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Summary. Markov chain Monte Carlo (MCMC) methods provide consistent approximations
of integrals as the number of iterations goes to co. MCMC estimators are generally biased
after any fixed number of iterations. We propose to remove this bias by using couplings of
Markov chains together with a telescopic sum argument of Glynn and Rhee. The resulting
unbiased estimators can be computed independently in parallel. We discuss practical couplings
for popular MCMC algorithms. We establish the theoretical validity of the estimators proposed
and study their efficiency relative to the underlying MCMC algorithms. Finally, we illustrate the
performance and limitations of the method on toy examples, on an Ising model around its critical
temperature, on a high dimensional variable-selection problem, and on an approximation of the
cut distribution arising in Bayesian inference for models made of multiple modules.
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1. Introduction

Markov chain Monte Carlo (MCMC) methods constitute a popular class of algorithms to
approximate high dimensional integrals arising in statistics and other fields (Liu, 2008; Robert
and Casella, 2004; Brooks et al, 2011; Green et al., 2015). These iterative methods provide
estimators that are consistent as the number of iterations grows large but potentially biased
for any fixed number of iterations, which discourages the parallel execution of many short
chains (Rosenthal, 2000). Consequently, efforts have focused on exploiting parallel processors
within each iteration (Tjelmeland, 2004; Brockwell, 2006; Lee et al., 2010; Jacob et al., 2011;
Calderhead, 2014; Goudie et al., 2017; Yang et al., 2017) and on the design of parallel chains
targeting different distributions (Altekar et al., 2004; Wang et al., 2015; Srivastava et al., 2015).
Still, MCMC estimators are ultimately justified by asymptotics in the number of iterations,
which is discordant with current trends in computing hardware, characterized by increasing
parallelism but stagnating clock speeds.
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In this paper we propose a general construction to produce unbiased estimators of integrals
with respect to a target probability distribution from MCMC kernels. The lack of bias means
that these estimators can be implemented on parallel processors in the framework of Glynn and
Heidelberger (1991), without communication between processors. Confidence intervals can be
constructed with asymptotic guarantees in the number of processors, in contrast with standard
MCMC confidence intervals that are justified asymptotically in the number of iterations (e.g.
Flegal et al. (2008), Gong and Flegal (2016), Atchadé (2016) and Vats et al. (2018)). The lack
of bias has additional benefits, as discussed in Section 5.5 in which we make use of its interplay
with the law of iterated expectations to perform modular inference; see also the discussion in
Section 6.

Our contribution follows the path breaking work of Glynn and Rhee (2014), which uses
couplings to construct unbiased estimators of integrals with respect to an invariant distribution.
They illustrated their construction on Markov chains represented by iterated random functions,
leveraging the contraction properties of such functions. Glynn and Rhee (2014) also considered
Harris recurrent chains for which an explicit minorization condition holds. Previously, McLeish
(2011) employed similar debiasing techniques to obtain ‘nearly unbiased’ estimators from a
single MCMC chain. More recently Jacob et al (2019) removed the bias from conditional
particle filters (Andrieu et al., 2010) by coupling chains so that they meet in finite time. The
present paper brings this type of ‘Rhee—Glynn’ construction to generic MCMC algorithms, with
a novel analysis of estimator efficiency and a variety of examples. Our proposed construction
involves couplings of MCMC algorithms, which we discuss for generic Metropolis—Hastings
and Gibbs samplers.

Couplings have been used to study the convergence properties of MCMC algorithms from
both theoretical and practical points of view (e.g. Reutter and Johnson (1995), Johnson (1996),
Rosenthal (1997), Johnson (1998, 2013), Neal (1999), Roberts and Rosenthal (2004) and
Johndrow and Mattingly (2017)). Couplings also underpin perfect samplers (Propp and Wilson,
1996; Murdoch and Green, 1998; Casella et al., 2001; Flegal and Herbei, 2012; Lee et al., 2014;
Huber, 2016). A notable aspect of the approach of Glynn and Rhee (2014) that is preserved
in our method is that only two chains must be coupled for the proposed estimator to be unbi-
ased, without further assumptions on the state space or target distribution. Thus the approach
applies more broadly than perfect samplers (see Glynn (2016)) while yielding unbiased esti-
mators rather than exact samples. Coupling pairs of Markov chains also forms the basis of
the approach of Neal (1999), with a similar motivation for parallel computation. The pro-
posed estimation technique also shares aims with regeneration methods (e.g. Mykland et al.
(1995) and Brockwell and Kadane (2005)), and we propose a numerical comparison in Sec-
tion 5.2.

In Section 2 we introduce our estimators and present a coupling of random-walk Metropolis—
Hastings (MH) chains as an illustration. In Section 3 we establish the efficiency properties of
these estimators, discuss the verification of key assumptions and describe the use of the proposed
estimators on parallel processors in light of results from for example Glynn and Heidelberger
(1991). In Section 4 we describe how to couple some important MCMC algorithms and illustrate
the effect of dimension on algorithms’ performance with a multivariate normal distributions
target. Section 5 contains more challenging examples including a multimodal target, a com-
parison with regeneration methods, sampling problems in large dimensional discrete spaces
arising in Bayesian variable selection and Ising models, and an application to modular infer-
ence. We discuss our findings in Section 6. Scripts in R (R Core Team, 2015) are available from
https://github.com/pierrejacob/unbiasedmcme and supplementary materials are
available on line.
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2. Unbiased estimation from coupled chains

2.1. Rhee-Glynn estimator

Given a target probability distribution 7 on a Polish space X and a measurable real-valued test
function £ that is integrable with respect to 7, we want to estimate the expectation E,[h(X)]=
J h(x)7(dx). Let P denote a Markov transition kernel on X that leaves « invariant, and let
mo be some initial probability distribution on X. Our estimators are based on a coupled pair
of Markov chains (X;),>o and (¥;);>0, which marginally start from 7y and evolve according
to P. In particular, we suppose that P is a transition kernel on the joint space X x X such
that P{(x,y), A x X} = P(x,A) and P{(x,y),X x A} = P(y, A) for any x, y € X and any mea-
surable set A. We then construct the coupled Markov chain (X;,Y;);>0 as follows. We draw
(X9, Yp) such that Xy~ mg and Yy~ 7. Given (X, Yo) we draw X| ~ P(Xy, -), and then for any
t>1, given X, (X1,Y0),...,(Xs, Yi_1), we draw (X, 41, Y,) ~ P{(X,,Y,_1),-}. We consider the
following assumptions.

Assumption 1. As t — oo, E[h(X;)] — E;[h(X)]. Furthermore, there is an >0 and D < oo
such that E[|2(X,)|>T" < D for all £ >0.

Assumption 2. The chains are such that the meeting time 7:=inf{s > 1: X, =Y,_;} satisfies
P(r >1) < Cé& for all r >0, for some constants C < oo and 6 € (0, 1).

Assumption 3. The chains stay together after meeting, i.e. X, =Y, forallz> 7.

By construction, each of the marginal chains (X;);>0 and (¥;);>0 has initial distribution g
and transition kernel P. Assumption 1 requires these chains to result in a uniformly bounded
(2+n)-moment of /; more discussion on moments of Markov chains can be found in Tweedie
(1983). Since X and Yy may be drawn from any coupling of m( with itself, it is possible to set
Xo=Yy. However, X is then generated from P(Xy,-), so that X| # Y, in general. Thus one
cannot force the meeting time to be small by setting X¢ = ¥y. Assumption 2 puts a condition
on the coupling that is operated by P and would not in general be satisfied for an independent
coupling. Coupled kernels must be carefully designed, using for example common random
numbers and maximal couplings, for assumption 2 to be satisfied. We present a simple case in
Section 2.2 and further examples in Section 4. We stress that the state space is not assumed
to be discrete, and that the constants D and n of assumption 1 and C and 6 of assumption 2
do not need to be known to implement the approach proposed. Assumption 3 typically holds
by design; coupled chains that stay identical after meeting were termed ‘faithful’ in Rosenthal
(1997).

Under these assumptions we introduce the following motivation for an unbiased estimator of
E;[h(X)], following Glynn and Rhee (2014). We begin by writing E,[2(X)] as lim,_, o E[2(X})].
Then, for any fixed £ >0,

E-[h(X)]=E[h(Xr)]+ io: {E[A(X)]—E[h(X;-1)]} (expanding the limit as a telescoping sum)
t=k+1

=[E[h(Xp)]+ io: {E[h(X)]— E[h(Y;—1)]} (since the chains have the same marginals)

t=k+1
o0
=Er(Xp)+ > {h(X)—h{Y,—D} (swapping the expectations and limit)
t=k+1
7—1
=EhX)+ >0 {h(X) —h(Y,-D}] (by assumption 3).

t=k+1
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We note that the sum in the last equation is 0 if k + 1 > 7 — 1. The heuristic argument above sug-
gests that the estimator Hy(X,Y)=h(Xy) + E,:kl +11A(X) —h(Y;—1)} should have expectation
Ex[7(X)]. We observe that this estimator requires 7 — 1 calls to P and max(1,k+ 1 —7) calls to
P; thus under assumption 2 its cost has a finite expectation.

In Section 3 we establish the validity of the estimator under the three conditions above; this
formally justifies the swap of expectation and limit. The estimator can be viewed as a debiased
version of 4(Xy). Unbiasedness is guaranteed for any choice of k > 0, but both the cost and the
variance of Hy(X,Y) are sensitive to k; see Section 3.1. Thanks to this unbiasedness property,
we can sample R € N independent copies of H(X,Y) in parallel and average the results to
estimate E[2(X)] consistently as R — oo; we defer further considerations on the use of unbiased
estimators on parallel processors to Section 3.3.

Before presenting examples and enhancements to the estimator above, we discuss the rela-
tionship between our approach and existing work. There is a rich literature applying forward
couplings to study Markov chain convergence (Johnson, 1996, 1998, 2013; Thorisson, 2000;
Lindvall, 2002; Rosenthal, 2002; Douc et al., 2004; Nikooienejad et al., 2016), and to obtain
new algorithms such as perfect samplers (Huber, 2016) and the methods of Neal (1999) and Neal
and Pinto (2001). Our approach is closely related to Glynn and Rhee (2014), who employed pairs
of Markov chains to obtain unbiased estimators. The present work combines similar arguments
with couplings of MCMC algorithms and proposes further improvements to remove bias at a
reduced loss of efficiency.

Indeed Glynn and Rhee (2014) did not apply their methodology to the MCMC setting.
They considered chains that are associated with contractive iterated random functions (see
also Diaconis and Freedman (1999)), and Harris recurrent chains with an explicit minorization
condition. A minorization condition refers to a small set C, A >0, an integer m > 1 and a
probability measure v such that, for all x e C and some measurable set A, P (x, A) > Av(A). Such
a condition is said to be explicit if the set, constant and probability measure are known by the
user. Finding explicit small sets that are useful in practice can present a technical challenge, even
for MCMC experts (see the discussion and references in Cowles and Rosenthal (1998)). When
available, explicit minorization conditions can also be employed to identify regeneration times,
yielding estimators that are amenable to parallel computation in the framework of Mykland
et al. (1995) and Brockwell and Kadane (2005). By contrast Johnson (1996, 1998) and Neal
(1999) addressed the question of coupling MCMC algorithms so that pairs of chains meet
exactly, without analytical knowledge on the target distribution. The present paper focuses on
the use of couplings of this type in the framework of Glynn and Rhee (2014).

2.2. Coupled Metropolis—Hastings example

Before further examination of our estimator and its properties, we present a coupling of MH
chains that will typically satisfy assumptions 1-3 in realistic settings; this coupling was proposed
in Johnson (1998) as part of a method to diagnose convergence. We postpone discussion of other
couplings of MCMC algorithms to Section 4. We recall that each iteration 7 of the MH algorithm
(Hastings, 1970) begins by drawing a proposal X* from a Markov kernel g(X;, -), where X; is
the current state. The next state is set to X, 1 = X* if U< m(X*)q(X*, X;)/{r(X»)q(X;, X*)},
where U denotes a uniform random variable on [0, 1], and X, | = X, otherwise.

We define a pair of chains so that each proceeds marginally according to the MH algorithm
and jointly so that the chains will meet exactly after a random number of steps. We suppose
that the pair of chains are in states X; and Y;_, and we consider how to generate X;,; and Y;
so that { X, =Y, } might occur.

If X, #Y,_1, the event { X,1| =Y, } cannot occur if both chains reject their respective propos-
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als, X* and Y*. Meeting will occur if these proposals are identical and if both are accepted.
Marginally, the proposals follow X*|X,~¢q(X;,-) and Y*|Y;_1 ~q(¥;_1,-). If g(x,x*) can be
evaluated for all x and x*, then we can sample from a maximal coupling between the two
proposal distributions, which is a coupling of ¢(X,, -) and ¢(¥;_1, -) maximizing the probability
of the event { X* =Y*}. How to sample from maximal couplings of continuous distributions is
described in Thorisson (2000) and in Section 4.1. One can accept or reject the two proposals by
using a common uniform random variable U. The chains will stay together after they meet: at
each step after meeting, the proposals will be identical with probability 1, and jointly accepted or
rejected with a common uniform variable. This coupling requires neither explicit minorization
conditions nor contractive properties of a random-function representation of the chain.

2.3. Time-averaged estimator
To motivate our next estimator, we note that we can compute Hy(X,Y) for several values of
k from the same realization of the coupled chains, and that the average of these is unbi-
ased as well. For any fixed integer m with m >k, we can run coupled chains for max(m, 7)
iterations, compute the estimator H;(X,Y) for each /€ {k,...,m} and take the average
Hem(X,Y)=(m —k+ 1)_122”=kH1(X, Y), as we summarize in algorithm 1 in Table 1. We re-
fer to Hy.» (X, Y) as the time-averaged estimator; the estimator Hy (X, Y) is retrieved when m =k.
Alternatively we could average the estimators H;(X, Y) by using weights w; € Rforl e {k,...,m},
to obtain 37", w; H;(X,Y). This will be unbiased if 37"  w;=1.

Rearranging terms in (m —k + 1)‘127": Hi(X,Y), we can write the time-averaged estimator
as

1 m = I—k
Hiem (X, Y) = k1 g{h(xz) +1:%1 mm(l, k1 ) {h(X) —h(Y,—1)}. (2.1
The term (m — k + 1)_12;”= (X)) corresponds to a standard MCMC average with m total
iterations and a burn-in period of k — 1 iterations. We can interpret the other term as a bias
correction. If 7 <k + 1, then the correction term equals 0. This provides some intuition for
the choice of k and m: large k-values lead to the bias correction being equal to 0 with large
probability, and large values of m result in Hy., (X,Y) being similar to an estimator obtained
from a long MCMC run. Thus we expect the variance of Hj., (X, Y) to be similar to that of
MCMC estimators for appropriate choices of k and m.

The estimator Hy.,, (X, Y) requires 7 — 1 calls to P and max(1,m + 1 —7) calls to P, which
are overall comparable with m calls to P when m is large. Indeed, for the proposed couplings,
calls to P are approximately twice as expensive as calls to P. Therefore, the cost of Hy.,, (X, Y) is

Table 1. Algorithm 1: unbiased ‘time-averaged’ estimator H,.,,(X,Y) of

Ex[A(X)]

Step 1: draw X and Y, from an initial distribution 7y and draw X ~ P(Xy, -)
Step 2: set t =1: while t < max(m, 7), where T=inf{r > 1: X, =Y, 1},

(a) draw (X,41,Y) ~ P{(X1,Y,_1), },
(b)sett<«r+1

Step 3:foreachle{k,...,m}, compute H;(X,Y)=h(X;) +Z;;ll+l{h(X,) —
h(Y;—1)};
return Hy.,,(X,Y)=(m —k+ 1)_12;":kH1(X, Y), or compute Hy.,, (X, Y)
with equation (2.1)
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comparable with 2(7 — 1) + max(1,m 4+ 1 — 7) iterations of the underlying MCMC algorithm.
Thus both the variance and the cost of Hy.,,, (X, Y) will approach those of MCMC estimators for
large values of k and m. This motivates the use of the estimator Hy.,, (X, Y) with m >k, which
enables us to control the loss of efficiency that is associated with the removal of burn-in bias in
contrast with the basic estimator Hy (X, Y) of Section 2.1. We discuss the choice of k and m in
further detail in Section 3 and in the subsequent experiments. A variant of estimator (2.1) can
be obtained by considering a time lag that is greater than 1 between the two chains (X;);>0 and
(Y1)i>0, with the meeting time defined as the first time # for which {X; =Y;_j,s} occurs. This
introduces another tuning parameter but was found to be fruitful in Biswas et al. (2019).

We conclude this section with a few remarks on practical implementations. First, the test
function /1 does not have to be specified at run time in algorithm 1 in Table 1. One can store
the coupled chains and choose the test function later. Also, one typically resorts to thinning the
output of an MCMC sampler if the memory cost of storing chains is prohibitive, or if the cost
of evaluating the test function of interest is significant compared with the cost of each MCMC
iteration (e.g. Owen (2017)). This is feasible in the framework proposed: one could consider a
variation of algorithm 1 where each call to the Markov kernels P and P would be replaced by
multiple calls to them. We also observe that the estimators proposed can take values outside the
range of the test function #; for instance they can take negative values even if the range of the
test function contains only non-negative values.

Finally, we stress the difficulty that is inherent in choosing an initial distribution 7y. The
estimators are unbiased for any choice of 7, including point masses, but this choice has an
effect on both the computing cost and the variance. There is also a choice about whether to
draw X and Yy independently from 7y or not; in our experiments we use independent draws.
We shall see in Section 5.1 that unfortunate choices of initial distributions can severely affect
the performance of the estimators proposed. This suggests trying more than one choice of
initialization, especially in the setting of multimodal targets. Overall the choice of 7wy and its
relative importance compared with standard MCMC sampling are open questions.

2.4. Signed measure estimator
We can formulate the proposed estimation procedure in terms of a signed measure 7 defined by

>1>

I—k
= k+125x,+l%lmm( mk>(5x, Oy, 1)s (2.2)

which is obtained by replacing test function evaluations by delta masses in equation (2.1), as
in Section 4 of Glynn and Rhee (2014). The measure 7 is of the form 7 = Ef\i w16z, where the
weights satisfy Zl’i wi =1 and where the atoms (Z;) are values among the history of the coupled
chains. Some of the weights (w;) may be negative making 7 a signed empirical measure. In this
view the unbiasedness property states that [E[Z 1w;h(Zl)] E;[7(X)] for a test function /.

