign strategies provide considerable insight toward function-

driven enzyme redesign.

1.6 | Methods for computational protein design

Computational methods provide the means to screen in silico many

enzyme redesign alternatives thus focusing the number of variants to

be tested experimentally. Existing approaches generally use biophysics-

inspired or statistical fitness functions to screen design alternatives in

terms of conservation (or enhancement) of desired interactions and

absence of aberrant ones. There is an ever expanding literature of scor-

ing function54,55 and combinatorial search algorithms56 devoted toward

the efficient traversal of combinatorial space of residue alternatives.

Software tools that integrate all these tasks include RosettaDesign,57

Osprey,58 Tinker,59 TransCent,60 and IPRO.61 The difficulty and success

rate in computational design depends on how ambitious the enzyme

redesign goal is. For example, attempts to switch cofactor or substrate
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specificity of a well characterized enzyme have been met with many

successes,62-65 however, efforts to improve the catalytic affinity of a

native enzyme toward its preferred substrate is much more difficult

with only a few success stories.66,67 In addition, efforts at introducing a

novel enzymatic activity are also very difficult.68 Nevertheless, there

has been a lot of exciting, industrially relevant research focused on gen-

eration of stable humanized immunoproteins69,70 with biopharmaceuti-

cal relevance and enzymes with enhanced turnover,71 altered

substrate-, and stereo-selectivity72 in the past one and a half decade.

1.7 | Statistical protein design approaches

Existing protein structures already contain a vast amount of informa-

tion that correlate amino acid sequence to structure. A database-

driven energy function reliant on the frequency of certain structural

arrangement of amino acid backbones and side chains have been used

to create a “knowledge-based potential,” DrugScore73 was used to

predict and score ligand conformations at the active site of an enzyme

using entropic contributions and implicit solvation upon learning from

159 experimentally resolved enzyme-ligand complexes. However, the

lack of hydrogen atoms failed to capture the effect of protonation

states, and also undermined electrostatic contributions to a great

extent. Buchete et al74 developed statistical potentials using orienta-

tions of different amino acid side chains seen in experimentally

resolved crystal structures to predict folded conformations for a given

protein sequence. On the other hand, Lin et al75 used evolutionary

information from multiple sequence alignment of homologous pro-

teins from closer organisms to develop knowledge-based statistic

potentials. Here each protein was converted to several binary profiles,

each containing information about different parameters (dihedrals,

solvent accessibility, etc.) for each position (instead of actual amino

acid sequences). An associated scoring system assessed how close a

designed structure would be to existing structures from the alignment

to have consistent folding. A similar statistical potential (TmFoldRec)

for predicting folds in membrane-segments of transmembrane chan-

nels by learning from 124 crystallized transmembrane folds was publi-

shed by Kozma et al.76 Knowledge-based protein design tools provide

the advantage of introducing additional descriptor terms (such as helix

propensity and solvent exposure) without enhancing computing time

significantly. Poole and Ranganathan77 provide a comprehensive

review of such similar knowledge-based potentials used for computa-

tional protein design. An integrated approach using a library (rotamer

libraries78) of statistically preferred amino acid side-chain conforma-

tions in the phi–psi dihedral space and molecular-mechanics calcula-

tions to score a choice of a substituent amino acid rotamer forms the

basis of most current day protein design software.61,79

1.8 | Force fields for computational protein design

Force fields are used to compute interaction and overall stability

energy scores of protein-ligand complexes or individual proteins.

These energy terms (or scores) represent side chain and backbone

geometries, protonation states, and effect of solvents and only

enthalpic contributions are factored (not protein entropy). Force-field

calculations helps to assess enzyme substrate affinities and modeling

of side chains. The most popular force field parameters (bond spring

constant, bond angles, dihedrals, improper dihedrals, partial charges)

are computed using ab initio quantum mechanical and molecular

mechanics calculations. Knowledge-based force field like Rosetta uses

extra potential energy terms obtained after refitting of statistical and

experimental knowledge-based data. Unlike statistical knowledge-

based potentials, these empirical force fields are capable of capturing

actual forces between atoms (electrostatics, van der Waals, and sol-

vent contribution). Several independently developed force fields have

been developed till date—such as, Amber,80 CHARMM,81 OPLS,82,83

GROMOS,84 and Rosetta.85,86 Depending on whether each and every

atom or only heavy atoms and polarizable hydrogens are represented

within the force field, they are called “all atom” or “united atom” force

fields. GROMOS is exclusively united atom force fields, Amber—

(ff14SB87 or ff15FB88), CHARMM and Rosetta all atom, while OPLS

has both versions. Mackerel et al81 provides a detailed discussion on

the development of empirical force fields.

