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1 | BACKGROUND

11 |
enzyme design

Background of enzymes, enzymology, and

Costas D. Maranas

Abstract

Nature relies on a wide range of enzymes with specific biocatalytic roles to carry out
much of the chemistry needed to sustain life. Enzymes catalyze the interconversion of a
vast array of molecules with high specificity—from molecular nitrogen fixation to the syn-
thesis of highly specialized hormones and quorum-sensing molecules. Ever increasing
emphasis on renewable sources for energy and waste minimization has turned enzymes
into key industrial workhorses for targeted chemical conversions. Modern enzymology is
central to not only food and beverage manufacturing processes but also finds relevance in
countless consumer product formulations such as proteolytic enzymes in detergents, amy-
lases for excess bleach removal from textiles, proteases in meat tenderization, and
lactoperoxidases in dairy products. Herein, we present an overview of enzyme science
and engineering milestones and the emergence of directed evolution of enzymes for

which the 2018 Nobel Prize in Chemistry was awarded to Dr. Frances Arnold.
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O:S to be approximately 1:1.58:0.28:0.3:0.01 (experiments performed
by Johannes Mulder)? and reported that some of the proteins are cat-
alytic. It was much later in 1878, that German physiologist Wilhelm
Kuhne coined the term “enzymes.” Figure 1 shows a chronological

compilation of 70 key events in the history of enzyme engineering

Biological systems are masterful chemists that build complex mole-
cules and systems from simple precursor compounds. At the heart of
this complex machinery are enzymes that account for ~4% of pro-
teins.! The use of biocatalysts by humanity which emerged as an acci-
dental by-product of gathering wild grain dates at least back to the
ancient Egyptians (circa 10,000 BC) who used fermentation for bread-
making and brewing purposes. However, it was not until the 19th
century that fermentation was recognized as carried out by living
cells.? In 1835, Swedish chemist Jacob Berzelius used the term “pro-
teins” to describe similar molecules extracted from egg-whites, blood,

serum, fibrin, and wheat gluten which all had atomic ratios of C:H:N:

starting from the 1830s up to 2018 when the Nobel Prize in chemis-
try was co-awarded for the “directed evolution of enzymes” and
“phage display.” Edward Buchner in 1897 isolated an enzyme complex
which he called zymase from cell-free yeast extracts and successfully
demonstrated that it can catalyze the breakdown sugars in alcoholic
fermentation.* During the same time, German chemist, Emil Fischer
postulated the “lock and key” hypothesis® for enzyme activity where
the substrate (key) was thought to rigidly fit into the complementary
groove of the enzyme (lock). Figure 2 shows the lysozyme binding
pocket with a peptidoglycan substrate occupying the binding pocket.

However, most of enzymatic catalysis could not be adequately
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1835 Jacob Berzelius
Coined “protein”

Demonstrates cell-free fermentation

d_x _ K phi. (a-x)
dt _1+m(a-x)+nx

1926 James B. Sumner
Isolated and crystallized ‘urease’

10,000 BC
Egyptians used fermentation
for bread-making and brewing =

1878 Wilhelm Kuhne
Coined “enzymes”

1897 Edward Buchner
Zymase isolated from
yeast for fermenting sugar

1878 Wilhelm Kuhne
start of “enzymology”

1903 Victor Henri

Fundamental equation for
enzyme kinetics published

1913 Michaelis and Menten
kinetics of invertase enzyme
rate of product formation reported as:

v= dP)_ V_max[S] _K_cat. [Eo1fS)

dt Km +[S] Km +[S]

1937 Hans Krebs and William Johnson |1937
Tricarboxylic acid cycle established | James B. Sumner Crystallized catalase

1949 Friedkin and Lehninger
Proved that coenzyme NADH
links TCA cycle and ATP synthesis

1954 Cunningham
Isoelectric point of trypsin
identified to be pH=10.5

1964 Walsh and Neurath
Isoelectric point of trypsinogen
identified to be pH=9.3

1946 Sumner, Northrop, and Stanley
Shared Nobel Prize for crytallizing proteins

1950 Moore and Stein

Quantitaive lon-exchange chromatography
for fractionation of peptides developed
1951 Moore and Stein

Quantitaive lon-exchange chromatography
for fractionation of peptides developed

1962 John Kendrew and Max Perutz
3D structure of sheep hemoglobin
solved using X-ray crystallography

1965 Monod, Wyman, and Chengeux

Proposed concerted allosteric changes in enzyme structure

1970 Smith, Kelly, and Wilcox
Isolated and characterized first
type Il restriction enzyme

1977 Stroud et al.
Mechanism of zymogen activation

1989 Richardson and Richardson

De novo design of protein sequences
based on geometry and
composition of similar proteins
1999 Stephen Mayo

Branch and bound problems and
energy functions for solving
protein design

2005 Stephen Mayo

1967 Mitchell Moyle
Chemiosmotic hypothesis of
oxidative phosphorylation reported

1974 Claude, de Duve, and Palade
Nobel Prize for discovery of ribosome

1978 Arber, Nathans, and Smith
Discovery and characterization of
resitriction endonucleases

1991 Frances Arnold
Random mutagenesis to
improve activity in B. subtilis enzymes

1833 Anselme Payen
Discovered the first “enzyme” - Diastase 1872 Maria Manaseina
(currently known as amylase) Claims of first evidence of

cell-free alcoholic fermentation

1894 Emil Fischer | 1894 Takamine et al.
Lock and Key hypothesis | Theory of enzyme synthesis used
for enzymes | for separation and purification
of enzymes

1905 Sir Arthur Harden
Categorized zymase into
dialyzable and non-dialyzable

1902 AJ Brown
Proposed that enzyme reactions were initiated
by a bond between enzyme and substrate

1918 Embden, Meyerhof, and Parnas
Glycogen to lactate pathway
discerned as a part of glycolysis 1923 Kimball and Murlin

Peptide hormone glucagon discovered

1934 Wndell Stanley
Isolated nucleoproteins responsible
for tobacco-mosaic virus activity

1929 John Northrop
Isolated and crystallized pepsin

1944 de Duve

Purified crystal of insulin produced
1948 Moore and Stein
Quantitative granular starch
chromatography method for

1950 Pehr Edman fractionation of peptides developed

Method for determination of
amino acid sequence in peptides
1951 de Duve
Glucose-6-phosphatase
identified as the target of insulin 1952 Sanger
Insulin sequenced
1958 Daniel Koshland

Induced fit model using conformational proofreading

1962 Mortenson
Ferredoxin from clostridia studied
to understand electron transport

1965 Edmundson | 1965 David Phillips
The amino acid sequence | 3D structure of lysozyme from egg white
of sperm whale myoglobin reported | solved using X-ray crystallography

1967 Spiegelman et al.
“Spiegelman’s Monster” experiment on
directed evolution of RNA molecules

1971 Gutte and Merrifield

Design of DDT binder, bovine ribonuclease
1973 Paul Boyer
ATP synthase mechanism explained using “binding change” mechanism

