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Abstract

Conventional Learning-to-Rank (LTR) methods optimize the utility of the rankings
to the users, but they are oblivious to their impact on the ranked items. However,
there has been a growing understanding that the latter is important to consider for
a wide range of ranking applications (e.g. online marketplaces, job placement,
admissions). To address this need, we propose a general LTR framework that can
optimize a wide range of utility metrics (e.g. NDCG) while satisfying fairness
of exposure constraints with respect to the items. This framework expands the
class of learnable ranking functions to stochastic ranking policies, which provides
a language for rigorously expressing fairness specifications. Furthermore, we
provide a new LTR algorithm called FAIR-PG-RANK for directly searching the
space of fair ranking policies via a policy-gradient approach. Beyond the theoretical
evidence in deriving the framework and the algorithm, we provide empirical results
on simulated and real-world datasets verifying the effectiveness of the approach in
individual and group-fairness settings.

1 Introduction

Interfaces based on rankings are ubiquitous in today’s multi-sided online economies (e.g., online
marketplaces, job search, property renting, media streaming). In these systems, the items to be
ranked are products, job candidates, or other entities that transfer economic benefit, and it is widely
recognized that the position of an item in the ranking has a crucial influence on its exposure and
economic success. Surprisingly, though, the algorithms used to learn these rankings are typically
oblivious to the effect they have on the items. Instead, the learning algorithms blindly maximize the
utility of the rankings to the users issuing queries to the systems [1], and there is evidence (e.g. [2, 3])
that this does not necessarily lead to rankings that would be considered fair or desirable.

In contrast to fairness in supervised learning for classification (e.g., [4—10]), fairness for rankings has
been a relatively under-explored domain despite the growing influence of online information systems
on our society and economy. In the work that does exist, some consider group fairness in rankings
along the lines of demographic parity [11, 12], proposing definitions and methods that minimize
the difference in the representation between groups in a prefix of the ranking [13-16]. Other recent
works have argued that fairness of ranking systems corresponds to how they allocate exposure to
individual items or group of items based on their merit [3, 17]. These works specify and enforce
fairness constraints that explicitly link relevance to exposure in expectation or amortized over a set of
queries. However, these works assume that the relevances of all items are known and they do not
address the learning problem.

In this paper, we develop a Learning-to-Rank (LTR) algorithm — named FAIR-PG-RANK - that not
only maximizes utility to the users, but that also rigorously enforces merit-based exposure constraints
towards the items. Focusing on notions of fairness around the key scarce resource that search
engines arbitrate, namely the relative allocation of exposure based on the items’ merit, such fairness
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constraints may be required to conform with anti-trust legislation [18], to alleviate winner-takes-all
dynamics in a music streaming service [19], to implement anti-discrimination measures [20], or to
implement some variant of search neutrality [21, 22]. By considering fairness already during learning,
we find that FAIR-PG-RANK can identify biases in the representation that post-processing methods
[3, 17] are, by design, unable to detect. Furthermore, we find that FAIR-PG-RANK performs better
than heuristic approaches [23].

From a technical perspective, the main contributions of the paper are three-fold. First, we develop
a conceptual framework in which it is possible to formulate fair LTR as a policy-learning problem
subject to fairness constraints. We show that viewing fair LTR as learning a stochastic ranking policy
leads to a rigorous formulation that can be addressed via Empirical Risk Minimization (ERM) on both
the utility and the fairness constraint. Second, we propose a class of fairness constraints for ranking
that incorporates notions of both individual and group fairness. And, third, we propose a policy-
gradient method for implementing the ERM procedure that can directly optimize any information
retrieval utility metric and a wide range of fairness criteria. Across a number of empirical evaluations,
we find that the policy-gradient approach is a competitive LTR method in its own right, that FAIR-
PG-RANK can identify and avoid biased features when trading-off utility for fairness, and that it can
effectively optimize notions of individual and group fairness on real-world datasets.