1.9 | Biophysical protein design tools

Biophysical protein design tools include computing enthalpic energy

contributions of covalently bonded amino acids along the polypeptide

backbone of a protein, and pairwise non-covalent interactions (van

der Waals, electrostatics, and solvent effects) between atoms in prox-

imity to each other. These force-field based energy scores are used in

iterative or random-substitution computational workflows to make

design choices toward identifying stable enzyme variants with

improved ligand affinity, altered cofactor specificities, and other bio-

chemical objectives. Several tools using either full atomistic57,61,89 or

coarse-grained90,91 representations of proteins have been developed

over the last two decades. Go and Taketomi92 employed non-

transferable potentials tailored to the native structure of a protein by

evaluating the partial contributions of long-range and short-range

forces at play throughout the molecule. Any variant to the native pro-

tein (referred to as “Go-models”) would attain its lowest energy score

when the corresponding inter-residue root mean square deviation

with the native structure is minimum. Even though Go-proteins can-

not explore novel folds, they have had high success rate in identifying

functional variants that fold as only an extremely restricted set of

positions permit substitutions to similar-to-native side chain proper-

ties (charge and size). The protein-module of Martini coarse-grained

force-field93 was developed for predicting peptide conformations in

lipid-bilayers. This was an extension to the lipid-exclusive Martini-

force field.91 Using dioleylphosphatidylcholine bilayer and a series of

pentapeptides as a model system, the potential of mean force for each

amino acid was evaluated as a function of its distance from the center

of the lipid region of the bilayer. These values were used as prece-

dents to estimate the geometry of any new transmembrane protein
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whose overall geometry is dependent on the interactions with the sur-

rounding lipid molecules. For detailed account of other coarse-grained

models, we suggest the review by Ivan Colluza.94 Full atomistic simula-

tion packages on the hand, are capable of handling fully resolved all-atom

structures of entire proteins and have precise description of bonded and

nonbonded parameters and consequently involve longer compute times.

RosettaDesign,57 Maestro95 Schrodinger Inc., PoreDesigner,89 and

IPRO61 are examples of such full atom protein design packages. These

packages have two essential compute modules: (a) rotamer chooser, and

(b) force-field dependent evaluation of redesigned protein. During pro-

tein design RosettaDesign and Maestro both create large randomized

libraries of protein variants with minimum deviation from native struc-

ture or a scored property (hydrophobicity, binding to an interacting part-

ner, etc.), followed by evaluating enthalpic energy scores for each design

using their respective empirical force-field energy functions. These

energy scores are used to subsequently rank the designs depending on

the design objective (such as interaction with a ligand). IPRO and Por-

eDesigner on the other hand iteratively uses a mixed-integer linear pro-

gram to identify unique combinations of amino acid substitutions which

satisfy the design objective. These choices are driven by CHARMM

force-field based energy scores accounting for bonded and nonbonded

energy terms. IPRO is an iterative protein redesign and optimization tool

which emulates focused mutagenesis to identify stable enzyme variants

that accomplish intended binding or unbinding of a substrate (or improve

binding with one simultaneously eliminating with another). Figure 4 pro-

vides a general seven-step schematic overview of RosettaDesign and

IPRO execution modules. DESADER acronym represents the seven gen-

eral steps of: Dock substrate, Ensure catalytic constraints, Substrate

binding residue identification, Adjacent residue repacking, Designing

sequence, Energy minimization, and Ranking of designs. PoreDesigner

relies on similar principles and predicts designs that enable users to pre-

cisely tune the pore size of any channel protein, thus offering interaction

or size-based separations of aqueous solute mixtures. It has been experi-

mentally validated to be able successfully redesign a bacterial porin to

narrow pore sizes that performed perfect desalination using a membrane

assembly. Donald et al96 and Pantazes et al97 provides a comprehensive

review of other algorithms for computational protein design.

2 | SUCCESSES

2.1 | Successes in the “directed evolution” of
enzymes

Enzyme design is a difficult challenge as only an infinitesimally small

fraction of possible amino acid sequences adopts a functional fold. It

has been estimated98(using a beta-lactamase as a proxy) that the frac-

tion of all sequences that fold into viable enzymes with some minimal

F IGURE 4 The seven-step DESADER schematic overview of enzyme redesign computational workflows of RosettaDesign and IPRO.
RosettaDesign uses a stochastic Monte Carlo to create a library of enzyme variants. IPRO uses a deterministic mixed-integer linear optimization
program to identify amino acid substitutions which are driven by the biochemical design objective (such as, maximize or minimize CHARMM-
based interaction energy score with the ligand) [Color figure can be viewed at wileyonlinelibrary.com]
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activity is as low as 1 in 10.77 This implies that random mutations pre-

dominantly tend to almost always adversely affect protein function.