We can consider the convergence behaviour of 7% = R~ ER 17T(r) towards 7, where (7") for
re{l,..., R} are independent replications of #. Glynn and Rhee (2014) obtained a Glivenko—
Cantelli result for a similar measure related to their estimator. In the current setting, assume
for simplicity that « is univariate or else consider only one of its marginals. To emphasize the
importance of the number of rlgphcatlons R, we rewrite the weights and atoms as 7% = E Rwibz,.
Introduce the function s+ F (s) =%, lwﬂ] (Z; <s) on R. Proposition 2 in Section 3 states that
F” converges to F as R— oo uniformly with probability 1, where F is the cumulative distribution
function of 7.
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The function s+ F R(s) is not monotonically increasing because of negative weights among
(wr), which motivates the following comments regarding the estimation of quantiles of 7. Assume
from now on that the pairs (wy, Z;) are ordered such that Z; < Z;41. For any g € (0, 1) there might
be more than one index / such that Eﬁ;{wi <q anq Elewi > g; the quantile estimate might be
defined as Z; for any such /. The convergence of " to F indicates that all such estimates are
expected to converge to the gth quantile of 7. Therefore the signed measure representation
leads to a way of estimating quantiles of the target distribution in a consistent way as R — oo.
The construction of confidence intervals for these quantiles, perhaps by bootstrapping the R
independent copies, stands as an interesting area for future research. Another route to estimate
quantiles of 7 would be to project marginals of 7% onto the space of probability measures, for
instance by using a generalization of the Wasserstein metric to signed measures (Mainini, 2012).
One could also estimate F by using isotonic regression (Chatterjee et al., 2015), considering
jal (s) for various values s as noisy measurements of F(s).

3. Properties and parallel implementation

The proofs of the results of this section are in the on-line supplementary materials. Our first
result establishes the basic validity of the estimators proposed.

Proposition 1. Under assumptions 1-3, for all k >0 and m > k, the estimator Hj., (X, Y) has
expectation E,[h(X)], a finite variance and a finite expected computing time.

A direct consequence of proposition 1 is that an average of R independent copies of Hy.,, (X, Y)
converges to E;[1(X)] as R— oo. We discuss more sophisticated results on unbiased estimators
and parallel processing in Section 3.3 and other uses of such estimators in Sections 5.5 and 6.
Following Glynn and Rhee (2014), we provide proposition 2 on the signed measure estimator
(2.2). We recall that such estimators apply to univariate target distributions or to the marginal
distributions of a multivariate target.

Proposition 2.  Under assumptions 2 and 3, for all m >k >0, and assummg that (X;);>0
converges to 7 in total variation, introduce the function s+ F (s) = Zl lwﬂ](Zl <), where
(wl,Zl)l | are weighted atoms obtained from R independent copies of 7 in equation (2.2).
Denote by F the cumulative distribution function of 7. Then

sup |F R(s) —F(s)] — 0 almost surely.
seR R—00

Section 3.1 studies the variance and efficiency of Hy.,, (X, Y), Section 3.2 concerns the verifi-
cation of assumption 2 by using drift conditions and Section 3.2 discusses estimation on parallel
processors in the presence of a budget constraint.

3.1. Variance and efficiency

We consider the effect of & and m on the efficiency of the estimators proposed, which will
then suggest guidelines for the choice of these tuning parameters. Estimators H,ESL(X ,Y), for
r=1,..., R, can be generated independently and averaged. More estimators can be produced in a
given computing budget if each estimator is cheaper to produce. The trade-off can be understood
in the framework of Glynn and Whitt (1992) (see also Rhee and Glynn (2012) and Glynn and
Rhee (2014)), by defining the asymptotic inefficiency as the product of the var1ance and expected
cost of the estimator. That product is the asymptotic variance of R~ 12R 1Hk m(X Y) as the
computational budget, as opposed to the number of estimators R, goes to oo (Glynn and Whitt,
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1992). Of primary interest is the comparison of this asymptotic inefficiency with the asymptotic
variance of standard MCMC estimators. We start by writing the time-averaged estimator (2.1)
as

Hic:m (X’ Y) = MCMCk:m + BCk:ma

where MCMCy.,,, is the MCMC average (m —k+1)~! X (X)) and BCy., is the bias correction
term. The variance of Hy., (X, Y) can be written

\/{Hk:m (Xa Y)} = [E[{MCMCk:m - [Eﬂ'[h (X)]}z] + 2[E[{MCMCk:m - [Eﬂ'[h (X)]}Bck:m] + [E[BC%:m}

Defining the mean-squared error of the MCMC estimator as MSEy.,, = E[{MCMCy.,, —
E,[h(X)]}?], the Cauchy—Schwarz inequality yields

V{Hin (X, Y)} <MSEgy, + 2/MSEg /E[BCZ,,, ]+ E[BCZ,,,]. 3.1)
To bound E[BC?,, ], we introduce a geometric drift condition on the Markov kernel P.

Assumption 4. The Markov kernel P is 7 invariant, ¢ irreducible and aperiodic, and there
is a measurable function V: X —[1,00), A€ (0,1), b < 0o, and a small set C such that, for all
xXeX,

/ P(x,dy)V(y) < AV(x) + b1 (x €C).

We refer the reader to Meyn and Tweedie (2009) for the definitions and core theoretical tools
for working with Markov chains on a general state space: in particular chapter 5 for aperiodicity,
p-irreducibility and small sets, and chapter 15 for geometric drift conditions; see also Roberts
and Rosenthal (2004). Geometric drift conditions are known to hold for various MCMC algo-
rithms (e.g. Roberts and Tweedie (1996a, b), Jarner and Hansen (2000), Atchade (2006), Khare
and Hobert (2013), Choi and Hobert (2013) and Pal and Khare (2014)). Assumption 4 often
plays a central role in establishing geometric ergodicity (e.g. theorem 9 in Roberts and Rosenthal
(2004)). We show next that this assumption enables an informative bound on [E[BC2 ].

k:m
Proposition 3. Suppose that assumptions 2-4 hold, with a function V' for which the integral
J V(x)mo(dx) is finite. If the function / is such that sup .. y | (x)|/ V(x)? < oo for some 3 €[0, %),
then for all m >k > 0 we have
Cs, /355
(m—k+1)2%°

for some constants Cs g < oo, and 63 = 81728 (0, 1), with § € (0, 1) as in assumption 2.

E[BCiyu] <

Using proposition 3, inequality (3.1) becomes

V(Cs,565) Cs.58%
m—k+1  (m—k+1)2

The variance of Hy., (X, Y) is thus bounded by the mean-squared error MSE of an MCMC
estimator plus additive terms that vanish geometrically in k£ and polynomially in m — k.

To facilitate the comparison between the efficiency of Hy., (X, Y) and that of MCMC esti-
mators, we add simplifying assumptions. First, the rightmost terms of inequality (3.2) decrease
geometrically with k, at a rate that is driven by 65 =6 1-26 where 6 is as in assumption 2. This
motivates a choice of k depending on the distribution of the meeting time 7. In practice, we can

V[Hin (X, Y)] < MSEgm +2¢/MSEkm (3.2)
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sample independent realizations of the meeting time and choose k such that P(r > k) is small,
i.e. we choose k as a large quantile of the meeting times.

Dropping the third term on the right-hand side of inequality (3.2), which is smaller than the
second term, assuming that MSE;.,, > 0 and that m > 7 with large probability, we obtain the
approximate inequality

E2(r — D +max(l,m + 1 —D]V{Hen(X, N} S {m +E@) }V{Hem (X, D}

k + E(7) 2 Cs, 36k
< (m — ) AR J
~0n kH)MSE""”{Hm—kH } [” ¢(m—k+1>/{ (m — k+ 1)MSEy., H

As k increases we expect (m — k + 1)MSEy.,, to converge to V{(m —k+1)"1/25" h(X,)},
where X; would be distributed according to 7. Denote this variance by Vi ,,. The limit of Vi,
as m — oo is the asymptotic variance of the MCMC estimator, denoted by V.. Hence, for k and
m — k both large, the loss of efficiency of the method compared with standard MCMC methods
is approximately 1 + (k + E[7])/(m — k).

This informal series of approximations suggests that we can retrieve an asymptotic efficiency
that is comparable with the underlying MCMC estimators with appropriate choices of k& and
m that depend on the distribution of the meeting time 7. These choices are thus sensitive to the
coupling of the chains and not only to the performance of the underlying MCMC algorithm.
Choosing m as a multiple of k, such as 5k or 10k, makes intuitive sense when considering that
k/m is the proportion of iterations that are simply discarded in the event that 7 <k. In other
words, the bias of the MCMC algorithm can be removed at the cost of an increased variance,
which can in turn be reduced by choosing sufficiently large values of k and m. This results in a
trade-off with the desired level of parallelism: one might prefer to keep k and m small, yielding
a suboptimal efficiency for Hy., (X, Y), but enabling more independent copies to be generated
in a given computing time.

3.2. Verifying assumption 2

We discuss how assumption 4 on the Markov kernel P can be used to verify assumption 2,
on the shape of the meeting time distribution. Informally, assumption 4 guarantees that the
bivariate chain {(X;, Y;_1), ¢ > 1} visits C x C infinitely often, where C is a small set. If there is
a positive probability of the event { X, =Y;} for every 7 such that (X;, Y;—1) €C x C, then we
expect assumption 2 to hold. The next result formalizes that intuition. The proof is based on a
modification of an argument by Douc et al. (2004). We introduce D={(x,y) € X x X' : x=y}.
Then assumption 3 reads P{(x,x),D} =1 forallxe X.

Proposition 4. Suppose that P satisfies assumption 4 with a small set C of the form C={x:
V(x) < L} where A+b/(14 L) < 1. Suppose also that there exists € € (0, 1) such that

inf P DY >e. 3.3
il . {(x,y),D} > (3.3)

Then there is a finite constant C’ and a x € (0, 1), such that, foralln > 1,
P(r>n) <C'ny(V)K",
where 7o (V) = [ V(x)7mo(dx). Hence assumption 2 holds as long as m(V) < oc.

If assumption 4 holds with a small set of the form C = {x: V(x) <L} for some L >0, then it
holds also for C={x: V(x) <L’} for all L’ > L. In that case we can always choose L sufficiently
large that A+ b/(1+ L) < 1. Hence the main restriction in proposition 4 is the assumption that
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the small sets in assumption 4 are of the form {x: V(x) <L}, i.e. level sets of V. This is known to
be true in some cases. For instance it is known from theorem 2.2 of Roberts and Tweedie (1996b)
that, for a large class of MH algorithms, any non-empty compact set is a small set, and therefore
for these algorithms it suffices to check that the level sets of the drift function V" are compact.
Common examples of drift functions include V(x) =c¢//m(x) (Roberts and Tweedie, 1996b;
Jarner and Hansen, 2000; Atchade, 2006), V(x) = cexp(b|x|) (Roberts and Tweedie, 1996a) or
the example in Pal and Khare (2014), which all have compact level sets under mild regularity
conditions.

The work of Middleton et al. (2018) contains results that generalize propositions 3 and 4 to
Markov chains satisfying polynomial drift conditions (e.g. Andrieu and Vihola (2015)), leading
to polynomial tails for the associated meeting times.

3.3. Parallel implementation under budget constraints

Our main motivation for unbiased estimators comes from parallel processing; see Sections 5.5
and 6 for other motivations. Independent unbiased estimators with finite variance can be gener-
ated on separate machines and combined into consistent and asymptotically normal estimators.
If the number of estimators is prespecified, this follows from the central limit theorem for inde-
pendent and identically distributed variables. We might prefer to specify a time budget, and to
generate as many estimators as possible within the budget. The lack of bias allows the applica-
tion of a variety of results on budget-constrained parallel simulations, which we briefly review
here, following Glynn and Heidelberger (1990, 1991).

We denote the proposed estimator by H and its expectation, which is the object of interest
here, by 7(h). Generating H takes a random time C. We write N(¢) for the number of independent
copies of H that can be produced by time ¢. The sequence (H,, C;,),cn refers to independent and
identically distributed copies of (H, C), so we can write N(r) =sup{n >0:C1 +... + C, <t}, with
N(@) =0if r< C;. We add the subscript p to refer to objects that are associated with processor
pe{l,..., P}

The first result is that the estimator H p(0), defined for all 1 <p<< P as0if Ny(r) =0, and
by the sample average of Hyi,..., Hyn, ) otherwise, is biased: [E[I_-g,(t)] =FH]—EHI(C>)].
Corollary 6 of Glynn and Heidelberger (1990) states that, if E[| H exp(aC)|] < oo for some a > 0,
then the bias is negligible compared with exp(—at) ast — co. By the Cauchy—Schwarz inequality,
E[| H exp(aC)|]? is less than the product of EF[H?] and E[exp(2«C)|]. In our context, [ H?] is finite
under proposition 1, and F[exp(2aC)|] is finite for a range of values of « that depends on the
value of § in assumption 2.

We can define an unbiased estimator of 7(h) with a slight modification of H p(1). For all
pef{l, ..., P}, set Hy()=H,@) if Ny(t)>0 and H,(1)=Hp if Ny =0. With N (1) =
max{1, N,(®)}, then H,(?) is the sample average of Hpy, ..., Hpr(t)' T~he computation of N, ()
requires the completion of H,1, and ~thus we cannot necessarily return H ,(¢) at time ¢, in contrast
with H (7). In contrast, we have E[H ,(t)] = E[H]=m(h), i.e. the estimator is unbiased, provided
that E[| H|] < oo (corollary 7 of Glynn and Heidelberger (1990)). We denote the average of A ()
over P processors by H(P,t)=P~'SP_ H ,(f), which is unbiased for 7 (h).

Asymptotic results on H (P, 1) can ﬁe found in Glynn and Heidelberger (1991) and are sum-
marized below. We first have the consistency results: lim,_, oo H(P, ) =limp_, o0 H(P,1) =7 (h)
almost surely for all  and P, and, if E[|H|'*?] for some § >0 and if {tp} is a sequence such
that lim p_, o p = 00, then H(P,tp) converges to m(h) in probability as P — co. Next, we can
construct confidence intervals for 7 (k) based on H (P, 1), following the end of section 3 in Glynn
and Heidelberger (1991). Indeed, define
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1 P -
63 (P =—— Zl{Hp(o—H(P,r)}z,
p=

P_
y 1 P Vp ()
T(P’t):;pzl o = Cpn;
5 1 P 1 Ny B 5
2P,y =F(P, t){ S G P }

where N »(®)=max{1, N,(t)}. Then we have the three following central limit theorems: for fixed
tand P— o0,

{P ){H(P ) —m(h)}— N(0,1); (3.4)
for fixed P and t — oo,
A\/(Pt) {H(P,»)—m(h)}—N(0,1); (3.5)
a2(P,1)
if tp— oo as P— o0,
v (Brr) " {H(P,tp) —m(h)} > N(0,1). (3.6)
G2(P,tp)

These results require moment conditions such as E[ H P (%] < 00. The central limit theorem (3.4)
will be used to construct confidence intervals in Sections 5.3 and 5.4.

We conclude this section with a remark on the setting where ¢ is fixed and the number of
processors P goes to co. There, the time to obtain H (P, 1) would typically increase with P. Indeed
at least one estimator needs to be completed on each processor for H(P, t) to be available. The
completion time behaves as the maximum of independent copies of the cost C. Under assumption
2, the completion time for H(P, ) has expectation behaving as log(P) when P — oo, for fixed
t. Other tail assumptions (Middleton ez al., 2018) would lead to different behaviour for the
completion time that is associated with H(P, 7).

4. Couplings of Markov chain Monte Carlo algorithms

We consider couplings of various MCMC algorithms that satisfy assumptions 2 and 3. These
couplings are widely applicable and do not require extensive analytical knowledge of the target
distribution. We stress that they are not optimal in general, and we expect that other con-
structions would yield more efficient estimators. We begin in Section 4.1 by reviewing maximal
couplings.

4.1. Sampling from maximal couplings
A maximal coupling between two distributions p and ¢ on a space X’ is a distribution of a pair of
random variables (X, Y) that maximizes P(X =Y), subject to the marginal constraints X ~ p and
Y ~¢g. We write p and ¢ both for these distributions and for their probability density functions
with respect to a common dominating measure, and we refer to the uniform distribution on
the interval [a, b] by U([a, b]). A procedure to sample from a maximal coupling is described in
algorithm 2 in Table 2; see for example section 4.5 of chapter 1 of Thorisson (2000), and Johnson
(1998) where it is termed ~y-coupling.

We justify algorithm 2 and compute its cost. Denote by (X, Y) the output of the algorithm.
First, X follows p from step 1. To prove that ¥ follows ¢, introduce a measurable set A. We write
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Table 2. Algorithm 2: sampling from a maximal coupling of p and q

Step 1: sample X ~ p and W|X ~UA{[0, p(X)]}: if W <g(X), output (X, X)
Step 2: otherwise, sample Y* ~ g and W*|Y* ~U{[0,¢(Y*)]} until
W* > p(Y*), and output (X, Y*)

P(YeA)=P(Y € A,step 1) + P(Y € A, step 2), where the events {step 1} and {step 2} refer to
the algorithm terminating at step 1 or 2. We compute

P(Y € A, step 1)=/ /"oﬂ{wgq(x)}ﬂ{()gw@(x)}
AJ0 p(x)

We can deduce from this that P (step 1) = fX min{ p(x), g(x) }dx. For P(Y € A, step 2) to be
equal to [,[g(x) —min{p(x),q(x)}]dx, we need

px)dwdx= / min{ p(x), g(x) }dx.
A

/A[q(x) —min{p(x),q(x)}]dx=P(Y € A|step 2) [l — /X min{ p(x), q(x)}dx],

and we conclude that the distribution of ¥ given {step 2} should for all x have a density ¢(x) equal
to [¢(x) —min{p(x),q(x)}]/[1 — [ min{p(x’), q(x') }dx). Step 2 is a standard rejection sampler
using ¢ as a proposal distribution to target g, which concludes the proof that Y ~¢. We also
confirm that algorithm 2 maximizes the probability of { X =Y }. Under the algorithm,

P(X = ¥)=P(step 1) = /X min{p(¥), (¥ }dx = 1 —dry(p, @,

where dtv(p,q) = % / y Ip(x) —g(x)|dx is the total variation distance. By the coupling inequality
(Lindvall, 2002), this proves that the algorithm implements a maximal coupling.

To assess the cost of algorithm 2, note that step 1 costs one draw from p, one evaluation
from p and one from ¢. Each attempt in the rejection sampler of step 2 costs one draw from
g, one evaluation from p and one from ¢. Hereafter we refer to the cost of one draw and
two evaluations by ‘one unit’. Observe that the probability of acceptance in step 2 is given
by P{W* > p(Y*)} =1— [, min{p(y),q(y) }dy. Then, the number of attempts in step 2 has a
geometric distribution with mean [1 — [, min{ p(»),q(y)}dy]~!, and step 2 itself occurs with
probability 1 — [, min{p(y),¢(y)}dy. Therefore the overall expected cost is two units. The
expectation of the cost is the same for all distributions p and ¢, whereas the variance of the cost
depends on dty(p, q), and in fact goes to oo as this distance goes to 0.