2 Learning Fair Ranking Policies

The key goal of our work is to learn ranking policies where the allocation of exposure to items
is not an accidental by-product of maximizing utility to the users, but where one can specify a
merit-based exposure-allocation constraint that is enforced by the learning algorithm. An illustrative
example adapted from Singh and Joachims [3] is that of ranking 10 job candidates, where the
estimated probabilities of relevance (e.g., probability that an employer will invite for an interview)
of 5 male job candidates are {0.89,0.89,0.89,0.89,0.89} and those of 5 female candidates are
{0.88,0.88,0.88,0.88,0.88}. Notice that these probabilities of relevance can themselves be gender-
biased because of biased data or a biased prediction model. If these 10 candidates were ranked by
these probabilities of relevance — thus maximizing utility to the users under virtually all information
retrieval metrics [1] — the female candidates would get far less exposure (ranked 6,7,8,9,10) than the
male candidates (ranked 1,2,3,4,5) even though they have almost the same estimated relevance. In
this way, the ranking function itself is responsible for creating a strong endogenous bias against the
female candidates, greatly amplifying and thus perpetuating any exogenous bias that may have led to
small differences in the relevance estimates.

Addressing the endogenous bias created by the system itself, we argue that it should be possible to
explicitly specify how exposure is allocated (e.g. make exposure proportional to relevance), that
this specified exposure allocation is truthfully learned by the ranking policy (e.g. no systematic
bias towards one of the groups), and that the ranking policy maintains a high utility to the users.
Generalizing from this illustrative example, we develop our fair LTR framework as guided by the
following three goals:

Goal I: Exposure allocated to an item is based on its merit. More merit means more exposure.
Goal 2: Enable the explicit statement of how exposure is allocated relative to the merit of the items.
Goal 3: Optimize the utility of the rankings to the users while satisfying Goal I and Goal 2.

We will illustrate and further refine these goals as we develop our framework in the rest of this section.
In particular, we first formulate the LTR problem in the context of empirical risk minimization (ERM)
where exposure-allocation constraints are included in the empirical risk. We then define concrete
families of allocation constraints for both individual and group fairness.

2.1 Learning to Rank as Policy Learning via ERM

Let Q be the distribution from which queries are drawn. Each query ¢ has a candidate set of
documents d? = {d{,d3,...d? (q)} that needs to be ranked, and a corresponding set of real-valued

relevance judgments, rel? = (rel?,rel? .. .reli (q)). Our framework is agnostic to how relevance is
defined, and it could be the probability that a user with query ¢ finds the document relevant, or it could
be some subjective judgment of relevance as assigned by a relevance judge. Finally, each document

d? is represented by a feature vector ! = W(q, d!) that describes the match between document d
and query q.



We consider stochastic ranking functions 7 € II, where 7(r|q) is a distribution over the rankings r
(i.e. permutations) of the candidate set. We refer to 7 as a ranking policy and note that deterministic
ranking functions are merely a special case. However, a key advantage of considering the full space
of stochastic ranking policies is their ability to distribute expected exposure in a continuous fashion,
which provides more fine-grained control and enables gradient-based optimization.

The conventional goal in LTR is to find a ranking policy 7* that maximizes the expected utility of 7
™ = argmax ey Egno [U(Tlg)],

where the utility of a stochastic policy 7 for a query q is defined as the expectation of a ranking metric
A over

U(rlq) = Evrrrlg) [A (r, relq)] )
Common choices for A are DCG, NDCG, Average Rank, or ERR. For concreteness, we focus
on NDCG as in [24], which is the normalized version of Apcg(r,rel?) = 7 urla) \where

=1 Tog(1+7)
u(r(f)|q) is the utility of the document placed by ranking = on position j for ¢ as a function of
relevance (e.g., u(i|q) = 2" — 1). NDCG normalizes DCG via Axpcg(r, rel?) = #%.

Fair Ranking policies. Instead of single-mindedly maximizing this utility measure like in conven-
tional LTR algorithms, we include a constraint into the learning problem that enforces an application-
dependent notion of fair allocation of exposure. To this effect, let’s denote with D(w|q) > 0 a
measure of unfairness or the disparity, which we will define in detail in Section § 2.2. We can now
formulate the objective of fair LTR by constraining the space of admissible ranking policies to those
that have expected disparity less than some parameter 9.