Thus, directed evolution capitalizes on the range of weak promiscuous

activities of enzymes which can be quickly driven toward a desired

catalytic activity only after pin-pointing few key mutations. Random

mutagenesis, focused mutagenesis, and homologous recombination

protocols along with efficient expression and screening of variant pro-

teins have yielded several successes in redesigning enzymes for

improved catalysis, altered substrate and cofactor specificities, and

stability.

Reetz et al99 used a two-step protocol where first, epPCR was

employed to obtain a short library of enantioselective cyclohexane

monooxygenases with R or S selectivity that showed at least 95%

activity compared to wild type, followed by random mutagenesis with

subsequent screening for activity yielded eight with turnovers of the

desired enantiomer ranging from two- to ninefold improvement over

the wild type. Sequencing these mutants revealed only one to three

amino acid changes in these eight mutants.

A separate endeavor by Arnold and co-workers100 pushed the

activity–stability trade-off by using random mutagenesis, recombina-

tion, and screening of mesophilic Bacillus subtilis p-nitrobenzyl ester-

ase and designed seven thermostable variants with melting

temperatures (Tm) higher than the wild type by 5–14�C. Out of these

seven, three best mutants were identified to show activities higher

than wild type. These best mutant (Tm = 66.5�C; specific activ-

ity = 0.16 mmol product/(min mg enzyme) where wild type activity

was 0.125 mmol product/(min mg enzyme)) was screened from 1,500

possible variants and exhibited stability at par with thermophilic

enzymes. This was comparable with results from site directed muta-

genesis101 which, however, necessitate extensive sequence and struc-

ture information a priori. Ultimately, one of the most important insight

gleaned from this study was that there is always an increase in activity

with temperature until the enzyme denatures. This subsequently

means simultaneous low-temperature activity and thermostability

screening is sufficient to produce highly active variants viable across a

wide temperature range.

Random mutagenesis explorations have been instrumental bene-

ficial mutations which are beyond the scope of rational design strate-

gies. Kim et al102 demonstrated that random mutagenesis on

Agrobacterium sp. beta-glucosidase and screening using in vitro

endocellulase-coupled assay yielded two highly active mutants with

two (A19T, E358G) and four mutations (A19T, E358G, Q248R,

M407V) with activities 7- and 27-folds higher than wild type, respec-

tively. What sets this work apart from other similar studies is that—all

these mutations were at least 9 Å away from the substrate and could

not directly interact with the substrate to affect the turnover. This

suggested that these mutations bring about conformation changes to

the active site thereby providing a congenial groove for the substrate

to sit and potentially react. We used the Agrobacterium sp. beta-

galactosidase sequence (NCBI accession: WP_006316672.1), gener-

ated the best mutant sequence, and homology modeled it using Swiss

MODEL103 to show that these mutations are distal from the

substrate-binding domain (see Figure 5).

In another effort Zhao et al developed a staggered extension pro-

cess (StEP)104 for in vitro mutagenesis and recombination of polynu-

cleotide sequence. In contrast to optimized DNA-shuffling43 where

DNase I digests a set of parent genes into an array of DNA fragments

which are thermocycled into complete genes using DNA polymerase,

StEP generates full-length recombination cassettes relying on a

template-based extension using DNA polymerase. They tested the

recombination efficiency between two thermostable subtilisin E genes

which code for protease. Adenine to guanine changes in bases 1107

from gene 1, and 995 from gene 2 led to amino changes N181D, and

N218S in the final protein. Single variants of N181D and N218S

exhibited threefold and twofold longer, and the double mutant eight-

fold longer half-lives than wild type at 65�C and were even stable at

75�C. Out of the 368 clones that were screened, 84% were active

and showed wildtype-like catalytic activity. Out of the active ones,

21% exhibited thermostability like the double mutant, 61% were like

the single mutant, and 18% were as thermostable as the wild type.

In contrast to most random mutagenesis studies where an

enzyme is engineered with the objective of finding a fitter variant with

altered stereo-specificity, thermostability, or higher activity than wild

type, Chen et al105 engineered a serine protease from B. subtilis to

function in a highly nonnatural environment with high concentrations

of polar organic solvent, dimethylformamide (DMF). Proteases and

lipases are known to be promising catalysts for organic synthesis of

acrylic and methacrylic esters106 which find applications as cement

F IGURE 5 The four mutations that
led to enhanced catalysis in beta-
glucosidase have been marked as blue
sticks and the protein is represented as
light pink cartoon. All four mutations are
too far from the binding pocket to
interact with the substrate [Color figure
can be viewed at wileyonlinelibrary.com]
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material for knee or hip arthroplasty surgeries,107 and PVC modifiers

in plastic industry. In this work, mutagenesis and screening was per-

formed with the objective of identifying amino acid substitutions that

recover the lost catalytic activity of serine protease in organic media.