1974 Weibel and Palade
Weibel-Palade bodies discovered that store von Willebrand factor and P-selectin proteins

1978 Hall

Directed evolution in enzymes 1985 Smith
Phage display for targeted mutation to a single protein
1991 Urry et al

Design and production of elastin-like proteins 1998 Peter Kim
Ci

ional design of multimeric

2000 Richardson non-natural right handed coiled helices

= Penultimate rotamer library published

2001 David Baker —— — 2001 Dunbrack

Rosetta developed for ab-initio modeling of proteins

2003 Frank Raushel ____

Directed evolution of function in beta-barrel enzymes

Smoothened rotamer library published 2002 Pierce and Winfree

2003 David Baker Protein design is deemed NP-hard
Novel fold identified computationally with atomic level accuracy
2005 Kingsford and Singh

Effect of electrostatics on computational protein design

2007 Harbury —

Potential energy functions in computational protein design

2015
Maranas and Pantazes

2009 Maranas amd Khoury

Switching cofacttor specificity from NADPH to NADH — — Effect of backbone fexibility on

of xylose reductase in yeast

2008 David Baker Integer-programming to choose optimal side chain conformation

Computational enzyme design to engineer

= Kemp eliminase and retro-aldolase

2009 Kortemme 2009 Brooks
CHARMM force-field developed

computational protein design

2010 Anderson = —— 2010 Jeff Gray

Drug resistance using computational enzyme redesign

Iterative Protein Redesign and Optimization
suite of programs (IPRO) to redesign enzymes

2018
Frances Amold
Nobel Prize for directed evolution of enzymes

2018

PyRosetta: script-based implementation of Rosetta modeling platform

2018

David Baker = —— Maranas and Chowdhury

De novo porin beta-barrel design

PoreDesigner to precisely redesign bacterial channel pore size 2018

George Smith & Gregory Winter
Nobel Prize for phage display

FIGURE 1 Seventy notable events in the history of enzyme engineering starting with the Egyptians using wild grain for bread-making and
brewing to directed evolution and phage display techniques for which the Nobel Prize in chemistry was awarded in 2018. The computational
milestones are indicated as purple lines [Color figure can be viewed at wileyonlinelibrary.com]

explained by the rigid enzyme model® till 1958 when Koshland laid
out the “induced fit" theory” for enzyme substrate action. The three

“
|

principal tenets of “induced fit” theory as explained in the article were:
“(a) the precise orientation of catalytic groups is required for enzyme
action, (b) the substrate causes an appreciable change in the three-
dimensional relationship of the amino acids at the active site, and
(c) the changes in the protein structure caused by the substrate brings
the catalytic groups into the proper alignment, whereas a non-
substrate does not.” Figure 3 shows the change in hexokinase struc-
ture (from closed to open) necessary for product release. In 1903,
French chemist Victor Henri derived a functional form®? of enzyme

kinetics from his investigations on the invertase enzyme that

hydrolyzes sucrose to glucose and fructose. However, a simplified and
more celebrated version of the equation that equated the rate of the
reaction with the rate at which the concentration of various species
involved in the reaction was formalized by Michaelis and Menten in
1913.1° About a decade later during 1930s, Sumner, Northrop, and
Stanley independently crystallized urease,** pepsin,*? and nucleopro-
teins responsible for tobacco-mosaic virus activity,'® respectively, for
which they shared the Nobel Prize in chemistry in 1946. These struc-
tural studies were soon complemented with methods for discerning
the sequence of short peptide chains'* in 1950 by Pehr Edman and in
1952 Frederick Sanger reported the complete amino acid sequence of

polypeptide chains A and B of bovine insulin'>¢ building on the work
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FIGURE 2 Two different views of the
lysozyme binding site (marked in blue)
and the active site residues highlighted in
red. The peptidoglycan substrate is
shown as yellow sticks [Color figure can
be viewed at wileyonlinelibrary.com]

binding pocket

substrate

closed conformation

FIGURE 3 Conformational change in
hexokinase during product release. The
active site has been highlighted in bright
green. The substrate and products have
been marked as pink sticks. Accession IDs
for closed and open hexokinase
conformations are 2E2N, and 2E2Q
[Color figure can be viewed at
wileyonlinelibrary.com]

started by Charles Chibnall.¥” Concurrently, William Stein and
Stanford Moore collaborated on developing an analytical procedure to
determine the amino acid content of any protein at The Rockefeller
Institute of Medical Research. Stein and Moore used potato starch in
a column for fractionation of proteins from peptides along with simul-
taneous counting of the amino acids.*® Subsequently, they followed
up with a better and faster quantification approach®® of amino acids
in peptides. The next two decades saw isolation, purification, and
characterization of various enzymes ranging from myoglobin from
sperm whales?° to high resolution lysozyme structures from egg white
using X-ray crystallography.2? It was in 1978 when directed evolution
revolutionized the search for better enzymes.

Mutation followed by natural selection was established by
Darwin's On the Origin of Species in 1859 as the organizing principle in
biology. However, for thousands of years before humans unknowingly
exploited this process in selective breeding and domestication. It was
only in the late 1970s that evolution was brought inside the labora-
tory with the specific objective of discovering microbial phenotypes
for better utilization of desired carbon substrates. Lerner et al
designed a xylitol utilization phenotype®? of Aerobacter aerogenes in
1964. In 1967 Spiegelman et al performed in vitro reconstitution of
RNA templates with pure RNA replicase to study the effect of selec-
tive pressures for several generations in the famous “Spiegelman's
monster” experiments.2>2% Inspired by these, Francis and Hansche
performed “directed evolution” in yeast and achieved 30% higher

orthophosphate activity with a single mutation but with a growth rate

View 1

hexokinasec/osed

AI?B% R NALJ?‘;f17

Binding groove and active site of lysozyme

View 2

7/ binding pocket

Aok

open conformation

allosteric change

hexokinase°re”

trade-off of 83%.2° This was soon followed by a more comprehensive
demonstration of directed evolution by Barry Hall where up to four
mutations in the B-galactosidase coding region in Escherichia coli cul-
tured with lactose as the sole carbon source yielded phenotypes span-
ning a wide range of growth rates.2® Within a decade, Eigen and

Gardiner proposed a cyclic “evolutionary machine”?”

comprised of
genetic mutations, amplification and selection to produce stable
mutant proteins in vitro. The subsequent development of error-prone
polymerase chain reaction (PCR) for random mutagenesis enabled
generation of large-scale mutant libraries with >10%° designs and has

been a cornerstone in the history of enzyme engineering.28-31

1.2 | Methods for directed evolution

Enzymes (and proteins in general) are modular biopolymers composed
of 20 canonical amino acid monomers as encoded by their cognate
nucleotide sequences (genes). They have the potential to evolve
through changes in their amino acid sequence. This evolvability has
been exploited to explore the combinatorial sequence space for cata-
lyzing reactions with improved specificity, regioselectivity, and stereo-
selectivity.32 Thus, directed evolution of enzymes and binding
proteins is a synthetic procedure relying on molecular insights, which
emulates the natural evolution process in the laboratory at an expe-
dited rate. The procedure commits to intended variation of protein

sequences with prescribed randomness of amino acid choices. This is
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further coupled to engineered screening and selection strategies. In
other words, directed evolution involves iterative identification of a
starting protein, diversification of its coding gene sequence, expres-
sion, and subsequent functional screening until an acceptable level of
enzymatic activity, binding affinity, or specificity is accomplished.
Sampling the entire combinatorically explosive mutational land-
scape for any protein is impossible as complete randomization of a
mere pentapeptide would yield ~10'% unique amino acid sequences.
Gene diversification approaches are thus designed to perform an opti-
mal sparse sampling of the multidimensional sequence space, with the
objective of ascending in the landscape of desired phenotype by
accruing beneficial mutations. Several gene diversification methods
for directed evolution have been proposed over the last two decades.
These strategies typically integrate random mutagenesis, focused

mutagenesis, and homologous recombination.

