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ABSTRACT

Learning effective contextual-bandit policies from past actions of
a deployed system is highly desirable in many settings (e.g. voice
assistants, recommendation, search), since it enables the reuse of
large amounts of log data. State-of-the-art methods for such off-
policy learning, however, are based on inverse propensity score
(IPS) weighting. A key theoretical requirement of IPS weighting is
that the policy that logged the data has "full support", which typi-
cally translates into requiring non-zero probability for any action
in any context. Unfortunately, many real-world systems produce
support deficient data, especially when the action space is large, and
we show how existing methods can fail catastrophically. To over-
come this gap between theory and applications, we identify three
approaches that provide various guarantees for IPS-based learning
despite the inherent limitations of support-deficient data: restricting
the action space, reward extrapolation, and restricting the policy
space. We systematically analyze the statistical and computational
properties of these three approaches, and we empirically evaluate
their effectiveness. In addition to providing the first systematic
analysis of support-deficiency in contextual-bandit learning, we
conclude with recommendations that provide practical guidance.
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« Information systems — Retrieval models and ranking; «
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1 INTRODUCTION

Many interactive systems (e.g., voice assistants, recommender sys-
tems) can be modeled as contextual bandit problems [15]. In partic-
ular, each user request provides a context (e.g., user profile, query)
for which the system selects an action (e.g., recommended product)
and receives a reward (e.g., purchase, click). Such contextual-bandit
data is logged in large quantities as a by-product of normal system
operation [12, 17, 18], making it an attractive and low-cost source
of training data. With terabytes of log data readily available in
many online systems, a range of algorithms has been proposed
for batch learning from such logged contextual-bandit feedback
[5, 6, 20-22, 24, 26]. However, as we will argue below, these algo-
rithms require an assumption about the log data that makes them
unsuitable for many real-world applications.

This assumption is typically referred to as the positivity or sup-
port assumption, and it is required by the Empirical Risk Mini-
mization (ERM) objective that these algorithms optimize. Specifi-
cally, unlike in online learning for contextual bandits [1, 29], batch
learning from bandit feedback (BLBF) operates in the off-policy
setting. During off-policy learning, the algorithm has to address
the counterfactual question of how much reward each policy in
the policy space would have received, if it had been used instead
of the logging policy. To this effect, virtually all state-of-the-art
off-policy learning methods for contextual-bandit problems rely on
counterfactual estimators [3, 5, 6, 22, 24, 26] that employ inverse
propensity score (IPS) weighting to get an unbiased ERM objective.
Unlike regression-based direct-modeling (DM) approaches that are
often hampered by bias from model misspecification, IPS allows
a controllable bias-variance trade-off through clipping and other
variance-regularization techniques [20, 21, 24].

Unfortunately, IPS and its guarantee of unbiasedness break down
when the logging policy does not have full support — meaning that
some actions have zero probability of being selected under the log-
ging policy. In this case IPS can be highly biased. Full support is an
unreasonable assumption in many real-world systems, especially
when the action space is large and many actions have poor rewards.
For example, in a recommender system with a large catalog (e.g.
movies, music), it may be that only a small percentage of the actions
have support under the logging policy. We will show that exist-
ing learning algorithms can fail catastrophically on such support
deficient data.

In this paper, we explore how to deal with support deficient
log data in off-policy contextual-bandit learning. Since support
deficiency translates into blind spots where we do not have any
knowledge about the rewards, accounting for these blind spots
during training is crucial for robust learning. We characterize three
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approaches for dealing with support deficiency. The first approach
is to restrict the action space to those actions that have support
under the logging policy. Second, we explore imputation methods
that extrapolate estimated rewards to those blind spots. And, third,
we restrict the policy space to only those policies that have limited
exposure to the blind spots. To make the latter approach computa-
tionally tractable, we define a new measure of Support Divergence
between policies, show how it can be estimated efficiently without
closed-form knowledge of the logging policy, and how it can be used
as a constraint on the policy space. We analyze the statistical and
computational properties of all three approaches and perform an
extensive empirical evaluation. We find that restricting the policy
space is particularly effective, since it is computationally efficient,
empirically effective at learning good policies, and convenient to
use in practice.

2 RELATED WORK

The problem of learning optimal policies by re-using logged data
is referred to as off-policy learning. There has been considerable
interest in developing efficient off-policy learning in the contextual
bandit setting. However, to the best of our knowledge, no previous
work has comprehensively investigated the problem of support
deficiency, which is an important and pervasive problem in many
real-world systems. The prior work on off-policy learning can be
classified into two fundamentally different approaches. The first -
called Direct Modeling (DM) - is based on a reduction to supervised
learning, where a regression estimate is trained to predict rewards
[2]. To derive a policy, the action with the highest predicted reward
is chosen. A drawback of this simple approach is the bias that results
from misspecification of the regression model. For real-world data,
due to non-linearity or partial observability of the environment,
regression models are often substantially misspecified. Hence, the
DM approach often does not perform well empirically.

The second approach is based on policy learning via ERM with a
counterfactual risk estimator [5, 22, 24, 25]. Inverse propensity score
(IPS) weighting is one of the most popular estimators to be used
as empirical risk. However, policy learning algorithms based on
IPS and related estimators [20, 21, 24-26] require the assumption
that the logging policy has full support for every policy in the
policy space. One exception is the work of [19]. They relax the
assumption to the existence of an optimal policy such that the
logging policy covers the support of this optimal policy. However,
this is an untestable assumption that does not provide guarantees
for real-world applications.