Through three rounds of sequential screening, 10 amino acid changes

were pinpointed within the binding groove of the substrate, in loop

regions that offered sequence variability without affecting the tertiary

folds of the reactive pocket—and restored catalysis. Seven out of the

ten mutations were seen in other protease homologs from other

organisms. To investigate the effects of each and every mutation,

10 single variants were generated and checked for enhancement of

catalytic activity (Km and kcat). Results indicated G131D mutation

alone enhanced substrate affinity with 20% DMF by ~90% (reduction

of Km from 12.2 to 1.4 mM). Furthermore, N181S, T255A, E156G,

S182G, and S188P mutations were also identified to reduce Km and

all mutants with last three mutations improved catalysis even in aque-

ous media. Overall, we noticed that mutations where the substituted

amino acids are hydrophobic led to lower Km in organic media and

thus stabilized the substrate, whereas charged residues (D60N,

Q103R, and G131D) improved kcat and thus product formation. This is

also corroborated from the observation that the latter set of muta-

tions also enhanced turnover in aqueous medium (0% DMF).

2.2 | Successes in computational enzyme redesign

Nearly all engineered enzymes that are used today emerged from

structure-based protein-engineering efforts of the 1980s. The successes

have been notable, but the results came slowly till the advent of directed

evolution in 1990s that led to major breakthroughs. However, most

amino acid changes accumulated during evolution have marginal or no

effect on the desired catalysis, making it a “needle in a haystack” prob-

lem to pinpoint key positions. To this end, computational methods have

shown promise in sampling thousands of amino acid combinations and

conformations with assessment of their impact on protein stability.

Table 1 shows 50 key publications in protein design that uses computa-

tional and experimental steps to generate stable de novo protein scaf-

folds, catalytic antibodies, and highly active enzyme redesigns. Several in

silico tools have been able to glean design rules which have been used

to tune the substrate and cofactor specificities of various enzymes along

with unraveling novel, nonnatural catalytic modes. In 1997 the Mayo lab

reported the first case of de novo redesign of streptococcal protein G β1

domain using a van der Waals potential to compute steric contributions,

atomic solvation potential to favor burial of non-polar residues. The

selection algorithm iteratively scanned and identified optimal sidechain

conformation for a given backbone pose and accepted designs based on

the sum of two pairwise interaction terms: (a) side chain and backbone,

and (b) side chain and side chain. A statistically preferred set of

1.1 × 1062 side chain rotamers165 was used, and a dead-end elimination

theorem166 was employed to constrain the search space to non-clashing

ones and complete sequence design for a 50-residue window was

achieved for every single design run. The design process only targeted

nonpolar residues from the surface residues. The design exhibited

striking geometrical resemblance with zing-finger protein Zif268 even

though the sequence similarity (39%) and identity (21%) were low, with

most conserved residues located in buried and ordered regions of the

protein indicating this to be a novel sequence. NCBI p-BLAST167 rev-

ealed this sequence to have similar alignment score (<39% identity)

with any random amino acid sequence of similar length. This work

paved the path for competing in silico methods to handle immense

combinatorial search required for computational protein design, and

inspired the development of various molecular-mechanics based force

fields (CHARMM,168 Amber,80 gromacs169). These force fields started

factoring in near-accurate contributions of van der Waals, electrostat-

ics, and solvation terms. Furthermore, Sumners and Schulten intro-

duced molecular dynamics for studying temporal fold changes and

stability of biomolecular complexes170 (such as enzyme-ligand) to

determine their macroscopic thermodynamic properties following the

ergodic hypothesis.

Soon after, David Baker and colleagues used a novel computa-

tional enzyme design methodology171 to facilitate the Kemp elimina-

tion reaction—which has a high activation energy barrier and for

which no naturally occurring enzyme existed. Eight in silico designs

were generated containing one of the two proposed catalytic motifs.

Directed evolution on these designs produced >200-fold increase in

kcat/Km values. The Kemp eliminase reaction is the amino-induced

elimination of benzisoxazole into relavant o-cyanophenolate ion.172

The reaction requires a base-mediated proton abstraction from a car-

bon with subsequent dispersion of the resulting negative charge or

stabilization of the partial negative charge on the phenolic oxygen. To

this end, the authors designed two alternative ideal catalytic bases—

(a) Asp-His dyad, or (b) single aspartate or glutamate. Quantum-

mechanical calculations on the backbone of the desired binding

pocket was used to choose an optimal combination of amino acids

that served the dual objective of stabilizing the substrate and posi-

tioning the catalytic base at the appropriate distance from the sub-

strate. RosettaMatch57 was used to screen about 105 binding pocket

designs by finding the most stable side chain conformations of the

pocket residues from each design, given their backbone conformation.