1.3 | Random mutagenesis

Random mutagenesis starts by obtaining a library of point mutants
from a single parent sequence and transforming the library into a
strain to express the variant proteins. A high-throughput screen for
the desired phenotype then identifies the successful candidates.
Error-prone PCR (epPCR), first described by Goeddel et al®*® utilized
the low-fidelity of DNA polymerases to make point mutations during
amplification of the gene that codes for the protein of interest.
Gheraldi et al®** and Kunkel et al®> were able to enhance the rate of
mutation (from 1071° to 10~%) by adding mutagenic dNTP analogues
or increasing magnesium concentrations in the epPCR setup. Addi-
tional screening for properly expressed proteins by fusing the target
gene with a green-fluorescent protein reporter was soon demon-
strated by Tawfik et al.*¢ A modified epPCR was developed by Joyce
et al that used a combination of Taq polymerase, 0.2 mM dGTP,
0.2 mM dATP, 1 mM dCTP, and 1 mM of dTTP, higher MgCl,, and
0.5 mM MnCl, to reduce polymerase fidelity without affecting gene
amplification and alleviated the strong bias toward A—G, and T—C
transitions as faced by Goeddel and co-workers. Arnold and co-
workers have documented several successes using random mutagene-
sis including introducing activity toward a wide range of native-like
substrates in cytochrome P450,%” and exploring novel carotenoid bio-

synthesis routes.3®

14 | Focused mutagenesis

The probability of identifying active redesigns which emerge from syn-
ergism of simultaneous point mutations (which are themselves margin-
ally useful) is very low using random mutagenesis as the number of
possible unique sequences increase exponentially with the number of
randomized sites. To this end, focused mutagenesis uses phylogenetic
analyses of homologous proteins to identify specific amino acid substi-
tutions that are likely to improve substrate binding or catalysis. A

mutagenic oligonucleotide cassette®® containing degenerate codons

d*° into a vector plasmid

for a targeted amino acid change is inserte
for expression of a desired enzyme variant. Parra et al*! fed focused
mutagenesis library of xylanase to epPCR to identify 12 more thermo-
stable variants with the best mutant showing a 4.3°C increase in melt-

ing temperature.

1.5 | Homologous recombination

An alternate strategy to access beneficial combinations of mutations
is achieved using homologous recombination. This is a mimic of the
natural process of biological evolution. One of the early approaches,
DNA shuffling, involved a DNase-mediated fragmentation of a target
gene, followed by random re-stitching using a PCR setup. Monticello

et al*?

replaced the random priming of DNA fragments by a sophisti-
cated random chimeragenesis technique (RACHITT). They were able
to achieve several folds of higher recombination than any other
method in a dibenzothiophene monooxygenase gene. The expressed
proteins not only exhibited higher than wild-type activity, but also
showed 20-fold higher affinity for several hydrophobic nonnatural

substrates. Arnold et al*®

also reported an optimized DNA shuffling
workflow to control the point mutagenesis rate to as low as 0.05% by
adding Mn?* and Mg?* ions during DNase | digestion of the gene and
appropriate choice of DNA polymerase to effect high-fidelity recom-
bination. A number of modeling frameworks were developed** for
estimating the occurrence of mutations in error-prone PCR after mul-
tiple generations*® and the location of crossovers in directed evolu-
tion experiments.*¢#”

Recent trends in directed evolution has seen attempts and suc-
cesses at improving proteins with the biological proviso of still being
relevant to the metabolic pathways they belong to, thus creating
novel whole cell chemical factories for synthesis of value-added
chemicals.*®°° More recently, biochemists have aimed at dialing in
novel functionalities in enzymatic proteins which are not seen in
nature.’%>2 A decade old review by Toscano et al’® on active site
redesign strategies provide considerable insight toward function-

driven enzyme redesign.

1.6 | Methods for computational protein design

Computational methods provide the means to screen in silico many
enzyme redesign alternatives thus focusing the number of variants to
be tested experimentally. Existing approaches generally use biophysics-
inspired or statistical fitness functions to screen design alternatives in
terms of conservation (or enhancement) of desired interactions and
absence of aberrant ones. There is an ever expanding literature of scor-

5455 and combinatorial search algorithms>® devoted toward

ing function
the efficient traversal of combinatorial space of residue alternatives.
Software tools that integrate all these tasks include RosettaDesign,>”
Osprey,58 Tinker,”” TransCent,®° and IPRO.%* The difficulty and success
rate in computational design depends on how ambitious the enzyme

redesign goal is. For example, attempts to switch cofactor or substrate
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specificity of a well characterized enzyme have been met with many
successes,®2%> however, efforts to improve the catalytic affinity of a
native enzyme toward its preferred substrate is much more difficult
with only a few success stories.®®¢” In addition, efforts at introducing a
novel enzymatic activity are also very difficult.® Nevertheless, there
has been a lot of exciting, industrially relevant research focused on gen-

6970 \with biopharmaceuti-

eration of stable humanized immunoproteins
cal relevance and enzymes with enhanced turnover,”? altered

substrate-, and stereo-selectivity’? in the past one and a half decade.

1.7 | Statistical protein design approaches

Existing protein structures already contain a vast amount of informa-
tion that correlate amino acid sequence to structure. A database-
driven energy function reliant on the frequency of certain structural
arrangement of amino acid backbones and side chains have been used
to create a “knowledge-based potential,” DrugScore’® was used to
predict and score ligand conformations at the active site of an enzyme
using entropic contributions and implicit solvation upon learning from
159 experimentally resolved enzyme-ligand complexes. However, the
lack of hydrogen atoms failed to capture the effect of protonation
states, and also undermined electrostatic contributions to a great

extent. Buchete et al”*

developed statistical potentials using orienta-
tions of different amino acid side chains seen in experimentally
resolved crystal structures to predict folded conformations for a given
protein sequence. On the other hand, Lin et al”® used evolutionary
information from multiple sequence alignment of homologous pro-
teins from closer organisms to develop knowledge-based statistic
potentials. Here each protein was converted to several binary profiles,
each containing information about different parameters (dihedrals,
solvent accessibility, etc.) for each position (instead of actual amino
acid sequences). An associated scoring system assessed how close a
designed structure would be to existing structures from the alignment
to have consistent folding. A similar statistical potential (TmFoldRec)
for predicting folds in membrane-segments of transmembrane chan-
nels by learning from 124 crystallized transmembrane folds was publi-

shed by Kozma et al.”®

Knowledge-based protein design tools provide
the advantage of introducing additional descriptor terms (such as helix
propensity and solvent exposure) without enhancing computing time
significantly. Poole and Ranganathan’’ provide a comprehensive
review of such similar knowledge-based potentials used for computa-
tional protein design. An integrated approach using a library (rotamer
libraries”®) of statistically preferred amino acid side-chain conforma-
tions in the phi-psi dihedral space and molecular-mechanics calcula-
tions to score a choice of a substituent amino acid rotamer forms the

basis of most current day protein design software.%”?

