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Abstract

Sequential Monte Carlo (SMC) samplers form an attractive alternative to MCMC for Bayesian
computation. However, their performance depends strongly on the Markov kernels used to re-
juvenate particles. We discuss how to calibrate automatically (using the current particles)
Hamiltonian Monte Carlo kernels within SMC. To do so, we build upon the adaptive SMC ap-
proach of Fearnhead and Taylor (2013), and we also suggest alternative methods. We illustrate
the advantages of using HMC kernels within an SMC sampler via an extensive numerical study.

1 Introduction

Sequential Monte Carlo (SMC) samplers (Neal, 2001; Chopin, 2002; Del Moral et al., 2006) ap-
proximate a target distribution π by sampling particles from an initial distribution π0, and moving
them through a sequence of distributions πt which ends at πT = π. In Bayesian computation
this approach has several advantages over Markov chain Monte Carlo (MCMC). In particular, it
enables the estimation of normalizing constants and can thus be used for model choice (Zhou et al.,
2016). Moreover, particles can be propagated mostly in parallel, with direct advantages on parallel
computing devices (Murray et al., 2016). Finally, SMC samplers are more robust to multimodality,
see Schweizer (2012b) and Jasra et al. (2015).

SMC samplers iterate over a sequence of resampling, propagation and reweighting steps. The
propagation of the particles commonly relies on MCMC kernels, that depend oftentimes on some
tuning parameters. Choosing these parameters in a sensible manner is challenging and has been
of interest both from a theoretical and practical point of view; see Fearnhead and Taylor (2013);
Schäfer and Chopin (2013); Beskos et al. (2016).

One type of MCMC kernels that has raised attention recently is HMC (Hamiltonian Monte
Carlo). HMC has originally been developed in Physics (Duane et al., 1987), and introduced to
the Statistics community by Neal (1993). It has become a standard MCMC tool for sampling
distributions with continuously differentiable density functions on Rd (Neal, 2011). The main
appeal of HMC is its better mixing (compared to, say, Metropolis samplers) in high-dimensional
problems (Beskos et al., 2013; Mangoubi and Smith, 2017).

This paper compares methods for the automatic tuning of HMC kernels within SMC. A few
previous papers and thesis considered using HMC kernels within SMC (Gunawan et al., 2018;
Burda and Daviet, 2018; Daviet, 2018; Kostov, 2016), but without focusing on tuning the kernels.
In our experience, properly tuning MCMC kernels within SMC has a big impact on performance,
and particularly so for HMC kernels. As a matter of fact, calibration of HMC kernels is recognised
as a challenging problem in the MCMC literature (e.g. Mohamed et al., 2013; Beskos et al., 2013;
Betancourt et al., 2014; Betancourt, 2016; Hoffman and Gelman, 2014). The big advantage of
tuning such kernels within SMC is that we have at our disposal a cloud of particles that inform us
on the shape and scale of the current target distribution.

We base our approach on the work of Fearnhead and Taylor (2013), which concerned the tuning
of generic MCMC kernels within SMC samplers, and on existing approaches to tuning HMC.
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We apply the proposed SMC sampler with HMC kernels to five examples; three toy examples,
a binary Bayesian regression of dimension up to 95 and a log Gaussian Cox model of dimension up
to 16, 384. Our numerical study illustrates the potential of SMC samplers for inference and model
choice in high dimensions, and the improved performance brought by HMC kernels within SMC
(relative to random walk and Langevin kernels). We also investigate the importance of adapting
the tempering ladder, and the number of move steps for diversifying the particles.

The paper is organized as follows. Section 2 reviews SMC samplers and HMC kernels. Section 3
discusses adaptive tuning procedures for SMC. Section 4 provides numerical experiments. Section
5 discusses our results.

2 Background

The methods proposed in this article could apply to generic target distributions, but we will focus
on posterior distributions and thus we will use the associated terminology. We consider the problem
of calculating expectations of an integrable test function ϕ : Rd 7→ R with respect to a posterior
distribution defined as π(x) = p(x)l(y|x)/Z. The random variable x with density π(·) is defined
on the space (Rd,B(Rd)), where B(Rd) denotes the Borel set on Rd. Here p(x) denotes the prior
distribution, l(y|x) is the likelihood of the observed data y given the parameter x ∈ Rd, and
Z =

∫
Rd l(y|x)p(x)dx denotes the normalizing constant, also called marginal likelihood or evidence.

We next describe two algorithms widely used to approximate posterior distributions: Sequential
Monte Carlo (SMC) and Hamiltonian Monte Carlo (HMC). These are building blocks for the
adaptive SMC procedures discussed in this paper.

2.1 Sequential Monte Carlo samplers

2.1.1 Introducing a sequence of targets: tempering from the prior to the posterior

Sequential Monte Carlo (SMC) approaches the problem of sampling from π by introducing a se-
quence of intermediate distributions π0, · · · , πt, · · · , πT defined on the common measurable target
space (Rd,B(Rd)) for all t, and such that π0 is easy to sample from, and πT = π.

We focus on tempering to construct intermediate distributions, that is πt(x) ∝ p(x)l(y|x)λt ,
where the sequence of exponents λt is such that 0 = λ0 < · · · < λt < · · · < λT = 1. These
exponents do not need to be pre-specified: they may be automatically selected during the run of a
SMC sampler, as described later. Other choices of sequences of distributions are possible (see e.g.
Chopin, 2002; Del Moral et al., 2006; Chopin et al., 2013). Note also that we assume throughout
the article that the prior distribution p(x) is a proper probability distribution, from which samples
can be drawn.

2.1.2 SMC samplers with MCMC moves on tempered posteriors

We denote by γt(x) = p(x)l(y|x)λt the unnormalized density associated with πt(x), and by Zt the
normalizing constant: Zt =

∫
Rd γt(x)dx. One way of constructing SMC samplers is as follows.

Suppose that at time t − 1 an equally weighted particle approximation
{
x̃it−1

}
i∈1:N of πt−1 is

available, with possible duplicates among the particles. This cloud of particles is then moved with
a Markov kernel Kt, that leaves the distribution πt−1 invariant: for each i,

xit ∼ Kt(x̃it−1, dx).

Consequently a set of new samples
{
xit
}
i∈1:N is obtained. These particles are then weighted:

particle xit is assigned an importance weight wit = γt(x
i
t)/γt−1(x

i
t), so that the next distribution πt
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is approximated by the set
{
xit, w

i
t

}
i∈1:N . After resampling particles according to their weights, one

obtains again an equally weighted set
{
x̃it
}
i∈1:N and the procedure is repeated for the next target

distribution πt+1. The resulting algorithm is given in Algorithm 1.
Upon completion, the algorithm returns weighted samples {xit, wit}i∈1:N , which may be used to

estimate expectations with respect to the target distributions as follows:∑N
i=1w

i
tϕ(xit)∑N

i=1w
i
t

→ Eπt [ϕ(x)]

as N → +∞. The algorithm also returns estimates of the ratios Zt/Zt−1 (and thus of ZT /Z0);
see line 13. (In the context of tempering, one may use the path sampling identity to derive an
alternate estimate of Zt/Zt−1, as explained in Zhou et al. (2016). However, in our experiments, the
two estimates were very close numerically, so we focus on the former estimate from now on.)