The designs were scored based on binding free energies between the

enzyme and the transition state. Forty-nine top designs were synthe-

sized in vitro and eight showed catalytic activity. After seven rounds

of mutagenesis and screening, one of the designs showed a kcat/Km

value of 2,600 (M s)−1 which was a result of fine-tuning the pocket

residues to accommodate the substrate better. A recent work by

Kingsley et al173 defines the binding pocket as “substrate tunnels” and

the authors demonstrate that turnover can be severely impacted by

altering the pocket residues even if the catalytic motif is unperturbed.

This work proves the potential of a synergistic workflow between

computational enzyme design to create an overall active site frame-

work, and molecular evolution to explore novel enzyme-mediated

reactions. The Baker lab followed up with another breakthrough with

designing enzymes for an energetically more demanding retro-aldol174

reaction that involved breaking a carbon–carbon bond of a hydroxy-

carbonyl compound to form an aldehyde (or ketone) and another car-

bonyl moiety using acid–base catalysis initiated by a nucleophilic
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TABLE 1 List of 50 computational enzyme design successes till date (grouped as per relevance)

Year Study Experimental contribution References

2004 Design of “bait-and-switch” catalytic antibodies Reactive immunization Xu et al108

2000 Shape complementarity, binding-site dynamics, and

transition state (TS) stabilization using 1E9

antibody by QM study of Diels–Alder catalysis

Chen et al109

1993 QM calculations on endo and exo stereoisomeric TSs

of Diels–Alder cycloaddition
Diels–Alder cycloaddition reaction to obtain

enantiomerically pure products

Gouverneur et al110

1998 QM calculations identify AspH50 and TyrL36 as

catalytic residues and AsnL91 for TS stability in

13G5 catalyzed exo Diels-Alder between N-

butadienyl carbamate and N,N-dimethylacrylamide

Crystal structure of exo Diels–Alderase inhibitor

complex solved at 1.95 Å

Heine et al111

2003 MD relaxation of 13G5 antibody around rigid TS

revealed role of three water molecules in orienting

catalytic base AspH50

Absolute enantiomeric selectivities of 13G5 and 4D5

antibodies established

Cannizzaro et al112

2002 Shape complementarity of TS and catalytic triad Trp-

Phe-Ser identified in 10F11 antibody for retro

Diels-Alder reaction

Crystal structures of Fab 10F11 and 9D9 antibodies

in complex with substrate analogs solved at 1.8

and 2.3 Å

Hugot et al113

1990 DFT calculations used to discern active site

interactions (TrpH104-PheH101) by π–π stacking to

stabilize TS for 10F11 antibody during retro

Diels–Alder reaction

Leach et al114

2002 Proof of nonspecific TS binding offered by antibodies

guided by solvophobic effects, unlike enzymes in

Diels-Alder reactions

Kinetic constants for TS-antibody binding calculated

for 1E9, 39A11, 13G5, 4D5, 22C8, and 7D4

antibodies

Kim et al115

1995

1996

Proof of Kemp eliminase activity being related to TS

geometry and polarity of the solvent in 34E4

antibody

Catalytic antibody found for ring opening in Kemp

elimination

Casey et al116

Kemp et al117

1988 QM calculations on aldol reactions exploring relative

stability of “chair” and “twist boat” TS structures

Li and Houk118

1995

1997

1998

TS studies on ab38C2, ab84G3, and ab33F12

aldolase antibodies to catalyze aldol and retro-aldol

reactions akin to class I aldolases using ϵ-amino

group of catalytic LysH93

Activities of aldolase antibodies measured to be

comparable to natural aldolases

Wagner et al119

Barbas et al120

Hoffmann et al121

2003 QM study on polar residues at binding pockets of

aldolase Abs in C–C bond-formation step

Arnó and

Domingo122

1975

1995

Aprotic polar solvents desolvate carboxylate reactant

by stabilizing TS through dispersion interactions

using Monte-Carlo free energy perturbation (FEP)

calculations

Kinetic constants for this reaction are experimentally

estimated

Kemp et al123

Zipse et al124

2003

1991

QM, MD, and FEP calculations on 21D8 antibody for

decarboxylation-catalyzed ring-opening reaction

21D8 catalyzes decarboxylation of 5-nitro-

3-carboxybenisoxazole by 61,000-fold than in

water.