1.8 | Force fields for computational protein design

Force fields are used to compute interaction and overall stability

energy scores of protein-ligand complexes or individual proteins.

AI?BEJ RNA LJF’;f17

These energy terms (or scores) represent side chain and backbone
geometries, protonation states, and effect of solvents and only
enthalpic contributions are factored (not protein entropy). Force-field
calculations helps to assess enzyme substrate affinities and modeling
of side chains. The most popular force field parameters (bond spring
constant, bond angles, dihedrals, improper dihedrals, partial charges)
are computed using ab initio quantum mechanical and molecular
mechanics calculations. Knowledge-based force field like Rosetta uses
extra potential energy terms obtained after refitting of statistical and
experimental knowledge-based data. Unlike statistical knowledge-
based potentials, these empirical force fields are capable of capturing
actual forces between atoms (electrostatics, van der Waals, and sol-
vent contribution). Several independently developed force fields have
been developed till date—such as, Amber,2° CHARMM_ 8! OpPLS 8283
GROMOS,®* and Rosetta.2>8¢ Depending on whether each and every
atom or only heavy atoms and polarizable hydrogens are represented
within the force field, they are called “all atom” or “united atom” force
fields. GROMOS is exclusively united atom force fields, Amber—
(ff14SB®” or ff15FB®8), CHARMM and Rosetta all atom, while OPLS
has both versions. Mackerel et al®! provides a detailed discussion on

the development of empirical force fields.

1.9 | Biophysical protein design tools

Biophysical protein design tools include computing enthalpic energy
contributions of covalently bonded amino acids along the polypeptide
backbone of a protein, and pairwise non-covalent interactions (van
der Waals, electrostatics, and solvent effects) between atoms in prox-
imity to each other. These force-field based energy scores are used in
iterative or random-substitution computational workflows to make
design choices toward identifying stable enzyme variants with
improved ligand affinity, altered cofactor specificities, and other bio-

chemical objectives. Several tools using either full atomistic®>”¢%8?

or
coarse-grained’>?? representations of proteins have been developed
over the last two decades. Go and Taketomi’? employed non-
transferable potentials tailored to the native structure of a protein by
evaluating the partial contributions of long-range and short-range
forces at play throughout the molecule. Any variant to the native pro-
tein (referred to as “Go-models”) would attain its lowest energy score
when the corresponding inter-residue root mean square deviation
with the native structure is minimum. Even though Go-proteins can-
not explore novel folds, they have had high success rate in identifying
functional variants that fold as only an extremely restricted set of
positions permit substitutions to similar-to-native side chain proper-
ties (charge and size). The protein-module of Martini coarse-grained
force-field”® was developed for predicting peptide conformations in
lipid-bilayers. This was an extension to the lipid-exclusive Martini-
force field.”* Using dioleylphosphatidylcholine bilayer and a series of
pentapeptides as a model system, the potential of mean force for each
amino acid was evaluated as a function of its distance from the center
of the lipid region of the bilayer. These values were used as prece-

dents to estimate the geometry of any new transmembrane protein
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whose overall geometry is dependent on the interactions with the sur-
rounding lipid molecules. For detailed account of other coarse-grained
models, we suggest the review by Ivan Colluza.?* Full atomistic simula-
tion packages on the hand, are capable of handling fully resolved all-atom
structures of entire proteins and have precise description of bonded and
nonbonded parameters and consequently involve longer compute times.
RosettaDesign,57 Maestro”® Schrodinger Inc., PoreDesigner,89 and
IPRO®! are examples of such full atom protein design packages. These
packages have two essential compute modules: (a) rotamer chooser, and
(b) force-field dependent evaluation of redesigned protein. During pro-
tein design RosettaDesign and Maestro both create large randomized
libraries of protein variants with minimum deviation from native struc-
ture or a scored property (hydrophobicity, binding to an interacting part-
ner, etc.), followed by evaluating enthalpic energy scores for each design
using their respective empirical force-field energy functions. These
energy scores are used to subsequently rank the designs depending on
the design objective (such as interaction with a ligand). IPRO and Por-
eDesigner on the other hand iteratively uses a mixed-integer linear pro-
gram to identify unique combinations of amino acid substitutions which
satisfy the design objective. These choices are driven by CHARMM
force-field based energy scores accounting for bonded and nonbonded
energy terms. IPRO is an iterative protein redesign and optimization tool
which emulates focused mutagenesis to identify stable enzyme variants
that accomplish intended binding or unbinding of a substrate (or improve

[ dock substrate in ]

catalytic fold of enzyme

binding with one simultaneously eliminating with another). Figure 4 pro-
vides a general seven-step schematic overview of RosettaDesign and
IPRO execution modules. DESADER acronym represents the seven gen-
eral steps of: Dock substrate, Ensure catalytic constraints, Substrate
binding residue identification, Adjacent residue repacking, Designing
sequence, Energy minimization, and Ranking of designs. PoreDesigner
relies on similar principles and predicts designs that enable users to pre-
cisely tune the pore size of any channel protein, thus offering interaction
or size-based separations of aqueous solute mixtures. It has been experi-
mentally validated to be able successfully redesign a bacterial porin to
narrow pore sizes that performed perfect desalination using a membrane
assembly. Donald et al”® and Pantazes et al’” provides a comprehensive
review of other algorithms for computational protein design.