In algorithm 2, the value of X is not used in the generation of Y* within step 2. In other
words, conditionally on {X # Y}, the two output variables are independent. We might prefer
to correlate the outputs in the event {X # Y}, e.g. in random-walk MH steps as in the next
section. We describe a maximal coupling presented in Bou-Rabee et al. (2018). It applies to
distributions p and ¢ on R? such that X ~ p can be represented as X = 1 + X'/2X, and Y ~¢
as Y = + X172y, where the pair (X, Y) follows a coupling of some distribution s with itself.
The construction requires that s is spherically symmetrical: s(x) =s(y) for all x, y e R¢ such that
llx|l = llyll, where || - | denotes the Euclidean norm. For instance, if s is a standard multivariate
normal distribution, then X ~ A (i1, %) and Y ~ N (12, 2).

Let z=%"12(u; — p») and e =z/| z||. We independently draw X ~ s and U ~2{([0, 1]) and let

s(X+72) }
s(X) J’

V= X+z ingmin{l,
X —=2(X)e otherwise.
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This procedure outputs a pair (X,Y) that follows a coupling of s with itself. We then define
(X,Y) = (u1 + 22X, iy + £1/2Y). On the event {¥Y = X 4z}, we have X =Y. On the event
{Y # X 4z}, the vector X —2(¢'X)e is the reflection of X through the hyperplane orthogonal to
e that passes through the origin. We show that the output (X, ¥) follows a maximal coupling of
p and ¢, which we refer to as a maximal coupling with reflection on the residuals, or a ‘reflection
maximal coupling’. First we show that ¥ follows s, closely following the argument in Bou-Rabee
et al. (2018). For a measurable set B, we compute

s(x+2) s(x+2z)

) }s(x)dx.

P(Y € B) :/ﬂB(x+z) min{ 1, }s(x)dx +/ﬂ3{x —2(e'x)e} max{O, 1—

s(x

The first integral above becomes | 15(w)min{s(w — z),s(w)}dw, after a change of variables
w:=x+ z. To simplify the second integral we make the change of variables w:=x — 2(¢'x)e.
Since this corresponds to a reflection with respect to a plane orthogonal to e, we have dw =dLx,
and x=w —2(e’w)e; thus

/ﬂg{x —2(e'x)e} max{0, s(x) —s(x+2z) jdx= / 1p(w) max{0, s(w) —s(w —z) }dw,

where we have used s{w —2(e'w)e} =s(w) and s{w —2(e'w)e + z} = s(w — z), because ||w —
2(e'wye|| = ||w| and ||w — 2(e'w)e + z|| = ||w — z||. Summing the two integrals we obtain
P(Y € B)= [z s(w)dw, s0 ¥ ~s.

To verify that the procedure corresponds to a maximal coupling of p and ¢, we observe that

PX£N)=PY #X+z)=1-— /min{s(x),s(x—l—z)}dx
=1 [minfs(5 72— o726 - i,

with the change of variable % := 111 + X !/2x. This is precisely the total variation distance between
p and ¢, on writing their densities in terms of the density of 5. Note that the computational cost
that is associated with the above sampling technique is deterministic, in contrast with the cost
of algorithm 2.

Finally, for discrete distributions with common finite support, a procedure for sampling from
a maximal coupling is described in Section 5.4, with a cost that is also deterministic.

4.2. Metropolis—Hastings steps
In Section 2.2 we described a coupling of MH chains due to Johnson (1998); we summarize the
coupled kernel P{(X;, Y;—1),-} in the following procedure.

Step I: sample (X*,Y*)|(X;, Y;_1) from a maximal coupling of ¢(X;,-) and g(¥;_1, -).

Step 2: sample U ~U ([0, 1]).

Step 3:if U <min{1, m(X*)q(X*, X;)/m(X)q(X;, X*)}, then X, | = X*; otherwise X, | = X,.
Step 4: if U< min{l,m(Y*)q(Y*,Y,_1)/n(Y;_1)q(Y;_1,Y™)}, then Y, = Y*; otherwise ¥, =
Yi—1.

Here we address the verification of assumptions 1-3 for this algorithm. Assumption 1 can
be verified for MH chains under conditions on the target and the proposal (Nummelin, 2002;
Roberts and Rosenthal, 2004). In some settings the explicit drift function that is given in theorem
3.2 of Roberts and Tweedie (1996b) may be used to verify assumption 2 as in Section 3.2. The
probability of coupling at the next step given that the chains are in X, and Y;_; can be controlled
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as follows. First, the probability of proposing the same value X* depends on the total variation
distance between (X, -) and ¢g(Y;_1, -), which is typically strictly positive if X; and ¥;_; are in
bounded subsets of X. Furthermore, the probability of accepting X* is often strictly positive on
bounded subsets of X', for instance when 7 (x) > 0 for all x € X'. Assumption 3 is satisfied by design
thanks to the use of maximal couplings and common uniform variable U in the above procedure.

Different considerations drive the choice of proposal distribution in standard MCMC sam-
pling and in our proposed estimators. In the case of random-walk proposals with variance 3,
larger variances lead to smaller total variation distances between ¢(X;, -) and ¢(Y¥;_1, -) and thus
larger probabilities of proposing identical values. However, meeting events only occur if pro-
posals are accepted, which is unlikely if 3 is too large. This trade-off could lead to a different
choice of ¥ than the optima known for the marginal chains (Roberts et al., 1997), and deserves
further investigation.

We perform experiments with a d-dimensional normal target distribution A (0, V), where V is
the inverse of a matrix drawn from a Wishart distribution with identity scale matrix and d degrees
of freedom. This setting, which has been borrowed from Hoffman and Gelman (2014), yields
normal distribution targets with strong correlations and a dense precision matrix. Below, each
independent run is performed with an independent draw of V. We consider normal random-walk
proposals with variance ¥ set to V/d. The division by d heuristically follows from the scaling
results of Roberts ez al. (1997). We initialize the chains either from the target distribution, or
from a normal distribution centred at (1, ..., 1) with identity covariance matrix. We first couple
the proposals with a maximal coupling given by algorithm 2. The resulting average meeting
times, based on 1000 independent runs, are given in Fig. 1(a). The plot indicates an exponential
increase of the average meeting times with the dimension, under both initialization strategies.
In passing, this illustrates that meeting times can be large even if the chains marginally start at
stationarity, i.e. in a setting where there is no burn-in bias.

Next we perform the same experiments with the reflection maximum coupling that was de-
scribed in the previous section. The results are shown in Fig. 1(b). The average meeting times
now increase at a rate that appears closer to linear in the dimension. This is to be compared with
established theoretical results on the linear performance of standard MH estimators with respect
to the dimension (Roberts et al., 1997). A formal justification of the scaling that is observed in
Fig. 1(b) is an open question, and so is the design of more effective coupling strategies.

4.3. Gibbs sampling

Gibbs sampling is another popular class of MCMC algorithms, in which components of a
Markov chain are updated alternately by sampling from the target conditional distributions
(chapter 10 of Robert and Casella (2004)), implemented for example in the software packages
JAGS (Plummer, 2003). In Bayesian statistics, these conditional distributions sometimes belong
to a standard family such as the normal, gamma or inverse gamma distributions. Otherwise, the
conditional updates might require MH steps. We can introduce couplings in each conditional
update, using either maximal couplings of the target conditionals, if these are standard distri-
butions, or maximal couplings of the proposal distributions in MH steps targeting the target
conditionals. Controlling the probability of meeting at the next step over a set, as required for
the application of proposition 4, can be done case by case. Drift conditions for Gibbs samplers
also tend to rely on case-by-case arguments (see for example Rosenthal (1996)).

Gibbs samplers tend to perform well for targets with weak correlations between the compo-
nents being updated; otherwise Gibbs chains are expected to mix poorly. We perform numerical
experiments on normal target distributions in varying dimensions to observe the effect of cor-
relations on the meeting times of coupled Gibbs chains. For each target '(0, V), we introduce
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Fig. 1. Scaling of the average meeting time of a coupled MH algorithm with the dimension of the target
N(0,V), where V is the inverse of a Wishart draw, as described in Section 4.2 (the chains are either initialized
from the target, or from a normal A'(1,, /) distribution, where 1 is a vector of 1s (‘offset’ in the legend)): (a)
using maximal coupling of algorithm 2; (b) using reflection maximal coupling described in Section 4.1

an MH-within-Gibbs sampler, where each univariate component i is updated with a single
Metropolis step, using normal distribution proposals with variance V; ;. Here an iteration of
the sampler refers to a complete scan of the components. Fig. 2(a) presents the median meeting
times as a function of the dimension, when ¥ is the inverse of a Wishart draw as in the previous
section. In this highly correlated setting, the meeting times scale poorly with the dimension. The
plot presents the median instead of the average, because we have stopped the runs after 500000
iterations; the median is robust to this truncation, but not the average. We remark that shorter
meeting times are obtained when initializing the chains away from the target distribution.
Next we consider a normal distribution target with covariance matrix V' defined by V; ;=
0.5~ =7l which induces weak correlations between components; the inverse of V is tridiagonal.
In that case, the same Gibbs sampler performs much more favourably, as we can see from Fig.



558 P E. Jacob, J. O’Leary and Y. F. Atchadé

600

400

200

median meeting time

dimension
initialization: — target - offset

(@)

60

40

20

average meeting time

1 50 100 200 300
dimension

initialization: — target -~ offset
(b)

Fig. 2. (a) Scaling of the median and (b) average meeting time of a coupled Gibbs algorithm with the
dimension of the target NV(0, V) (the chains are either initialized from the target, or from a normal A’ (14,/,)
distribution, where 1, is a vector of 1s (‘offset’in the legend)): (a) the covariance V of the target is generated as
the inverse of a Wishart sample, inducing strong correlations; (b) the covariance V is defined as V,-j = 0.5‘|"/|,
inducing weak correlations

2(b). The average meeting times seem to scale sublinearly with the dimension, under both choices
of initializations 7. Couplings of other Gibbs samplers will be encountered in the numerical
experiments of Section 5.

4.4. Coupling of other Markov chain Monte Carlo algorithms

Amongextensions of the MH algorithm, Metropolis-adjusted Langevin algorithms (e.g. Roberts
and Tweedie (1996a)) are characterized by the use of a proposal distribution given current state
X, thatis normal with mean X, +hV log{n(X;)}/2 and variance 23, with tuning parameter z >0
and covariance matrix >. Maximal couplings or reflection maximal couplings of the proposals
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could be readily implemented to obtain faithful chains. Going further in the use of gradient in-
formation, the Hamiltonian or hybrid Monte Carlo algorithm (Duane et al., 1987; Neal, 1993,
2011) is a popular MCMC algorithm for large dimensional targets. In Heng and Jacob (2019),
the framework of the present paper is applied to pairs of Hamiltonian Monte Carlo chains, with
a focus of the verification of assumptions 1-3 in that context. Such couplings were analysed in
detail in Mangoubi and Smith (2017) and Bou-Rabee et al. (2018) to obtain convergence rates
for the underlying chains. We refer to Heng and Jacob (2019) for more details and provide for
completeness some experiments on the normal distribution target that was described above in
the on-line supplementary materials.

The present paper generalizes unbiased estimators that are obtained by coupling conditional
particle filters in Jacob et al. (2019). These algorithms, which were introduced in Andrieu ef al.
(2010), target the distribution of latent processes given observations and fixed parameters for
non-linear state space models. The couplings of conditional particle filters in Jacob et al. (2019)
involve a combination of common random numbers and maximal couplings. Couplings of par-
ticle independent MH sampling, which is a particular case of MH sampling with an independent
proposal distribution, are simpler to design and are considered in Middleton et al. (2019).

The design of generic and efficient MCMC kernels is a topic of active on-going research (see
for example Murray et al. (2010), Goodman and Weare (2010), Pollock et al. (2016), Vanetti
et al. (2017) and Titsias and Yau (2017) and references therein). Any new kernel could lead
to unbiased estimators with the framework proposed, as long as appropriate couplings can be
implemented.

5. lllustrations

Section 5.1 illustrates the effect of k, m and the initial distribution 7, identifying a situation
where some care is required. Section 5.2 considers the removal of the bias from a Gibbs sampler
previously considered for perfect sampling and regeneration methods. Section 5.3 introduces
an Ising model and a coupling of a replica exchange algorithm, and we present experiments
performed on parallel processors. Section 5.4 considers a high dimensional variable-selection
example, with an MH algorithm that has previously been shown to scale linearly with the number
of variables. Finally, Section 5.5 focuses on the problem of approximating the cut distribution
arising in modular inference, which illustrates the appeal of unbiased estimators beyond parallel
computing.

5.1. Bimodal target
We use a bimodal target distribution and a random-walk MH algorithm to illustrate our method
and to highlight some of its limitations. In particular, we consider a mixture of univariate normal
distributions with density 7(x) =0.5AN (x; —4, 1) + 0.5 N (x;4, 1), which we sample from using
random-walk MH with normal proposal distributions of variance o> =9. This enables regular
jumps between the modes of w. We set the initial distribution mg to A'(10, 102), so that chains
are likely to start closer to the mode at 4 than the mode at —4. Over 1000 independent runs, we
find that the meeting time 7 has an average of 20 and a 99% quantile of 105.

We consider the task of estimating f 1(x > 3)w(dx) ~0.421. First, we consider the choice of
k and m. Over 1000 independent experiments, we approximate the expected cost E[2(7 — 1) +
max(l,m — 7+ 1)] and the variance V{ H.,, (X, Y) }, and compute the inefficiency as the product
of the two (as in Section 3.1). We then divide the inefficiency by the asymptotic variance of the
MCMC estimator, which is denoted by Vi, which we obtain from 10° iterations and a burn-in
period of 10* by using the R package CODA (Plummer e al., 2006).
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We present the results in Table 3. First, we see that the inefficiency is sensitive to the choice of
k and m. Second, we see that when k and m are sufficiently large we can retrieve an inefficiency
that is comparable with that of the underlying MCMC algorithm. The ideal choice of k and m
will depend on trade-offs between inefficiency, the desired level of parallelism and the number
of processors that are available. We present a histogram of the target distribution, obtained by
using k =200 and m = 2000, in Fig. 3(a). These histograms are produced by averaging unbiased
estimators of expectations of indicator functions, corresponding to consecutive intervals. Con-
fidence intervals at level 95% are obtained from the central limit theorem and are represented
as grey boxes, with vertical bars showing the point estimates.

Next, we consider a more challenging case by setting 05 =1, again with mo=A\(10,10?).
These values make it difficult for the chains to jump between the modes of 7. Over R= 1000
runs we find an average meeting time of 769, with a 99% quantile of 9186. When the chains start
in different modes, the meeting times are often dramatically larger than when the chains start
by the same mode. One can still recover accurate estimates of the target distribution, but k£ and
m must be set to larger values. With £ =20000 and m = 30000, we obtain the 95% confidence
interval [0.397, 0.430] for [ 1(x>3)7(dx) ~0.421. We show a histogram of 7 in Fig. 3(b).

Table 3. Cost, variance and inefficiency divided by
MCMC asymptotic variance Voo, for various choices
of k and m, for the test function h: x— 1(x > 3), in
the bimodal target example of Section 5.1

k m Cost  Variance Inefficiency/ Voo
1 k 37 4.1x10% 1878.4
1 10k 39 3.6x10? 1703.5
1 20k 45  3.0x10% 1624.8
100 k119 9.0 130.6
100 10k 1019 2.3x1072 2.9
100 20k 2019 7.9x1073 1.9
200 k219 24x107! 6.5
200 10k 2019 5.3x1073 1.3
200 20k 4019 2.4x1073 1.2
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Fig. 3. Histograms of the mixture target distribution of Section 5.1, obtained with the proposed unbiased
estimators, based on a normal random-walk MH algorithm, with a proposal variance o2 and an initial distri-
bution Jro, over R =1000 experiments ( , target densﬂy function): (a) o3 = 3? and'my = A(10,10%); (b)
o2 =12 and my = N'(10,10%); (¢) 03 = 12 and my = A (10, 12)
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Finally we consider a third case, with 03 =1 as before but now with my set to AV'(10, 1).
This initialization makes it unlikely for a chain to start near the mode at —4. The pair of chains
typically converge around the mode at 4 and meet in a small number of iterations. Over R= 1000
replications, we find an average meeting time of 9 and a 99% quantile of 35. A 95% confidence
interval on [ 1(x>3)m(dx) obtained from the estimators with k =50 and m =500 is [0.799,
0.816], which is far from the true value of 0.421. The associated histogram of 7 is shown in Fig.
3(c).

Sampling 9000 additional estimators yields a 95% confidence interval [—0.353, 1.595], again
using k=50 and m =500. Among these extra 9000 values, a few correspond to cases where
one chain jumped to the leftmost mode before meeting the other. This resulted in large meeting
times and thus a large empirical variance for Hy.,. On noting a large empirical variance one
can then decide to use larger values of & and m. We conclude that, although our estimators are
unbiased and are consistent in the limit as R — oo, poor performance of the underlying Markov
chains combined with ill-chosen initializations can still produce misleading results for any finite
R, such as 1000 in this example.

5.2. @Gibbs sampler for nuclear pump failure data

Next we consider a classic Gibbs sampler for a model of pump failure counts, which was used
for example in Murdoch and Green (1998) to illustrate perfect samplers for continuous distri-
butions, and in Mykland et al. (1995) to illustrate their regeneration approach. Here we focus
on a comparison with the regeneration approach, which was motivated by similar practical
concerns to those in this paper, in particular to avoid an arbitrary choice of burn-in, to con-
struct confidence intervals on the expectations of interest and to make principled use of parallel
processors. Mykland et al. (1995) showed how to construct regeneration times—random times
between which the chain forms independent and identically distributed ‘tours’. They defined
a consistent estimator for arbitrary test functions, whose asymptotic variance takes a simple
form. The estimator is then obtained by aggregating over these independent tours.

The data consist of operating times (z,,) fle and failure counts (sn),’f:1 for K =10 pumps at the
Farley-1 nuclear power station, as first described in Gaver and O’Muircheartaigh (1987). The
model specifies s, ~ Poisson(\,#,) and )\, ~ gamma(a, 3), where o =1.802, 5~ gamma(vy, 6),
~=0.01 and § = 1. The Gibbs sampler for this model consists of the following update steps:

An | rest~gamma(a+s,, 5+1t,) forn=1,...,K,

K
Bl restwgamma('y—i— 10a, 6+ > )\n).
n=1
Here gamma(a, §) refers to the distribution with density x — I'(a) ! 8%x®~ 1 exp(—fGx). We
initialize all parameter values to 1 (the initialization was not specified in Mykland ez al. (1995)).
To form our estimator we apply maximal couplings at each conditional update of the Gibbs
sampler, as described in Section 4.3.