Ujaque et al125

Lewis et al126

1993

1995

QM study on endo-tet TS for cyclization of trans-

epoxy alcohols show SN1 behavior and AspH95-

HisL89 catalytic residues

X-ray structure of antibody Fab5C8 crystallized Na et al127

Gruber et al128

1994

1999

Homology model of 43C9 antibody variable region

revealed ArgL96 to be the oxyanion hole and HisL91

the catalytic nucleophile for hydrolysis of aromatic

amides.

Water-mediated hydrogen-bonding network at the

active site is key for catalysis seen from X-ray

crystal of 43C9

Roberts et al129

Thayer et al130

2003 QM, MD, and FEP calculations on 43C9 reveals

alternate mechanism using direct hydride attack

Chong et al131

1995

1994

QM calculations to mimic active site of chorismite

mutase antibodies IF7 and IIF1-2E11 (for Claisen

rearrangement) revealed H-bond donors at the

active site.

Catalytic rate analysis performed after crystallizing

IF7 antibody.

Wiest et al132

Haynes et al133

(Continues)
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TABLE 1 (Continued)

Year Study Experimental contribution References

2010 Reconstructed evolutionary adaptive path (REAP)

analysis at active site of Thermus aquaticus DNA

polymerase to accept unnatural NTPs

Whole-gene synthesis (library size = 93) reveals

predicted single amino acid changes efficiently

catalyze unnatural NTPs

Chen et al134

2010 Improved enantioselectivity via 3DM analysis at four

specific active sites on Pseudomonas fluorescens

esterase

Site-saturation mutagenesis (library size = ~500)

yielded ~200-fold improvement in activity and

~20-fold higher enantioselectivity

Jochens et al135

2008 Hot-spot selection to improve pH/protease stability

of S. capsulata prolyl endopeptidase based on

multiple sequence alignment and ML on peptide

library

Whole-gene synthesis (library size = 91) revealed

200-fold higher protease resistance and 20%

higher activity

Ehren et al136

2009 MD simulations to identify mutational hotspots in

access tunnels to active site of Rhodococcus

rhodochrous haloalkane dehalogenase

Site-directed and site-saturation mutagenesis (library

size = 2,500) showed 32-fold higher activity

Pavlova et al137

2009 SCHEMA structure guided recombination of peptide

fragment from three CBH II cellulase for increased

thermostability

Whole gene synthesis (library size = 48) showed

15�C higher thermostability

Heinzelman et al138

2010 MOE molecular modeling analysis for altered

substrate specificity, solvent tolerance and

thermostability on Arthobacter sp. transaminase

Site-saturation and random mutagenesis (library

size = 36,000).

Savile et al139

2009 K* algorithm and SCMF entropy-based protocol

using rotamer library and flexible ligand docking to

switch specificity from Phe to Leu/Arg/Lys/Glu/

Asp on gramicidine S synthetase A Phe-

adenylation domain

Site-directed mutagenesis (library size = 10) showed

600-fold specificity shift from Phe to Leu by

changes in kM values

Chen et al66

2019 IPRO used to explore promiscuity of A domain of

Ser-specific NRPS from E. coli

Site-directed mutagenesis (library size = 160)

identified 152 new Ser-specific domains

Throckmorton

et al140

2009 RosettaDesign to vary active-site and loop-length

composition for human guanine deaminase to

switch specificity for ammelide/cytosine

Site-directed mutagenesis and PCR assembly (library

size = 10) showed >106 specificity change

Murphy et al141

2010 QM/ MM simulations using RosettaMatch on

Diels–Alderase
Site-directed mutagenesis (library size = 100) showed

activity similar to catalytic antibodies

Siegel et al142

2009 VMD modeling to reconstitute active site of nitric

oxide reductase (NOR) in myoglobin

Site-directed mutagenesis yielded functional NOR Yeung et al143

2009 Hotspot wizard server to create mutability maps

based on sequence-structure information from

existing protein databases

Haloalkane dehalogenase (DhaA) engineering from

Rhodococcus rhodochrous

Pavelka et al144

Pavlova et al137

2007 Engineering proteinase K using machine learning and

synthetic genes

24 amino acid substitutions in 59 variants were

tested for hydrolase activity on tetrapeptides at

68�C

Liao et al145

2010 Functional benefits of distal mutations through

induced allostery for enantioselective

Baeyer–Villiger monooxygenase using MD

simulations (also discerned active site geometry

changes)

Directed evolution experiments (library size = 400)

revealed one double mutant that induced allostery

Wu et al146

2003 Pairwise alignment of N-acetyluraminate lyase (NAL)

and dihydropicolate synthase (DHDPS) revealed

Leu-Arg mismatch at active site

An L142R mutation in NAL abolished NAL activity

and improved DHDPS activity by eightfold

Joerger et al147

2005 Four mutations to active site of keto-L-gluconate

phosphate synthase identified to enhance

promiscuity to arabinose-hex3-ulose six phosphate

synthase (HPS)