More generally, batch learning from bandit feedback can be
viewed as off-policy learning in the reinforcement learning (RL)
literature, which considers learning optimal policies in the sequen-
tial decision-making setting. Similar to the approaches in contex-
tual bandit learning, RL methods cluster into two categories: (1)
value function based and (2) importance sampling based. For impor-
tance weighting based methods, such as policy gradient [29], the
variance of the underlying gradient grows exponentially with the
horizon, making it highly undesirable. It is worth noting that this
is fundamentally different for one-step contextual bandits, where
importance-sampling based estimators are the most competitive
ones. For value function based approaches [10, 14], the objective is

based on some estimate of the value function, either through fitting
an MDP model and evaluating the value function based on the esti-
mated MDP [10] (a.k.a model-based in RL) or using bootstrapping
to find the value function for the optimal policy directly, such as
Q-learning [28] (a.k.a model-free in RL). However, for model-based
methods, the bias problem could be severe if a wrong model class is
chosen, and the bias problem is very difficult to diagnose in general.
On the other hand, for model-free methods, Sutton and Barto [23]
identify a deadly triad of function approximation, bootstrapping,
and off-policy learning. It emphasizes that function approximation
equipped with Q-learning can diverge in the off-policy learning
setting, making most off-policy RL methods very conservative in
extrapolation because of the severe error-propagation issue [7, 16].
In this work, we focus on the contextual bandit problem, which
has many direct applications in recommender systems and online
search. We also believe that for developing better off-policy esti-
mators in RL, it is fundamental to first understand how to handle
these cases in the more tractable, contextual-bandit case.

In this paper, we explore three approaches to addressing off-
policy learning with support deficiency and discuss how existing
approaches could be fit into this framework. First, our conserva-
tive extrapolation method is related to the method proposed by
[19]. They focus on the correction of the state distribution by defin-
ing an augmented MDP, and pessimistic imputation is used to get
an estimate for policy-gradient learning. Second, our method of
restricting the policy space uses a surrogate for the support diver-
gence of two policies that was previously used as control variate
in the SNIPS estimator [25]. It also appeared in the Lagrangian
formulation of the BanditNet objective [11] and in the gradient
update of the REINFORCE algorithm [29]. This connection gives
interesting new insight that the baselines used in policy-gradient
algorithms not only help to reduce variance in gradients [8], but
that they also connect to the problem of support deficiency in the
off-policy setting.

3 OFF-POLICY LEARNING WITH DEFICIENT
SUPPORT

We start by formally defining the problem of learning a contextual-
bandit policy in the BLBF setting. Input to the policy are contexts
x € X drawn ii.d. from a fixed but unknown distribution P(X).
Given context x, the system executes a possibly stochastic policy
(Y |x) that selects an action y € Y. For this context and action
pair, the system observes a reward r € [rmin, F'max] from P(r|x, y).
Given a space of policies II, the reward of any policy 7= € II is
defined as

Rm)= E B E [r]. 1
) x~P(x) y~7(y|x) r~P(r|x.y) g

In the BLBF setting, the learning algorithm is given a dataset
D = {xi,yi, ri, mo(yilxi) oy

of past system interactions which consists of context-action-reward-
propensity tuples. The propensity 7o(y;|x;) is the probability of
selecting action y; for context x; under the policy 7y that was used
to log the data. We call 7y the logging policy, and we will discuss
desired conditions on the stochasticity of 7y in the following. The



goal of off-policy learning is to exploit the information in the logged
data D to find a policy # € II that has high reward R(%).

Analogous to the ERM principle in supervised learning, off-
policy learning algorithms typically optimize a counterfactual esti-
mate R(r) of R(r) as the training objective [3, 17, 18, 24].

7 = arg max|R(r)] 2)
mell

For conciseness, we ignore additional regularization terms in the
objective [24], since they are irrelevant to the main point of this
paper. As for counterfactual estimator R(xr), most algorithms rely
on some form of IPS weighting [5, 21, 22, 24, 25, 27] to correct
the distribution mismatch between the logging policy 7 and each
target policy « € II.

Rips(m) = + D Mhﬂ ®)

n & mo(yilxi)

A crucial condition for the effectiveness of the IPS estimator (and
similar estimators like SNIPS [25]) is that the logging policy 7o
assigns non-zero probability to all actions that have non-zero prob-
ability under the target policy 7 we aim to evaluate. This condition
is known as positivity or full support, and it is defined as follows.

Definition 1 (Full support). The logging policy my is said to have
full support for = when mo(y|x) > 0 for all actionsy € Y and contexts
x € X for which (y|x) > 0.

It is known that the IPS estimator is unbiased, E D[ﬁ ps(m)] =
R(r), if the logging policy o has full support for z [18].

To ensure unbiased ERM learning, algorithms that use the IPS
estimator require that the logging policy o has full support for
all policies 7 € II in the policy space. For sufficiently rich policy
spaces, like deep-networks fy,(x, y) with softmax outputs of the
form

exp(fw(x,y))
Sy ey exp(fuwlx,y’)’

this means that the logging policy 7y needs to assign non-zero
probability to every action y in every context x. This is a strong
condition that is not feasible in many real-world systems, especially
if the action space is large and many actions have poor reward.

If the support requirement is violated, ERM learning can fail
catastrophically. We will show in the following that the underly-
ing reason is bias, not excessive variance that could be remedied
through clipping or variance regularization [21, 24]. To quantify
how support deficient a logging policy is, we denote the set of
unsupported actions for context x under 7 as

U(x, m0) = {y € Y|mo(ylx) = 0}.

mw(ylx) = 4

The bias of the IPS estimator is then characterized by the ex-
pected reward on the unsupported actions.