We begin by drawing 1000 meeting times independently. Following the guidelines of Section
3.1, we set k=7, corresponding to the 99% quantile of 7 and m = 10k = 70. For the regeneration
approach, Mykland et al. (1995) gave a set of tuning parameters which we adopt below. Applying
the regeneration approach to 1000 Gibbs sampler runs of 5000 iterations each, we observe on
average 1996 complete tours per run with an average length of 2.50 iterations per tour. These
values agree with the count of 1967 tours of average length 2.56 reported in Mykland et al.
(1995). We observe a posterior mean estimate for 3 of 2.47 with a variance of 1.89 x 10~* over
the 1000 independent runs, which implies an efficiency value of (5000 x 1.89 x 10~%)~1 =1.06.
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This exceeds the efficiency of 0.94 that was achieved by our estimator with the choice of k=7 and
m =70. In contrast, the regeneration approach often requires more extensive analytical work
with the underlying Markov chain; we refer to Mykland ez al. (1995) for a detailed description.
For reference, the underlying Gibbs sampler achieves an efficiency of 1.08, based on a long
run of 5 x 10° iterations and a burn-in of 10 iterations. More extensive comparisons with
other regeneration approaches such as that of Brockwell and Kadane (2005) would deserve
investigation.

5.3. Ising model

We consider an Ising model on a 32 x 32 square lattice with periodic boundaries. This provides
a setting where a basic MCMC sampler can mix slowly depending on an inverse temperature
parameter 6, and where a replica exchange strategy as in Geyer (1991) can be helpful. We also
use this example to illustrate the use of our estimators on a large computing cluster, with the
considerations that were reviewed in Section 3.3. For i and j in {1,...,32}? we write i ~ j if
i and j are neighbours in the square lattice with periodic boundaries. We write x; € {—1,1}
for the spin at location i, and x ={x;} for the full grid. We write #(x) for the ‘natural statistic’
1(x) =0.58;c(1, . 32)2% j~iXixj summing the products of pairs of neighbours. The 0.5-multiplier
here results in each pair of neighbouring sites being counted only once. Under the model, the
probability that is associated with a grid x is 7y (x) ccexp{6#(x) }, where 6 >0 denotes an inverse
temperature parameter that calibrates the degree of correlation between neighbouring sites.

We consider a single-site Gibbs sampler, called a heat bath algorithm in this context, to
approximate the distribution my given a value of #. One iteration of the algorithm consists of
a sweep through all the locations i € {1,...,32}2. For each i we draw x; from its conditional
distribution under 7y given all the other spins. It can be checked that the conditional probability
of {x; =1} given the other spins equals exp(fs;)/{exp(fs;) + exp(—0s;)}, where s; denotes the
sum of spins over the four neighbours of i. We initialize the chains by drawing spins uniformly
in {—1, 1} at each site, independently across sites.

A simple strategy to couple heat bath chains consists of sampling from the maximal coupling
of each conditional distribution. For a grid of f-values from 0.3 and 0.48, we run 100 pairs of
chains until they meet. We then plot the average meeting time as a function of 6 in Fig. 4(a),
noting that the average meeting time increases sharply to values above 10° as # approaches its
critical value (see the related discussion in Propp and Wilson (1996)). We conclude that it would
be expensive to produce unbiased estimators based on the heat bath algorithm for values of 6
above 0.48, for reasons related to the behaviour of the underlying algorithm.

There are several ways to address the degeneracy of the heat bath algorithm as 6 increases. Spe-
cialized algorithms have been proposed to update groups of spins jointly (Swendsen and Wang,
1987; Wolff, 1989). Here, we consider an approach based on an ensemble of N chains that reg-
ularly exchange their states: a technique often termed replica exchange or parallel tempering.
Following for example Geyer (1991), we introduce N chains, x(1, ..., x™ with each x* target-
ing 7y with different values of 6™ ordered as 6V <... <™ Each iteration of the algorithm
proceeds as follows. With probability pswap € (0,1), forne{1,..., N — 1} (sequentially), we pro-
pose exchanging the states x™ and x"*1 corresponding to 8™ and #”*+1 . We accept this swap
with probability min[1, 7y (x"FD)myeen (x) /{mgem (™) myesn (x@FD)}], which simplifies to
min[1, exp{ (8" — 9" TD){r(x"*+1) — 1(x™)}]. Otherwise we perform a full sweep of single-site
Gibbs updates, independently across chains.

A coupling of this algorithm involves a pair of ensembles with N chains each; the two ensem-
bles are identical if chain # in the first ensemble equals chain n in the second ensemble, for all
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Fig. 4. For the Ising model of Section 5.3 on a 32 x 32 grid, average meeting times corresponding to
different coupled Markov chains: (a) coupled single-site Gibbs sampler, for different inverse temperatures 6;
(bkl)coupled replica exchange algorithm with N chains, on a grid of values 6V < ... < ™) with 6() = 0.3 and
o) = 0.55, for various values of N

ne{l,...,N}. We use common random numbers to decide whether to perform swap moves or
single-site Gibbs moves, and whether to accept the proposed states in the event of a swap move.
In the event of a single-site Gibbs move, we maximally couple each conditional update.
Throughout the following experiments we use pswap =0.01 and introduce an equally spaced
grid of #-values from 8 =0.3 to ™) =0.55 for several choices of N. We note that these grids
includes #-values at which we have seen that the single-site Gibbs sampler mixes poorly. Fig.
4(b) shows the resulting average meeting times over 100 independent runs, as a function of the
number of chains V. The average meeting time first decreases with the number of chains but
then increases again. A possible explanation is that the mixing of the chains first improves as N
increases and then stabilizes; however, it becomes more difficult for the ensembles to meet when
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N increases since all chains in the ensembles must meet. The minimum average meeting time is
here attained for N =16 chains per ensemble.

Setting N =16, k=10’ and m =2 x 10°> we now illustrate the use of the proposed unbiased
estimators on a cluster. The test function is taken as x — #(x) defined above, so we estimate
Y xt(x)mg(x) for various values of . We use 500 processors to generate unbiased estimates with
a time budget of 30 min. Within that time, each processor generated between one and seven
estimators, with an average of 3.7 estimators per processor and a total of 1858 estimators. The
chronology of the generation of these estimates is illustrated in Fig. 5(a). For each processor,
horizontal segments of different colours indicate the duration that is associated with each esti-
mator. The final estimates with standard errors are shown in Fig. 5(b), where we can see that
the standard errors are very small compared with the values of the estimates, for each value of
6. These standard errors were computed as J1(P,)/+/P following equation (3.4), the central
limit theorem corresponding to the large processor count limit.

5.4. Variable selection

For our next example we consider a variable-selection problem following Yang et al. (2016) to
illustrate the scaling of our proposed method on high dimensional discrete state spaces. For in-
tegers p and n, let Y € R" represent a response variable depending on covariates X1,..., X, e R".
We consider the task of inferring a binary vector v € {0, 1}” representing which covariates to
select as predictors of Y, with the convention that X; is selected if v; = 1. For any ~, we write
|y = Ef’zlfyi for the number of selected covariates and X, for the n x || matrix of covariates
chosen by ~. Inference on vy proceeds by way of a linear regression model relating Y to X,
namely ¥ = X, 3, +w with w~N(0, 0 1,).

We assume a prior ony of w(y) o« p~*"1 (|| <s0). This distribution puts mass only on vectors
~ with fewer than sg 1s, imposing a degree of sparsity. Given y we assume a normal prior for the
regression coefficient vector 3, € R with zero mean and variance gaz(X;,X,y)_l. Finally, we
give the precision o2 an improper prior 7(c2) o< 1/o~2. This leads to the marginal likelihood

(d+g9"2 , VX, XXXy

Y|IX =
7T( | ’7)0({1+g(1—R%/)}"/2’ o Y'Y

To approximate the distribution 7 (y| X, Y), Yang et al. (2016) employed an MCMC algorithm
whose kernel P is a mixture of two Metropolis kernels. The first component P; (7, -) selects a
co-ordinate i € {1,..., p} uniformly at random and flips +; to 1 —~;. The resulting vector v*
is then accepted with probability 1 A w(v*|X, Y)/7(v|X,Y), where a A b denotes min(a, b) for
a, b€ R. Sampling a vector v’ from the second kernel P;(v, -) proceeds as follows. If || equals 0
or p, then 7/ is set to . Otherwise, co-ordinates /g and i1 are drawn uniformly among {j:v; =0}
and {j: ;= 1} respectively. The proposal v* has 7 =7;,, 7' =7, and 7} =+, for the other
components. Then ' is set to v* with probability 1 A7(y*|X,Y)/m(v]|X,Y), and to v otherwise.
The MCMC kernel P(v,-) targets 7(y|X,Y) by sampling from Pj(v,-) or from P,(v,-) with
equal probability. Note that each MCMC iteration can only benefit from parallel processors
to a limited extent, since || is always less than s, itself chosen to be a small value; thus the
calculation of R? involves only linear algebra of small matrices.

We consider the following strategy to couple the above MCMC algorithm. To sample a pair
of states (v/,7') given (v, ), we first use a common uniform random variable to decide whether
to sample from a coupling P; of Pj to itself or a coupling P> of P; to itself. The coupled kernel
P1{(7,7), -} proposes flipping the same co-ordinate for both vectors v and 5 and then uses a
common uniform random variable in the acceptance step. For the coupled kernel P2{(v,9), -},
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Fig. 5. For the Ising model of Section 5.3 on a 32 x 32 grid, (a) chronology of the generation of unbiased
estimators on 500 processors over 30 min, and (b) estimates of the expected natural statistic X x#(x)my(x),
and (c) standard errors, for a grid of 16 values 0.3=6(") < ... <#™ = 0.55: results obtained by coupling a
replica exchange algorithm with 16 chains

we need to select two pairs of indices: (ig, 7o) and (i1,i1). We obtain the first pair by sampling
from a maximal coupling of the discrete uniform distributions on {j:v;=0} and {j:¥;=0}.
This yields indices (ig, o) with the greatest possible probability that i = io. We use the same
approach to sample a pair (i1,i;) to maximize the probability that i =i;. Finally we use a
common uniform variable to accept or reject the proposals. If either vector « or 4 has no 0Os or
no 1s, then it is kept unchanged.

We recall that one can sample from a maximal coupling of two discrete probability distribu-
tionsg=(q1,...,.gn) and G=(q;,...,qy) asfollows. First,let c=(cy, ..., cn) be the distribution
with probabilities ¢, = (gn A g,,)/c for a= E,’l\’:lq,, A G, and define residual distributions ¢’ and
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¢’ with probabilities ¢, = (g, — acy)/(1 — ) and G, = (q,1 acn) /(1 — ). Then, with probability
a, draw i ~ ¢ and output (i,7). Otherwise draw i ~ ¢’ and i ~q and output (i, 7). The resulting
pair follows a maximal coupling of ¢ and 4, since P(i=i) = a =1 —drv(q,§), and marginally
PG =n)=ac, + (1 — @)q, =qn, and likewise for P(i=n), for all ne{l,...,N}. The procedure
involves O(N) operations for N the size of the state space.

We now consider an experiment like those of Yang et al. (2016). We define

1
g* —SNR\/{ 2 Og(p)}(z, ~3,2.2,-3,3,-2.3,-2.3,0,....0) €R”,
n

and generate Y given X and 3* from the model with o2 =1, 0’ =1, n € {500, 1000} pe
{1000, 5000} and signal-to-noise parameter SNR € {0.5,1,2}. We also set so =100, g=p> and
k=2 (exactly as in Yang et al. (2016); the value of xk was obtained by personal communication)
and generate the covariates X by using a multivariate normal distribution with covariance ma-
trix ¥ either equal to a unit diagonal matrix or with entries ¥;; =exp(—|i — j|). We refer to these
two cases as the independent design and correlated design cases respectively. We draw from
the initial distribution 7 by creating a vector of p 0s, sampling sg co-ordinates uniformly from
{1,..., p} without replacement, and setting the corresponding entries to 1 with probability 0.5.

For various values of n, p and SNR, and the two types of design, we run coupled chains 100
times independently until they meet. We report the average meeting times in Tables 4 and 5. The
average meeting times are of the order of 10*-10°, depending on the problem; the maximum is
attained in the correlated design at n =500, p = 1000 and SNR =2. In contrast with this, the
experiments in Yang et al. (2016) identify the scenario n =500, p = 5000 and SNR =1 as the
most challenging. This discrepancy deserves further study; it could be due to variations from a
synthetic data set to another, or to differences in the criteria being reported.

To illustrate the effect of dimension, we focus on the independent design setting with n = 500
and SNR =1, and we consider values of p between 100 and 1000. For each value of p, we run

Table 4. Average meeting times in the independent design

n p Results for Results for Results for
SNR =0.5 SNR =1 SNR =2

500 1000 4937 7586 6031
500 5000 24634 25602 38083
1000 1000 4729 5893 4892
1000 5000 23407 46398 24712

Table 5. Average meeting times in the correlated design

n P Results for Results for Results for
SNR =105 SNR =1 SNR =2

500 1000 5536 5485 216996
500 5000 27535 28756 29083
1000 1000 4921 5451 5613

1000 5000 24101 29215 23043
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coupled chains 1000 times independently until they meet. We present violin plots representing
the distributions of meeting times divided by p in Fig. 6(a). The distribution of scaled meeting
times appears to be approximately constant as a function of p, suggesting that meeting times
increase linearly in p. This is consistent with the findings of Yang et al. (2016), where mixing
times are shown to increase linearly in p.

Focusing now on the independent design case withn =500, p=1000and SNR =1 we consider
various values of the prior hyperparameter « in {0.1,1,2}. We set k =75000 and m = 150000
and generate unbiased estimators on a cluster for 120 min, using 200 processors for each value
of k, and so 600 processors in total. The test function is chosen so that the estimand = (k) is
the vector of inclusion probabilities P(v; = 1|X, Y) for i € {1,...,20}. Within the time budget,
39282 estimates were produced, with each processor producing between eight and 181 of these.
The largest observed meeting time was 81423. The meeting times were similar across the three
values of .
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Fig. 6. (a) Meeting times divided by p for p € {100,250,500,750,1000} and n =500, SNR=1, in the
variable-selection example of Section 5.4 with independent design, based on R = 1000 independent repeats
(the violins represent the distributions of scaled meeting times for different p) and (b) posterior probabilities
of inclusion for the first 20 variables, in the setting n =500, p =1000, SNR = 1, for three values of the prior
hyperparameter « (the error bars representing 95% confidence intervals were obtained after 120 min of

calculation on 600 processors, using k = 75000 and m = 150000) ( , , , standard MCMC
estimates based on 10 independent chains of length 10%; @, k=0.1; 4, k=1; 1, Kk=2)
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Fig. 6(b) shows the results in the form of 95% confidence intervals shown as error bars,
using expression (3.4), the central limit theorem relevant when the time budget is fixed and the
number of processors grows large. We observe that x has a strong effect on the probability of
including the first 10 variables in this setting, and that the most satisfactory results are obtained
for k=0.1 rather than for k =2, recalling that 3* has non-zero entries in its first 10 components.
Note that the error bars are narrow but still noticeable, particularly for x =0.1. On Fig. 6(b),
the full lines represent estimates that were obtained with 10 independent MCMC runs with 10°
iterations each, discarding the first 103 iterations as burn-in. These MCMC estimates present
noticeable variability in spite of the large number of iterations. In a standard MCMC setting,
we might run chains for more iterations until the estimates agree across independent runs. In
the framework proposed, we increase the precision by generating more independent unbiased
estimators without necessarily modifying & or m.

Fig. 6(b) suggests that the variable selection procedure that is considered here is sensitive to
the prior hyperparameter x; we refer to Yang et al. (2016), and to Johnson (2013) and Nikooiene-
jad et al. (2016) for related discussions on Bayesian variable selection in high dimension and
convergence of MCMC algorithms.

5.5. Cut distribution

Finally, our proposed estimator can be used to approximate the cut distribution, which poses
a significant challenge for existing MCMC methods (Plummer, 2014; Jacob et al., 2017). This
illustrates another appeal of the unbiasedness property, beyond the motivation for parallel
computation.

Consider two models: one with parameters ¢ and data Y| and another with parameters 6, and
data Y;, where the likelihood of ¥, might depend on both #; and 6. For instance the first model
could be a regression with data Y; and coefficients 61, and the second model could be another
regression whose covariates are the residuals, coefficients or fitted values of the first regression
(Pagan, 1984; Murphy and Topel, 2002). In principle one could introduce an encompassing
model and conduct joint inference on #; and 6, via the posterior distribution. In that case,
misspecification of either model would lead to misspecification of the ensemble and thus to
a misleading quantification of uncertainty, as noted in several studies (e.g. Liu et al. (2009),
Plummer (2014), Lunn et al. (2009), McCandless et al. (2010), Zigler (2016) and Blangiardo
et al (2011)).

The cut distribution (Spiegelhalter ez al., 2003; Plummer, 2014) allows the propagation of
uncertainty about 6] to inference on 6, while preventing misspecification in the second model
from affecting estimation in the first. The cut distribution is defined as

Teut (01, 02) =71 (01)m2(621601).

Here 71 (0;) refers to the distribution of #; given Yj in the first model alone, and 7 (6,|6;) refers
to the distribution of 6, given Y, and 6; in the second model. Often, the density 7 (6,]60;) can be
evaluated up to only a constant in 6, which may vary with . This makes the cut distribution
difficult to approximate with MCMC algorithms (Plummer, 2014).

A naive ap]Z)vroach consists of first running an MCMC algorithm targeting 71 (6;) to obtain
a sample (A7), , perhaps after discarding a burn-in period and thinning the chain. Then, for
each 0, one can run an MCMC algorithm targeting 73(6>1607), yielding N, samples. One might
again discard some burn-in and thin the chains, or just keep the final state of each chain. The
resulting joint samples approximate the cut distribution. However, the validity of this approach
relies on a double limit in Ny and N,. Diagnosing convergence may also be difficult given the
number of chains in the second stage, each of which targets a different distribution m(6,|67).
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If we could sample 0; ~ 71 and 6,01 ~m2(6,|01), then the pair (61, 6,) would follow the cut
distribution. The same two-stage rationale can be applied in the framework proposed. Consider
a test function (01, 6,) — h(0;,02). Writing [ for expectations with respect to ¢y, the law of
iterated expectations yields

[Ecut[h(91,92)]=/{/h(91,92)772(d92|91)}ﬂ1(d91)=/5(91)W1(d91)-

Here h(6)) = [ h(61,62)72(d6,]601). In the framework proposed, we can make an unbiased esti-
mator of 7(0;) for all 61 and then plug these estimators into an unbiased estimator of the integral
[ h(81)m1(d6). This is perhaps clearer by using the signed measure representation of Section
2.4: one can obtain a signed measure 7| = Zl’\; wig, , approximating 1, and then obtain an
unbiased estimator of 4(6; ) for all /, denoted by H;. Then the weighted average S w; H; is an
unbiased estimator of Eqy[/ (0, 07)] by the law of iterated expectations. Such estimators can be
generated independently in parallel, and their average provides a consistent approximation of
an expectation with respect to the cut distribution.

