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Abstract—In summer 2017, close to one million Rohingya,
an ethnic minority group in Myanmar, have fled to Bangladesh
due to the persecution of Muslims. This large influx of
refugees has resided around existing refugee camps. Because
of this dramatic expansion, the newly established Kutupalong-
Balukhali expansion site lacked basic infrastructure and public
service. While Non-Governmental Organizations (NGOs) such
as Refugee Relief and Repatriation Commissioner (RRCC)
conducted a series of counting exercises to understand the
demographics of refugees, our understanding of camp forma-
tion is still limited. Since the household type survey is time-
consuming and does not entail geo-information, we propose
to use a combination of high-resolution satellite imagery and
machine learning (ML) techniques to assess the spatiotemporal
dynamics of the refugee camp. Four Very-High Resolution
(VHR) images (i.e., World View-2) are analyze to compare the
camp pre- and post-influx. Using deep learning and unsuper-
vised learning, we organized the satellite image tiles of a given
region into geographically relevant categories. Specifically, we
used a pre-trained convolutional neural network (CNN) to
extract features from the image tiles, followed by cluster
analysis to segment the extracted features into similar groups.
Our results show that the size of the built-up area increased
significantly from 0.4 km2 in January 2016 and 1.5 km2 in May
2017 to 8.9 km2 in December 2017 and 9.5 km2 in February
2018. Through the benefits of unsupervised machine learning,
we further detected the densification of the refugee camp over
time and were able to display its heterogeneous structure.
The developed method is scalable and applicable to rapidly
expanding settlements across various regions. And thus a useful
tool to enhance our understanding of the structure of refugee
camps, which enables us to allocate resources for humanitarian
needs to the most vulnerable populations.

Keywords-Refugee Camp, Rohingya, Convolutional Neural
Networks, Satellite Imagery, Machine Learning, Feature Ex-
traction

I. INTRODUCTION

In the weeks following August 25 2017, the continuous

destruction of Rohingya villages in western Myanmar’s

Rakhine State caused a mass exodus to Cox’s Basar District

in south east Bangladesh [1]. While two United Nations

High Commissioner for Refugees (UNHCR) camps, the

Kutupalong refugee camp and the Nayapara refugee camp,

have existed in this area since 1991 [2], the number of

refugees soon exceeded their capacity significantly, and

fleeing Rohingyas settled in makeshift camps in the sur-

rounding area. This is now called the Kutupalong-Balukhali

expansion site and is the world’s largest refugee camp,

with an estimated population of more than 900,000 people

[3]. Conditions in the expansion site have been described

as one of the worst slums imaginable, lacking access to

water, hygiene and medicine [4]. A recent study from 2019

found an increased risk for field epidemics and noted among

others a major outbreak of diphtheria [5]. At the same time,

monsoon season makes the camp sites vulnerable to natural

disaster including flash floods, strong winds and landslides

[6].

One of the major challenges in managing the Rohingya

displacement crisis is getting data on the dynamic structure

in these informal settlements and the number of people in
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need. Due to heterogeneity and dynamic nature of these in-

formal settlements, our limited understanding of evolvement

of this area restricted plausible policy implications [7]. A

more nuanced characterization of informal settlements as

evolving and heterogeneous structures would capture the so-

cioeconomic and infrastructure needs among refugee camps.

If this information is known, aid agencies are able to to

respond in appropriate time and fashion. With this regard, a

counting-housing exercise was performed by Refugee Relief

and Repatriation Commissioner (RRRC) through a series

of refugee family interviews in the Kutupalong-Balukhali

expansion site [8]. In March 2018, a randomized survey

was conducted in order to better understand demography of

the camp and its host community [9]. While these studies

offer a very detailed overview including gender- and age-

disaggregated statistics, it is very time consuming and cannot

easily detect temporal developments and does not include

geo-spatial analysis.

Hassan et al. (2017) used a machine learning technique

(i.e., Random Forest Classification) and Sentinel-2 imagery

(10 m resolution) to map the extent of the refugee camp

in December 2016 and 2017. They found an increase of

more than 750% [10]. However, with a main focus on the

environmental impact caused by the development of the

refugee camp, such as the destruction of wildlife habitat and

biodiversity, they offer limited information on the internal

structure of and changes within the expansion site across

time.