The kernels Kt may be constructed, for example, as Metropolis–Hastings kernels (see e.g.
Chopin, 2002; Jasra et al., 2011; Sim et al., 2012; Fearnhead and Taylor, 2013; Zhou et al., 2016).
More details on the general construction of kernels and on optimality can be found in Del Moral
et al. (2006, 2007). In general Markov kernels may depend on a set of tuning parameters h, and
are hereafter denoted by Kht to make this dependence explicit, as in Algorithm 1.

Algorithm 1: SMC sampler with MCMC moves on tempered posteriors

Input: Number of particles N , Initial distribution π0, target distribution πT and
intermediate distributions πt−1(x) ∝ p(x)l(y|x)λt−1 , rule for constructing Markov
kernels Kht that are πt−1 invariant.

Result: Set of weighted samples
{
xit, w

i
t

}
i∈1:N for t ∈ 1 : T and normalizing constant

estimates Ẑt/Zt−1 for t ∈ 1 : T .
Initialization: t = 1, λ0 = 0;
Iteration:

1 while λt−1 < 1 do
2 if t = 1 then
3 foreach i ∈ 1 : N do
4 Sample xi1 ∼ π0;

5 else
6 Tune Markov kernel parameters h using available particles; see Algorithm 5 or 6;
7 foreach i ∈ 1 : N do
8 Move particle xit ∼ Kht (x̃it−1, dx) ;

9 Move step can be iterated for better mixing, see Algorithm 3 ;

10 Choose the next exponent λt ∈ (λt−1, 1] based on available particles; see Algorithm 2;
11 foreach i ∈ 1 : N do

12 Weight particle wit =
γt(xit)

γt−1(xit)
;

13 Calculate Ẑt
Zt−1

= N−1
∑N

i=1w
i
t ;

14 Resample particles
{
xit, w

i
t

}
i∈1:N to obtain

{
x̃it
}
i∈1:N ;

15 Set t = t+ 1;

2.1.3 Tuning of the SMC sampler

Different design choices have to be made for the SMC sampler of Algorithm 1 to be operational.
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(a) The choice of the next exponent λt, at line 10 of Algorithm 1, may be based on available
particles; for instance on their effective sample size, as explained below.

(b) The number of move steps, at line 9 of Algorithm 1, may be based on the observed performance
of the Markov kernels; see below.

(c) The tuning of the Markov kernel parameters h, at line 6 of Algorithm 1, may be based on
the particles, which is the main difference compared to the usual MCMC setting. The main
contribution of this paper is to investigate this tuning in the case of HMC kernels, and is
described in Section 3.

(a) Choice of the next exponent A common approach (Jasra et al., 2011; Schäfer and Chopin,
2013) to choose adaptively intermediate distributions within SMC is to rely on the ESS (effective
sample size, Kong et al., 1994). The ESS is a measure of performance for importance sampling
estimates (Agapiou et al., 2017). This criterion is calculated as follows:

ESS(λt) =

(∑N
i=1w

i
t

)2
∑N

i=1

(
wit
)2 , (1)

where wit = γt(x
i
t)/γt−1(x

i
t) = l(y|xit)λt−λt−1 in the setting considered here. The ESS is linked to the

χ2-divergence between the distributions πt−1 and πt or equivalently to the variance of the weights.
More precisely the ESS is a Monte Carlo approximation of N/(1 + χ2(πt, πt−1)) where χ2(πt, πt−1)
is the χ2 divergence from πt−1 to πt.

We may choose λt by solving (in λ) the equation ESS(λ) = αN , for some user-chosen value
α ∈ (0, 1). The corresponding algorithm is described in Algorithm 2. The validity of adaptive SMC
samplers based on an ESS criterion is studied in e.g. Beskos et al. (2016), see also Huggins and
Roy (2018); Whiteley et al. (2016). Another approach for choosing the sequence of temperature
steps is exposed in Friel and Pettitt (2008).

Algorithm 2: Choice of the next exponent based on the effective sample size.

Input: Target value α, likelihood l(y|xit) for the N particles xit, current temperature λt−1.
Result: Next temperature λt.

1 Define βi(λ) := l(y|xit)λ−λt−1 and

ESS(λ) =

(∑N
i=1 β

i(λ)
)2

∑N
i=1 (βi(λ))2

;

2 if ESS(1) ≥ αN then
3 λt = 1

4 else
5 Solve ESS(λ) = αN in λ ∈ [λt−1, 1], using bisection, assign result to λt.

(b) Number of move steps The mixing of MCMC kernels plays a crucial role in the performance
and stability of SMC samplers (see e.g. Del Moral et al., 2006; Schweizer, 2012a; Ridgway, 2016).

For any MCMC kernel targeting a distribution π, mixing is improved by repeated application
of the kernel, for a cost linear in the number of repetitions. We propose to monitor the product
of componentwise first-order autocorrelations of the particles to decide how many repetitions to
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use. Autocorrelations are calculated w.r.t.
{
x̃it
}
i∈1:N , the cloud of particles after reweighting and

resampling at time t. After k move steps through the kernel Kht the cloud of particles is {xit,k}i∈1:N .

We then calculate the empirical correlation of the component-wise statistic xit,k(j)+xit,k(j)
2, where

xit,k(j) denotes component j of the vector xit,k, using the successive states of the chain xit,k(j) and

xit,k−1(j). This empirical correlation is denoted by ρ̂k(j). This statistic is chosen to reflect the
first two moments of the particles, but is otherwise arbitrary. We suggest to continue applying the
Markov kernel until a large fraction (e.g. 90%) of the product of the first order autocorrelations
drops below a threshold α′ = 0.1, for example. The resulting algorithm is described in Algorithm
3.

Algorithm 3: Adaptive move step based on autocorrelations.

Input: Particles
{
x̃it
}
i∈1:N , proposal kernel Kht .

Result: Particles after k move steps {xit,k}i∈1:N .

Initialization: {xit,0}i∈1:N ←
{
x̃it
}
i∈1:N , k ← 0.