2 | SUCCESSES
2.1 | Successes in the “directed evolution” of
enzymes

Enzyme design is a difficult challenge as only an infinitesimally small
fraction of possible amino acid sequences adopts a functional fold. It
has been estimated”®(using a beta-lactamase as a proxy) that the frac-
tion of all sequences that fold into viable enzymes with some minimal

ensure catalytic . Library of designs
constraints substrate Comblnah9ns of':Itemate
docked g S
substrate 4L at the design positions
binding
design Identify residues
posilions (design positions)
important for
substrate bindin o ] g
* Stochastic modeling Objective driven designs
amino acid substitutions are

£4  identity adjacent ]

‘8;4 residues to be repacked

2

{Sequence design st

adjacent
residues

using Monte Carlo ;
randomized search through allowed or
entire rotamer-amino acid space

'RosettaDesign

driven by design objective
(not randomized)

i (library of variants)

Deterministic modeling using MILP

(mixed-integer linear programming)

branch and bound search through allowed or
‘ entire rotamer-amino acid space

—

[gnergy minimizationj
to predict variant structures

A 4

rank designs

FIGURE 4 The seven-step DESADER schematic overview of enzyme redesign computational workflows of RosettaDesign and IPRO.
RosettaDesign uses a stochastic Monte Carlo to create a library of enzyme variants. IPRO uses a deterministic mixed-integer linear optimization
program to identify amino acid substitutions which are driven by the biochemical design objective (such as, maximize or minimize CHARMM-
based interaction energy score with the ligand) [Color figure can be viewed at wileyonlinelibrary.com]
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activity is as low as 1 in 10.”7 This implies that random mutations pre-
dominantly tend to almost always adversely affect protein function.
Thus, directed evolution capitalizes on the range of weak promiscuous
activities of enzymes which can be quickly driven toward a desired
catalytic activity only after pin-pointing few key mutations. Random
mutagenesis, focused mutagenesis, and homologous recombination
protocols along with efficient expression and screening of variant pro-
teins have vyielded several successes in redesigning enzymes for
improved catalysis, altered substrate and cofactor specificities, and
stability.

Reetz et al’® used a two-step protocol where first, epPCR was
employed to obtain a short library of enantioselective cyclohexane
monooxygenases with R or S selectivity that showed at least 95%
activity compared to wild type, followed by random mutagenesis with
subsequent screening for activity yielded eight with turnovers of the
desired enantiomer ranging from two- to ninefold improvement over
the wild type. Sequencing these mutants revealed only one to three
amino acid changes in these eight mutants.

A separate endeavor by Arnold and co-workers'® pushed the
activity-stability trade-off by using random mutagenesis, recombina-
tion, and screening of mesophilic Bacillus subtilis p-nitrobenzyl ester-
ase and designed seven thermostable variants with melting
temperatures (T,,,) higher than the wild type by 5-14°C. Out of these
seven, three best mutants were identified to show activities higher
than wild type. These best mutant (T, = 66.5°C; specific activ-
ity = 0.16 mmol product/(min mg enzyme) where wild type activity
was 0.125 mmol product/(min mg enzyme)) was screened from 1,500
possible variants and exhibited stability at par with thermophilic
enzymes. This was comparable with results from site directed muta-
genesis'®! which, however, necessitate extensive sequence and struc-
ture information a priori. Ultimately, one of the most important insight
gleaned from this study was that there is always an increase in activity
with temperature until the enzyme denatures. This subsequently
means simultaneous low-temperature activity and thermostability
screening is sufficient to produce highly active variants viable across a
wide temperature range.

Random mutagenesis explorations have been instrumental bene-
ficial mutations which are beyond the scope of rational design strate-

gies. Kim et al’®? demonstrated that random mutagenesis on
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Agrobacterium sp. beta-glucosidase and screening using in vitro
endocellulase-coupled assay yielded two highly active mutants with
two (A19T, E358G) and four mutations (A19T, E358G, Q248R,
M407V) with activities 7- and 27-folds higher than wild type, respec-
tively. What sets this work apart from other similar studies is that—all
these mutations were at least 9 A away from the substrate and could
not directly interact with the substrate to affect the turnover. This
suggested that these mutations bring about conformation changes to
the active site thereby providing a congenial groove for the substrate
to sit and potentially react. We used the Agrobacterium sp. beta-
galactosidase sequence (NCBI accession: WP_006316672.1), gener-
ated the best mutant sequence, and homology modeled it using Swiss
MODEL!® to show that these mutations are distal from the
substrate-binding domain (see Figure 5).

In another effort Zhao et al developed a staggered extension pro-
cess (StEP)'%* for in vitro mutagenesis and recombination of polynu-
cleotide sequence. In contrast to optimized DNA-shuffling*® where
DNase | digests a set of parent genes into an array of DNA fragments
which are thermocycled into complete genes using DNA polymerase,
StEP generates full-length recombination cassettes relying on a
template-based extension using DNA polymerase. They tested the
recombination efficiency between two thermostable subtilisin E genes
which code for protease. Adenine to guanine changes in bases 1107
from gene 1, and 995 from gene 2 led to amino changes N181D, and
N218S in the final protein. Single variants of N181D and N218S
exhibited threefold and twofold longer, and the double mutant eight-
fold longer half-lives than wild type at 65°C and were even stable at
75°C. Out of the 368 clones that were screened, 84% were active
and showed wildtype-like catalytic activity. Out of the active ones,
21% exhibited thermostability like the double mutant, 61% were like
the single mutant, and 18% were as thermostable as the wild type.

In contrast to most random mutagenesis studies where an
enzyme is engineered with the objective of finding a fitter variant with
altered stereo-specificity, thermostability, or higher activity than wild
type, Chen et al'®® engineered a serine protease from B. subtilis to
function in a highly nonnatural environment with high concentrations
of polar organic solvent, dimethylformamide (DMF). Proteases and
lipases are known to be promising catalysts for organic synthesis of

acrylic and methacrylic esters'®® which find applications as cement

B-galactosidase with zoomed-in substrate binding domain

FIGURE 5 The four mutations that
led to enhanced catalysis in beta-
glucosidase have been marked as blue
sticks and the protein is represented as
light pink cartoon. All four mutations are
too far from the binding pocket to
interact with the substrate [Color figure
can be viewed at wileyonlinelibrary.com]
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material for knee or hip arthroplasty surgeries,'®” and PVC modifiers
in plastic industry. In this work, mutagenesis and screening was per-
formed with the objective of identifying amino acid substitutions that
recover the lost catalytic activity of serine protease in organic media.
Through three rounds of sequential screening, 10 amino acid changes
were pinpointed within the binding groove of the substrate, in loop
regions that offered sequence variability without affecting the tertiary
folds of the reactive pocket—and restored catalysis. Seven out of the
ten mutations were seen in other protease homologs from other
organisms. To investigate the effects of each and every mutation,
10 single variants were generated and checked for enhancement of
catalytic activity (K, and k). Results indicated G131D mutation
alone enhanced substrate affinity with 20% DMF by ~90% (reduction
of Ky, from 12.2 to 1.4 mM). Furthermore, N181S, T255A, E156G,
S$182G, and S188P mutations were also identified to reduce K., and
all mutants with last three mutations improved catalysis even in aque-
ous media. Overall, we noticed that mutations where the substituted
amino acids are hydrophobic led to lower K, in organic media and
thus stabilized the substrate, whereas charged residues (D60ON,
Q103R, and G131D) improved k,: and thus product formation. This is
also corroborated from the observation that the latter set of muta-

tions also enhanced turnover in aqueous medium (0% DMF).