7y = argmax, Equo [U(7|q)] s.t. Eguo [P(7]q)] <6

Since we only observe samples from the query distribution Q, we resort to the ERM princi-
ple and estimate the expectations with their empirical counterparts. Denoting the training set

as T = {(x%rel?)}),, the empirical analog of the optimization problem becomes 7} =

argmax, 1 Zf]v:l U(rlq) s.t. 25:1 D(r|q) < 0. Using a Lagrange multiplier, this is equivalent
to 75 = argmax, miny>o %ZQVZIU(ﬂq) - /\%Zévzli)(ﬂ\q)—é) . In the following, we avoid

minimization w.r.t. A for a chosen . Instead, we steer the utility/fairness trade-off by chosing a
particular A and then computing the corresponding J afterwards. This means we merely have to solve

N N
. 1 1
i} = argmax, - ; U(rlq) — AN ;D(WM) (1

and then recover 0, = % Zflvzl D(73|q) afterwards. Note that this formulation implements our third
goal from the opening paragraph, although we still lack a concrete definition of D.

2.2 Defining a Class of Fairness Measures for Rankings

To make the training objective in Equation (1) fully specified, we still need a concrete definition of the
unfairness measure D. To this effect, we adapt the “Fairness of Exposure for Rankings” framework
from Singh and Joachims [3], since it allows a wide range of application dependent notions of
group-based fairness, including Statistical Parity, Disparate Exposure, and Disparate Impact. In order
to formulate any specific disparity measure D, we first need to define position bias and exposure.

Position Bias. The position bias of position j, v;, is defined as the fraction of users accessing a
ranking who examine the item at position j. This captures how much attention an item will receive,
where higher positions are expected to receive more attention than lower positions. In operational
systems, position bias can be directly measured using eye-tracking [25], or indirectly estimated
through swap experiments [26] or intervention harvesting [27, 28].

Exposure. For a given query ¢ and ranking distribution 7(7|q), the exposure of a document is defined
as the expected attention that a document receives. This is equivalent to the expected position bias
from all the positions that the document can be placed in. Exposure is denoted as v, (d;) and can be
expressed as

Exposure(d;|7) = vr(d;) = Eporn(rlq) [Vr(di)jl , 2)



where 7(d;) is the position of document d; under ranking r.

Allocating exposure based on merit. Our first two goals from the opening paragraph postulate
that exposure should be based on an application dependent notion of merit. We define the merit
of a document as a function of its relevance to the query (e.g., rel;, rel? or v/rel; depending on the
application). Let’s denote the merit of document d; as M (rel;) > 0, or simply M;, and we state that
each document in the candidate set should get exposure proportional to its merit M.

Vd; € d? : Exposure(d;|m) o< M (rel;)

For many queries, however, this set of exposure constraints is infeasible. As an example, consider a
query where one document in the candidate set has relevance 1, while all other documents have small
relevance e. For sufficiently small €, any ranking will provide too much exposure to the e-relevant
documents, since we have to put these documents somewhere in the ranking. This violates the
exposure constraint, and this shortcoming is also present in the Disparate Exposure measure of Singh
and Joachims [3] and the Equity of Attention constraint of Biega et al. [17].

Note that this overabundance of exposure for some queries is not a fairness problem, since the extra
exposure that some items receive does not come at the expense of other items. Furthermore, it is
typically the items that have slightly lower merit that get disadvantaged by utility maximization,
as illustrated in the introductory example. We thus replace the proportionality constraint with the
following set of inequality constraints where Vd;, d; € d? with M (rel;) > M (rel;) > 0

Exposure(d; |m) < Exposure(d; |7)
M (rel;) — M (rel;)

This one-sided set of constraints still enforce proportionality of exposure to merit, but allows the
allocation of overabundant exposure which is achieved by only enforcing that higher-merit items
don’t get exposure beyond their merit. Note that the opposite direction of the constraint is already
encouraged by utility maximization, where high-merit items tend to receive more exposure than they
deserve.

Connecting this reasoning back to the example, after putting the item with relevance 1 at rank one, we
have to put e-relevant items in position two and further. These e-relevant items are now overexposed
which violates the two-sided constraint, but not the one-sided constraint. In this way, the one-sided
metric together with utility maximization allows non-relevant items to get higher exposure when
this is unavoidable in the tail of the ranking. In the other direction, the metric counteracts unmerited
rich-get-richer dynamics, as present in the motivating example earlier.