We consider the example that was described in Plummer (2014), inspired by an investigation
of the international correlation between human papilloma virus (HPV) prevalence and cervical
cancer incidence (Maucort-Boulch et al., 2008). The first module concerns HPV prevalence,
with data independently collected in 13 countries. The parameter 61 = (611, . . ., 01,13) receives a
beta(1,1) prior distribution independently for each component. The data (Y1, ..., Y13) consist of
13 pairs of integers. The first represents the number of women who were infected with high-risk
HPV, and the second represents population sizes. The likelihood specifies a binomial model for
Y;, independently for each component i. The posterior for this model is given by a product of
beta distributions.

The second module concerns the relationship between HPV prevalence and cancer incidence,
and posits a Poisson regression. The parameters are 0, = (62,1,62.2) € R? and receive a normal
prior with zero mean and variance 10° per component. The likelihood in this module is given
by

Z1,;~ Poisson{exp(th,1 +01,i622+ Z2,)} forie{l,...,13},

where the data (Zy;, Z»,;) ll i | are pairs of integers. The first component represents numbers
of cancer cases, whereas the second is the number of woman-years of follow-up. The Poisson
regression model might be misspecified, motivating departures from inference based on the joint
model (Plummer, 2014).

Here we can draw directly from the first posterior, denoted by 71 (6;), and obtain a sample
(9’11),1:’:1 . For each 0 we consider an MH algorithm targeting 7 (6>|07 ), using a normal random-
walk proposal with variance ¥. We couple this algorithm by using reflection maximal couplings
of the proposals as in Section 4.1. In preliminary runs, starting with a standard bivariate normal
distribution as an initial distribution and a proposal covariance matrix set to identity, we estimate
the first two moments of the cut distribution, and we use them to refine the initial distribution 7
and the proposal covariance matrix X. With these settings we obtain the distribution of meeting
times that is shown in Fig. 7(a). We then set k = 100 and m = 10k, and obtain approximations of
the cut distribution represented by histograms in Figs 7(b) and 7(c), using N = 10000 unbiased
estimators. The overlaid curves correspond to a kernel density estimate obtained by running
m =1000 steps of MCMC targeting m>(6,]6}) with 61 drawn from 71 (61), forne{1,..., N}, and
keeping the final mth state of each chain. The proposed estimators can be refined by increasing
the number N of independent replications, whereas the MCMC estimators would converge only
in the double limit of N and m going to oo.
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Fig. 7. (a) Meeting times and histograms of (b) 6,1 and (c) 05 », in the example of Section 5.5, computed
from 10000 unbiased estimators, with kK =100 and m =1000 (7, 95% confidence intervals on the histogram
estimates; , marginal probability density functions of the cut distribution, obtained by running N = 10000
MCMC chains for 1000 steps, each targeting mo(6|07) for 67 drawn from 74(6;), and retaining the last state
only)

6. Discussion

By combining the powerful technique of Glynn and Rhee (2014) with couplings of MCMC
algorithms, unbiased estimators of integrals with respect to the target distribution can be con-
structed. Their efficiency can be controlled with tuning parameters k and m, for which we have
proposed guidelines: k can be chosen as a large quantile of the meeting time 7, and m as a multiple
of k. Improving on these simple guidelines stands as a subject for future research. In numerical
experiments we have argued that the estimators proposed yield a practical way of parallelizing
MCMC computations in a range of settings. We stress that coupling pairs of Markov chains does
not improve their marginal mixing properties, and that poor mixing of the underlying chains
can lead to poor performance of the resulting estimator. The choice of initial distribution g
can have undesirable effects on the estimators, as in the multimodal example of Section 5.1.
Unreliable estimators would also result from stopping the chains before their meeting time.

Couplings of MCMC algorithms can be devised by using maximal couplings reflection cou-
plings and common random numbers. We have focused on couplings that can be implemented
without further analytical knowledge about the target distribution or about the MCMC kernels.
However, these couplings might result in prohibitively large meeting times, either because the
marginal chains mix slowly, as in Section 5.1, or because the coupling strategy is ineffective, as
in Section 4.2.

Regarding convergence diagnostics, the framework proposed yields the following represen-
tation for the total variation between 7, and 7, where m; denotes the marginal distribution of
Xi:

1
drv(mg, m) = 3 h'slllzllgl |E[2(X)] = Ex[R(X]I
1 7—1
=5 sup [E|: > {h(Xt)_h(Yt—l)}:l )
R <t Limkr

Here the supremum ranges over all bounded measurable functions under the assumptions stated.
The equality above has several consequences. For instance, the triangle inequality implies that
drv (7, m) <min(1, Efmax{0, (r —k — 1) }]), and we can approximate E[max{0, (r —k — 1)}] by
Monte Carlo sampling for a range of k-values. This is pursued in Biswas et al. (2019), where



Unbiased Markov Chain Monte Carlo Methods 571

the construction proposed is extended to allow for arbitrary time lags between the coupled
chains.

Thanks to its potential for parallelization, the framework proposed can facilitate a consider-
ation of MCMC kernels that might be too expensive for serial implementation. For instance,
one can improve MH-within-Gibbs samplers by performing more MH steps per component up-
date, Hamiltonian Monte Carlo sampling by using smaller step sizes in the numerical integrator
(Heng and Jacob, 2019) and particle MCMC sampling by using more particles in the particle
filters (Andrieu et al., 2010; Jacob et al., 2019). We expect the optimal tuning of MCMC kernels
to be different in the proposed framework from when used marginally.

On top of enabling the application of the results of Glynn and Heidelberger (1991) to ac-
commodate budget constraints, the lack of bias of the estimators proposed can be beneficial
in combination with the law of total expectation, to implement modular inference procedures
as in Section 5.5. In Rischard etz al. (2018) the lack of bias was exploited in new estimators of
Bayesian cross-validation criteria. In Chen et al. (2018) similar unbiased estimators were used
in the expectation step of an expectation—-maximization algorithm. There may be other settings
where the lack of bias is appealing, for instance in gradient estimation for stochastic gradient
descents (Tadi¢ and Doucet, 2017).
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Discussion on the paper by Jacob, O’Leary and Atchadé

Darren J. Wilkinson (Newcastle University, Newcastle upon Tyne)
Jacob, O’Leary and Atchadé are to be congratulated for this interesting and useful contribution to the
Markov chain Monte Carlo (MCMC) literature. Since in general we cannot initialize an MCMC chain
with an exact sample from the target, we rely on asymptotic convergence to equilibrium, but lack of
convergence leads to biased estimates. The method outlined in the paper provides a method for removing
the bias from any estimates that are produced from the algorithm output, by using a pair of coupled
chains. The approach is quite general and can potentially be applied to many different kinds of MCMC
algorithms—this paper concentrates on Metropolis—Hastings and Gibbs sampling, but there are several
related papers exploring applications to other MCMC schemes.

It is important to keep in mind that coalescence of the coupled chains and convergence to equilibrium
are different. Practical application of the method relies on the time-averaged estimator (equation (2.1)). This
is just the regular MCMC estimate with a correction term that terminates once the chains have coupled.

Supporting information
Additional ‘supporting information’ may be found in the on-line version of this article:
‘Unbiased Markov chain Monte Carlo with couplings’.
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Fig. 8. Coupled AR(1) chains (a) 1 and (b) 2 and (c) a plot showing the uncoupled AR(1) variables and
(d)—(i) for additional replicates 1—6: two of these six replicates failed to coalesce within 500 iterations
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Choosing k (the ‘burn-in’) to be a high quantile of the coupling time distribution will ensure that most
estimates contain no correction at all. But, since k represents ‘wasted’ computation, it seems desirable to
encourage the chains to couple rapidly. Although it is possible to engineer early coupling (via identical
initial conditions and a low acceptance rate Metropolis—Hastings kernel, for example), this might be a
dangerous strategy (see the example in Section 5.1). When the correction term is present, it can sometimes
be large, so developing a better understanding of the distributional properties of the correction term is
likely to be useful.

The technique proposed for coupling Metropolis—Hastings kernels works for multivariate as well as
univariate samplers, though reflection maximal coupling works much better than a simple independent
maximal coupling in high dimensions. However, it also makes sense to want to couple Gibbs samplers
and other componentwise update algorithms. The paper proposes that, for each component update of
a Gibbs sampler, the full conditionals for the two chains should be coupled. It is clear that, once all
components have coalesced, the full state of the chain will match, and the coupling of the two chains
will be faithful. There is little theory providing reassurance that this will happen in reasonable time for
challenging problems, though it does seem to work reasonably well, empirically.

Consider a linear Gaussian auto-regressive AR(1) process defined by

X, =aX, 1+, &~ N@©,5%),
forr=1,2,...,T, with periodic boundaries. The full conditional for each variable X, is of the form

« g
Xl X1, Xoy1 ~ N{ W(Xt—l +Xi11), 102 }

We can run two chains by cycling through each variable in turn and sampling from the coupled full
conditionals. Here we use 7 =200 and a=0.99, and run initially for n =500 iterations (Fig. 8). By studying
the coupling of variables in the Gibbs sampler, we see that coupling follows a stochastic process, somewhat
reminiscent of the annealing of a one-dimensional Ising model, and that it is not always rapid. We can
study the coupling time distribution for this model with simple Monte Carlo sampling, to find that the
mean coupling time is around 2.6 x 103, with a median of around 1 x 10°. The distribution is long tailed,
with a maximum observed coupling time over 1000 replicates of 67000. Choosing k to be a very high
quantile of this distribution will therefore be computationally demanding.

One of the main motivations for obtaining unbiased estimates of posterior expectations is to fix one
of the issues with parallel chains MCMC sampling. We would like to run many chains independently on
different processors and then to pool results in some way. In this case any bias in the chains will not ‘average
out’ across multiple processors, since there will be non-negligible bias in every chain. Unbiased estimators
can be safely averaged to obtain new unbiased estimators with reduced variance. However, the debiasing
does not eliminate burn-in—it just corrects for it, so there is still repeated burn-in, limiting the scalability
of the parallel chains approach. The paper recommends choosing & as a high quantile of the coupling time
distribution, and m a multiple of k. Any non-zero k limits speed-up of parallel coupled chains relative to
one long run, via Amdahl’s law for parallel chains MCMC sampling (Wilkinson, 2005):

b+n N b+n
bl
b+n/N < b

for burn-in » and monitoring run n on N processors (e.g. an asymptotic limit of 10 for n =9b). This suggests
that parallel chains may be useful in the context of a small number of available processors (of the order
of 10), but possibly an increasingly inefficient proposition for large numbers of processors (greater than of
the order of 10?).

The method proposed in the paper is often straightforward to implement and seems to work on a broad
range of samplers. It is potentially useful in the context of parallelization of MCMC algorithms, since
averaging unbiased estimators is relatively safe, but it is not clear that it fundamentally solves parallel
MCMC sampling, since some kind of burn-in must still be repeated for every pair of chains. Many open
questions remain regarding the codevelopment of MCMC and coupling algorithms to optimize efficiency.
Overall, this represents an interesting and thought-provoking contribution to the literature, and so it gives
me great pleasure to propose the vote of thanks.

SpeedUp(N) =

Chris Sherlock (Lancaster University)
I congratulate Jacob, O’Leary and Atchadé for this methodological development which is relatively
straightforward to implement yet has the potential to broaden the use of ‘embarrassingly parallel’ (Dean
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Fig. 9. Plots from the experiment described in the text: (a) first 5000 iterations of the first simulation (, 7;
, putative k); (b) histogram of all 5000 values of log1(7); (c) l0g1g(1 + MSE) (mean taken over the 5000
simulations) of unbiased MCMC (O) and MCMC (X) sampling as a function of k (,, 79.g9;} 70.990; ', largest 7
(not Tmax) value over the 5000 simulations); (d) log4q(1 + MSE) of Rao—Blackwellized unbiased MCMC ()
and MCMC (X) as a function of k

and Ghemewat, 2008) Markov chain Monte Carlo (MCMC) sampling to a much more general class of
problem. It gives me great pleasure, therefore, to second the vote of thanks.

Reverse engineering the key construction on the third page, we see that H, (X, Y) is unbiased because
on average X, is one step ahead of Y;_;; moreover, as is clear from Fig. 9(a), most of the bias correction
occurs during the relatively brief phase that in standard MCMC sampling is called ‘burn-in’. Also, from
Fig. 9(a), the value of the bias correction term E,:k‘ +111(X;) —h(Y,_))} depends on the meanderings
of the two chains until their coupling time and is potentially very noisy. This is mitigated by averag-
ing to form Hy,, in equation (2.1), but it still depends on the meanderings of the two chains. Now
var(BCy.,,) > E[var(BC;.,,|7)], but a simple back of the envelope calculation suggests that var(BC,.,|T) =
O{(T —k)*/(m — k)*}1 >4+ 1), motivating setting k to a high quantile of 7 and choosing m so that, when
7>k +1, the denomator dominates the numerator. This also underlines the importance of reflection max-
imal coupling where, for random-walk proposals, 7 is approximately linear in dimension rather than



578 Discussion on the Paper by Jacob, O’Leary and Atchadé

exponential. See, for example, Bladt ez al. (2014) and references therein for the background to reflection
coupling and other similar methods such as projection coupling.

A target of N{0,diag(1%,22,...,20%)} was explored using a proposal of X*|x ~ N(x, A\>I) for 10°
iterations starting from N{(10,20,...,200)T, I}, and Y* was obtained by using the reflection maximal
coupling. Fig. 9(b) shows the distribution of log,,(7) over 5000 repeat simulations. In standard MCMC
sampling, the burn-in is decided from the trace plots of a few runs, with the post-burn-in values used
for estimation. Thus we keep m fixed at 10° and examine the effect of increasing k on estimation of
h(X) = Xy, the least well-explored component. Fig. 9(c) shows that the mean-squared error (MSE) of
unbiased MCMC is prohibitively large until beyond the 0.999-quantile of 7, yet the MSE of the MCMC
value might be deemed adequate and is stable throughout.

As mentioned, the noise is due to the meanderings of the two chains and the large variability in 7;
Fig. 9 and the argument above show that the dominant contribution is from the most extreme 7-values.
I now provide a Rao—Blackwellization for Metropolis—Hastings MCMC sampling, integrating over the
distribution of coupling events, which brings the most extreme 7-values under control and leads to the
MSEs in Fig. 9(d). These show a modest reduction for low and medium values of k but an order of
magnitude at the 0.99-quantile and a factor of 30 at k = 10*%°, at a cost of less than twice that of unbiased
MCMC sampling.

Conditionally on (X,, Y,_;) reflection coupling proposes X* = Y* with probability a,.; otherwise the
proposal Y** £ X* is a deterministic function of (X,,Y,_;) and X*. Let a(a, b) denote the appropriate
Metropolis—Hastings acceptance probability from a current value a to a proposed value b. If Y* = X* then
define a, = a(X;, X*) Aa(Yio1, X*), av i=a(Xp, X*) VaYir, X*), axy =0V [a(X, X*) — (Y1, X*)]
and ay\x =0V [a(¥,_1, X*) — a(X,, X*)]; with probability c.,, X* is accepted by both chains and coupling
occurs. Instead of sampling whether or not coupling occurs, we ascertain its probability: peoup := e X ta.
If peoup =1 then coupling is inevitable; we set 7. =t and sample the X-chain from r onwards. Otherwise,
we know that, if coupling occurred at 7 =¢, X,.,,, would be sufficient additional information to calculate
Hy.n, SO we may continue sampling the Y-chain conditionally on its not coupling with X at time ¢ and then
simply ignore these later Y-values when conditioning on 7 =¢. Specifically, we track and store a variable
pr¢: the probability that the chains are not coupled by and including time 7. At iteration 7+ 1 we perform
the following steps.

Step g p?i] :p?c(l - pcoup)~
Step 2: if peoyp < 1 then sample an action from {‘perform accept-reject steps on X* and Y**’, ‘accept
X* and reject Y*’, ‘reject X* and accept Y*’, ‘reject X* and Y*’} according to the probability vector

El

{ 1- Qe QpreQix\y Qe Qly\x arc(l - av) }
1— Pcoup ’ 1- Pcoup ’ 1— Pcoup ’ 1- Pcoup
otherwise set Typax =1+ 1.

The Rao—Blackwellized bias correction is then

Tmax Tmax*l r— k
3 Plr=r)BC, (XYM} =5 P> min(l, —) (h(X)—h(Yi),
=1 r=k+1 m—k+1
where Y(7%) := (Y1:¢r+—1)» Xr:m—1))- In the above experiments, always, 7.y < m1; moreover var(E[73]) ~

2.4[[var(73)], suggesting that variability between simulations is more important; however, a few very
influential simulations had extremely large values for 7, from the tail of their distribution, and it is control
of these which so reduces the MSE.

Certain two-block Gibbs samplers, such as for exploring an auto-regressive AR (1) process via a block
of odd-numbered components and a block of even-numbered components, could be similarly Rao-
Blackwellized since, conditionally on one of the blocks coupling, the other block would be guaranteed to
couple. The Rao-Blackwellization could also be applied to the estimate of dry from Section 6.

The vote of thanks was passed by acclamation.