2.2 | Successes in computational enzyme redesign

Nearly all engineered enzymes that are used today emerged from
structure-based protein-engineering efforts of the 1980s. The successes
have been notable, but the results came slowly till the advent of directed
evolution in 1990s that led to major breakthroughs. However, most
amino acid changes accumulated during evolution have marginal or no
effect on the desired catalysis, making it a “needle in a haystack” prob-
lem to pinpoint key positions. To this end, computational methods have
shown promise in sampling thousands of amino acid combinations and
conformations with assessment of their impact on protein stability.
Table 1 shows 50 key publications in protein design that uses computa-
tional and experimental steps to generate stable de novo protein scaf-
folds, catalytic antibodies, and highly active enzyme redesigns. Several in
silico tools have been able to glean design rules which have been used
to tune the substrate and cofactor specificities of various enzymes along
with unraveling novel, nonnatural catalytic modes. In 1997 the Mayo lab
reported the first case of de novo redesign of streptococcal protein G 1
domain using a van der Waals potential to compute steric contributions,
atomic solvation potential to favor burial of non-polar residues. The
selection algorithm iteratively scanned and identified optimal sidechain
conformation for a given backbone pose and accepted designs based on
the sum of two pairwise interaction terms: (a) side chain and backbone,
and (b) side chain and side chain. A statistically preferred set of
1.1 x 10°2 side chain rotamers'®® was used, and a dead-end elimination
theorem®® was employed to constrain the search space to non-clashing
ones and complete sequence design for a 50-residue window was
achieved for every single design run. The design process only targeted

nonpolar residues from the surface residues. The design exhibited

striking geometrical resemblance with zing-finger protein Zif268 even
though the sequence similarity (39%) and identity (21%) were low, with
most conserved residues located in buried and ordered regions of the
protein indicating this to be a novel sequence. NCBI p-BLAST*¢? rev-
ealed this sequence to have similar alignment score (<39% identity)
with any random amino acid sequence of similar length. This work
paved the path for competing in silico methods to handle immense
combinatorial search required for computational protein design, and
inspired the development of various molecular-mechanics based force
fields (CHARMM,*¢® Amber,2° gromac5169). These force fields started
factoring in near-accurate contributions of van der Waals, electrostat-
ics, and solvation terms. Furthermore, Sumners and Schulten intro-
duced molecular dynamics for studying temporal fold changes and
stability of biomolecular complexes'’® (such as enzyme-ligand) to
determine their macroscopic thermodynamic properties following the
ergodic hypothesis.

Soon after, David Baker and colleagues used a novel computa-
tional enzyme design methodology”? to facilitate the Kemp elimina-
tion reaction—which has a high activation energy barrier and for
which no naturally occurring enzyme existed. Eight in silico designs
were generated containing one of the two proposed catalytic motifs.
Directed evolution on these designs produced >200-fold increase in
kcat/Km values. The Kemp eliminase reaction is the amino-induced
elimination of benzisoxazole into relavant o-cyanophenolate ion.”2
The reaction requires a base-mediated proton abstraction from a car-
bon with subsequent dispersion of the resulting negative charge or
stabilization of the partial negative charge on the phenolic oxygen. To
this end, the authors designed two alternative ideal catalytic bases—
(a) Asp-His dyad, or (b) single aspartate or glutamate. Quantum-
mechanical calculations on the backbone of the desired binding
pocket was used to choose an optimal combination of amino acids
that served the dual objective of stabilizing the substrate and posi-
tioning the catalytic base at the appropriate distance from the sub-
strate. RosettaMatch®” was used to screen about 10° binding pocket
designs by finding the most stable side chain conformations of the
pocket residues from each design, given their backbone conformation.
The designs were scored based on binding free energies between the
enzyme and the transition state. Forty-nine top designs were synthe-
sized in vitro and eight showed catalytic activity. After seven rounds
of mutagenesis and screening, one of the designs showed a kcat/Kn,
value of 2,600 (M s)~* which was a result of fine-tuning the pocket
residues to accommodate the substrate better. A recent work by
Kingsley et al'”2 defines the binding pocket as “substrate tunnels” and
the authors demonstrate that turnover can be severely impacted by
altering the pocket residues even if the catalytic motif is unperturbed.
This work proves the potential of a synergistic workflow between
computational enzyme design to create an overall active site frame-
work, and molecular evolution to explore novel enzyme-mediated
reactions. The Baker lab followed up with another breakthrough with
designing enzymes for an energetically more demanding retro-aldol”#
reaction that involved breaking a carbon-carbon bond of a hydroxy-
carbonyl compound to form an aldehyde (or ketone) and another car-

bonyl moiety using acid-base catalysis initiated by a nucleophilic
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TABLE 1

Year

2004

2000

1993

1998

2003

2002

1990

2002

1995
1996

1988

1995
1997
1998

2003

1975
1995

2003
1991

1993
1995

1994
1999

2003

1995
1994

Study
Design of “bait-and-switch” catalytic antibodies

Shape complementarity, binding-site dynamics, and
transition state (TS) stabilization using 1E9
antibody by QM study of Diels-Alder catalysis

QM calculations on endo and exo stereoisomeric TSs
of Diels-Alder cycloaddition

QM calculations identify Asp™° and Tyr-3¢ as
catalytic residues and Asn“?* for TS stability in
13G5 catalyzed exo Diels-Alder between N-
butadienyl carbamate and N,N-dimethylacrylamide

MD relaxation of 13G5 antibody around rigid TS
revealed role of three water molecules in orienting
catalytic base AspH>°

Shape complementarity of TS and catalytic triad Trp-
Phe-Ser identified in 10F11 antibody for retro
Diels-Alder reaction

DFT calculations used to discern active site
interactions (Trp"'1%4-Phe"1%%) by z-z stacking to
stabilize TS for 10F11 antibody during retro
Diels-Alder reaction

Proof of nonspecific TS binding offered by antibodies
guided by solvophobic effects, unlike enzymes in
Diels-Alder reactions

Proof of Kemp eliminase activity being related to TS
geometry and polarity of the solvent in 34E4
antibody

QM calculations on aldol reactions exploring relative
stability of “chair” and “twist boat” TS structures

TS studies on ab38C2, ab84G3, and ab33F12
aldolase antibodies to catalyze aldol and retro-aldol
reactions akin to class | aldolases using e-amino
group of catalytic Lys™%3

QM study on polar residues at binding pockets of
aldolase Abs in C-C bond-formation step

Aprotic polar solvents desolvate carboxylate reactant
by stabilizing TS through dispersion interactions
using Monte-Carlo free energy perturbation (FEP)
calculations

QM, MD, and FEP calculations on 21D8 antibody for
decarboxylation-catalyzed ring-opening reaction

QM study on endo-tet TS for cyclization of trans-
epoxy alcohols show Sy 1 behavior and Asp™?°-
His'®? catalytic residues

Homology model of 43C9 antibody variable region
revealed Arg"”® to be the oxyanion hole and His"**
the catalytic nucleophile for hydrolysis of aromatic
amides.

QM, MD, and FEP calculations on 43C9 reveals
alternate mechanism using direct hydride attack

QM calculations to mimic active site of chorismite
mutase antibodies IF7 and lIF1-2E11 (for Claisen
rearrangement) revealed H-bond donors at the
active site.