Proposition 1. Given contextsx ~ P(X) and logging policy mo(Y|x),
the bias of Rips for target policy n(Y|x) is equal to the expected re-
ward on the unsupported action sets, i.e.,

bias(Rrps(n)) = B [ -

n(ylx)5(x, y)] .
yeU(x,m)

The proof is provided in Appendix A.1. From Proposition 1, it is
clear that support deficient log data can drastically mislead ERM
learning. To quantify the effect of support deficiency on ERM, we
define the support divergence between a logging policy 7 and a
target policy x as follows.

Definition 2 (Support Divergence). For contexts x ~ P(X) and
any corresponding pair of target policy & and logging policy my, the
Support Divergence is defined as

Dx(rlm)= B [ >

yeU(x, m)

ﬂ(ylx)]- (©)

With this definition in hand, we can quantify the effect of support
deficiency on ERM learning for a policy space II under logging
policy 7.

Theorem 1. For any given hypothesis space I1 with logging pol-
icy mo € II, there exists a reward distribution P, with support in
[Fmins Ymax] such that in the limit of infinite training data, ERM
using IPS over the logged data D ~ P(X) X mo(+|X) X Py can select a
policy & € argmax Eg[ﬁjps(ﬁ)] that is at least

(rmax = rmin) max D x (x|mo)
s ell
suboptimal.

Proor. For any given hypothesis space II and logging policy
7y, define a deterministic reward distribution #, supported in
[rmin, rmax] as following: for all context x, r(x,y) = 6(x,y) = rmin
fory € U(x, m)¢ and r(x,y) = 8(x,y) = rmax fory € U(x, m).
Let 7 € argmax, y Dx(7|m) and 7* € argmax .y R(), then
we have the following lower bound for R(7z*):

R(x*) = R(%)

-z 3

yeU(x, m)

'max + Z rmin] (6)

yeU(x,m)°

= Imax max Dx(7|mo) + rmin(1 — max D x(r|m))
mell mell

where the first inequality follows from the definition of 7, the first
and second equality is based on the specific reward distribution P
and the definition of 7.

In the following we will show that for any 7 learned by the
expectation of ERM (or in the limit of infinite amount data), i.e.,
7 € arg max Egp[Rrps(r)], # have the same support as 7.

Igmzps(m]:gg[ D n(y|x)rmm]

yeU(x, m)°

=rminIE1[ Z

yeU(x,m)°

()
n(yh)} < Tmin

for all 7 € I1, then it is easy to see 7y € II is one of the solution of
ERM. Actually for any 7 € arg max Eg [RIZI)?S (m)],

P>

yeU(x, m)°

x(ylx)| =1

and it gives us that any solution of the ERM has exactly the same sup-
port as 7o, then we have R(%) = rpjn for 7 € argmaxE g [Ryps()].



Combining the lower bound for R(z*) and R(%) = rpin, we have
R(n™) = R(#%) 2 rmax max D x (| mo)
mell
+ rmin(1 — max Dy (7|70)) = rmin (8)
mell
= (Fmax = rmin) max D x (r|m)
mell

m}

To illustrate the theorem, consider a problem with rewards r €
[-1, 0]. Furthermore, consider a policy space II that contains a good
policy g with R(7r4) = —0.1 and a bad policy 7, with R(r) = —0.7.
If policy 7, has support divergence D x (p|m) = 0.6 or larger,
then ERM may return the bad 7, instead of 74 even with infinite
amounts of training data.

Note that it is sufficient to merely have one policy in IT that has
large support deficiency to achieve this suboptimality. It is therefore
crucial to control the support divergence D x (7| 7) uniformly over
all 7 € II, or to account for the suboptimality it can induce. To this
effect, we explore three approaches in the following.

3.1 Safe learning by restricting the action space

The first and arguably most direct approach to reducing D x (7| 70)
is to disallow any action that has zero support under the logging
policy. For the remaining action set, the logging policy has full sup-
port by definition. This restriction of the action set can be achieved
by transforming each policy 7 € II into a new policy that sets the
probability of the unsupported actions to zero.

7 (1) Tyeai(x, mp)}
1= Xy eti(x, m) F(Y'1x)

n(ylx) — #(ylx) := ©
This results in a new policy space II. All 7 € II have support
divergence of zero D x(7|m) = 0 and ERM via IPS is guaranteed
to be unbiased.

While this transformation of the policy space from II to II is
conceptually straightforward, it has two potential drawbacks. First,
restricting the action space without any exceptions may overly
constrain the policies in II. In particular, if the optimal action y*
for a specific context x does not have support under the logging
policy, no 7 € T can ever choose y* even if there are many obser-
vations of similar y’s on similar context x’. The second drawback
is computational. For every context x during training and during
testing, the system needs to evaluate the logging policy 7o(y|x) to
compute the transformation from 7 to 7. This can be prohibitively
expensive especially at test time, where — after multiple rounds of
off-policy learning with data from previously learned policies — we
would need to evaluate the whole sequence of previous logging
policies to execute the learned policy.