To better account for this complex process of refugee

expansion, a more nuanced understanding can be achieved

by a combination of Very-High Resolution (VHR) Satellite

Imagery and a pre-trained convolutional neural network

(CNN). This method was previously applied over rural areas

in Liberia in order to detect educational facilities [11] and for

demographic analysis [12]. Here the method will be applied

to four images of the Kutupalong-Balukhali expansion site

(i.e., two pre- and two post- influx), in order to answer

the two fundamental research questions of this paper: (1)

How much did the refugee camp expand spatially? And

(2) Are there any patterns of internal development (i.e.,

densification, aggregation, etc)? To answer these research

questions, we run cluster analysis twice: First to detect

temporal development of the built up area and second,

analysing build up areas only, to detect structural changes

within camps. These results enabled us to answer remaining

questions about the formation of infrastructure and structural

development within the expansion site, giving new insight

into the heterogenity of a rapidly expanding refugee camp.

This approach will help identify the heterogeneous structure

of refugee camps and potential entry points of intervention

to alleviate emerging challenges.

Figure 1. Location and set up of the Kutupalong-Balukhali expansion site.
Background image from January 2016.

II. DATA

A. Study Area

Our study area is the Kutupalong-Balukhali expansion site

located in Cox’s Bazar District, Bangladesh. The expansion

site is structured in several camps, and the total extent is

given in Fig. 1. Topography has been described as steep

hillsides prone to mudslides and flash floods in monsoon

season.

Counting exercises in the area have been performed by

the RRRC that reported the drastic increase in population

from less than 75,000 before October 2016 to more than

900,000 in February 2019 [8].

B. Very-High Resolution Satellite Imagery

We analyzed four Very-High Resolution (VHR) satellite

images: three taken by World-View-2 and one from GeoEye-

1 (Fig. 2). Imagery was made available through the Dig-

ital Globe Foundation [13] via their Geospatial Big Data
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Figure 2. Imagery analyzed in this study. The upper two images show
the study area before the influx of refugees in August 2017, the lower two
images after influx.

Platform (GBDX) [14]. All images have a resolution of

0.5 m and are provided with the visible red, green, blue

(RGB) spectral bands only. They are pre-processed and geo-

referenced for immediate use.

The two images pre-influx were taken in January 27 2016

and May 25 2017. It is important to note that the May 2017

image is slightly cloudy and is the only image taken by

GeoEye-1 instead of World-View-2. This results in different

metadata such as viewing angle and processing. However, as

it was the only available image between January 2016 and

the influx of refugees in August 2017, we decided to keep

the image in the analysis.

The two images post-influx were taken on Decem-

ber 29 2017 and February 13 2018. Due to monsoon season

and persistent cloud cover, no cloud free or even partially

cloudy image between August and December 2017 was

available, and we are not able to monitor changes during

these months more closely.

III. METHOD

A. Data Preparation

Each satellite imagery was sliced into tiles of 100 ×
100 Pixel (50 × 50 m), creating a total of 37,884 tiles per

image. To ensure comparability, all images were clipped to

the same extent, within the uncertainty of geo-referencing,

before slicing them into tiles. Therefore the area covered by

each tile stays consistent for each analyzed image, and thus,

point in time.

B. Machine Learning

Our approach uses deep learning and unsupervised learn-

ing to organize the prepared satellite image tiles of a given

region into geographically relevant categories. Specifically,

we use Convolutional Neural Networks (CNNs) and cluster

analysis. A ResNet-50 [15] CNN pre-trained on ImageNet

data [16] is used as a feature extractor to process the image

tiles. That is, each image tile is input to the CNN, and

features representing that tile are extracted from the last

pooling layer (‘pool5’), yielding a vector of 2048 features.