Measuring disparate exposure. We can now define the following disparity measure D that captures
in how far the fairness-of-exposure constraints are violated

v (d; v (dj
'Dmd(ﬂQ) |H |Z(1,])EH max [0 # - %}7 3)
where H, = {(4, j) s.t. M; > M, > 0}. The measure Djyq(7|q) is always non-negative and it equals
zero only when the individual constraints are exactly satisfied.

Group fairness disparity. The disparity measure from above implements an individual notion of
fairness, while other applications ask for a group-based notion. Here, fairness is aggregated over
the members of each group. A group of documents can refer to sets of items sold by one seller in
an online marketplace, to content published by one publisher, or to job candidates belonging to a
protected group. Similar to the case of individual fairness, we want to allocate exposure to groups
proportional to their merit. Hence, in the case of only two groups GGy and GG1, we can define the
following group fairness disparity for query ¢ as

Diun(rla) = ma (0. 552 - 2562 ), @)
where G; and G; are such that Mg, > M, and Exposure(G|r) = v, (G) = |—Cl;‘ > dieq Ur(di )
the average exposure of group (G, and the merit of the group G is denoted by Mg = % Z ca M

3 FAIR-PG-RANK: A Policy Learning Algorithm for Fair LTR

In the previous section, we defined a general framework for learning ranking policies under fairness-
of-exposure constraints. What remains to be shown is that there exists a stochastic policy class 1I and



an associated training algorithm that can solve the objective in Equation (1) under the disparities D
defined above. To this effect, we now present the FAIR-PG-RANK algorithm. In particular, we first
define a class of Plackett-Luce ranking policies that incorporate a machine learning model, and then
present a policy-gradient approach to efficiently optimize the training objective.

3.1 Plackett-Luce Ranking Policies

The ranking policies m we define in the following comprise of two components: a scoring model
that defines a distribution over rankings, and its associated sampling method. Starting with the
scoring model hg, we allow any differentiable machine learning model with parameters 6, for
example a linear model or a neural network. Given an input x? representing the feature vectors
of all query-document pairs of the candidate set, the scoring model outputs a vector of scores
ho(x7) = (ho(21), ho(x3), ... he(x{,)). Based on this score vector, the probability my(r|q) of a
ranking r = (r(1),7(2),...r(ny)) under the Plackett-Luce model [29] is the following product of
softmax distributions

Nq

exp(hg(:cg(i)))

mo(rlq) = Zl;[l eXp(ha(xz(i)))—F. . .+exp(he($z(nq)))~

&)

Note that this probability of a ranking can be computed efficiently, and that the derivative of 74 (7|q)
and log 7y (7|q) exists whenever the scoring model hy is differentiable. Sampling a ranking under
the Plackett-Luce model is efficient as well. To sample a ranking, starting from the top, documents
are drawn recursively from the probability distribution resulting from Softmax over the scores of the
remaining documents in the candidate set, until the set is empty.

3.2 Policy-Gradient Training Algorithm

The next step is to search this policy space II for a model that maximizes the objective in Equa-
tion (1). This section proposes a policy-gradient approach [30, 31], where we use stochastic gradient
descent (SGD) updates to iteratively improve our ranking policy. However, since both U and D are
expectations over rankings sampled from 7, computing the gradient brute-force is intractable. In
this section, we derive the required gradients over expectations as an expectation over gradients. We
then estimate this expectation as an average over a finite sample of rankings from the policy to get an
approximate gradient.

Conventional LTR methods that maximize user utility are either designed to optimize over a smoothed
version of a specific utility metric, such as SVMRank [32], RankNet [33] etc., or use heuristics to
optimize over probabilistic formulations of rankings (e.g. SoftRank [34]). Our LTR setup is similar to
ListNet [35], however, instead of using a heuristic loss function for utility, we present a policy gradient
method to directly optimize over both utility and disparity measures. Directly optimizing the ranking
policy via policy-gradient learning has two advantages over most conventional LTR algorithms, which
optimize upper bounds or heuristic proxy measures. First, our learning algorithm directly optimizes
a specified user utility metric and has no restrictions in the choice of the information retrieval (IR)
metric. Second, we can use the same policy-gradient approach on our disparity measure D as well,
since it is also an expectation over rankings. Overall, the use of policy-gradient optimization in the
space of stochastic ranking policies elegantly handles the non-smoothness inherent in rankings.