3.2 Safe learning through reward extrapolation

As illustrated above, support deficiency is a problem of blind spots
where we lack information about the rewards of some actions in
some contexts. Instead of disallowing the unsupported actions like
in the previous section, an alternative is to extrapolate the observed
rewards to fill in the blind spots. To this effect, we propose the
following augmented IPS estimator that imputes an extrapolated
reward 5(x, y) for each unsupported action y € U(x, 7p).

n
Rpsm) =) [—”(y’,'xl,) re Y alyl)dey)| (10
n< 7o(yilxi) yeU(ri,m)

In general, 5(x, y) can be any function that maps X X Y to R.
The higher the quality of (x,y), the better the evaluation accu-
racy of the associated augmented IPS estimator. In the following
proposition, we formally characterize the bias of the augmented
IPS estimator for any given reward extrapolation 5(x, y). We de-
note the mean of the reward r for context x and action y with
8(x,y) = Epwp(r|x,y)[r] Furthermore, let A(x, y) := 3(x, y)-3(x,y)
denote the error of the reward extrapolation for each x and y.

Proposition 2. Given contexts x1,x2, . . .,xp drawn i.i.d from the
unknown distribution P(X), for action y; drawn independently from
logging policy my with probability my(y;|x;), the bias of the empirical
risk defined in Equation (10) is Ex[ Xy eqi(x, mo) 7(ylx)A(x, y)].

The proof is provided in Appendix A.2. In this way we can learn
in the original action and policy space, but mitigate the effect of
the support deficiency by explicitly incorporating the extrapolated
reward (x, y). We explore two choices for 5(x, y) in the following,
which provide different types of guarantees.

Conservative Extrapolation. In practice, the logging policy is
likely to put zero probability on actions that have low reward,
since this minimizes the user impact of data collection. This means
that precisely those bad actions are likely to not be supported in
the logging policy. A key danger of blind spots regarding those
actions is that naive IPS training will inadvertently learn a policy
that selects those actions. This can be avoided by being maximally
conservative about unsupported actions and imputing the lowest
possible reward [19].

Vx Vy € U(x, mp) : S(x, Y) = min

Intuitively, by imposing the worst possible reward for the un-
supported actions, the learning algorithm will aim to avoid these
low-reward areas. However, unlike for the 7 policies resulting from
the restricted action space, the learned policy is not strictly pro-
hibited from choosing unsupported actions - it is merely made
aware of the maximum loss that the action may incur. Note that for
problems where rp,;, = 0, the naive IPS estimator is identical to
conservative extrapolation since the second term in Equation (10)
is zero.

Regression Extrapolation. Instead of extrapolating with the worst-
case reward, we may have additional prior knowledge in the form
of a model-based estimate that reduces the bias. In particular, we
explore using a regression estimate

n

5 = arg min ! Z(ée(xi, y;) — ri)?
so Mim

that extrapolates from the observed data D. Typically, 59 comes

from a parameterized class of regression functions (e.g. linear, deep

networks).! Other regression objectives could also be used, such as

weighted linear regression that itself uses importance sampling as

weights [6]. But, fundamentally, all regression approaches assume

In our experiments, we use deep neural networks with details shown in Appendix B.



Algorithm 1: Data Augmentation

input: original logged dataset D, replaycount k, reward
estimate 5(x, Y);
output: additional augmented dataset D’;
initialization: D’ = 0 ;
forj=1,...,kdo
fori=1,...,ndo
Define Uy, to be the uniform distribution over
U(xi, mo);
Draw y ~ Uy;;
D' =D Hxi,y, 6(xi, ), m};
end
end

that the regression model is not misspecified and that it can thus
extrapolate well.

Note that the IPS part of Equation (10) can be exchanged for
other estimators. In particular, we note that doubly robust (DR) [5]
naturally performs a form of regression extrapolation. As the fol-
lowing decomposition shows, DR imputes the extrapolated reward
5(xi, y) for the unsupported actions y € U(x;, 7).

Ryp=o> [ 3wl ) + T 1 S, 1)
=1 Lyey Yilx
AN [ 3 m(yilxi) :
= - (ylxi)d(xi, y) + ———=(ri — 0(xi,yi))
Z yewzx;’m))c 7o(yilxi)
Y n(y|xi)5<x,~,y)] (1)
yeU(x;,mo)

A similar decomposition also exists for the CAB [22] estimator,
showing that both DR and CAB belong to the class of Regression
Extrapolation estimators.

Efficient Approximation. Evaluating the augmented IPS estima-
tor from Equation (10) can be computationally expensive if the
number of unsupported actions in U(x, ) is large. To overcome
this problem, we propose to use sampling to estimate the expected
reward on the unsupported actions, which can be thought of as
augmenting the dataset 9 with additional observations where the
logging policy has zero support. In particular, we propose the data-
augmentation procedure detailed in Algorithm 1. With the addi-
tional bandit data D’ = {xJ'., yjf, c§(xj’., y]’.),pj'.}j”i1 from Algorithm 1,

the new objective is 2

arg min —ZM —Z (y]| J)(S( XY ) (12)

mell n 7o(yilxi) j

In Appendix A.3, we show that the empirical risk in Equation (12)
has the same expected value (over randomness in D and D’) as

IAQI&P (D) and can thus serve as an approximation for Equation (10).

ZFor the rest of the paper, we will use maximizing reward or minimizing loss
interchangeably.

3.3 Safe Learning by Restricting the Policy
Space

As motivated by Theorem 1, the risk of learning from support defi-
cient data scales with the maximum support divergence D x (7|7)
among the policies in the policy space II. Therefore, our third ap-
proach restricts the policy space to the subset IT* C II that contains
the policies 7 € II with an acceptably low support divergence
Dx(x|my) < k.