170-fold higher HPS activity is recorded. Yew et al148

2000 De novo design of helical bundle scaffolds for metal-

chelation

Dinuclear metal-binding activity recording using His-

triad catalytic motif

Hill et al149

2018 PoreDesigner to redesign beta-barrel scaffold from

E. coli OmpF to access any user-defined sub-nm

pore size

Stopped-flow light scattering experiments reveal

narrowest design perform like aquaporin

Chowdhury et al150

(Continues)
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attack on the ketone. In thin enamine catalysis, the carbinolamine

intermediate undergoes spontaneous dehydration to yield imine/

iminium product. Subsequently, the enamine tautomerizes to another

imine which undergoes a similar dehydration to release the product

and frees the enzyme. The authors constructed several protein scaf-

folds that can simultaneously accommodate both the transition states

for the two-step reaction and grafted four alternative quantum-

mechanically optimized catalytic motifs that would initiate the acid–

base catalysis. Altogether 32 designs showed weak catalytic activity

with the most active designs containing a co-crystallized water mole-

cule which served the dual role of stabilizing the intermediate and also

as a proton acceptor. Even though the X-ray crystallographic structure

of the active site showed great agreement (RMSD < 1 Å), the catalytic

efficiencies were low (0.74 (M s)−1, and turnover of 1 molecule of

product every 2 hr). Interestingly, from both these studies, the most

promising folds generated in silico that had high catalytic efficiencies

TABLE 1 (Continued)

Year Study Experimental contribution References

2003 RosettaDesign used to design nine globular proteins Circular dichroism experiments confirmed 8/9 of

these proteins to be folded akin to native, and 6/9

showed up to 7 kcal/mol stabilities than wild type

Dantas et al151

2003 Top7 alpha/beta for accessing novel folds by

iterative search through sequence design and

structural folds

93 residue alpha/beta fold protein crystallized and

matched structure prediction with RMSD = 1.2 Å.

Kuhlman et al152

2008 Computational design of periplasmic binding proteins

through conformer sampling and continuous

minimization revealed the importance of accurate

capture of partial charges and electrostatic

potentials

Evaluation of kinetic constants experimentally

revealed the design to outperform the native Kd

values (17microM vs. 210 nM-native)

Boas and Harbury153

2010 De novo alpha-helical bundle designed to bind heme-

like large cofactors

UV/visible and circular dichroism, size exclusion

chromatography and analytic centrifugation

indicate active enzyme but low activities

Fry et al154

2010 MD simulations with all-atom Amber force fields

were used to assess the integrity of a Kemp

eliminase identifying caveats that static simulations

are agnostic to

Kiss et al155

2015 Computational protocol for zeolites with detailed

description of active site interactions

Sauer and Freund156

2010

2010

Influence of structural fluctuations on active-site

preorganization in RA22 using molecular dynamics

revealed an alternate conformation of substrate

relative to His233 allows nucleophilic attack by

Lys159 where Asp53 (original catalytic residue) is

solvated and hence noncatalytic

A separate experimental endeavor discerned that

majorly catalysis is done by Lys159 due to the

favorable interaction with the naphthyl group of

the substrate

Ruscio et al157

Lasilla et al158

2010 Empirical valence bond calculations using FEP

umbrella sampling on Kemp eliminase (KE) designs

(KE07, KE70, KE59)

Difficulty in improving the KE activity is due to

improper partial charge characterization

Frushicheva et al159

2010 Eight mutations identified on KE07 with the

objective of improving activity further

2.6-fold lower KM and 76-fold higher kcat value

yielding 200-fold higher activity

Khersonsky et al160

2011 Computational sequence optimization for increased

activity of KE70

Nine rounds of random mutagenesis along with

computational predictions yielded 12-fold lower

KM and 53-fold higher kcat

Khersonsky et al161

2012 Fold-stabilizing mutations were predicted to enhance

activity of KE59.

16 rounds of directed evolution yielded >2000-fold

increase in activity

Khersonsky et al162

2012 Iterative approach to ensure every design cycle

necessitates active enzyme redesigns and MD

screening of mutants before experiments

Kinetic characterization of Kemp eliminases HG-3,

HG-2 show higher activity of HG-3

Privett et al163

2017 Computational redesign of Acyl-ACP thioesterase

with improved selectivity toward medium-chain-

length fatty acids

27 variants with enhanced C8-production titers were

constructed and best mutant was crystallized

(5TID)

Grisewood et al67

2017 Highly active C8-Acyl-ACP using synthetic selection

and computational modeling

1.7 g/L C8-titers with >90% specificity toward C8

and 15-fold increase in kcat over WT

Lozada et al164

Note: The experimental aspect of each of these endeavors have been noted as well thus indicating that majority of these successes are due to synergistic

effort of simulations and experiments.
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were triose-phosphate-isomerase (TIM) type containing eight alpha

and beta helices. TIM toroids are known to be very effective for enzy-

matic reactions,175 and thus this shows convergence between in vivo

and in silico fold preference.