1 while #{j :
∏k
l=1 ρ̂l(j) > α′}/d ≥ 10% do

2 Set k ← k + 1;

3 Move particle xit,k ∼ Kht (xit,k−1, dx) for all i;

4 Calculate the correlation ρ̂k(j) for all j;

Instead of using component-wise autocorrelations, one could also draw on recent work on the
performance evaluation of MCMC algorithms in multidimensional spaces (Vats et al., 2015) or
approaches based on the Stein discrepancy (Gorham and Mackey, 2015).

2.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) consists in proposing moves by solving the equations of motion
of a particle evolving in a potential. We first describe HMC, by following the exposition in Neal
(2011), before turning to existing approaches to the tuning of its algorithmic parameters.

2.2.1 MCMC based on Hamiltonian dynamics

Let L(x) = log γ(x) be the unnormalized log density of the random variable of interest x. We
introduce an auxiliary random variable p ∈ Rd with distribution N (0,M), and hence unnormalized
log density log f(p) = −1/2 pTM−1p. The joint unnormalized density of (p, x) is given as µ(p, x) =
f(p)γ(x) and the negative joint log-density is denoted by

H(p, x) = − log µ(p, x) = −L(x) +
1

2
pTM−1p.

The physical analogy of this quantity is the Hamiltonian, where the first term denotes the potential
energy at position x, and the second term denotes the kinetic energy of the momentum p with the
mass matrix M. The movement in time of a particle with position x and momentum p can be
described via its Hamilton equations,{

dx
dτ = ∂H

∂p = M−1p,
dp
dτ = −∂H

∂x = ∇xL(x),

where dx/dτ, dp/dτ denote the derivatives of the position and the momentum with respect to the
continuous time τ . The solution of this differential equation induces a flow Φτ that describes the
evolution of a system with initial momentum and position (p0, x0) such that Φτ (p0, x0) = (pτ , xτ ).
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The solution is (a) energy preserving, e.g. H (pτ , xτ ) = H (p0, x0); (b) volume preserving and
consequently the determinant of the Jacobian of Φτ equals one; (c) the flow is reversible w.r.t. time.
In terms of probability distributions this means that if (p0, x0) ∼ µ(p, x) then also (pτ , xτ ) ∼ µ(p, x).

In most cases an exact solution of the flow is not available and one has to use numerical
integration methods instead. One widely used integrator is the Störmer-Verlet or leapfrog integrator
(Hairer et al., 2003). The leapfrog integrator is volume preserving and reversible but not energy
preserving. It iterates the following updates:

pτ+ε/2 = pτ + ε/2∇xL(xτ ),

xτ+ε = xτ + εM−1pτ+ε/2,

pτ+ε = pτ+ε/2 + ε/2∇xL(xτ+ε),

where ε denotes the step size of the leapfrog integrator. Thus, in order to let the system evolve
from τ to τ + κ with κ = L × ε we need to make L steps as described above. This induces a
numerical flow Φ̂ε,L such that Φ̂ε,L(pτ , xτ ) = (p̂τ+κ, x̂τ+κ). In general we have ∆Eκ 6= 0 where
∆Eκ = H(p̂τ+κ, x̂τ+κ)−H(pτ , xτ ) is the variation of the Hamiltonian. The dynamics can be used
to construct a Markov chain targeting µ on the joint space, with a Metropolis–Hastings step that
corrects for the variation in the energy after sampling a random momentum and constructing a
numerical flow. Algorithm 4 describes the Markov kernel of HMC.

Algorithm 4: Hamiltonian Monte Carlo algorithm

Input: Gradient function ∇xL(·), initial state xs, energy function ∆E
Result: Next state of the chain (ps+1, xs+1)

1 Sample ps ∼ N (0d,M)

2 Apply the leapfrog integration: (p̂s+1, x̂s+1)← Φ̂ε,L(ps, xs)
3 Sample u ∼ U [0, 1]
4 if log(u) ≤ ∆Es then
5 Set xs+1 ← x̂s+1

6 else
7 Set xs+1 ← xs

2.2.2 Existing approaches to tuning HMC

The error analysis of geometric integration gives insights that allow to find step sizes ε that yield
stable trajectories. For the leapfrog integrator the error of the energy is

|H(p̂τ+κ, x̂τ+κ)−H(pτ , xτ )| ≤ C1ε
2, (2)

and the error of the position and momentum is∥∥∥Φ̂ε,L(p̂τ , x̂τ )− Φ(pτ , xτ )
∥∥∥
2
≤ C2ε

2, (3)

see Leimkuhler and Matthews (2016); Bou-Rabee and Sanz-Serna (2018) for more details. It
can be shown that the constant C1 > 0 in (2) stays stable over exponential long time intervals
εL ≤ exp(h0/2ε) for some constant h0 (Hairer et al., 2006, Theorem 8.1), whereas the constant
C2 > 0 in the (3) typically grows with L. Hence, care must be taken when choosing (ε, L).
Using the error control in (2), Neal (2011) following Creutz (1988) provides an informal reasoning
motivating the scaling of ε as d−1/4, at least for targets that factorize into products of d independent
components. To maintain a fixed integration time εL one should then scale L as d1/4.
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From a practical point of view the tuning of the HMC kernel requires the consideration of the
following aspects. If ε is too large, the numerical integration of the HMC flow becomes unstable
and results in large variations in the energy and thus a low acceptance rate, see (2). On the other
hand if ε is too small, for a fixed number of steps L the trajectories tend to be short and high
autocorrelations will be observed, see Neal (2011). To counterbalance this effect a large L would
be needed and thus computation time would increase. If L gets too large, the trajectories might
also double back on themselves (Hoffman and Gelman, 2014).

From a theoretical perspective Beskos et al. (2013) and later Betancourt et al. (2014) show that
the integrator step size ε should be chosen such that acceptance rates between 0.651 and 0.9 are
obtained, when the dimension of the target space goes to infinity. This idea has been exploited in
Hoffman and Gelman (2014) where stochastic approximation is used in order to obtain reasonable
values of ε.

A different approach is to choose the parameters of the kernel such that the expected squared
jumping distance (ESJD) of the kernel is maximized, see Pasarica and Gelman (2010). The ESJD
in one dimension is defined as

ESJD = E
[
‖xs − xs−1‖22

]
= 2(1− ρ1) Varπ[x],

assuming stationarity. In this sense maximizing the ESJD of a Markov chain is equivalent to
minimizing the first order autocorrelation ρ1. In d dimensions maximizing the ESJD in Euclidean
norm amounts to minimizing the correlation of the d dimensional process in Euclidean norm. In
the case of HMC this has been discussed by Mohamed et al. (2013) and Hoffman and Gelman
(2014). Mohamed et al. (2013) tune the HMC sampler with Bayesian optimization and vanishing
adaptation in the spirit of adaptive MCMC algorithms, see Andrieu and Thoms (2008). The ESJD
is then maximized as a function of (ε, L). Hoffman and Gelman (2014) discuss the ESJD as a
criterion for the choice of L. As a general idea the simulation of the trajectories should be stopped
when the ESJD starts to decrease. However, this idea has the inconvenience of impacting the
reversibility of the chain. This problem is solved by adjusting the acceptance step in the algorithm.
The resulting algorithm is called NUTS (Hoffman and Gelman, 2014) and is used in the probabilistic
programming language STAN, see Carpenter et al. (2017).