Radu Craiu (University of Toronto) and Xiao-Li Meng (Harvard University, Cambridge)

We thank Jacob, O’Leary and Atchadé for their tantalizing paper. As developers of Markov chain Monte
Carlo (MCMC) methodology our curiosity is triggered, and as users of MCMC sampling our hopes are
boosted. Indeed, we are inspired to continue our exploration of improving MCMC samplers and estimators
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Table 6. Steps for implementing the proposed control variate estimators based on N (independent) paral-
leled coupled chains

Step 1: run N coupled chains {X®,y (")}fi | in parallel; record {Ti}fi | and draw independent and identically
distributed Bernoulli(0.5) {¢&; lil

Step 2: compute {H}" (x®, Y(i);ﬁi)},-l\;p where 7; is an integer median of {7; — &, j#i}
Step 3: compute the final estimator H,)::m as the (sample) average of {H, (X @, y®; 17,-)}?; 1

Table 7. Pump failure data: estimated standard errors for H7., and /-_/;7 when h(6) =3,
h(6) = 5% and h(8) = 83 with = (\1,. .., A1g, B) '

Estimator ~ Number of h(0)=p h(0)=3> ho)=33
chains N

Mean  Standard ~ Mean  Standard — Mean  Standard
deviation deviation deviation

Hy7. 2 247 0.82 6.50 4.62 18.66  21.89
A3 2 2.46 0.67 6.49 3.70 18.64  17.32
Hyg 5 245 0.52 6.48 2.96 18.66  14.16
A3 5 247 0.48 6.50 273 18.64 1255
A7 10 247 0.38 6.51 2.17 18.68  10.39
Hq 10 247 0.35 6.52 1.96 18.66 9.14

Table 8. Same set-up as in Table 7 except here m =70, and hence there is a time
averaging over m — k + 1 =66 iterations

Estimator ~ Number of h(0)=8 h() =32 h(9)=3?
chains N
Mean  Standard — Mean  Standard — Mean  Standard
deviation deviation deviation
H7.70 2 247 0.09 6.61 0.47 19.11 2.19
I-_I;kﬁo 2 2.47 0.09 6.61 0.47 19.13 2.18
H7.70 5 2.47 0.05 6.61 0.30 19.11 1.38
H;m 5 2.47 0.05 6.61 0.30 19.13 1.37
A770 10 247 0.05 6.61 0.20 19.11 0.95
H’.79 10 2.47 0.04 6.61 0.19 19.12 093

Table 9. Simulated data set from the same model for the pump failure data example in
the paper

Times 095 155 1.56 1.84 214 218 2.67 3.06 3.07 340 341 3.82
Counts 2 0 2 0 1 0 0 0 0 0 0 2

via efficiency swindles (e.g. Van Dyk and Meng (2001), Craiu and Meng (2001, 2005), Craiu and Lemieux
(2007) and Yu and Meng (2011)), among which figures prominently the control variates method.
We start by noting that H;(X,Y), defined in Section 2, can be expressed in two ways:

7—1 T2
H(X,V)=h(X)+ > l{h(X_/) —h(¥;-)}=hXe-nw) + Zk{h(X_/) —h(¥)}, )]
Jj=k

=kt
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Table 10. Same as Table 8 with K =3, m =70 and the new data given in Table 9

Estimator ~ Number of h(9)=p h() =32 h(9)=3?
chains N
Mean  Standard  Mean  Standard — Mean  Standard
deviation deviation deviation
I-_I3:7o 2 2.64 0.24 7.75 1.54 22.28 8.68
I-_I;m 2 2.64 0.20 7.73 1.38 22.19 7.44
H3.70 5 2.65 0.14 7.77 0.89 22.31 4.87
H;m 5 2.65 0.11 7.76 0.85 22.29 4.59
Hy70 10 2.64 0.11 7.74 0.63 2227 3.38
I-_I;m 10 2.64 0.10 7.74 0.62 22.26 3.36

where AV B=max{A, B}. The first expression is the authors’ which rendered the insight that H;(X,Y)
includes a time forward correction of h(X;)’s bias, when 7 >k + 1. The second expression indicates that
H,(X,7Y) is also a time backward correction for the bias in 2(X,_;) when 7 >k + 1. (No correction is needed
when 7 <k+1.)

The most important insight from the second expression, however, is that A; =h(X;) — h(Y;) has zero
expectation for any 2[ This implies that, for any integer-valued 7 independent of {(X;,Y,), j=1,...}, we
can use Cy(n) = E}?;k A; as a control variate for Hy(X,Y), i.e.

T2 n—2
HE (X, Y;n) = Hi(X,Y) + Ce(n) =h(X r—1y) + 2;( Aj— 2;( Aj, 2
J= J=
always shares the mean of H; (X, Y) but can have a smaller variance with a judicious choice of 7.

Our preliminary theoretical investigations (Craiu and Meng, 2020) show that a good choice of 7 is the
median of 7 — &, where ¢ is an independent Bernoulli(0.5) variable. This suggests immediately the method
given in Table 6, where H,., is the time averaging e)_(t*ension of Hy, defined by the authors’ expression (2.1),
and similarly H;, extends H;*. Table 7 compares H,.,, with Hy.,,, the average of the authors’ N estimators
{Him (XD, YD)}V | using their pump failure data, but without time averaging (hence m =k =7). We see a
decrease of standard deviations for all cases. The reductions are small because 7;s are small (e.g. 7;s vary
mostly from 1 to 6), and hence C; cannot contribute much. Indeed the gains vanish with time averaging
using m =70, as seen in Table 8.

To confirm that this vanishing is due to fast coupling, we simulated a new data set (Table 9) by using
the same model for the pump failure data, for which the 7;s are somewhat larger (e.g. mostly {7, =1~9).
The distributions of coupling times for the pump data and the simulated examples are shown in Fig. 10
respectively for two and 10 parallel chains. Table 10 repeats Table 8 with these new data, where we see
the gains appear again, albeit quite small. More extensive investigations are reported in Craiu and Meng
(2020), especially on the use of equation (2) for improving the theoretical bounds given in Biswas et al.
(2019).

Andi Q. Wang (University of Bristol), Murray Pollock and Gareth O. Roberts (University of Warwick,
Coventry, and Alan Turing Institute, London) and David Steinsaltz (University of Oxford)

We congratulate Jacob, O’Leary and Atchadé for a stimulating and interesting paper. Exploiting coupling
constructions within Markov chain Monte Carlo (MCMC) methods can be very powerful; in this work they
have exhibited a range of coupling constructions, which can be adopted for certain commonly used MCMC
samplers to debias the output. An alternative approach to removing bias is to build global couplings into
the design of new MCMC algorithms. Section 5.2 briefly reviews one traditional version of this approach,
using regenerations, following a method proposed by Mykland et al. (1995).

We wish to call attention to recent advances in regenerative algorithms, that build on two decades of
development in the theory of quasi-stationarity in Markov processes. One recent example is the ‘Restore’
sampler, proposed in Wang et al. (2019), a continuous time regenerative sampler, constructed from three
components: a continuous time Markov process Y taking values in the state space X, a regeneration rate
k: X —[0,00) and a probability density function u on X, the regeneration distribution.
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From an algorithmic perspective, the process X, runs according to the law of the Markov process ¥ but
also randomly regenerates at rate t— r(X,): a new location is drawn (independently) from the regeneration
distribution . Under appropriate conditions on the components Y, x and p, the resulting process X has
a given target probability distribution 7 as its invariant measure. Fixing Y, 1 and the target density 7, the
corresponding choice of regeneration rate , to ensure w-stationarity, is

L*m(x) 1(x)
@

where L is the infinitesimal generator of the Markov process Y, and the constant C is chosen such that
k>=0.

The process’s killing and subsequent regeneration mechanism enables us to construct a natural coupling
on the entire state space. Suppose that a killing time can be identified that would have occurred regardless
of the state of the process. (This can be done straightforwardly if, say, the regeneration rate « is uniformly
bounded away from 0.) In this case, regardless of the prior evolution of the process, all sample paths can
be coupled—Dbecause of the fixed regeneration distribution—to a common point in the state space.

By appealing to the coupling from the past principle (Propp and Wilson, 1996), it suffices then to simulate
the restore process from the last such occurrence in the past forwards to time 0 to achieve a perfect draw
from the target distribution. For further details, we refer the reader to Wang et al. (2019).

xeX,

Anthony Lee (University of Bristol), Sumeetpal S. Singh (University of Cambridge) and Matti Vihola
(University of Jyvéiskyld)

We congratulate Jacob, O’Leary and Atchadé for their inspiring work, which elaborates on the general
Markov chain debiasing method of Glynn and Rhee (2014) and demonstrates how it can be applied in
practice in various settings. We would like to highlight the importance of understanding the scalability
properties of the related couplings, in particular with respect to increasing model dimension, to assess
the applicability of the method for challenging problems for which inference is difficult with existing
techniques.

We focus here on the context of hidden Markov model smoothing, where debiasing was suggested
earlier (Jacob et al., 2020) based on coupled conditional particle filters (Chopin and Singh, 2015). Our
follow-up work (Lee et al., 2020) presented another coupling based on the backward sampling conditional
particle filter (Whiteley, 2010). The latter approach, termed the coupled conditional backward sampling
particle filter, has provably stable behaviour in increasing data record length T (Lee et al., 2020). More
specifically, under suitabie ‘strong mixing’ conditions, the coupling time 77 of this filter—with fixed num-
ber of particles—satisfies assumption 2 of the present paper such that P(7r > 1) < Cré', with constants
log(C7y) = O(T) and 6 € (0, 1), and these orders appear tight (Lee et al., 2020).

Since the Markov chain is uniformly ergodic, an easy modification of the proof of proposition 3 for
bounded functions yields the following upper bound for the ‘bias correction’ term:

E[BC;,,] <4Cr8*|h|% (m —k+1)72(1 =874,

Clearly, for any e >0, there exists ¢ € (0, co) such that for all k > kr = ¢T it holds that [E[BC,%:m] Lellh|, (m—
k+1)~2. Furthermore, ¢ may be chosen so that log(C76") = O(—T), demonstrating that the bias correction
part quickly becomes negligible for large T, as long as k > k7.

If we consider the suggested unbiased parallelization with P processing units and aim for minimal wall
time, the required run time is x7), where & is the cost of a single iteration and 7} is the maximum of P
independent coupling times. It is easy to see that in our context E[7]= O{T +log(P)} and, since = O(T),
we conclude that the minimal time of the maximum of P independent realizations is O{T?+ T log(P)}.
The use of a fixed number of particles implies that the space complexity is, however, O(TP).

The following contributions were received in writing after the meeting.

Christine P. Chai (Microsoft Corporation, Redmond)

Bayesian methodology is known to provide biased estimates with a lower mean-squared error (Hoff, 2009),
so [ am excited to see improvements on removing the bias from Markov chain Monte Carlo (MCMC)
kernels. This paper provides excellent theoretical methodology, and I have several questions about the
description of the unbiased MCMC estimators.
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(a) Why does the paper use only confidence intervals, not credible intervals? I understand that the
central limit theorem is a frequentist concept (Gray et al., 2015) but, since this paper is about
Bayesian methods, I wonder where the term ‘credible interval’ applies.

(b) What is the contextual definition of the ‘meeting time’ of the chains? The mathematical definition
is provided, but I think that stating the definition in plain text would also be helpful.

(c) Why is the convergence speed measured as the ‘average meeting time’ in the figures? I believe that
one time unit refers to the cost of one draw and two evaluations in the sampling algorithm, so the
concept makes sense. But the word ‘time’ makes me relate this term to the actual computation time.
Since the details of the platform (e.g. RStudio) is not mentioned in the paper, I wonder whether
there is a better term to describe the computation cost of MCMC sampling.

(d) Tagreethat parallel computingis nota panacea, and thateach MCMC iteration can receive only lim-
ited benefits from parallel processors. Given the potential for parallelization of the framework pro-
posed, how is the scalability related to the asymptotically exact, ‘embarrassingly parallel’ MCMC
algorithm described in Neiswanger et al. (2013)?

(The opinions and views expressed here are those of the author and do not necessarily state or reflect those of
Microsoft.)

Martin Chak, Nikolas Kantas and Grigorios A. Pavliotis (Imperial College London)

We congratulate Jacob, O’Leary and Atchadé for their major and inspiring contribution. In our discussion
we shall sketch our ideas for extending the use of couplings to include variance reduction in addition to bias
removal. Our approach is based on extending the framework presented in Niisken and Pavliotis (2019).
There, couplings of n w-invariant continuous time Markov processes (Z';i=1,...,n) were considered for
variance reduction (with respect to asymptotic variance). Sections 3 and 5 of Niisken and Pavliotis (2019)
present non-trivial constructions for such couplings of Markov processes that can be used in sampling
contexts. Typically one should expect that these couplings enhance the exploration of the state space,
which seems to be in contrast with constructing Markov processes that meet as required for unbiased
Markov chain Monte Carlo sampling. We believe that these two opposing behaviours can be combined.
Instead of using independent samples of coupled faithful pairs of chains, one could consider correlating
these pairs, Z' = (X', Y'), such that each of X’ and Y’ have marginally in i the same law and then use an
unbiased estimator. Given X' one could design Y’ so that they eventually meet and the X's could be jointly
propagated by using correlated noise inputs designed for improved joint asymptotic variance or better
exploration of the state space as in Niisken and Pavliotis (2019). This can be achieved in discrete time
(or in continuous time) by extending the work of Niisken and Pavliotis (2019) to discrete time Markov
processes and Markov chain Monte Carlo sampling (or by extending the work in this paper for continuous
Markov processes). Finally we note that in the most simple case moving from X" to work on a joint state
space X" requires modifying the test function A (x) to (1/n)X" h(x') or a normalized weighted average,
so it would be interesting to include variance reduction techniques such as control variates.

Nicolas Chopin (Ecole Nationale de la Statistique et de I' Administration Economique, Institut
Polytechnique de Paris)

I congratulate Jacob, O’Leary and Atchadé¢ on their very elegant, coupling-based, approach to making
Markov chain Monte Carlo algorithms parallelizable. To illustrate the points I would like to make, I
consider the Gibbs sampler of Albert and Chib (1993), for a probit model (y; =sgn(z,), zi=8Txi + €, €~
N(0, 1)) where one simulates alternately

step 1, By, z (Gaussian), and
step 2, z|3, y (independently, z; ~ N-o(B3Tx;, 1) if y; =1).

Even if we restrict our attention to maximum coupling for step 1, several options are available to couple
at step 1:

(a) maximum coupling for the z;s;

(b) maximum coupling for the residuals ¢; (in this specific case, coupling is particularly simple (and
fast); to couple two variates from distributions N, (0, 1) and N, (0, 1), assuming c| < ¢, sample
X ~N-(0,1), and take Y = X if X > c,; otherwise sample ¥ ~ Ny, (0, 1));

(c) optimal transport for the z;s (i.e. use the inverse cumulative distribution function algorithm with
the same input). In that case, the z;s become increasing close but do not become equal. But note
that this still helps to increase the probability that the 5-chains become coupled.



584 Discussion on the Paper by Jacob, O’Leary and Atchadé

0.012 -

0.010 -

0.008 -

0.006 -

0.004 -

0.002 -

j \\
0.000- ‘ ‘ ‘ ‘ ‘ ‘ ;
-100 0 100 200 300 400 500 600
coupling time

Fig. 11. Kernel density estimates of the coupling times for the three coupling approaches: , latent
coupling; , residuals coupling; , latent transport

Fig. 11 shows kernel density estimates for the coupling times of the three approaches (100 runs; data,
German credit, with standardized predictors; prior, N(0, 10%) for each 3 ;). If computational time is taken
into account, approach (b) is the clear winner, as it seems 20 times faster (at least on this particular data
set, and with the usual caveats regarding implementation). But it is also interesting to see that approach
(c) (transport) may be competitive without forcing the z;s to be equal.

I would be glad to hear the authors’ views, more generally, on

(a) the effect of parameterization on coupling performance and
(b) the opportunity to use transport coupling (or any coupling that does not generate equal outputs
with positive probability) for certain components of the chain.

Mathieu Gerber and Anthony Lee (University of Bristol)
This is a very interesting paper that demonstrates how couplings can be used in practical applications to
obtain unbiased approximations.

Controlled variance of cost of Thorisson’s algorithm
We consider a modification of Thorisson’s algorithm for simulating from a coupling I';(u, v) of two
distributions p and v. Let v =y + v where vy < i, vy Lu and

N dw/du xeSC,
w(x) = { s xes.

where § C X satisfies pu(S) =11(5€) =0. Let ¢: X — [0, 1] satisfy ¢ < w pointwise. The algorithm is as
follows.

Step I: sample X ~ p. If 1 = B~ Bernoulli{¢(X)}, output (X, X).
Step 2: repeat sample Y ~ v; with probability 1 — ¢(Y)/w(Y) output (X, ¥).

Letting (X, Z) denote the output of the algorithm, we have P(X € A) = (A) and, using P(B=1) =
1 — () and v(¢/w) = (@),

P(zeA)=P(ZecA,B=1)+P(ZcA,B=0)
=u(@-14) +v1s-{1=p/w})
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average meeting time
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Fig. 12. Scaling of the average meeting time of a reparameterized, coupled Metropolis-within-Gibbs

algorithm with the dimension of the posterior distribution of a Bayesian logistic regression model with d
parameters and n=100d observations

=@ 1) +v(A) —pls-¢)
=v(A),

so that (X, Z) has the right marginals. The choice ¢(x) =min{1, w(x)} gives P(X#2Z)=1—pu(¢) = ||u—
v|tv, which corresponds to Thorisson’s algorithm.

The number of samples from v is N = (1 — B)G, where G ~ geometric{1 — u(¢) } independent of B. The
expectation and variance of N are 1 and 21:(¢) /{1 — u(¢) } respectively. Hence, one can reduce the variance
of N by increasing P(X # Z) =1 — u(¢), i.e. by making I'4 (11, ») non-maximal. For example, one could
choose ¢(x) =min{C, w(x)} for some C < 1, so that the variance is upper bounded by 2C/(1 — C).

Reparameterization
Section 4.3 of the paper discusses the coupling of Metropolis-within-Gibbs samplers, and the numerical
results suggest that the average meeting time scales (sub)linearly with the dimension d of the target dis-
tribution 7, provided that its components are weakly dependent. When this condition is not verified one
can find a diffeomorphism g such that the components of 7, = o g~!, the image of m by g, are weakly
dependent. Although finding such a diffeomorphism can be difficult in general, when = is a posterior
distribution the Bernstein—von Mises theorem suggests taking g(x) = A~ (x — p) with p~E.[X] and A
such that AAT ~cov, (X). In this case, 7, ~ N (0, I;) and we can follow the approach used in Fig. 2 (with
V =1,) to approximate ,, and therefore also .

To illustrate, we consider a logistic regression model, with an A/(0, 1) prior distribution and n = 100d
covariates, and report in Fig. 12 the average meeting time (over 20 replications) as a function of d, which
appears to scale (sub)linearly with d.

Jiaqi Gu (University of Hong Kong)
Icongratulate Jacob, O’Leary and Atchadé for their thought-provoking paper. In the paper, [ am interested
in two aspects:

(a) adaptingcouplingsto substitute a meeting time with finite expected value for traditional convergence
diagnosis methods in Markov chain Monte Carlo (MCMC) algorithms and
(b) removing the bias of MCMC estimators with telescopic sums at finite expected computational cost.

MCMC methods (Metropolis et al., 1953; Hastings, 1970; Geman and Geman, 1984) have been widely
used for Bayesian inference. Although the asymptotic convergence of MCMC estimators has been proved
in theory (Tierney, 1994),

l Zn: h(X,)— E.[h(X)], almost surely,

n—i
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the bias of MCMC estimators still exists after an arbitrary number of iterations. In this paper, with two
elaborately designed chains { X, } and {Y¥,} which have a meeting time 7(ET < 00), E,[h(X)] is decomposed
as the expectation of finite summation

T—1
Elh(X)+ > h(X)—h(Yi-)|.

t=k+1

Consequently, unbiased estimator Hy.,, (X, Y) could be obtained at finite expected computation cost O([E[7]).
By investigating the performance of couplings in numerical experiments under various settings, the au-
thors propose simple guidelines to implement their unbiased Bayesian inference method as efficiently as
possible.