K ={r e N|Dx(n|m) <k} (13)

The parameter k has an intuitive meaning. It specifies the maximum
probability mass that a learned policy can place on unsupported
actions. Typically the choice of « is application dependent, limiting
the maximum bias of the ERM procedure according to Proposition 2
while not explicitly torquing the rewards like in conservative re-
ward imputation. A key challenge, however, is implementing this
restriction of the hypothesis space, such that the ERM learner
t = argmax[Rps(7)]
ell*

only considers the subset IT¢ c II.

In particular, we do not have access to the context distribution
P(X) for calculating D x(|mp), nor would it be possible to enu-
merate all 7 € II to check the condition D x(r|my) < k, which
itself requires a possibly infeasible iteration over all actions. The
following theorem gives us an efficient way of estimating and con-
trolling D x (rr|mp) without explicit knowledge of P(X) or access to
the logging policy 7y beyond the logged propensities.

Theorem 2. For contexts x; drawn i.i.d from P(X), action y; drawn

from logging policy mo(Y |x;), we define S p (7| mo) = % 1 ;((};’llgl))
For any policy r it holds that
E E  [Sp(rlm)] + Dx(rlm) =1 (14)

x~P(X) y~mo(Y|x)

The proof is shown in Appendix A.4. Using this theorem, the
following proposition gives us an efficient way of implementing
the constraint D x (r|my) < x via 1 — Sq (7|7m).

Proposition 3. Forany givenk € (0,1), and fore with0 < € < x/2,

let pmin denote the minimum propensity on the supported set with

Pmin = Mily yeq/(x, ny)e 7o(ylx), then with probability larger than
2,2 ;

1 - 2exp(—2ne“p; ;. ), the constraint 1 —x + € < Sp(x|m) < 1-¢

will ensure 0 < D x(r|mp) < k.

The proof is provided in Appendix A.5. We can thus use 1 —
Sp(r|my) as a surrogate for D x (7|7p) in the IPS training objective
(or similar objectives like DR, clipped IPS, or CAB).

O T (yilxi)

arg min — —T
mo(yilxi)

meell I i=1
(15)
mw(ilxi)

subjectto 1 —kx + € < —Z— <
mo(yilxi)

i=1
Using Lagrange multipliers, an equivalent dual form of Equa-
tion (15) is:

I i|xi
max min —ZM(nﬂu—ug)—u1(1—6)+u2(1—1<+6)
up, U220 7y, €11 1 4 mo(yilxi)
(16)



For each fixed (u1, uz) pair, the inner minimization objective is ERM
with IPS where the reward is shifted by k = (u; — uy). So, we can
select k, solve (16), and compute the corresponding k afterwards.
To achieve a desired k, we can use any suitable root finding method
for k. We simply perform a grid search over k = u; — us.

Empirical Model Selection for k. While we may have a desired
risk tolerance k for selecting k in some applications, on others we
may want to select the k that maximize performance on a valida-
tion set. This again requires some estimate of the reward on the
unsupported actions. We thus explore Conservative Extrapolation,
DM, and the following model-independent approach we call Min-
Sup. MinSup aims to get the best model-free estimate of the reward
on the unsupported-action set that the available data admits. In
particular, we construct a minimally supported policy 7a1insup
that is closest to a policy that only takes unsupported actions while
still having full support. The construction is as follows: for each
context x, we greedily put all the probability p on the action that
has the lowest propensity, while keeping the IPS weights (%)
to be bounded by 100. If p < 1, we continue this procedure with the
next-lowest propensity until we have distributed all of the proba-
bility mass. We then estimate the value of the constructed policy
ZMinsup using IPS to arrive at the following estimator for any
target policy 7z, which substitutes Rips (TMinsup) for the missing
support of Rrps (7).

Ruinsup(m) = Rips(m) + (1 - SD(”|”O))ﬁIPS(”MinSup) (17)

Note that IPS is unbiased for 7asinsup since it has the same sup-
port set as mp. Furthermore, it has bounded variance since the IPS
weights are bounded by construction. For all the empirical evalua-
tions in this paper, we use MinSup to select the optimal k. We also
compare MinSup to DM and Conservative Extrapolation for this
model-selection problem in Section 4.1.

Practical Considerations. Among the methods we proposed for
dealing with support deficiency, the Policy Restriction approach is
easy to implement, does not require an additional regression model
with unknown bias, and it does not require access to the logging
policy during training or testing. In particular, the form of the inner
objective coincides with that of BanditNet [11], which is known
to work well for deep network training by controlling propensity
overfitting [24].

4 EMPIRICAL EVALUATION

We empirically analyze and compare the effectiveness and robust-
ness of the three approaches: restricting the action space, reward
extrapolation, and restricting the policy space. We use two real-
world datasets, namely the image-classification dataset CIFAR10
[13] and the credit-card fraud dataset of [4], from which we generate
various degrees of support deficient bandit data.

The experiments are set up as follows. We first create a train-
validation-test split for both datasets. The training set is used to gen-
erate bandit datasets for learning, the validation set is used to gen-
erate bandit datasets for model selection, and the full-information
test set serves as ground truth for evaluating the learned policies.
To simulate bandit feedback for the CIFAR10 dataset, our experi-
ment setup follows traditional supervised — bandit conversion for

multi-class classification datasets [2]. To not limit our evaluation to
binary multi-class rewards, we choose a different methodology for
the credit-card dataset by designating some features as correspond-
ing to actions and rewards. More details are given in Appendix B.