Most computational enzyme redesign approaches were aimed at

improving substrate specificity and catalyzing nonnatural reactions.

One of the earliest examples to switch cofactor specificity was in Can-

dida boidinii xylose reductase (CbXR).63 The authors gleaned and

incorporated key cofactor switching mutation information from previ-

ous studies and were able to successfully alter the cofactor prefer-

ence from NADPH to NADH. Amino acid changes in the CbXR

binding pocket were systematically chosen using a mixed-integer lin-

ear program with the objective of simultaneously improving binding

to NADH while eliminating binding with NADPH—where the binding

score was expressed as a sum of van der Waals, electrostatics, and

solvation terms. After sampling nearly 8,000 possible CbXR variants,

10 were found to show enhanced affinity for NADH and 7 of the

10 designs showed significant xylitol production. Eight out of ten

designs showed more than 90% abolition of NADPH dependent activ-

ity while the remaining two showed equal preference for NADPH and

NADH. The best design exhibited a 27-fold improvement in NADH-

dependent activity. Other successes from the same group include,

OptGraft176 for grafting a binding site from one protein into another

protein scaffold, rational design to obtain 200-fold higher D-

hydantoinase activity in Bacillus stearothermophilus using just two

amino acid changes,177 OptZyme178 for redesigning enzymes by

improving binding to a transition state analogue instead of the sub-

strate as it correlates with greater turnover, IPRO Suite of programs61

for fully-automated protein redesign, and altering substrate specificity

of thioesterase enzyme from long-chain fatty acyl ACP to medium-

chain ones.50

Although the articles discussed show that computational enzyme

designs are feasible, the catalytic activities of artificial enzymes with

novel folds show significantly lower catalytic activities barring the

high activities seen in Kemp eliminase. However, computational

designs that maintain the wild-type binding groove geometry have

remained extremely successful in exploiting the promiscuity of

enzymes to drive a desired reaction by minimal residue interventions.

Thus, it remains an open question, if computational designs alone will

be able to outperform natural enzymes. A synergy between computa-

tional predictions and directed evolution still remains the best bet

to date.

3 | NEW APPROACHES AND FUTURE
DIRECTIONS

Even though designing a protein remains a challenging task due to the

large sequence space that requires sampling, the number of resolved

crystal structures are increasing day by day. A number of algorithms

that use these sequence and structure databases to learn various

sequence to structure features are emerging. Needless to say,

machine learning and deep-learning neural networks are emerging as

key players in this domain. Cadet et al179 came up with a supervised

learning of enantioselective enzyme sequences and activity of

n individual point mutations to predict the activity of all combinations

(2n) of these point mutations. The method involves numerically

encoding the sequences (wild type and single mutants) and experi-

mental activities, converting them to a signal using Fourier transform,

and using a partial least square step to predict the activity of a mutant

which is a combination of multiple point mutations fed in the learning

step. The correlation coefficient between 28 mutants validated exper-

imentally revealed a good agreement (R2 = .81). A nonconventional

crowd-sourced online competitive gaming protocol—Foldit180 to use

human intuitions as a lever for accessing novel catalytic folds or

predicting folded polypeptide geometries. Factoring in contributions

from binding pocket geometries, alternate catalytic motifs, and hydro-

phobicity of the pocket would be a step forward in using these algo-

rithms more reliably. Popova et al181 have developed a deep

reinforcement learning tool for drug discovery to identify molecules

with desired properties such as: hydrophobicity, melting point, and

inhibitory activity against specific enzymes. Instead of constructing

novel small molecule libraries, if this workflow can be used for screen-

ing whether a ligand will show activity against a library of an enzyme

and its mutants—this could emerge as a useful enzyme engineering

tool. Protein design thus remains an active field of research for the

search of a unified set of rules that can be used for tuning substrate

and cofactor specificity and tailoring novel functionalities or red-

esigning them anew. It could be worth mentioning, that directed evo-

lution and computational design have also be aimed at creating

synthetic pathways that take advantage of the new enzymes

(e.g., Schwander et al182 and Siegel et al183) along with several

updated genome-scale networks of eukaryotes184,185 and pathway

redesign tools.186,187 The marriage of new algorithms and directed

evolution approaches bears promise of generating efficient catalysts

needed by the food, pharmaceutical, and renewable energy industries.
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