Neal (2011) suggests to use preliminary runs in order to find reasonable values of (ε, L) and to
randomize the values around the chosen values. The randomization avoids pathological behavior
that might occur when (ε, L) are selected badly. Other approaches on identifying the optimal
trajectory length are discussed in Betancourt (2016).

Another important tuning parameter is the mass matrix M, that is used for sampling the
momentum. When the target distribution is close to a Gaussian, rescaling the target by the
Cholesky decomposition of the inverse covariance matrix eliminates the correlation of the target
and can improve the performance of the sampler. Equivalently, the inverse covariance matrix can
be set to the mass matrix of the momentum. This yields the same transformation, see Neal (2011).
Recently, Girolami and Calderhead (2011) suggested to use a position dependent mass matrix that
takes the local curvature of the target into account. However, the numerical integrator for the
Hamiltonian equation needs to be modified in consequence.

3 Tuning Of Hamiltonian Monte Carlo Within Sequential Monte
Carlo

We now discuss the tuning of the Markov kernel in line 6 of Algorithm 1. The tuning of Markov ker-
nels within SMC samplers can be linked to the tuning of MCMC kernels in general. One advantage
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of tuning the kernels in the framework of SMC is that information on the intermediate distributions
is available in form of the particle approximations. Moreover, different kernel parameters can be
assigned to different particles and hence a large number of parameters can be tested in parallel.
This idea has been exploited by Fearnhead and Taylor (2013). We build upon their methodology
and adjust their approach to the tuning of HMC kernels.

We first describe the tuning of the mass matrix. Second, we present our adaptation of the
approach of Fearnhead and Taylor (2013) to the tuning of HMC kernels, abbreviated by FT.
Then we present an alternative approach based on a pre-tuning phase at each intermediate step,
abbreviated by PR for preliminary run. Finally, we discuss the advantages and drawbacks of the
two approaches.

3.1 Tuning of the mass matrix of the kernels

The HMC kernels depend on the mass matrix M, used for sampling the momentum. Calibrating this
matrix based on the particles of the previous iteration allows to exploit the information generated
by the particles. In the case of an independent MH proposal this has been used by Chopin (2002)
and more recently by South et al. (2019). For the HMC kernel we use the following matrix at
iteration t

Mt = diag(V̂arπt [xt])
−1, (4)

where V̂arπt [xt] is the particle estimate of the covariance matrix of target πt. The restriction to a
diagonal matrix makes this approach applicable in high dimensions; alternatively a non-diagonal
covariance or precision matrix could be estimated in high dimension by assuming sparsity (see e.g.
Liu et al., 2016). Thus, the global structure of the target distribution πt−1 is taken into account
and moves in directions of higher variance are proposed.

3.2 Adapting the tuning procedure of Fearnhead and Taylor (2013)

Suppose we are at line 6 during iteration t of Algorithm 1. We are now interested in choosing the
parameters h of the propagation kernel Kht .

Fearnhead and Taylor (2013) consider the following ESJD (expected squared jumping distance)
criterion:

gt(h) =

∫
πt−1(xt−1)Kht (xt−1, xt) ‖xt−1 − xt‖2M dxt−1dxt (5)

where ‖x− y‖2M = (x− y)tM−1(x− y) stands for the Mahalanobis distance with respect to matrix
M ; in our case we set M = Mt−1, see (4). (Fearnhead and Taylor (2013) set M to the covariance
matrix of the particles at time t− 1, but, again, this requires inverting a full matrix, which may be
too expensive in high-dimensional problems.)

By maximizing gt(h) we minimize the first-order autocorrelation of the chain. This leads to
a reduced asymptotic variance of the chain and hopefully to a reduced asymptotic variance for
estimates obtained from the SMC sampler.

The tuning procedure referred to as FT has the following steps:

1. Assign different values of hit according to their performance to the resampled particles x̃it−1.

2. Propagate xit ∼ K
hit
t (x̃it−1, dx).

3. Evaluate the performance of hit based on xit, x̃
i
t−1.
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In Step 1, we use the following performance metric, which is a Rao-Blackwellized estimator of
(5):

Λ̃(x̃it−1, x̂
i
t) =

∥∥x̃it−1 − x̂it∥∥2M
L

×min(1, exp[∆Ei
t ]). (6)

Here x̂it is the proposed position based on the Hamiltonian flow Φ̂ε,L(x̃it−1, p
i
t) before the MH step.

The acceptance rate min(1, exp[∆Ei
t ]) of the MH step is based on the variation of the energy ∆Eit ,

and serves as weight.
This metric is the same as in Fearnhead and Taylor (2013), except that it is divided by L, in

order to account for the fact that the CPU cost of an HMC kernel increases linearly with L.
The pairs hit = (εit, L

i
t) are weighted according to the performance metric Λ̃(x̃it−1, x̂

i
t). The next

set of parameters hit+1 are sampled from

χt+1(h) ∝
N∑
i=1

Λ̃(x̃it−1, x̂
i
t)R(h;hit),

where R is a perturbation kernel. We suggest to set R to

R(h;hit−1) = T N (ε; εit−1, 0.0152)⊗
{

1

3
1{Li

t−1−1}(L) +
1

3
1{Li

t−1}(L) +
1

3
1{Li

t−1+1}(L)

}
,

where T N denotes a normal distribution truncated to R+. The part in curly brackets corresponds
to a discrete mixture for the variable L. Thus ε is perturbed by a small (truncated) Gaussian
noise, and L has an equal chance of increasing, decreasing or staying the same. The variance of
the Gaussian noise is set to the value used by Fearnhead and Taylor (2013) (in our simulations
we found that the tuning was robust to different choices of this value). The resulting algorithm is
given in Algorithm 5.

Algorithm 5: (FT) Tuning of the HMC algorithm based on Fearnhead and Taylor (2013)

Input: Previous parameters hit−1, estimator of associated utility Λ̃(x̃it−2, x̂
i
t−1), i ∈ 1 : N ,

perturbation kernel R
Result: Sample of hit = (εit, L

i
t), i ∈ 1 : N

1 foreach i ∈ 1 : N do

2 Sample hit ∼ χt(h) ∝
∑N

i=1 Λ̃(x̃it−2, x̂
i
t−1)R(h;hit−1);

3.3 Pretuning of the kernel at every time step

The previous tuning algorithm relies on the assumption that parameters suited for the kernel used
at time t− 1 will also achieve good performance at time t.