List of 50 computational enzyme design successes till date (grouped as per relevance)

Experimental contribution

Reactive immunization

Diels-Alder cycloaddition reaction to obtain
enantiomerically pure products

Crystal structure of exo Diels-Alderase inhibitor
complex solved at 1.95 A

Absolute enantiomeric selectivities of 13G5 and 4D5
antibodies established

Crystal structures of Fab 10F11 and 9D9 antibodies
in complex with substrate analogs solved at 1.8
and 2.3 A

Kinetic constants for TS-antibody binding calculated
for 1E9, 39A11, 13G5, 4D5, 22C8, and 7D4
antibodies

Catalytic antibody found for ring opening in Kemp
elimination

Activities of aldolase antibodies measured to be
comparable to natural aldolases

Kinetic constants for this reaction are experimentally
estimated

21D8 catalyzes decarboxylation of 5-nitro-
3-carboxybenisoxazole by 61,000-fold than in
water.

X-ray structure of antibody Fab5C8 crystallized

Water-mediated hydrogen-bonding network at the
active site is key for catalysis seen from X-ray
crystal of 43C9

Catalytic rate analysis performed after crystallizing
IF7 antibody.
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References
Xu et all%®

Chen et al*%?

Gouverneur et al*°

Heine et al*!

Cannizzaro et al**?

Hugot et al**3

Leach et al'**

Kim et al'?®

Casey et al'®
Kemp et al''”

Li and Houk!*®

Wagner et al**?

Barbas et al'?°
Hoffmann et al*?!

Arné and
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Kemp et al'?®
Zipse et al*?*

Ujaque et al'?®
Lewis et al?®
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Wiest et al'®2
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TABLE 1

Year

2010

2010

2008

2009

2009

2010

2009

2019

2009

2010

2009

2009

2007

2010

2003

2005

2000

2018
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(Continued)

Study

Reconstructed evolutionary adaptive path (REAP)
analysis at active site of Thermus aquaticus DNA
polymerase to accept unnatural NTPs

Improved enantioselectivity via 3DM analysis at four
specific active sites on Pseudomonas fluorescens
esterase

Hot-spot selection to improve pH/protease stability
of S. capsulata prolyl endopeptidase based on
multiple sequence alignment and ML on peptide
library

MD simulations to identify mutational hotspots in
access tunnels to active site of Rhodococcus
rhodochrous haloalkane dehalogenase

SCHEMA structure guided recombination of peptide
fragment from three CBH Il cellulase for increased
thermostability

MOE molecular modeling analysis for altered
substrate specificity, solvent tolerance and
thermostability on Arthobacter sp. transaminase

K* algorithm and SCMF entropy-based protocol
using rotamer library and flexible ligand docking to
switch specificity from Phe to Leu/Arg/Lys/Glu/
Asp on gramicidine S synthetase A Phe-
adenylation domain

IPRO used to explore promiscuity of A domain of
Ser-specific NRPS from E. coli

RosettaDesign to vary active-site and loop-length
composition for human guanine deaminase to
switch specificity for ammelide/cytosine

QM/ MM simulations using RosettaMatch on
Diels-Alderase

VMD modeling to reconstitute active site of nitric
oxide reductase (NOR) in myoglobin

Hotspot wizard server to create mutability maps
based on sequence-structure information from
existing protein databases

Engineering proteinase K using machine learning and
synthetic genes

Functional benefits of distal mutations through
induced allostery for enantioselective
Baeyer-Villiger monooxygenase using MD
simulations (also discerned active site geometry
changes)

Pairwise alignment of N-acetyluraminate lyase (NAL)
and dihydropicolate synthase (DHDPS) revealed
Leu-Arg mismatch at active site

Four mutations to active site of keto-L-gluconate
phosphate synthase identified to enhance
promiscuity to arabinose-hex3-ulose six phosphate
synthase (HPS)

De novo design of helical bundle scaffolds for metal-
chelation

PoreDesigner to redesign beta-barrel scaffold from
E. coli OmpF to access any user-defined sub-nm
pore size

Experimental contribution

Whole-gene synthesis (library size = 93) reveals
predicted single amino acid changes efficiently
catalyze unnatural NTPs

Site-saturation mutagenesis (library size = ~500)
yielded ~200-fold improvement in activity and
~20-fold higher enantioselectivity

Whole-gene synthesis (library size = 91) revealed
200-fold higher protease resistance and 20%
higher activity

Site-directed and site-saturation mutagenesis (library
size = 2,500) showed 32-fold higher activity

Whole gene synthesis (library size = 48) showed
15°C higher thermostability

Site-saturation and random mutagenesis (library
size = 36,000).

Site-directed mutagenesis (library size = 10) showed
600-fold specificity shift from Phe to Leu by
changes in ky values

Site-directed mutagenesis (library size = 160)
identified 152 new Ser-specific domains

Site-directed mutagenesis and PCR assembly (library
size = 10) showed >10° specificity change

Site-directed mutagenesis (library size = 100) showed
activity similar to catalytic antibodies

Site-directed mutagenesis yielded functional NOR

Haloalkane dehalogenase (DhaA) engineering from
Rhodococcus rhodochrous

24 amino acid substitutions in 59 variants were
tested for hydrolase activity on tetrapeptides at
68°C

Directed evolution experiments (library size = 400)
revealed one double mutant that induced allostery

An L142R mutation in NAL abolished NAL activity
and improved DHDPS activity by eightfold

170-fold higher HPS activity is recorded.

Dinuclear metal-binding activity recording using His-
triad catalytic motif

Stopped-flow light scattering experiments reveal
narrowest design perform like aquaporin

References

Chen et al*®*
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TABLE 1

Year

2003

2003

2008

2010

2010

2015

2010
2010

2010

2010

2011

2012

2012

2017

2017

(Continued)

Study

RosettaDesign used to design nine globular proteins

Top7 alpha/beta for accessing novel folds by
iterative search through sequence design and
structural folds

Computational design of periplasmic binding proteins
through conformer sampling and continuous
minimization revealed the importance of accurate
capture of partial charges and electrostatic
potentials

De novo alpha-helical bundle designed to bind heme-
like large cofactors

MD simulations with all-atom Amber force fields
were used to assess the integrity of a Kemp
eliminase identifying caveats that static simulations
are agnostic to

Computational protocol for zeolites with detailed
description of active site interactions

Influence of structural fluctuations on active-site
preorganization in RA22 using molecular dynamics
revealed an alternate conformation of substrate
relative to His233 allows nucleophilic attack by
Lys159 where Asp53 (original catalytic residue) is
solvated and hence noncatalytic

Empirical valence bond calculations using FEP
umbrella sampling on Kemp eliminase (KE) designs
(KEO7, KE70, KE59)

Eight mutations identified on KEO7 with the
objective of improving activity further

Computational sequence optimization for increased
activity of KE70

Fold-stabilizing mutations were predicted to enhance
activity of KE59.