For both logging and target policies, we train softmax poli-
cies (Equation (4)) where f,,(x,y) is a neural network. We use
the ResNet20 architecture [9] for CIFAR10, and a fully connected
2-layer network for the credit-card dataset. We then introduce a
temperature parameter 7 into the learned policy via 7 f,, (x, y) to be
able to control its stochasticity and support deficiency. In particular,
we enforce zero support for some actions by clipping the propen-
sities to 0 if they are below a threshold of € = 0.01. The larger 7,
the higher the support deficiency. Note that setting the threshold
at € = 0.01 allows us to control support without having to worry
about variance control. More details are given in Appendix B.

The estimators that we examined in our experiments are: first,
traditional baselines including naive IPS (Eq. (3)) and DM; sec-
ond, the Action Restriction approach (Eq. (9)); third, three Reward
Extrapolation methods (Conservative Extrapolation, Regression
Extrapolation, and DR (Eq. (11)); as well as, fourth, the Policy Re-
striction approach (Eq. (16)). If not mentioned otherwise, MinSup
is used to select the k parameter and all experiment results are
averaged over 5 runs.

4.1 Experiments and Findings

The following experiments investigate the key properties of the
estimators, and they inform our recommendations and conclusions.

How do the methods perform at different level of support deficiency?
Figure 1 shows the test accuracy and support divergence D x (7| m9)
as support deficiency increases. First, as expected, learning using
naive IPS degrades on both datasets. Note that naive IPS coincides
with Conservative Extrapolation in the left two columns, since
both datasets are scaled to have a minimum reward of zero. In the
rightmost column, however, we translated the rewards from [0, 1]
to [—1,0]. This has a strong detrimental effect on naive IPS. IPS is
inherently imputing reward 0, and the performance of naive IPS
highly depends on the position of 0 in the range of the reward. Sec-
ond, the Action Restriction approach also performs poorly. While
its support divergence D x(r|m) is zero and thus bias is not the
problem, we conjecture that the best actions are often pruned from
the action-restricted policy space I1. Third, Regression Extrapola-
tion tends to perform better than Conservative Extrapolation in
our experiments. On both datasets, the DM model turns out to be
quite good, which also benefits DR. However, on the credit-card
dataset the regression seems better at ranking than at predicting
the true reward, which explains why DM performs better than
Regression Extrapolation. Fourth, the methods that performs well
on both datasets are Policy Restriction and DR. Unlike all the other
IPS-based methods, Policy Restriction performs well even under the
translated rewards in the third column of Figure 1. This is because
the objective of Policy Restriction coincides with that of BanditNet
[11], which is known to remedy propensity overfitting due to the
lack of equivariance of the IPS estimator [25].

How does regression-model misspecification affect the estimators?
While DR performed well in the previous experiments, it has no
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Figure 2: Test set accuracy for different levels of misspecifi-
cation of the regression model.

mechanism for guarding against bias from model misspecification
under support deficiency. The same limitation also applies to the
other estimators that rely on regression imputation for the unsup-
ported actions. We thus examine how different estimators deal
with model misspecification. To simulate increasing levels of model
misspecification, we train the regression function on subsets of
input features of varying size. Results are shown in Figure 2. As
the number of input feature decreases and misspecification thus
increases, the effectiveness of DR, Regression Extrapolation and
DM decreases substantially. Since Policy Restriction does not rely
on any regression model, it is unaffected.

% Unsupp. Oracle DM  Cons. Extra. MinSup
43 88.397  87.526 88.397 88.397
60 86.782 86.782 86.782 86.782
69 86.462  85.308 85.308 85.308
77 85.295  85.282 84.090 85.295
81 85.192 85.192 83.526 84.680

Table 1: Test error rates on the CIFAR10 data using the re-
spective model selection method under varying levels of
support deficiency in the logging policy.

How does the learning performance change with the amount of
training data? Figure 3 shows how accuracy on the test set changes
with the amount for training data for two levels of support defi-
ciency. Policy Restriction is at least competitive with Regression
Extrapolation, DR, and DM over most of the range. Action Restric-
tion can take the least advantage of more data. This is plausible,
since its maximum performance is limited by the available actions.
For similar reasons, Conservative Extrapolation, and equivalently
IPS, also flatten out, since they also tightly restrict the action space
by imputing the minimum reward.

How effective is model selection for k? If there is no pre-specified
risk tolerance 7 that is derived from application requirements, Sec-
tion 3.3 proposed to select the parameter k on a validation set.
Table 1 shows how the proposed MinSup model selection criterion
compares against model selection via DM and Conservative Ex-
trapolation. We also report the skyline performance of an Oracle
model selector which has access to the full-information validation
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Figure 4: Comparison of estimators of validation set accu-
racy for the policies learned by Policy Restriction when the
parameter k is varied.

set. Conservative extrapolation consistently underperforms in high-
deficiency settings, while both MinSup and DM perform well as
model selection criteria. This is explained by the plots in Figure 4,
which show the value of the validation set estimates. While MinSup
and DM have their optimum close to that of Oracle, the Conserva-
tive Extrapolation curve is substantially off. Additional results in
Appendix B, however, show that model misspecification can again
substantially affect the performance of model selection via DM.

How accurate is the estimator of support divergence? Policy restric-
tion relies on the estimated support divergence, and we now evalu-
ate the effectiveness of this estimator. The target policy is the uni-
form policy while the logging policies are varying in their support
deficiency. We investigate the behaviour of S¢ (7|m) + D x (7| 70)
for increasing amounts of training data and different support de-
ficiency of the corresponding logging policy. Results are shown
in Figure 5 averaged over 10 runs. The figure shows that the sum
converges to 1 and the variance of the estimate decreases as the
amount of training data increases. The curves for different levels of
support deficiency converge in a similar fashion and we conjecture

late the propensity under the logging policy 7o(y|x) for every x not
only at training time, but also at testing time. This is particularly
problematic when policies are updated in a frequent manner, since
we need to revisit the whole sequence of past executed logging
policies at test time. Furthermore, its learning performance is sub-
stantially worse than other methods, since actions are limited to an
overly conservative regime that enforces zero support divergence.