There are still some possible extensions of their method. One example is missing data. As illustrated in
Sections 4.2 and 4.3, the average meeting time would increase as the dimension grows. This would make it
more difficult to adapt such a strategy to latent variable models. Like the Ising model in Section 5.3, latent
variable models

SXobs; 0) = / SXobs> Ximis; ) dXmis

usually consist of high dimensional latent variables X,,;; which need updates but are irrelevant to the target
E.[/#(0)]. Given that the dimension of X, is far greater than parameters 0, the expected meeting time [E[7]
will be extremely large and the unbiased estimators could not be obtained within available computational
time if the definition of meeting time is kept unchanged. An extension of the proposed method to deal
with missing data problems is needed.

Ajay Jasra (King Abdullah University of Science and Technology, Thuwal), Kody Law (University of
Manchester) and Jeremy Heng (Ecole Supérieure des Sciences et Commerciales Business School,
Singapore)

We thank Jacob, O’Leary and Atchadé for a most interesting paper. Our discussion centres on a very
promising extension of the method for unbiased estimation as we now explain. Consider a probability
measure 7 on measurable space (X, &) for which we want to compute 7 () := fx p(x)T(dx) withp: X— R,
w integrable and measurable. Suppose that one can deal with only a sequence of biased probability measures
(m)i=0 on (X, &), with m,(Jp]) <oco Vle 77, such that lim,_, o, (@) = 7(¢); examples include partially
observed diffusion processes (e.g. Jasra et al. (2017)) or inverse problems (e.g. Beskos ez al. (2017)). Consider
a positive probability mass function P, on Z*. It is known (Rhee and Glynn, 2015; Vihola, 2018) that
if one can find a sequence of independent random variables (&);>¢ that are independent of L ~ P, such
that

E[&o]=m0(),
E[&]=m(p) —m-1(p) VieN,
(&)
2. P

< oo 3)

then &, /P, (L) is an unbiased estimator of 7 (). This is the ‘single-term’ estimator as discussed by Rhee
and Glynn (2015) and Vihola (2018), but alternatives such as the ‘coupled sum’ estimator are also possible.
If is a parameter induced by an Euler discretization of a stochastic differential equation or a finite element
approximation of a solution of a partial differential equation one can completely remove the discretization
bias, while only working with biased versions of 7. The main idea is now to utilize the authors’ approach to
obtain the sequence of (§);>¢. If /=0 then one can apply the coupled Metropolis—Hastings (MH) method
associated with 7. For [ € N one must be more careful as, to satisfy condition (3), it will typically not be
sufficient to run two independent unbiased Markov chain Monte Carlo algorithms for-estimating 7;(¢) and
71 () respectively. The scheme which we are developing is based on constructing a four-way coupling
of MH kernels. This is possible, for example, by sampling a four-way ‘maximally’ coupled MH proposal,
Le.,if 0:X— 2(X) (£2(X) are the probability measures on (X, %)) is a Markoy kernel and x;.4 € X4, we
sample a proposal kernel Q : X* — 22(X*), such that forany je {1,...,4} fX, oxs Q(xra, dx ) = 0 (x;, dx/j)
(x_; 18 x1.4 without the jth co-ordinate) and -
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4

O(x14,dx) ) = / /\ Q(x), dx)).
X4

{xraeXtxi=xs=x3=x4} =

Acceptance or rejection of proposals for these four chains can be conducted in a similar manner to the
authors’ but, when / € N, care is required to ensure faithfulness of the chains targeting 7, and m,_;. We
believe that this doubly randomized scheme will have multiple applications and moreover have finite variance
and expected cost, as well as providing a competitive alternative to Agapiou et al. (2018). In addition, the
benefits of such unbiased multilevel Monte Carlo methods (Giles, 2008), relative to advanced multilevel
Monte Carlo methods such as in Beskos et al. (2017) and Jasra et al. (2017), would be the lack of bias,
amenability to parallelization and comparable or reduced computational cost for a given error.

Lawrence Middleton, George Deligiannidis and Arnaud Doucet (University of Oxford)

We congratulate Jacob, O’Leary and Atchadé for this seminal work for both its elegance and its importance.
The implementation of this methodology requires being able to couple two Markov chain Monte Carlo
(MCMQO) chains and is highly dependent on the specific MCMC algorithm used. We review here the
scheme proposed in Middleton et al. (2019) to couple two independent Metropolis—Hastings (MH) chains
and explain how this idea can be combined with sequential Monte Carlo (SMC) methods to estimate
unbiasedly expectations with respect to high dimensional probability measures.

Given a target density 7(x) and proposal density ¢(x), we can couple two MH chains X and Y to ensure
that X, =Y, for all > 7 for some meeting time 7 by using the same proposal and uniform random
variables for X at iteration i and Y at iteration i — 1. Furthermore, by also using g(x) as initial distribution
for both chains and selecting the proposal at the first iteration for X to be equal to the initial distribution of
Y, we can ensure that P(r=1) > % Additionally, conditionally on X, the meeting time follows a geometric
distribution; see Middleton et al. (2019) for details.

The independent MH algorithm is of limited interest for high dimensional targets. However, the particle
independent MH (PIMH) method introduced in Andrieu et al. (2010) empirically scales much better. This
algorithm is nothing but an independent MH algorithm targeting an artificial target 7y (x, z) admitting the
desired target m(x) as a marginal by using an SMC proposal gy (x, z), where N is the number of particles
and z some auxiliary variables. We can thus couple PIMH chains exactly like IMH chains and, under
weak regularity assumptions, P(7=1) — 1 as N — oo. In particular, we can use PIMH steps to estimate
unbiasedly expectations with respect to the smoothing distribution of non-linear non-Gaussian state space
models by using a particle filter proposal. To estimate unbiasedly expectations with respect to a general
probability measure, we can simply use SMC samplers (Del Moral et al., 2006) or annealed importance
sampling (Neal, 2001) proposals within PIMH sampling and couple the resulting chains (Middleton et al.
(2019), appendix B).

From a practical point of view, the coupling approach of Jacob and his colleagues is easier to put
into practice than the random-truncation technique of Glynn and Rhee (2014) in this context. Indeed,
as long as the likelihood of the observations given the latent states is bounded for state space models or
the likelihood is bounded for general posterior targets, then the PIMH algorithm is uniformly ergodic
for any N and, under very weak additional assumptions, the coupling procedure returns finite variance
estimates in finite expected time. To obtain similar guarantees for the methodology of Glynn and Rhee
(2014), quantitative convergence results for the PIMH algorithm would need to be obtained to select an
appropriate distribution for the truncation time.

Daniel Paulin (University of Edinburgh)

Congratulations go to Jacob, O’Leary and Atchadé for their very interesting paper and the many follow-
ups. They have opened up a new field of unbiased Markov chain Monte Carlo sampling that is widely
applicable and helps convergence diagnostics and parallelization.

A question for future research is whether the expected coupling times scale well in high dimensional
settings. In recent years, considerable progress has been made in the understanding of high dimensional
scaling of the Metropolis-adjusted Langevin algorithm (Dwivedi et al., 2019) and Hamiltonian Monte
Carlo sampling (Chen et al., 2019) and Gibbs sampling (Qin and Hobert, 2018). It could be interesting to
see whether couplings where the expected coupling time has similarly good dimension dependence can be
constructed for such practically relevant algorithms.

Emilia Pompe and Chris Holmes (University of Oxford)
We congratulate Jacob, O’Leary and Atchadé on their impressive contribution, which has already stimu-
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lated further research in the area and will certainly inspire many other developments. The idea of running
parallel computations for Markov chain Monte Carlo (MCMC) algorithms, which is sequential by nature,
has recently been attracting much attention in the Bayesian community, e.g. Scott et al. (2016), Dai et al.
(2019) and Rendell et al. (2018). We believe that the authors achieved a major breakthrough in this field
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Fig. 13. Reproduction of the toy example of Lyddon et al. (2018) (see section 3.1 and Fig. 1 of Lyddon
et al. (2018) for details) and comparison of these results with a sampling scheme where, instead of drawing
samples ~; from the variational Bayes (VB) approximation, we follow the idea of unbiased MCMC sampling and
construct a pair of coupled Markov chains targeting this approximation: (a) 95% probability contour of the true
posterior ( ) and different approximations (VB ( ) and VB corrected through the posterior bootstrap
(PB) ( ); we set the parameter of the PB as 7 = 10000 and ¢ = 1); (b) density of the coupling times of
the Markov chains; (c) violin plots obtained for a function g (see expression (4)) defined as &4, (a product
of co-ordinates) where & :=argmax, 27, w;log{f,(x;)} + ET.=1 wpyjlog{fy(x,,)} and log(fy) denotes the
log-likelihood function (we compare resulfs obtained wi{h 200 samples drawn from the PB and where unbiased
MCMC sampling is used at the first sampling stage, for various values of k and m used for defining the
unbiased estimator (see Section 2.3); the parameter k was each time set to 0.1m; each experiment was
repeated 100 times; we can see that the variance decreases dramatically as the values of kK and m increase;
it can also be observed that using the PB or the PB combined with unbiased MCMC sampling indeed corrects
the VB approximation—after applying any of these procedures the results are closer to the true value of aq an
calculated for the posterior)
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by proposing a general framework for parallelizing computations, applicable to many MCMC algorithms
(Heng and Jacob, 2019; Middleton et al., 2018).

Moreover, an important advantage of this method is applicability to models composed of modules (Liu
et al., 2009; Plummer, 2015; Zigler, 2016; Jacob et al., 2017), where because of misspecification of the full
model it may be beneficial to estimate parameters of these modules sequentially, as discussed in Section 5.5.
The law of total expectation ensures that the estimators of integrals with respect to the ‘cut distribution’
in such models are unbiased. This can be useful more generally, when one wants to use different Monte
Carlo techniques preserving unbiasedness, e.g. (standard) importance sampling at subsequent stages of
inference. This remarkable property of the unbiased MCMC technique could also be useful beyond cut
models as we now discuss.

We can extend unbiased MCMC to the area of Bayesian non-parametrics and the posterior bootstrap
proposed by Lyddon ez al. (2018) to address issues arising in model misspecification. Following the notation
of algorithm 1 of Lyddon et al. (2018), suppose that we want to obtain an unbiased estimator of g(&). In the
current version of algorithm 1 this can be obtained via averaging g(a?) since it is assumed that we can draw
independent and identically distributed samples from y® ~ 7 (vy|x;.,) and x,((') ~fyo fork=n+1,...,n+T.
In many settings, however, sampling directly from one of those distributions (or both) is impossible, e.g.
when the prior for «y is non-conjugate.

To construct an unbiased estimator of g(&), we can follow the procedure described in Section 5.5 for

0y :=~
and
T () ~ (Y] X10),
0 := (X4 1y:(aa1y> W)
and

7r2{(x(n+1):(n+1)s W)|’Y} ~ oy Xng1) - f“,’(-errT)Dir <W; l,...,1,¢/T,.. -,C/T),
——— ———

T

=1

n T
h(01,0:) =h(v, Xpr1y:m+15 W) ::g{argmax Dowin(xj, ) + D0 Wy jit (X, @) } “4)
a 0

Fig. 13 illustrates this on a toy example from Lyddon ez al. (2018).

An interesting line of research would be developing similar methodology for adaptive MCMC sampling
where the proposal or target distributions are updated as the algorithm runs (Roberts and Rosenthal,
2009; Pompe et al., 2018?. This is Particularly important in the case of two-stage estimation procedures,
where after obtaining 051 yees GEN‘ in the second stage we run N, chains, possibly in parallel. Since each
chain targets a different distribution 7r2(62|0§’)), there are N, transition kernels to be tuned—this is why
the efficiency of the algorithm could potentially be significantly improved by allowing for updating the
proposal distributions on the fly.

C. P. Robert, G. Clarté, A. Hairault, C. Lawless and R. Ryder (Université Paris Dauphine, Université
Paris Sciences et Lettres and Ceremade, Paris)
We congratulate Jacob, O’Leary and Atchadé for this excellent paper.

Associating Markov chain Monte Carlo (MCMC) sampling with unbiasedness is indeed quite a chal-
lenge since MCMC algorithms very rarely produce simulations from the exact target, unless specific tools
like renewal control can be exploited in an efficient manner. Although renewal events are often easy to pro-
duce, renewal control is too rare an occurrence to consider it as a generic convergence assessment method
(Guihenneuc-Jouyaux and Robert, 1998; Robert, 1998). Although coupling is also at the base of perfect
simulation methods (Kendall and Mpgller, 2000; Huber, 2004), the analogy between this debiasing tech-
nique and perfect sampling is difficult to fathom, since the coupling of two chains is not a perfect sampling
instant, occurring instead much earlier. When discussing the implementation of coupling in Metropolis
and Gibbs settings, the authors propose a most simple optimal coupling algorithm which we were not
aware of: a form of accept-reject sampling also found in a similar way in perfect sampling. (Something
that is only obvious in retrospect is that the variance of the resulting unbiased estimator is at least the
variance of the original MCMC estimator.)
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We would, however, stress that unbiasedness is not the ultimate goal one should seek when running a
Monte Carlo approximation, since the paper may otherwise give the impression of achieving a ‘free-lunch’
result. Reaching (exact) stationarity and exploring the posterior target within an allocated number of itera-
tions was and remains the primary goal of an MCMC algorithm. Assessing both features is a considerable
challenge that has not been solved by a foolproof technique, but coupling techniques have been proposed
in the early days of MCMC methods towards this goal. In addition to Mykland et al. (1995), see, for
example, Robert (1995, 1998), Guihenneuc-Jouyaux and Robert (1998), Hobert et al. (2002), Roberts and
Rosenthal (2001), Hobert and Robert (2004) or Qin and Hobert (2019). Although renewal approaches
include a burn-in period, this part of the simulation can be recycled thanks to the authors’ technique
and added to the independent and identically distributed errors terms in the renewal representation of
ergodic averages. However, coupling is clearly working in the settings examined therein, whereas renewal
apparently does not. In toy examples like the Efron and Morris (1973) baseball data and the Gelfand and
Smith (1990) pump failure data, the parameters k and m of the algorithm can even be optimized against
the variance of the averaged averages, which proves a remarkable feat.

Robin J. Ryder, Grégoire Clarté, Adrien Hairault, Caroline Lawless and Christian P. Robert (Ceremade,
Paris, Université Paris-Dauphine and Université Paris Sciences et Lettres)
We congratulate Jacob, O’Leary and Atchadé for this excellent paper.

In ‘traditional’ MCMC methods, it is standard to check that stationarity has been attained by running a
small number of parallel chains, initiated at different starting points, to verify that the final distribution is
independent of the initialization—even though the single- versus multiple-chain(s) debate erupted initially
with Gelman and Rubin (1992) versus Geyer (1992).

Asnoted by the authors, a bad choice of the initial distribution p, can lead to poor properties. In essence,
this occurs and remains undetected for the current proposal because the coupling of the chains occurs
long before the chain reaches stationarity. We make two suggestions to alleviate this issue, and hence add
a stationarity check as a by-product of the run.

(a) The chains X and Y need to have the same initial distribution, but different pairs of chains on
different parallel cores can afford different initial distributions. The resulting estimator remains
unbiased. We would therefore suggest that parallel chains be initiated from distributions which put
weight on different parts of the parameter space. Ideas from the quasi-Monte-Carlo literature (see
Gerber and Chopin (2015)) could be used here.

(b) We also note that, although the marginal distributions of X and ¥ need to be identical, any joint
distribution on (X, ¥) produces an unbiased algorithm. We would suggest that it is preferable that
X and Y meet (shortly) after the chains have reached stationarity. Here is one possible strategy
for this: let p and p' be two distributions which put weight on different parts of the space, and
Z~ Bernoulll( ). If Z=0, take XO ~ pand Yy~ p’; otherwise take X, ~ p’ and Yy ~ p. The marginal
distribution of both X, and Y is ( p+ p), but the two chains will start in different parts of the
parameter space and are likely to meet after they have both reached stationarity.

The ideal algorithm is one which gives a correct answer when it has converged, and a warning or error
when it has not. MCMC chains which have not yet reached stationarity (e.g. because they have not found
all modes of a multimodal distribution) can be difficult to detect. Here, this issue is more likely to be
detected since it would lead to the coupling not occurring: [E[7] is large, and this is a feature, since it warns
the practitioner that their kernel is ill fitted to the target density.

Leah F. South and Chris Nemeth (Lancaster University) and Chris. J. Oates (Newcastle University,
Newcastle upon Tyne, and Alan Turing Institute, London)

Jacob, O’Leary and Atchadé are to be congratulated on an impressive and thought-provoking contribution
to the field. Traditional Markov chain Monte Carlo (MCMC) sampling has benefitted from the develop-
ment of gradient-based control variates (Assaraf and Caffarel, 1999; Barp et al., 2018; Mira et al., 2013;
Oates et al., 2017; South et al., 2018), but it may be more difficult to demgn gradlent -based control variates
for unbiased MCMC samphng Following the notation in the paper, let 7% (h) := (1/R)XF_H") (X, Y) and
7 (h) :=[E[A(X)]. Under assumptions 1-3, proposition 1 establishes that o' (1) := \/{Hk;,,,(X Y)} < oo, s0

VR{ER(h) —m(h)} > N{0, 0 (h)*}

as R— oo. A control variate g should therefore be selected such that w(¢g) =0 and o(h — g) K o(h). In
inequality (3.2) it was demonstrated that, in the large m and k limit, the quantity o' (%)? is just the asymptotic
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variance from traditional MCMC sampling; existing gradient-based control variates can therefore be used
(Belomestny et al., 2019; Mijatovi¢ and Vogrinc, 2018). However, at finite m and k the dependence of o (/)
on h is far from explicit. One could use sample splitting to construct an approximation of the form

s L R <r) 1 <r> ’
W=k & PN T Ry 2 e XD

and attempt to minimize 6(h — g). Alternatively, one could bound o(k — g) in terms of quantities that
are independent of the Markov chain and then minimize the bound. One such bound is provided in the
following result, stated for k =m =0 for simplicity, which we do not claim to be in any sense optimal.
Let assumptions 1-3 be satisfied, with n as in assumption 1 and C and ¢ as in assumption 2. Let 7, be the
law of X, and assume that A :=sup,, drv(m,m) <oo. Let H be a reproducing kernel Hilbert space, with
norm denoted ‘|| - |5,” and with kernel K: X x X — R satisfying K (x, x) <1 for all x e X. If |1|**" € H then

a(h) <y {m (AP + AP} + Bl (X0)*] 2,
=4 ey )
(1 _ 67//(4+271))2 ’

where the positive constants v and A are 7 independent. The proof can be found in South ez al. (2019).
None of the three 4-dependent quantities in the bound depend on the law of the Markov chain and thus
minimization of the bound may be practical. The, in practice unknown, values of v(6) and A determine
which of the three terms dominate the bound.