We suggest as an alternative to the previous approach the following two-stage procedure:

1. We apply an HMC step (with respect to πt−1) to the N current particles; for each particle
the value of (ε, L) is chosen randomly from a certain uniform distribution (described in next
section). We then construct a new random distribution for (ε, L) based on the performance
of these N steps (Section 3.3.2). The HMC trajectories are then discarded.

2. We apply again an HMC step to the N current particles, except this time (L, ε) is generated
from the distribution constructed in the previous step.

We now explain this approach in more detail.
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3.3.1 Range of values for ε

In the first stage of our pre-tuning parameter, ε is generated from U [0, ε?t−1], and L from U [0, Lmax].
We discuss in this section how to choose ε?t−1. The value of the very first ε?0 is given in Section 4.

Our approach is motivated by the upper bound in (2). If for different step sizes ε̂it and different
momenta and positions (pit, x̃

i
t−1) for i ∈ {1 : N} we observe

∣∣∆Eit∣∣ =
∣∣H(p̂it, x̂

i
t)−H(pit, x̃

i
t−1)

∣∣, this
information may be used to fit a model of the form∣∣∆Eit∣∣ = f(ε̂it) + ξit,

where ξit is assumed to be such that ∀i,E
[
ξit
]

= 0,Var
[
ξit
]

= σ2 < ∞ and f : R+ → R+. We may
then choose ε? so that f(ε?) = | log 0.9|. This ensures that the acceptance rate of the HMC kernel
stays close to 90%, following the suggestions of Betancourt et al. (2014).

In particular we suggest to use the model

f(ε̂it) = α0 + α1(ε̂
i
t)
2,

and we minimize the sum of the absolute value errors
∑N

i=1

∣∣ξit∣∣ w.r.t. (α0, α1), which amounts to
a median regression. Compared to least squares regression, this approach is more robust to high
fluctuations in the energy which typically occur when ε approaches its stability limit. We illustrate
this point in Figure 1b.
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Figure 1: Tempering of a normal distribution to a shifted and correlated normal distribution in
dimension 10 (see the example in Section 4.1 for more details). Left: The normalized and weighted
squared jumping distance (z-axis) as a function of ε (y-axis) and L (x-axis) for the temperature
0.008. Right: Variation of the difference in energy ∆E as a function of ε for the same temperature.
The values of L are randomized. Based on an SMC sampler with an HMC kernel based on N =
1, 024 particles.

3.3.2 Construction of a random distribution for (ε, L)

Algorithm 6 describes how we generate values for (ε, L) during the second stage of our pre-tuning
procedure. In words, these values are sampled from the weighted empirical distribution that corre-
spond to the N values (ε̂it, L̂

i
t) generated (uniformly) during the first stage, with weights given by
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performance metric (6). We visualize this metric as a function of ε, L in Figure 1a.

Algorithm 6: (PR) Pre-tuning of the HMC kernel

Input: Resampled particles x̃it−1, i ∈ 1 : N , HMC flow Φ̂·,· (targeting πt−1), ε
?
t−1

Result: Sample of (εit, L
i
t), i ∈ 1 : N , upper bound ε?t

1 foreach i ∈ 1 : N do

2 Sample ε̂it ∼ U [0, ε?t−1] and L̂it ∼ U{1 : Lmax};
3 Sample pit ∼ N (0d,Mt−1);

4 Apply the leapfrog integration: (p̂it, x̂
i
t)← Φ̂ε̂it,L̂

i
t
(pit, x̃

i
t−1);

5 Calculate ∆Eit and Λ̃(x̃it−1, x̂
i
t)

6 Calculate ε?t based on the quantile regression of ∆Eit on ε̂it ∀i ∈ 1 : N ;

7 Sample (εit, L
i
t) ∼ Cat

(
wit, {ε̂it, L̂it}

)
, where wit ∝ Λ̃(x̃it−1, x̂

i
t) ∀i ∈ 1 : N ;

3.3.3 Range of values for L

During the first stage of our pre-tuning procedure, L is generated uniformly within range [0, Lmax].
The quantity Lmax is initialized to some user-chosen value (we took Lmax = 100 in our simulations).
Whenever a large proportion of the Lit generated by Algorithm 6 is close to Lmax, we increase Lmax

by a small amount (5 in our simulations). Similarly, whenever a large proportion of these values
are far away from Lmax, we decrease Lmax by the same small amount.

3.4 Discussion of the tuning procedures

Comparison of the two algorithms The difference between the two procedures consists in
the pre-tuning phase at each intermediate step of the sampler. On one hand, pre-tuning makes
the SMC sampler more costly per intermediate step. On the other hand this approach makes the
sampler more robust to a sudden change in the sequence of distributions. We illustrate this point
in our numerical experiments.

Both of the suggested tuning procedures have computational costs linear in the number of
particles N , in line with the other operations performed in the SMC sampler.

Other potential approaches to tuning HMC within SMC One could try to maximize the
squared jumping distance as a function of the position of every particle, based on the associated
values of (ε, L). However, learning optimal parameters for every position might be challenging,
possibly harder than the original Monte Carlo problem of interest. In line with Girolami and
Calderhead (2011) one could use a position dependent mass matrix that would take the geometry
of the target space into account, for instance related to higher-order derivatives of the target
probability density function.

Returning to the choice of (ε, L) one could use an approach based on Bayesian optimization
(Snoek et al., 2012), based on the performance of the (εit−1, L

i
t−1) at the previous iteration. This

idea would amount to a parallel version of Mohamed et al. (2013). However, it is not clear how this
approach would behave if the underlying distributions evolve over time. Not using a pre-tuning
step reduces the computational load at the expense of making the sampler potentially less robust.
Moreover, the approach of Fearnhead and Taylor (2013) already explores the hyperparameter space
adaptively without requiring additional model specifications. If framed as a Bandit problem, fixing
over time a grid of possible values (ε, L) could be problematic if the grid misses relevant parts of the
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hyperparameter space. This holds true in particular when using continuous Bayesian optimization,
where one typically has to define some box constraints on the underlying space.

Extensions The tuning procedure based on pre-tuning might also be used for tuning random
walk (RW) Metropolis or MALA (Metropolis adjusted Langevin) kernels. In the first case we may
use median regression to find an upper bound for the scale such that the acceptance rate is close
to 23.4% (Roberts et al., 1997). In the second case one may target an acceptance rate of 57.4%
(Roberts and Rosenthal, 1998). (MALA kernels may be viewed as HMC kernels with L = 1.) It
recently came to our knowledge that the work of Salomone et al. (2018) also uses a pre-tuning
approach for MCMC kernels within SMC samplers. A notable difference with our approach is that
Salomone et al. (2018) concentrates on finding a single tuning parameter, rather than a distribution.