3.2.1 PG-RANK: Maximizing User Utility

The user utility of a policy 7y for a query ¢ is defined as U (|q) = [ETNM(TM)A(T, relq). Note that
taking the gradient w.r.t. 6 over this expectation is not straightforward, since the space of rankings is
exponential in cardinality. To overcome this, we use sampling via the log-derivative trick pioneered
in the REINFORCE algorithm [30] as follows:

VoU(mglq) = VQETN.,TH(TM)A(T, relq) = Epormg(rjq) [Volog ma(r]q) A(r, rel?)] (6)
Eq. (5)
q.

This transformation exploits that the gradient of the expected value of the metric A over rankings
sampled from 7 can be expressed as the expectation of the gradient of the log probability of each



sampled ranking multiplied by the metric value of that ranking. The final expectation is approximated
via Monte-Carlo sampling from the Plackett-Luce model in Eq. (5).

Note that this policy-gradient approach to LTR, which we call PG-RANK, is novel in itself and
beyond fairness. It can be used as a standalone LTR algorithm for virtually any choice of utility
metric A, including NDCG, DCG, ERR, and Average-Rank. Furthermore, PG-RANK also supports
non-linear metrics, IPS-weighted metrics for partial information feedback [26], and listwise metrics
that do not decompose as a sum over individual documents [36].

Using baseline for variance reduction. Since making stochastic gradient descent updates with this
gradient estimate is prone to high variance, we subtract a baseline term from the reward [30] to act as
a control variate for variance reduction. Specifically, in the gradient estimate in Eq. (6), we replace
A(r,rel?) with A(r,rel?) — b(q) where b(q) is the average A for the current query.

Entropy Regularization While optimizing over stochastic policies, entropy regularization is used as
a method for encouraging exploration as to avoid convergence to suboptimal deterministic policies
[37, 38]. For our algorithm, we add the entropy of the probability distribution Softmax(hg(x9))
times a regularization coefficient ~ to the objective.

3.2.2 Minimizing disparity

When a fairness-of-exposure term D is included in the training objective, we also need to compute the
gradient of this term. Fortunately, it has a structure similar to the utility term, so that the same Monte-
Carlo approach applies. Specifically, for the individual-fairness disparity measure in Equation (3),
the gradient can be computed as:

1 ve(d;)  ve(dy) vp(d;)  ve(dy)
VGDind = ﬁ Z 1 |:< Ml — Tj >0] x |ETN7‘.9(7,|(1) ( Ml — TJ)VQ 10g7T9(T|q)
(i,j)eH

(H ={(i,7) s.t. M; > M;})

For the group-fairness disparity measure defined in Equation (4), the gradient can be derived as
follows:

vc9,Dgroup(7T|(;07 Gla Q) = ngax((), qulﬂ‘(ﬂ—‘q)) =1 [qulff(WM) > 0] SqVleff(F|q)
where diff(7|q) = (M — ”"(7(;1)), and &, = sign(M¢, — Mg,).

MGO MGI
2de, Vr(d)  Paeg, vr(d)
ZdeGOZW(reld) ZdeGM(reld)

The derivation of the gradients is shown in the supplementary material. The expectation of the
gradient in both the cases can be estimated as an average over a Monte Carlo sample of rankings
from the distribution. The size of the sample is denoted by S in the rest of the paper.

Vodiff(7|q) = Epror, K ) Volog m(rlq)]

The completes all necessary ingredients for SGD training of objective (1), and now we present all
steps of the FAIR-PG-RANK algorithm.

3.3 Summary of the FAIR-PG-RANK algorithm

Algorithm 1 summarizes our method for learning fair ranking policies given a training dataset.