Fig. 14 displays the variance reduction that is achieved in the 302-dimensional logistic regression ex-
ample of Heng and Jacob (2019). These results are encouraging, but more work is required to develop an
understanding of gradient-based control variates for unbiased MCMC sampling.

Paul Vanetti and Arnaud Doucet (University of Oxford)
Bias correction for Markov chain Monte Carlo sampling is a long-standing problem, for which this paper
represents a breakthrough. We propose two generalizations to derive new unbiased estimators.

First we propose the lagged estimator, obtained by starting chain Y after L steps of the chain X and
coupling those two chains such that X, =Y,_; for all 7 > 7 where 7 is the meeting time. For some N, k such
that N >k + L, we can then exploit the identity

1 N 1 [ktL-1 N
72 HaXol=7 3 BRI+ > {EAX )] - HA (-0} - (©)

L —n"rL41 i=k J=k+L

Lags greater than 1 were used in Biswas ez al. (2019) to improve probability metric bounds. The estimator
(6) is similar to the time-averaged estimator in the paper under discussion when L =m — k, but the bias
correction term that is incurred is not inflated by a large coefficient. Our empirical results (Table 11)

Table 11. Standard deviation for (a) the time-averaged
estimator (with lag 1) and (b) the lagged estimator (with

L=m-Kk)T
k m o k L o
(@) )
1 10 430 1 9 66.7
10 100 34.2 10 90 11.9
100 1000 0.119 100 900 0.119

+The underlying Markov chain Monte Carlo chain is a
Metropolis random walk w1th target 7(x) =N (x 0, 1), initial-
ization mo(xo) =N (x0; 0, 52), proposal g(x, x ) =N(*;x, 1)
and test function i(x) =x~. o is the standard dev1at10n of a
single estimate.
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Fig. 15. Sharing chains between pairs (the top three curves are three pairs; the X-chain of the second
is used as the Y-chain for the first, and similarly the X-chain of the third for the Y-chain of the second;
the final curve is the aggregate chain): , positive contributions to the total estimate; , Negative
contributions

in a simple scenario suggest that estimator (8) can outperform the time-averaged estimator at a similar
computational cost.

For L sufficiently large, where X, is approximately stationary, the bias correction term of estimator (8)
can be interpreted as a removal of the burn-in, representing the difference between a stationary chain and
the first iterations of a new chain. This motivates our second innovation, which is to use the X-chain of
each pair of coupled chains as the Y-chain for another pair.

If we simulate R pairs (X, Y), using the chain ¥ = X"™ for re{1,...,R— 1}, and for r= R we
take a novel chain (and not the X for any other pair), then averaging the estimates over the R pairs yields an
estimator in which the negative bias correction terms for the first R — 1 pairs cancel with the first samples
from the next pair. Thus the estimator is equivalent to that obtained by a single long chain with a lag
choice of RL; see Fi%. 15 for an illustration.

If we had used Yi( ) =X fl) for the Rth pair, the resulting scheme would very closely match the parallel
implementation of circular coupling (Neal, 1999). The framework that is provided in this discussion gives
a new interpretation to this scheme, which was designed to provide ‘states that all have close to the
equilibrium distribution’. A natural question to ask is whether it yields unbiased estimates and, if this is
not so, whether it can be modified to achieve exact unbiasedness.

Dootika Vats (Indian Institute of Technology Kanpur) and Galin L. Jones (University of Minnesota,
Twin Cities)
We congratulate Jacob, O’Leary and Atchadé on considerably furthering the cause of unbiased estimation
in Markov chain Monte Carlo sampling. Although there is often a need for the methods discussed in
the paper, unbiased estimation is trivially achieved by successfully starting from stationarity. The authors
mention coupling-based perfect simulation techniques as a means to draw exact samples from the target
distribution, but we note that simple accept-reject samplers are useful in surprisingly many examples.
Accept-reject samplers can be inefficient for high dimensional target distributions but, even there, in con-
junction with /inchpin variables (Archila, 2016; Huber, 2016), reasonably efficient accept-reject samplers
can be used to produce one exact draw from the target.

For example, consider the model in Section 5.2 used to study the nuclear pump failure data. The joint
posterior density of A\=(\y, ..., Ax) and [ can factorized as

S, B) = f(AIB) f(B).

Since it is easy to draw samples from f(A|3), § is a linchpin variable. Accept-reject samples from the
univariate marginal posterior of 3 are easier to obtain than accept-reject samples from the (K + 1)-
dimensional joint posterior of (A, 3). In fact, a simple and efficient accept-reject sampler that targets f(3)
is easy to construct. Samples from the joint posterior can then be obtained via sequential sampling.
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Based on a similar linchpin construction, Jones et al. (2006) presented an efficient accept-reject sampler
for the baseball batting averages data and model presented in section S3. If the number of covariates is
small, efficient accept-reject samplers are also possible for the Bayesian lasso posterior in section S5 and
the variable selection model in section 5.2. Archila (2016) presented a few other hierarchical models where
efficient accept-reject samplers can be implemented via the linchpin variable approach.

In many situations, accept-reject sampling is too computationally burdensome for a full Monte Carlo
procedure, but it may be able to provide one draw at a reasonable cost. When this draw is used as a starting
value in a Markov chain, the usual Monte Carlo estimator of any expectation is trivially unbiased. This
procedure is easily parallelizable and requires no burn-in. However, in settings where direct sampling is
inefficient, the unbiased estimation techniques of Jacob, O’Leary and Atchadé are promising.

The authors replied later, in writing, as follows.

We are grateful to the discussants for their stimulating, creative and insightful comments. In light of the
many methodological enhancements and new applications presented here, we join Craiu and Meng in
feeling hopeful about the future of Markov chain Monte Carlo (MCMC) methods.

Ease of use

We were glad to read some confirmation that the method proposed is simple to implement. Various
discussions (Wilkinson; Sherlock; Chopin; Gerber and Lee; Pompe and Holmes; South, Nemeth and
Oates; Vanetti and Doucet) involved original numerical experiments illustrating different aspects of the
method, possible improvements and new applications.

Middleton, Deligiannidis and Doucet emphasize that the approach proposed does not involve random
truncation variables, in contrast with for example Glynn and Rhee (2014) and Agapiou et al. (2018).
The construction of such variables can require hard-to-determine quantities, such as the contraction rate
associated with a given coupling. Interested readers might consult Agapiou et al. (2018) for an example
of estimation of such a contraction rate, in the case of a coupled Metropolis—Hastings algorithm on a
logistic regression with three covariates. Removing the need for truncation variables by considering chains
that meet exactly appears both as a straightforward modification of Glynn and Rhee (2014) and as a step
forward in terms of applicability.

Parallelization goals and limitations

One motivation for unbiased estimation is its amenability to parallel computing: a goal shared by regenera-
tion techniques (Mykland ez al., 1995; Brockwell and Kadane, 2005), circularly coupled MCMC sampling
(Neal, 1999) and perfect samplers (e.g. Lee et al. (2014)).

The detailed discussion of Wilkinson illustrates the different goals one might have in combining parallel
computing and Monte Carlo methods. At first, Amdahl’s law and the results summarized in Section 3.3
of the paper, extracted from for example Glynn and Heidelberger (1991), may seem to contradict one
another. Whereas the former suggests diminishing returns in the number of processors P, the central limit
theorem in equation (3.4) indicates steady improvement at the standard Monte Carlo rate as P — oo.
This apparent paradox can be resolved by introducing a certain amount of context and by distinguishing
between different goals.

Let us take the perspective of a user who can run a Monte Carlo experiment on P machines, yielding an
estimator with precision «, in run time 7. We summarize the performance by the pair («, 7). Next, suppose
that the user has access to 2P machines. What are our user’s hopes? One option would be to achieve twice
the precision while keeping the run time close to T, for performance (2, 7). Alternatively, the user may
hope to produce an equally accurate result but in half the time, achieving performance («, 7/2).

The class of estimators that is considered in the paper achieves the first type of improvement in most
settings, but it achieves the second type of improvement only if the time budget is sufficiently large to begin
with. We believe that, irrespective of the Monte Carlo method under consideration, the second type of
gain is realistic only when starting from a moderate or large run time 7. The presence of incompressible
computing costs and the intuition that any Monte Carlo algorithm must entail a baseline amount of serial
computation would seem to limit the potential for speed-ups when 7T is small to begin with.

To illustrate this discussion with a set of simple experiments, consider pairs of variables (H, C) defined as
H~Exp(1) and C =1+ H. Suppose that we are interested in the estimation of the expectation of H, which
we think of as some unbiased estimator, and that C represents the time cost of computing H. We consider
the estimator H ,(7) generated on each processor p by averaging independent copies of H within the time
budget T and waiting for at least one copy to be completed, as in Section 3.3 of the paper. The estimator
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Table 12. For various specified budgets T and number of processors
P, each cell contains the pair (precision, expected completion time)

T P=128 P=256 pP=512 P=1024

6 187.2,6.77 376.5,7.18 694.2,7.8 1486.9, 8.52
12 547.7,12.00  1025.3, 12.00 2190.4,12.01 3960.9, 12.01
24 1312.5,24.00 2649.1,24.00 5013.6,24.00  10295.9, 24.00

on processor p has completion time C,(T) =max(T, C,, ;) where C), is the cost of the first estimator. The
final estimator is the average P*IEI’;1 H ,(T). Its expected completion time C(P, T) is the expectation of
max{C(D),...,Cp(T)}, and we take its precision a(P, 7) to be the inverse of its variance.

In Table 12 we report the precision (P, T) and completion time C(P, T) for various P € {128,256, 512,
1024} and T € {6, 12,24}, based on 10* independent runs. We have the following observations.

(a) When we set the time budget 7 to 6 s, the estimators take on average between 6 and 9 s to com-
plete, with a visible increase with P. If we had set the budget to 0, we would have still observed
approximately the same expected completion times. Thus, in that regime increasing the number
of processors increases the run time. When we set the budget to 12 or 24 s, the expected com-
pletion times become nearly constant and equal to the budget; the actual increase is logarithmic
in P.

(b) The precision increases linearly with P, on every row of the table, but there are some noticeable
Monte Carlo variations. By comparing two consecutive cells of any row the precision approximately
doubles whereas the completion time increases very slowly. When T is sufficiently large, doubling the
number of processors doubles the precision while keeping the expected completion time essentially
fixed.

(c) In contrast, if we compare for example 7=24 and P=512, and 7T =12 and P =1024, we see that
the run time is indeed halved, but that some precision is lost. We believe that this corresponds to
Amdahl’s law in Wilkinson’s discussion. This effect would eventually disappear as the budget T
increases.

Similarly, we believe that comparisons between unbiased MCMC estimators and ‘one long run’ of an
MCMC algorithm would be most informative with adequate amounts of context, including the number
of processors, budget constraints, the desired precision, the choice of k and m for the proposed estimators
and the choice of burn-in for the MCMC algorithm.

Theory on meeting times

Several discussants highlight the importance of understanding the behaviour of the meeting time in the
estimators proposed. Indeed the meeting time drives both the cost of the estimator and its variance via the
bias correction term.

A few results on the meeting times or closely related objects already exist. In their comment, Lee, Singh
and Vihola summarize their analysis of couplings of conditional particle filters, including precise results
on the effect of the number of observations and particles on the meeting times. Paulin’s comment recalls
that much progress has been made on the understanding of standard MCMC methods in recent years;
we would like to add that many of these works have employed coupling strategies, such as Diaconis et al.
(2010) and Qin and Hobert (2019) for Gibbs samplers, or Mangoubi and Smith (2017) and Bou-Rabee
et al. (2018) for Hamiltonian Monte Carlo sampling.

We hope that similar techniques will provide a precise understanding of the cost and variance of the
proposed estimators in the future. More discussion in the context of Hamiltonian Monte Carlo sampling
can be found in Heng and Jacob (2019). We also note that the rich literature around coupling from the
past (Propp and Wilson, 1996) contains theoretical results on meeting times. For example, Collevecchio
et al. (2018) found the asymptotic distribution of a rescaled meeting time to be Gumbel in the context of
a Fortuin—Kasteleyn model.

Variance reduction
It is encouraging to see the enthusiasm and creativity of the discussants around variance reduction tech-
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niques. Indeed these techniques directly improve the estimators proposed and the discussants have managed
to come up with control variates, Rao—Blackwellization and antithetic variables.

Vanetti and Doucet propose a generalization of the proposed estimators by using a lag L > 1 between
the chains. In this approach, one samples X, Xi,..., X, by using the original MCMC algorithm with
kernel P, Y, from my, and then recursively X,,; and Y;_;,; given X, and ¥,_; from P. The meeting time
7 can be defined as inf{s > 1:X, =Y, }. Generalizing equation (2.1) in the paper, we write the lagged,
time-averaged estimator as

@ _ 1 u = . [d—ky/L] B
i = Snoo+ 5 min {1 LD o) ooy,

Using a value of L that is larger than 1 is always possible and can yield a large improvement in efficiency.
We thank Vanetti and Doucet for this important generalization. We encourage users to implement such
lagged estimators and to experiment with the choice of L.

Craiu and Meng propose an equally general variance reduction technique in the form of a control
variate exploiting the fact that X, and Y, have the same marginal distribution for any fixed . We look
forward to their upcoming paper on the topic. Sherlock proposes a Rao—Blackwellization method for
coupled Metropolis—Hastings chains, which leverages an estimate of the probability of coupling at the
next step conditionally on the current states. South, Nemeth and Oates propose gradient-based control
variates—adapted from those recently developed for standard MCMC estimators (South et al., 2018)—
with promising preliminary results in a logistic regression setting. Finally Chak, Kantas and Pavliotis
envision an approach that is reminiscent of antithetic variables, where different pairs of Markov chains
would be constructed to produce a negative correlation in the resulting unbiased estimators. Such couplings
might be generated by adapting techniques from Niisken and Pavliotis (2019).

Cost reduction

With bias out of the picture, the variance and average cost of the estimators proposed constitute their most
notable performance characteristics. Thus, it is important to develop a better understanding of how to
reduce the cost as well as the variance. Selecting the most efficient MCMC kernel available for the problem
at hand is obviously recommended. Then, for a fixed MCMC kernel P, reducing the cost amounts to
improving the coupling strategy.

Chopin provides numerical results in the case of the Gibbs sampler of Albert and Chib (1993), empha-
sizing that various strategies are possible for each update of the Gibbs sampler. In more complicated Gibbs
samplers, the possibilities quickly multiply, and thus it would be useful to develop general guidelines for
users. In our experience, ‘common random numbers’ provide a good starting point, since these are simple
to implement and often yield chains that contract towards one another to at least some extent. Generating
enough contraction to bring the chains close together is the main challenge, since other techniques, such
as the maximal couplings that were used extensively in this paper, can be used to obtain exact meetings
when the chains are already close; see Heng and Jacob (2019) for example.

The parameterization of a Gibbs sampler will also certainly impact not only its marginal performance
(Papaspiliopoulos and Roberts, 2008) but also the implementation and performance of coupling strategies.
The comment of Gerber and Lee regarding parameterization with Bernstein—von Mises heuristics is helpful
in that regard, as well as the comment of Vats and Jones regarding the potential presence of low dimensional
linchpin variables.

New applications
Some comments pointed out the potential use of the proposed estimators in new applications, which we
find exciting.

We look forward to reading more about the work described by Jasra, Law and Heng, and note that it
will be an interesting methodological application of multimarginal couplings. There might be connections
with the comment of Chak, Kantas and Pavliotis where anticorrelations between pairs of chains would
result from four-way couplings.

The application described in the comment by Pompe and Holmes, following up on the ‘cut distribution’
of Section 5.5, is very exciting to us as it leverages another appeal of unbiased estimators, beyond parallel
computation. We agree with Pompe and Holmes that it would be useful to obtain unbiased estimators
from adaptive MCMC methods, but at this point this appears to be a challenging open question.

The discussion of Gu raises the question of the applicability of the proposed framework to missing
data and latent variable models. We refer to the comments of Lee, Singh and Vihola and of Middleton,
Deligiannidis and Doucet, as well as references therein, which concern the smoothing problem in hidden
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Markov models or state space models. These provide examples of unbiased estimation strategies that have
proved effective in high dimensional latent variable models.

Bayesian computation

In response to the comments of Chai and Gu, we emphasize that the methods that are considered in the
paper are not specifically Bayesian, in the sense that they do not require the conceptualization of unknown
quantities as random variables on which prior distributions would be specified. For Bayesian methods in
numerical analysis, see Diaconis (1988), Bernardo et al. (1992) or more recently Cockayne et al. (2019).
The term ‘Bayesian computation’ can refer either to computational methods that are used in Bayesian
statistics or to Bayesian methods to perform computation, which seems to foster some confusion. This
paper concerns non-Bayesian computational methods which might be useful in Bayesian statistics and
elsewhere.

Initialization

The discussion of Ryder, Clarté, Hairault, Lawless and Robert proposes an interesting strategy for initial-
izing the chains. We share their view that large meeting times can sometimes indicate convergence issues
with the underlying Markov kernel, which we have experienced ourselves, and can indeed be seen as a
feature rather than a bug.

We note that using different initial distributions for different runs result in estimators that are unbiased
but not identically distributed, and thus care would be advised for the construction of confidence intervals.
In contrast, 7y can be chosen to be a mixture of various components and X, and Y, can indeed be drawn
from any coupling of 7y with itself. Thus one could for instance maximize the probability that X, and Yy
are drawn from different components of the same mixture.

The lagged estimator that is proposed in the comment of Vanetti and Doucet has implications for the
selection of an initialization strategy. As the lag increases, the issue of small meeting times that can occur
when two chains start nearby will tend to disappear. Thus users might find lagged estimators with L > 1 to
be safer in general, as was found for the estimation of total variation upper bounds in Biswas et al. (2019).

Perfect sampling

Various discussants noted the connections and distinctions between our method and perfect samplers,
which often rely on couplings of Markov chains (Propp and Wilson, 1996; Glynn, 2016). As noted in
Robert, Clarté, Hairault, Lawless and Ryder the relationship between perfect sampling and unbiased
estimation is indeed elusive. It is unclear whether the machinery of this paper bring us any closer to perfect
sampling.

Vats and Jones remind us that perfect samplers might be easier to implement than commonly thought.
Similarly, we can wonder why regeneration approaches such as Brockwell and Kadane (2005) are not used
more often. There might remain an important gap between the generic applicability of MCMC algorithms
such as Metropolis—Hastings algorithms and that of current perfect samplers. Perhaps the work advertised
by Wang, Pollock, Roberts and Steinsaltz will help to close that gap. We speculate that, even if perfect
samplers were to become fully generic, there would still be room for MCMC strategies, unbiased or not,
if they come at a smaller computational cost.
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