4 Experiments

Our experiments highlight the importance of adapting SMC samplers, in particular the parameters
of their Markov kernels. Specifically, we try to answer the following questions. How important
is it to adapt (a) the number of temperature steps and (b) the number of move steps? (c) Does
our tuning procedure of HMC kernels provide reasonable values of (ε, L) compared to other tuning
procedures of HMC? (d) To what extent does HMC within an SMC sampler scale with the dimension
and may be applied to real data applications? (e) How robust are SMC samplers to multimodality?

For this purpose we compare adaptive (A) and non-adaptive (N) versions of HMC-based SMC
samplers, where the adaptation may be carried out using either the FT approach (our variant of
the approach of Fearnhead and Taylor, 2013) or the PR (pre-tuning) approach. We also include
in our comparison SMC samplers based on random walk (RW) and MALA kernels, and the FT
adaptation procedure. We call our algorithms accordingly: i.e. HMCAFT stands for an SMC
sampler using HMC kernels, which are adapted using the FT procedure.

In all the considered SMC samplers, the mass matrix Mt of the MCMC kernels is set to the
diagonal of the covariance matrix obtained at the previous iteration. Unless otherwise stated, the
number of particles is N = 1, 024 and the resampling is triggered when the ESS drops below N/2.
The computational load of a given sampler is defined as the number of gradient evaluations, plus
the number of likelihood evaluations. Note, that this is a conservative choice as computations of
the likelihood and the gradient often involve the same computations. Most of our comparisons are
in terms of adjusted variance, or adjusted MSE (mean squared error), by which we mean: variance
(or MSE) times computational load.

All HMC-based samplers are initialized with uniform random draws of ε on [0, 0.1] and L
on {1, 100}. The MALA and RW-based samplers are initialized with random draws of the scale
parameter on [0, 1]. The initial mass matrix is set to the identity for all different samplers. All
samplers choose adaptively the number of move steps based on Algorithm 3. Code for reproducing
the results shown below is available under https://github.com/alexanderbuchholz/hsmc.

4.1 Tempering from an isotropic Gaussian to a shifted correlated Gaussian

As a first toy example we consider a tempering sequence that starts at an isotropic Gaussian
π0 = N (0d, Id), and finishes at a shifted and correlated Gaussian πT = N (µ,Ξ), where µ = 2× 1d,
for different values of d. For the covariance we set the off-diagonal correlation to 0.7 and the
marginal variances to elements of the equally spaced sequence Ξ̃ = [0.1, · · · , 10]. We get the
covariance Ξ = diag Ξ̃1/2 corr(X) diag Ξ̃1/2. This toy example is rather challenging due to the
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different length scales of the variance, the correlation and the shifted mean of the target. In this
example the true mean, variance and normalizing constants are available. Therefore we report the
mean squared error (MSE) of the estimators. We use normalized importance weights and thus
ZT /Z0 = 1.

We first compare the following SMC samplers: MALA, HMCAFT and HMCAPR (according
to the denomination laid out in the previous section). We add to the comparison HMCNFT, an
SMC sampler using adaptive (FT based) HMC steps, but where the sequence of temperatures is
fixed a priori to a long equi-spaced sequence (the size of which is set according to the number of
temperatures chosen adaptively during one run of HMCAFT).

Figure 2a plots the ESS as a function of the temperature, for dimension d = 500, for algorithms
HMCAFT and HMCNFT. Figures 2b and 3 compare the SMC samplers in terms of computational
load (Figure 2b) and adjusted MSE (i.e. MSE times the computational load) for the normalizing
constant and the expectation of the first component (with respect to the target). The results for
other components (not shown here) are similar to the results for the first component.

A first observation is that it seems useful to adapt the sequence of temperatures: HMCNFT is
outperformed by all the other algorithms for both estimates. A second observation is that there
is no clear ranking between the three other samplers. HMC-based samplers (and particularly
HMCAFT) do perform better than the MALA-based sampler for the normalizing constant, but the
picture is less clear for the posterior expectation of the first component. It is remarkable that, even
in dimensions as high as 500, MALA kernels may be competitive.
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Figure 2: ESS and temperature steps in dimension d = 500 (Figure 2a) and the computational load
of the sampler in terms of the number of total gradient evaluations (Figure 2b).
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Figure 3: Mean squared error of the normalization constant (Figure 3a) and the mean squared
error of the first component of the mean (Figure 3b) multiplied by the computational cost over
dimensions. Based on 40 repetitions of the samplers with N = 1, 024 particles.

In a second step, we compare the impact of adapting the number of move steps of the samplers.
We restrict the comparison to a MALA-based sampler that uses FT tuning and an HMC-based
sampler that uses PR tuning. For the non-adaptive samplers (N) the number of move steps is fixed
to a constant number, equal to the average number of move steps over the complete run of an
adaptive sampler. The temperatures are chosen adaptively.

We compare the performance of the samplers in estimating the trace of the variance Ξ. The
results are shown in Figure 4a and the associated computational cost is shown in Figure 4b. The
adaptive samplers seem to offer a similar trade-off in terms of MSE versus computational load.
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Figure 4: Mean squared error of the trace of the estimated variance (Figure 4a) multiplied by the
computational cost (Figure 4b) over dimensions. Based on 40 repetitions of the samplers with
N = 1, 024 particles.

In order to assess the performance of the two tuning procedures (FT and PR), we compare the
tuning parameters obtained at the final stage of our SMC samplers (HMCAFT and HMCAPR)
with those obtained from the following MCMC procedures: NUTS (Hoffman and Gelman, 2014)
and the adaptive MCMC algorithm of Mohamed et al. (2013). NUTS iteratively tunes the mass
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matrix M, the number of leapfrog steps L and the step size ε in order to achieve a high ESJD
(expected squared jumping distance). The adaptive HMC sampler of Mohamed et al. (2013) uses
Bayesian optimization in order to find values of (ε, L) that yield a high ESJD.

For this purpose we run our HMC-based SMC samplers and record the achieved ESJD of the
HMC kernel at the final distribution πT . NUTS and the adaptive HMC sampler are run directly
on the final target distribution. For NUTS we use the implementation available in STAN; for
the adaptive HMC sampler we reimplemented the procedure of Mohamed et al. (2013). After the
convergence of the tuning procedures we run the chain for 2, 000 iterations and discard a burnin of
1, 000 samples. The ESJD is calculated on the remaining 1, 000 iterations of the chain. The results
of this comparison are shown in Table 1. We see that both the HMC-based SMC samplers, NUTS
and the adaptive HMC tuning achieve an ESJD of the same order of magnitude. Thus, our tuning
procedure gives values of (ε, L) that yield an ESJD comparable to other existing procedures.