4 Empirical Evaluation

We conduct experiments on simulated and real-world datasets to empirically evaluate our approach.
First, in Section § 4.1, we validate that the policy-gradient algorithm is competitive with conventional
LTR approaches independent of fairness considerations. We accomplish this by comparing our
method PG-RANK relative to conventional LTR baselines on the Yahoo! Learning-to-Rank dataset.
Second, in Section § 4.2, we use simulated data to verify that FAIR-PG-RANK can detect and mitigate
unfair features. Third, we show the effectiveness of our algorithm on real-world datasets by presenting
experiments on the Yahoo! Learning to Rank dataset for individual fairness and the German Credit
Dataset [39] for group fairness (Section § 4.3).



Algorithm 1 FAIR-PG-RANK

Input: 7 = {(x9,rel?)}}¥,, disparity measure D, utility/fairness trade-off \
Parameters: model hy, learning rate 7, entropy reg -y
Initialize hg with parameters 6,
repeat
q = (x9,rel?) ~ T {Draw a query from training set}
ho(x7) = (ho(x{), ho(23),... ho(zf, )) {Obtain scores for each document}
fori=1to S do
r; ~ mo(r|q) {Plackett-Luce sampling}
end for .
V + VU — AV D {Compute gradient as an average over all r; using § 3.2.1 and § 3.2.2}
0 < 0 + nV {Update}
until convergence on the validation set

Table 1: Comparing PG-RANK to the baseline LTR methods from [24] on the Yahoo dataset.

NDCG@10 ERR

RankSVM [40] 0.75924  0.43680
GBDT [41] 0.79013  0.46201
PG-RANK (Linear model) 0.76145  0.44988
PG-RANK (Neural Network) 0.77082  0.45440

For all the experiments, we use NDCG as the utility metric, define merit using the identity function
M (rel) = rel, and set the position bias v to follow the same distribution as the gain factor in DCG i.e.

Vj X m where j = 1,2,3,... is a position in the ranking.

4.1 Can PG-RANK learn accurate ranking policies?

To validate that PG-RANK is indeed a highly effective LTR method, we conduct experiments on the
Yahoo dataset [24]. We use the standard experiment setup on the SET 1 dataset and optimize NDCG
using PG-RANK, which is equivalent to finding the optimal policy in Eq. (1) with A = 0.

We train FAIR-PG-RANK for two kinds of scoring models: a linear model and a neural network
(one hidden layer with 32 hidden units and ReLLU activation). Details of the models and training
hyperparameters are given in the supplementary material. The policy learned by our method is a
stochastic policy, however, for the purpose of evaluation in this task, we use the highest probability
ranking of the candidate set for each query to compute the average NDCG@ 10 and ERR (Expected
Reciprocal Rank) over all the test set queries. We compare our evaluation scores with two baselines
from Chapelle and Chang [24] — a linear RankSVM [40] and a non-linear regression-based ranker
that uses Gradient-boosted Decision Trees (GBDT) [41].

Table 1 shows that PG-RANK achieves competitive performance compared to the conventional LTR
methods. When comparing PG-RANK to RankSVM for linear models, our method outperforms
RankSVM in terms of both NDCG@ 10 and ERR. This verifies that the policy-gradient approach
is effective at optimizing utility without having to rely on a possibly lose convex upper bound like
RankSVM. PG-RANK with the non-linear neural network model further improves on the linear model.
Furthermore, additional parameter tuning and variance-control techniques from policy optimization
are likely to further boost the performance of PG-RANK, but are outside the scope of this paper.

4.2 Can FAIR-PG-RANK effectively trade-off between utility and fairness?

We designed a synthetic dataset to allow inspection into how FAIR-PG-RANK trades-off between
user utility and fairness of exposure. The dataset contains 100 queries with 10 candidate documents
each. In expectation, 8 of those documents belong to the majority group G and 2 belong to the
minority group G;. For each document we independently and uniformly draw two values x; and
2o from the interval (0, 3), and set the relevance of the document to z; + x5 clipped between 0
and 5. For the documents from the majority group Gy, the features vector (z1, z2) representing the
documents provides perfect information about relevance. For documents in the minority group G,
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points show the models learned by FAIR-PG-RANK under different values of \. (c) Comparison of
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Figure 2: Effect of varying A on NDCG@ 10 (user utility) and Djyg (individual fairness disparity) on
Yahoo data. Left: Linear model, Right: Neural Network. The overlapping dotted curves represent the
training set NDCG@ 10 and Disparity, while solid curves show test set performance.

however, feature x5 is corrupted by replacing it with zero so that the information about relevance for
documents in GG; only comes from z;. This leads to a biased representation between groups, and any
use of x5 is prone to producing unfair exposure between groups.