Conservative Extrapolation allows the target policy to select
actions that have zero support under the logging policy, and per-
formance tends to be better than for Action Restriction. However,
Conservative Extrapolation typically performs worse than Policy
Restriction, Regression Extrapolation, and DR. All methods are
more efficient that Action Restriction at test time as they do not
require evaluating the old logging policy. During training, however,
all Reward Imputation methods (i.e. Conservative Extrapolation,
Regression Extrapolation, and DR) need to evaluate all actions,
which can be expensive but ameliorated through sampling. A key
risk of both Regression Extrapolation and DR is that they rely on a
regression model, which can introduce biases from model misspec-
ification that are fundamentally unknown. The estimators provide
no mechanism for guarding against such biases.

Policy Restriction does not rely on a regression model, which
eliminates the need for training such a model. Furthermore, it is the
only method that allows flexible risk control through the parameter
K or k respectively. If the application does not provide a risk thresh-
old, k can be selected empirically via MinSup. From a computational
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perspective, Policy Restriction is efficient at both training and test
time, and it has minimal logging requirements as it only requires
the logged propensity of the chosen action. Since it consistently
showed at least competitive generalization performance across a
wide range of settings, we conclude that it is a preferable choice for
practical applications — especially when there are concerns about
model misspecification.

6 CONCLUSIONS

This paper presented the first comprehensive analysis of support
deficiency in off-policy learning for contextual bandits. In particular,
it identified and explored three approaches to dealing with support
deficiency: restricting the action space, reward extrapolation, and
restricting the policy space. The paper characterized the theoretical
properties of these approaches, and empirically evaluated their
performance and robustness. We conclude that restricting the policy
space is particularly effective, since it provides explicit risk control,
performs well in terms of learning performance, and it is easy and
efficient to implement.
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A APPENDIX: PROOFS
A.1 Proof of Proposition 1

Proposition 1. Given contextsx ~ P(X) and logging policy o(Y|x),

the bias of Ryps for target policy m(Y|x) is equal to the expected re-
ward on the unsupported action sets, ie.,

bias(Rps(r)) = E [ - Z

m(ylx)o(x, y)] .
yeU(x,m)

Proor. Recall 6(x,y) =
Px X mo(-|X) X Py.

E,[r(x,y)|x,y], and logged data D ~

bias(Rips(n)) = % [Rrps(m)] = R(x)
DI <
ye(U(x, mp))°
(18)
- ) Ay, y)]
yey
=E [ 7(ylx)d(x, y)]

yE(L((x 7o)

A.2 Proof of Proposition 2

Proposition 2. Given contexts x1,x2, . . ., Xp drawn i.i.d from the
unknown distribution P(X), for action y; drawn independently from
logging policy mo with probability my(y;|x;), the bias of the empirical
risk defined in Equation (10) is Ex[ Xy ea/(x, mo) T (y1x)A(x, y)].

ProoF. Based on the definition of R?P s():

B[ROy ()] - R(x)

D

=Bl > adry+ Y n(y|x>é<x,y>]—R<n>
“yeU(x,mp)© yeU(x,m)

=Bl D Al@ky) - 86xy)
“yeU(x,mp)

=E| ) n(y|x>A<x,y)]
FyeU(x,mp)

(19)
The second equality is based on the decomposition of R(r), and the

last one is based on the definition of A(x, y) := 5(x, y) — 8(x, y) for
alxe X,ye V. ]

A.3 Proof of Efficient Approximation
Claim 1. The empirical risk defined by in Equation (12) has the same
expectation (over randomness in D and sampling) as ﬁ?PS(Z))

Proor. Taking the expectation of empirical risk defined in Equa-
tion (12):

. [1 5 i) 1 Z ”(yf'xf)a(xj,yﬂ

n & mo(y;lx;) m

5| 5 2 )
yeU(x,m)°
1 ﬂ(yIX) :
+E[ §(x,y)]
et M) ey
=g§[ Y, sy +E[ n(y|x>$(x,y)]
yeU(x,m)° yeU(x, )

(20)
Now we will show it has the same expectation with R?P ()

m(yilxi)
% [ﬁo(yi|xi)rl ’ Z

yeU(xi,m0)

_g| 7(ylx) o
= IE | yLE,IU [”0(y|x) o(x, y)] + y/e%’m})ﬂ(y )8 (x, y )]

PP LRy

SyeU(x, mo)° y' €U(x, mo)

D, wyldtxy) D ayd, y)]

“yeU(x,m)° yeU(x,m)
(21)

The proof is done by comparing Equation (A.3) and Equation (21).
o

n(y|xi>8<xl~,y)]

Il
=@

(Y’ |x)(x, y’)]

Il
=@

+E
X

A.4 Proof of Theorem 2

Theorem 2. For contexts x; drawn i.i.d from P(X), action y; drawn
1vn  xyilx)
n ~i=1 mo(y;|x;)°

from logging policy mo(Y |x;), we define S (7| mo) =
For any policy 7 it holds that

x~P(X) y~zr0(y|x)[ o(7]m0)] x (7| 7mo) (14)

Proor.