Dimension SMC HMCAPR SMC HMCAFT SMC MALA NUTS adaptive HMC

10 50.64 61.03 9.89 59.88 134.70
50 174.64 255.98 30.56 204.34 190.67

200 639.35 989.97 85.22 1,281.06 927.30
500 1,556.27 1,311.60 154.05 2,210.44 1,731.04

Table 1: Average squared jumping distance of different algorithms for the Gaussian target in the
first example (based on 40 runs). The results are based on 1,024 samples for the SMC samplers.
For the MCMC samplers (NUTS, adaptive HMC) we used a length of 2,000 states where the first
1,000 states are discarded as burn-in.

4.2 Tempering from a Gaussian to a mixture of two correlated Gaussians

The aim of our second example is to assess the robustness of SMC samplers with respect to multi-
modality. We temper from the prior π0 = N (µ0, 5Id) towards a mixture of shifted and correlated
Gaussians πT = 0.3N (µ,Ξ1) + 0.7N (−µ,Ξ2), where µ = 4 × 1d and we set the off diagonal cor-
relation to 0.7 for Ξ1 and to 0.1 for Ξ2. The variances are set to elements of the equally spaced
sequence Ξ̃j = [1, · · · , 2] for j = 1, 2. The covariances Ξj are based on the same formula as in
the first example. In order to make the example more challenging we set µ0 = 1d. Thus, the
starting point of the sampler is slightly biased towards one of the two modes. We evaluate the
performance of the samplers by evaluating the signs of the particles and use therefore the statistic
Ti := 1/d

∑d
j=1 1{signXj,i=+1}, based on a single particle. We expect a proportion of 30% of the

signs to be positive, i.e. 1/N
∑N

i=1 Ti ≈ 0.3, if the modes are correctly recovered. Our measure of
error is based on the squared deviation from this value. We consider the following SMC samplers:
MALA, RW, HMCAFT, and HMCAPR. All the samplers choose adaptively the number of move
steps and the temperatures.

As shown by Figure 5b the two HMC-based samplers yield a lower error of the recovered
modes adjusted for computation in moderate dimensions. In terms of the recovery of the modes
all samplers behave comparably, see Figure 5a. Nevertheless, as the dimension of the problem
exceeds 20 all samplers tend to concentrate on one single mode. This problem may be solved by
initializing the sampler with a wider distribution. However, this approach relies on the knowledge
of the location of the modes.

Consequently, SMC samplers are robust to multimodality only in small dimensions and care
must be taken when using SMC samplers in this setting. That said, HMC-based samplers seem
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slightly more robust to multimodality; see e.g. results for d = 10 in Figure 5a. See also the recent
work of Mangoubi et al. (2018) for the performance of HMC versus RWMH on multimodal targets.
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Figure 5: Left: Violinplot of the error, based on the squared difference of 1/N
∑N

i=1 Ti−0.3. Right:
Mean squared error of the proportion of recovered modes adjusted for the computation. Based on
40 runs of the samplers.

4.3 Tempering from an isotropic Student distribution to a shifted correlated
Student distribution

As a different challenging toy example we study the tempering from an isotropic Student distribu-
tion π0 = T3(0d, Id) with 3 degrees of freedom towards a shifted and correlated Student distribution
with ν = 10 degrees of freedom, i.e. πT = Tν(µ,Ξ). The mean and scale matrix are set as in the
unimodal Gaussian example in 4.1.
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Figure 6: Figure 6a shows the squared error of the estimator of the normalizing constant. Figure 6b
shows the squared error of the trace of the mean over different dimensions adjusted for computation.
The results are based on 100 runs of the samplers with N = 1, 024 particles.

This example is more challenging as the target distribution πT has heavy tails. We vary the
dimension between d = 5 and d = 150. The temperature steps are chosen such that an ESS of 90%
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is attained. The adaptive samplers (A) adjust the number of move steps according to Algorithm
3. For the non-adaptive samplers (N) the number of move steps is fixed to a constant number,
equal to the average number of move steps over the complete run of an adaptive sampler. The
temperatures are chosen adaptively. The MALA-based sampler uses FT tuning, the HMC-based
sampler uses our pre-tuning (PR) approach.

The HMC-based samplers perform better when it comes to estimating the mean (see Figure
6b) and the normalizing constant (see Figure 6a). Both samplers based on a MALA kernel tend to
work poorly in terms of the estimation of the normalizing constant when the dimension increases,
see Figure 6a.

In this particular example, we observe that the adaptation of the number of move steps has
some negative impact on the performance of the samplers. We suspect that this is due to the
heavy tails of the Student distribution: first, this phenomenon did not occur in our first numerical
example, where the target had light tails (Gaussian); second, Livingstone et al. (2016) show that
an HMC kernel cannot be geometrically ergodic when the target is heavy-tailed. Thus, setting
the number of move steps to a fixed, large value may be beneficial for heavy-tailed targets. Our
approach provides a guideline for finding this number.

4.4 Binary regression posterior

We now consider a Bayesian binary regression model. We observe J vectors zj ∈ Rd and J outcomes
yj ∈ {0, 1}. We assume yj ∼ Ber(r(zTj β)) where r : R 7→ [0, 1] is a link function. The parameter of

interest is β ∈ Rd, endowed with a Gaussian prior, i.e. β ∼ N (0d, Id).
When using the logit link function r : x→ exp(−x)/(1+exp(−x)) we obtain a Bayesian logistic

regression where the unnormalized log posterior is given as

γ(β) =
J∑
j=1

[
(yj − 1)zTj β − log(1 + exp(−zTj β)

]
− 1/2 ‖β‖22 .

When using as link function the cumulative distribution function of a standard normal distri-
bution, denoted Φ, one obtains the Bayesian Probit regression. In this case the unnormalized log
posterior is given as

γ(β) =
J∑
j=1

[
yj log Φ(zTj β) + (1− yj) log(1− Φ(zTj β))

]
− 1/2 ‖β‖22 .

We set π0 to a Gaussian approximation of the posterior obtained by Expectation Propagation
(Minka, 2001) as in Chopin and Ridgway (2017).

We consider two datasets (both available in the UCI repository): sonar (d = 61 covariates,
J = 208 observations) and musk (d = 95, J = 476, after removing a few covariates that are highly
correlated with the rest). In both cases, an intercept is added, and the predictors are normalised
(to have mean 0 and variance 1).

We compare the following SMC samplers: RW, MALA, HMCAFT, HMCAPR; see Figure 7
for the estimation of the marginal likelihoods (which may be used to perform model choice) and
Figure 8 for the estimation of the posterior expectation of the first component. The results for other
components (not shown here) are similar to the results for the first component. For all samplers
we adapt the number of move steps and the temperature steps.
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Figure 7: Normalization constants obtained for the probit and logit regression based on 40 runs of
the samplers. Figure 7a corresponds to the normalization constants obtained for the sonar dataset.
The posterior has 61 dimensions. Figure 7b corresponds to the musk dataset. The posterior has
95 dimensions.