In order to validate that FAIR-PG-RANK can detect and neutralize this biased feature, we consider
a linear scoring model hy(x) = 0121 + O225 with parameters § = (0, 02). Figure 1 shows the
contour plots of NDCG and Dgyoyp evaluated for different values of §. Note that not only the direction
of the 0§ vector affects both NDCG and Dy, but also its length as it determines the amount of
stochasticity in my. The true relevance model lies on the 6; = 65 line (dotted), however, a fair model
is expected to ignore the biased feature x5. We use PG-RANK to train this linear model to maximize
NDCG and minimize Dgoyp. The dots in Figure 1 denote the models learned by FAIR-PG-RANK for
different values of A\. For small values of A, FAIR-PG-RANK puts more emphasis on NDCG and thus
learns parameter vectors along the #; = 65 direction. As we increase emphasis on group fairness
disparity Dgroup by increasing A, the policies learned by FAIR-PG-RANK become more stochastic and
it correctly starts to discount the biased attribute by learning models where increasingly 6; >> 6.

In Figure 1(c), we compare FAIR-PG-RANK with two baselines. As the first baseline, we estimate
relevances with a fairness-oblivious linear regression and then use the post-processing method from
[3] on the estimates. Unlike FAIR-PG-RANK, which reduces disparity with increasing A, the post-
processing method is mislead by the estimated relevances that use the biased feature x5, and the
ranking policies become even less fair as ) is increased. As the second baseline, we apply the method
of Zehlike and Castillo [23], but the heuristic measure it optimizes shows little effect on disparity.

4.3 Can FAIR-PG-RANK learn fair ranking policies on real-world data?

In order to study FAIR-PG-RANK on real-world data, we conducted two sets of experiments.

For Individual Fairness, we train FAIR-PG-RANK with a linear and a neural network model on the
Yahoo! Learning to rank challenge dataset, optimizing Equation 1 with different values of A. The
details about the model and training hyperparameters are present in the supplementary material. For
both the models, Figure 2 shows the average NDCG @ 10 and Dj,q (individual disparity) over the test
and training (dotted line) datasets for different values of A parameter. As desired, FAIR-PG-RANK
emphasizes lower disparity over higher NDCG as the value of )\ increases, with disparity going down
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Figure 3: Left: Effect of varying A on the test set NDCG and Dgyoyp for the German Credit Dataset.
The shaded area shows the standard deviation over five runs of the algorithm on the data. Right:

Comparison of NDCG and Group Disparity (Dgroup) trade-off for different methods.

to zero eventually. Furthermore, the training and test curves for both NDCG and disparity overlap
indicating the learning method generalizes to unseen queries. This is expected since both training
quantities concentrate around their expectation as the training set size increases.

For Group fairness, we adapt the German Credit Dataset from the UCI repository [39] to a learning-
to-rank task (described in the supplementary), choosing gender as the group attribute. We train
FAIR-PG-RANK using a linear model, for different values of A. Figure 3 shows that FAIR-PG-RANK
is again able to effectively trade-off NDCG and fairness. Here we also plot the standard deviation to
illustrate that the algorithm reliably converges to solutions of similar performance over multiple runs.
Similar to the synthetic example, Figure 3 (right) again shows that FAIR-PG-RANK can effectively
trade-off NDCG for Dgoup, While the baselines fail.

5 Conclusion

We presented a framework for learning ranking functions that not only maximize utility to their users,
but that also obey application specific fairness constraints on how exposure is allocated to the ranked
items based on their merit. Based on this framework, we derived the FAIR-PG-RANK policy-gradient
algorithm that directly optimizes both utility and fairness without having to resort to upper bounds
or heuristic surrogate measures. We demonstrated that our policy-gradient approach is effective
for training high-quality ranking functions, that FAIR-PG-RANK can identify and neutralize biased
features, and that it can effectively learn ranking functions under both individual fairness and group
fairness constraints.
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