Iterative approach to ensure every design cycle
necessitates active enzyme redesigns and MD
screening of mutants before experiments

Computational redesign of Acyl-ACP thioesterase
with improved selectivity toward medium-chain-
length fatty acids

Highly active C8-Acyl-ACP using synthetic selection
and computational modeling

Experimental contribution

Circular dichroism experiments confirmed 8/9 of
these proteins to be folded akin to native, and 6/9
showed up to 7 kcal/mol stabilities than wild type

93 residue alpha/beta fold protein crystallized and
matched structure prediction with RMSD = 1.2 A.

Evaluation of kinetic constants experimentally
revealed the design to outperform the native Ky
values (17microM vs. 210 nM-native)

UV/visible and circular dichroism, size exclusion
chromatography and analytic centrifugation
indicate active enzyme but low activities

A separate experimental endeavor discerned that
majorly catalysis is done by Lys159 due to the
favorable interaction with the naphthyl group of
the substrate

Difficulty in improving the KE activity is due to
improper partial charge characterization

2.6-fold lower Ky, and 76-fold higher k.,; value
yielding 200-fold higher activity

Nine rounds of random mutagenesis along with
computational predictions yielded 12-fold lower
Knm and 53-fold higher kc,¢

16 rounds of directed evolution yielded >2000-fold
increase in activity

Kinetic characterization of Kemp eliminases HG-3,
HG-2 show higher activity of HG-3

27 variants with enhanced C8-production titers were
constructed and best mutant was crystallized
(5TID)

1.7 g/L C8-titers with >90% specificity toward C8
and 15-fold increase in k.,; over WT
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Sauer and Freund*>¢
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Note: The experimental aspect of each of these endeavors have been noted as well thus indicating that majority of these successes are due to synergistic
effort of simulations and experiments.

attack on the ketone. In thin enamine catalysis, the carbinolamine
intermediate undergoes spontaneous dehydration to yield imine/
iminium product. Subsequently, the enamine tautomerizes to another
imine which undergoes a similar dehydration to release the product
and frees the enzyme. The authors constructed several protein scaf-
folds that can simultaneously accommodate both the transition states
for the two-step reaction and grafted four alternative quantum-

mechanically optimized catalytic motifs that would initiate the acid-

base catalysis. Altogether 32 designs showed weak catalytic activity
with the most active designs containing a co-crystallized water mole-
cule which served the dual role of stabilizing the intermediate and also
as a proton acceptor. Even though the X-ray crystallographic structure
of the active site showed great agreement (RMSD < 1 A), the catalytic
efficiencies were low (0.74 (M s)™%, and turnover of 1 molecule of
product every 2 hr). Interestingly, from both these studies, the most
promising folds generated in silico that had high catalytic efficiencies
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were triose-phosphate-isomerase (TIM) type containing eight alpha
and beta helices. TIM toroids are known to be very effective for enzy-
matic reactions,’”> and thus this shows convergence between in vivo
and in silico fold preference.

Most computational enzyme redesign approaches were aimed at
improving substrate specificity and catalyzing nonnatural reactions.
One of the earliest examples to switch cofactor specificity was in Can-
dida boidinii xylose reductase (CbXR).% The authors gleaned and
incorporated key cofactor switching mutation information from previ-
ous studies and were able to successfully alter the cofactor prefer-
ence from NADPH to NADH. Amino acid changes in the CbXR
binding pocket were systematically chosen using a mixed-integer lin-
ear program with the objective of simultaneously improving binding
to NADH while eliminating binding with NADPH—where the binding
score was expressed as a sum of van der Waals, electrostatics, and
solvation terms. After sampling nearly 8,000 possible CbXR variants,
10 were found to show enhanced affinity for NADH and 7 of the
10 designs showed significant xylitol production. Eight out of ten
designs showed more than 90% abolition of NADPH dependent activ-
ity while the remaining two showed equal preference for NADPH and
NADH. The best design exhibited a 27-fold improvement in NADH-
dependent activity. Other successes from the same group include,
OptGraft'’® for grafting a binding site from one protein into another
protein scaffold, rational design to obtain 200-fold higher D-
hydantoinase activity in Bacillus stearothermophilus using just two
amino acid changes,?”” OptZymel”® for redesigning enzymes by
improving binding to a transition state analogue instead of the sub-
strate as it correlates with greater turnover, IPRO Suite of programs®!
for fully-automated protein redesign, and altering substrate specificity
of thioesterase enzyme from long-chain fatty acyl ACP to medium-
chain ones.>®

Although the articles discussed show that computational enzyme
designs are feasible, the catalytic activities of artificial enzymes with
novel folds show significantly lower catalytic activities barring the
high activities seen in Kemp eliminase. However, computational
designs that maintain the wild-type binding groove geometry have
remained extremely successful in exploiting the promiscuity of
enzymes to drive a desired reaction by minimal residue interventions.
Thus, it remains an open question, if computational designs alone will
be able to outperform natural enzymes. A synergy between computa-
tional predictions and directed evolution still remains the best bet
to date.

3 | NEW APPROACHES AND FUTURE
DIRECTIONS

Even though designing a protein remains a challenging task due to the
large sequence space that requires sampling, the number of resolved
crystal structures are increasing day by day. A number of algorithms
that use these sequence and structure databases to learn various
sequence to structure features are emerging. Needless to say,

machine learning and deep-learning neural networks are emerging as

17? came up with a supervised

key players in this domain. Cadet et a
learning of enantioselective enzyme sequences and activity of
n individual point mutations to predict the activity of all combinations
(2") of these point mutations. The method involves numerically
encoding the sequences (wild type and single mutants) and experi-
mental activities, converting them to a signal using Fourier transform,
and using a partial least square step to predict the activity of a mutant
which is a combination of multiple point mutations fed in the learning
step. The correlation coefficient between 28 mutants validated exper-
imentally revealed a good agreement (R? = .81). A nonconventional
crowd-sourced online competitive gaming protocol—Foldit'€° to use
human intuitions as a lever for accessing novel catalytic folds or
predicting folded polypeptide geometries. Factoring in contributions
from binding pocket geometries, alternate catalytic motifs, and hydro-
phobicity of the pocket would be a step forward in using these algo-
rithms more reliably. Popova et al'®' have developed a deep
reinforcement learning tool for drug discovery to identify molecules
with desired properties such as: hydrophobicity, melting point, and
inhibitory activity against specific enzymes. Instead of constructing
novel small molecule libraries, if this workflow can be used for screen-
ing whether a ligand will show activity against a library of an enzyme
and its mutants—this could emerge as a useful enzyme engineering
tool. Protein design thus remains an active field of research for the
search of a unified set of rules that can be used for tuning substrate
and cofactor specificity and tailoring novel functionalities or red-
esigning them anew. It could be worth mentioning, that directed evo-
lution and computational design have also be aimed at creating
synthetic pathways that take advantage of the new enzymes

|182 |183)

(e.g., Schwander et a and Siegel et a along with several

184185 and pathway

updated genome-scale networks of eukaryotes
redesign tools.’¢18” The marriage of new algorithms and directed
evolution approaches bears promise of generating efficient catalysts

needed by the food, pharmaceutical, and renewable energy industries.
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