The four samplers perform similarly on on the sonar dataset, while they perform quite differently
on the musk dataset. In the latter case, the MALA-based and RW-based samplers did not complete
after 48 hours of running, so we had to remove them from the comparison. (In contrast, the two
HMC-based samplers took less than 45 minutes to complete). In addition, FT adaptation leads to
a high variance for the normalising constant.

Table 2 reports the logarithm of the adjusted variances for the four considered samplers, the
two considered datasets, the two considered models (logit and probit) and a varying number of
particles for the sonar dataset. By and large, HMCAPR seems the most robust approach; it often
gives either the smallest, or a value close to the smallest, of the adjusted variances.
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Figure 8: Estimated mean of the first component of the posterior obtained for the probit and logit
regression. Figure 8a corresponds to the sonar dataset. Figure 8b corresponds to the musk dataset.
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Normalizing constant
Logit Probit

Dataset Dim HMCAPR HMCAFT MALA RW HMCAPR HMCAFT MALA RW
Sonar, N = 210 61 4.183 3.489 5.776 6.459 3.315 2.98 5.915 6.081
Sonar, N = 213 61 2.685 2.233 4.384 5.362 2.788 3.686 4.883 5.285
Musk 95 6.09 11.519 - - 6.596 8.62 - -

Mean first component
Logit Probit

Dataset Dim HMCAPR HMCAFT MALA RW HMCAPR HMCAFT MALA RW
Sonar, N = 210 61 -3.409 -3.644 -0.978 -0.875 -3.86 -3.842 -1.706 -0.604
Sonar, N = 213 61 -5.482 -5.792 -3.668 -3.255 -5.688 -3.346 -3.413 -2.961
Musk 95 -1.643 -1.147 - - -0.633 0.014 - -

Table 2: Inefficiency of the estimation of the normalizing constant and the mean of the first com-
ponent based on 40 runs of the different samplers. Smaller is better. The inefficiency is measured
as the log of the adjusted variances of the samplers (variance multiplied by the mean number of
gradient and likelihood evaluations). For the RWMH sampler we adjust by the number of likelihood
evaluations only. The best performing sampler for a particular model and number of particles is
highlighted in bold.

4.5 Log Gaussian Cox model

In order to illustrate the advantage of HMC-based SMC samplers in high dimensions we consider the
log Gaussian Cox point process model in Girolami and Calderhead (2011), applied to the Finnish
pine saplings dataset. This dataset consists of the geographic position of 126 trees. The aim is to
recover the latent process X ∈ Rd×d from the realization of a Poisson process Y = (yj,k)j,k with
intensity mΛ(j, k) = m exp(xj,k), where m = 1/d2 and X = (xj,k)j,k is a Gaussian process with
mean E [X] = µ × 1d×d and covariance function Σ(j,k)(j′,k′) = σ2 exp(−δ(j, j′, k, k′)/(dβ)), where

δ(j, j′, k, k′) =
√

(j − j′)2 + (k − k′)2.
The posterior density of the model is given as

p(x|y, µ, σ2, β) ∝


d∏
j,k

exp(yj,kxj,k −m exp(xj,k))

× exp
{
−1/2(x− µ)TΣ−1(x− µ)

}
,

where the second factor is the Gaussian prior density.
Following the results of Christensen et al. (2005) we fix β = 1/33, σ2 = 1.91 and µ = log(126)−

σ2/2. We vary the dimension of the problem from d = 100 to d = 16, 384 by considering different
discretizations. We consider three SMC samplers: MALA, HMCAFT and HMCAPR. The starting
distribution is the prior.

Figure 9b shows that the HMC-based samplers estimate well the normalizing constant, even for
a large dimension d. Moreover, we estimate the cumulative mean throughout different dimensions
with relatively low variance, see Figure 9a. We omitted the simulation for the MALA-based sam-
plers, as the simulation took excessively long in dimension 4, 096 due to slow mixing of the kernel.
The estimated posterior mean of the latent field for dimension 900 is plotted in Figure 9c.
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Figure 9: Tempering from a normal prior to the posterior of log Gaussian Cox process over various
dimensions. Figure 9a illustrates the estimations of the normalizing constants. Figure 9b illus-
trates the estimated cumulative posterior mean. Figure 9c illustrates the recovered componentwise
posterior mean of the process in dimension 900.

Table 3 reports adjusted variances (variances times computational load) for the considered SMC
samplers. We see that the MALA-based sampler is not competitive when the dimension increases.
Regarding the adaptation scheme, FT outperforms PR, especially in high dimension.

Normalizing constant Mean first component

Dim HMCAPR HMCAFT MALA HMCAPR HMCAFT MALA
100 2.292 2.03 2.933 -6.4 -5.613 -5.559
400 3.296 2.255 3.812 -5.895 -5.913 -4.765
900 3.89 2.776 4.373 -6.192 -6.141 -4.276
1,600 4.735 3.226 5.224 -5.217 -6.046 -4.162
2,500 4.5 4.072 6.246 -4.405 -5.636 -3.476
4,096 7.055 5.071 - -3.2 -4.701 -
16,384 10.002 8.864 - 0.538 0.142 -

Table 3: Inefficiency of the estimation of the normalizing constant and the mean of the first compo-
nent based on 40 runs of the different samplers. The inefficiency is measured as the log of adjusted
variances of the samplers (variance multiplied by the mean number of gradient and likelihood
evaluations). Smaller is better.
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5 Discussion

Our experiments indicate that the relative performance of HMC kernels within SMC depends on
the dimension of the problem. For low to medium dimensions, RW and MALA are much faster, and
tend to perform reasonably well. On the other hand, for high dimensions, HMC kernels outperform,
sometimes significantly, RW and MALA kernels.

The key to good performance of SMC samplers (based on HMC or other kernels) is to adaptively
tune the Markov kernels used in the propagation step. We have considered two approaches in this
paper. On posterior distributions with reasonable correlation our adaption of the approach by
Fearnhead and Taylor (2013) works best. Our approach based on pre-tuning of the HMC kernels is
more robust to changes in the subsequent target distributions, as illustrated by our binary regression
example. This holds in particular when using SMC samplers for model choice. Moreover, we showed
that, when sensibly tuned, SMC samplers with HMC kernels can scale to high dimensional problems.
From a practical point of view and if the structure of the posterior is unknown the second approach
may be the more prudent choice.

All in all, our methodology provides a principled approach for an automatic adaption of SMC
samplers, applicable over a range of various models in different dimensions.
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