E E S +D
x~P(X) y~7ro(-|x)[ o(7lm)] x (7| 7o)

5| 5 w2 o)

yetiGm)e mo(ylx)

oy

yeU(x,m)°
Bl ) n<y|x>] =1
yey

The first equality is based on definition of S¢(|mp) and the
second equality is based on definition of support divergence. 0O

(22)

(ol +E[ )

yeU(x,m)

ﬂ(yIX)]

A.5 Proof of Proposition 3

Proposition 3. Forany givenk € (0, 1), and fore with0 < € < k/2,

let pmin denote the minimum propensity on the supported set with

Pmin = Mily yeq/(x, y)e To(yl|x), then with probability larger than
2,2 :

1 - 2exp(—2ne“ps . ), the constraint 1 —x + € < Sp(x|m) < 1-¢€

will ensure 0 < D x(r|mp) < k.



ProoF. Recall S¢(7|m) = + 37 Zyilxi)

7 2i=1 To(yi [k with (x;,y;) draw

7(ylx) 1=
mo(ylx)
1—Dx(x|my). Let pmin denote the smallest propensity under sup-

ported action set with pmin := miny yeq/(x, z)c 70(ylx) > 0, then
7(ylx)
mo(y]x)
Applying Hoeffding’s bound gives:
P(Dx(n|m) < 1= Sp(r|m) - €) = P(Sp(x|mo)
- (1= Dx(r|m)) < —€) (23)
< exp(—2n62pfnin)

Since Spy(rr|m,) < 1 - € gives 1 = Sp(|m) — € > 0, then we have

iidfrom P(X)Xmo(Y|x). Also, it is easy to see By (-]

the random variable is strictly bounded between [0

1
’ Pmin ]

P(Dx(r|mo) < 0) < exp(—2ne’pl,;,) (24)
Similar for the other direction, Hoeffding’s bound gives:
P(Dx(r|mo) > 1= Sp(r|m) +€) = P(Sp(r|mo) — (1 - Dx(x|m))

>€) < exp(—2n62pfnm)
(25)

Since Sp(r|z) = 1+ €~k gives 1 — Sp(r|m) + € < k, then we
have

P(Dx(x|mp) = k) < exp(—Znezpfnm) (26)
Combining the above, we have
P(0 < Dx(r|mo) < k) = 1-P(Dx(r|mo) < 0) = P(Dx(r|mo) > )

>1- 2exp(—2n62p%m-n)
(27)
]

B APPENDIX: EXPERIMENT DETAILS

Datasets and baseline. We follow a 75:10:15 train-validation-test
split for credit card fraud detection dataset, while for CIFAR10 al-
ready coming with a train-test split, we keep 10% of the training
set as validation set. Baseline estimators are IPS and DM, the hy-
perparameters (learning rate, Ly regularization) are optimized for
all the methods based on the validation set.

Bandit data generation. For CIFAR10, given supervised data in
the format of {x;, y]}]_; where x; denotes the 3072 features and y;
denotes the correct label of data (ranging from 0 to 9), under logging
policy m, the logged bandit data is generated by drawing y; ~
7mo(Y|x;), then a deterministic reward is defined as 1 {yi=y;}- For
the credit card fraud detection dataset, we aim to have continuous
rewards rather than binary. To do so, we throw away the class label
and only use the data features for each sample to generate bandit
data. To be specific, for each sample with a 28-dimensional feature
vector, we define the first 20 features as the contextual information,
and use the remaining 8 features as the underlying true reward for
8 different actions (with normalization).

Logging policy. For CIFAR, we learn the softmax logging policy
on 35K full-information data points as a multi-class classification
problem with cross-entropy loss. Similar as the experiments on
BanditNet [11], we adopt the conventional ResNet20 architecture
but restrict training after a mere two epochs to derive a relative
stochastic policy, since it will be easier to add temperature later to

control its stochasticity and support deficiency. Similarly, for the
credit card fraud detection dataset, the softmax logging policy is

learned on 8K full-information data points by treating it as a multi-
class classification problem using cross-entropy loss and the label
being the action with the highest reward on this specific context.
For CIFAR, the logging policy we trained has a 57.43% accuracy on
the test-set; whereas for the credit card fraud detection dataset, the
logging policy has an expected true reward of 0.71.

Reward estimator. For each experiment, we train a different re-
gression function using the full bandit dataset. We use the same
architecture as the one used for off-policy learning (ResNet20 for
CIFAR10, two layer neural network for the Credit Card dataset) -
where the final layer is the size of the actions, specifying the reward
for each action given a particular context. The regression function
is trained using the MSE objective.

Model selection details. We provide the model selection result for
credit card in Table 2. In this dataset, both DM and MinSup achieve
near-oracle performance under different levels of support deficiency.
In Figure 6, we test how various estimators perform under model-
misspecification on the CIFAR dataset. As the number of input
feature decreases. the quality of DM diminishes, which affects its
performance used in model selection. MinSup is pretty robust under
model misspecification.

% Unsupp. Oracle DM  Cons. Extra. MinSup
0 0.793  0.793 0.793 0.793
20 0.803  0.791 0.791 0.803
45 0.799  0.798 0.795 0.799
60 0.797  0.797 0.797 0.796
75 0.778 0.778 0.766 0.778
80 0.774  0.759 0.751 0.759

Table 2: Model selection results for Credit Card with varying
levels of support deficiency in the logging policy.
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Figure 6: Model selection results for various support defi-
ciencies and different levels of model misspecifications on

CIFAR.
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