Cluster analysis is then applied to the feature vectors,

which are normalized to have a mean of 0 and a standard

deviation of 1. Cluster analysis is an unsupervised learning

technique used to organize data elements into similar groups

and does not require any labels to create the model. An unsu-

pervised approach is needed for this application since ground

truth, specifying for example the level of development for

any given image tile, is not available. For our experiments,

we use k-means for cluster analysis. In order to organize the

resulting clusters so that visually similar clusters are closer

together, the cluster centers are processed using principal

component analysis (PCA) and sorted based on the first

principal component.

The cluster model was generated using the set of images

from December 2017. We used a two-step clustering process.

In the first step, we sorted all images into four clusters

(i.e., k = 4) in order to identify the four common land

use types: build-up, agricultural, natural, and forest. In the

second step, all tiles identified as built-up area in step one

were clustered again, this time into seven clusters (i.e.,

k = 7). Here the number of clusters was determined through

empirical testing. These seven clusters were then analyzed

to determine different built-up categories. The cluster model

was then applied to the other sets of images to organize

those tiles into categories. Tracking how each image tile

changed categories between the different data sets allowed

us to analyze the change from non-built-up to built-up and

the change among the built-up categories.

IV. RESULTS AND DISCUSSION

A. Identifying built-up areas

All images were sorted into four clusters using tiles from

December 2017 as a training set in order to detect the
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Figure 3. The three tiles closest to the corresponding cluster center for each cluster and each image.
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Table I
PERCENTAGE OF TILES IN EACH CLUSTER OF THE INITIAL RUN OF

FOUR.

Pre-Influx Post-Influx
Jan 2016 May 2017 Dec 2017 Feb 2018

Forest 39% 53% 32% 38%
Shrub 30% 24% 34% 23%

Agricultural 30% 21% 25% 28%
Built-up <1% 2% 9% 10%

Figure 4. Sankey diagram [17] displaying the changes between the four
original clusters (forest, shrub, agriculture, and built-up) for all analyzed
times.

location of the built-up area. The four identified clusters

are: Cluster 0, a homogeneous cluster primarily displaying

forest; Cluster 1, here called shrub, displaying a mixture

of different land cover types ranging from forest, fields

and grassland to isolated buildings; Cluster 2, displaying

agricultural areas and farmland; and Cluster 3, displaying

built-up lands. For each image the three tiles closest to the

corresponding cluster center can be found in Fig. 3. The

percentage of tiles covered by each cluster is given in Table

I. Although the data implies an increase in tiles sorted into

the Forest cluster in May 2018, we can link this to the cloud

cover (Fig. 2). While white in color, the uniform look of

tiles covered by clouds lead to them being sorted into this

cluster. Nevertheless, manual validation revealed no obvious

errors in classification indicating that cluster detection from

a model based on the December 2017 image is applicable to

other images as well, regardless of preprocessing and color

balance. This is particularly of interest for the imagery from

May 2017, as it was taken by the satellite GeoEye-1 instead

of World-View-2. Our approach therefore provides a useful

tool to detect and display changes in a meaningful way (Fig.

3).

Overall, we detect an increase in built-up area from Jan-

uary 2016 to February 2018 of more than 2,000%, increasing

from less than 0.5 km2 to close to 10 km2. In a study

relying on Sentinel-2 imagery and random forest machine

learning models, Hassan et al. (2018) found a growth rate of

835% between December 2016 and 2017 [10] over the same

area. The different results are primarily caused by the chosen

time period. Accordingly, our method detects a growth rate

of approximately 600% between May 2018 and December

2018.

This increase in built up area is also visualized in the

Sankey diagram [17] in Fig. 4. Here, the large fluctuations

between forest, shrub and agriculture are likely caused by

vegetation growth due to seasonal variations. Still, the in-

crease in built-up area is most likely linked to a loss in agri-

cultural land and forest area. This is further confirmed when

mapping the detected clusters for all images (Fig. 5). We

are able to detect that the increase in built-up area pre-flux

between January 2016 and May 2017 occurred primarily in

the original Kutupalong Refugee Camp, while the influx of

refugees in August 2018 led to the construction of makeshift

camps in the eastern part of the expansion site. It is important

to note that within the extent of the original camp, the

built-up area is replaced by shrub and farmland between

May and Dec 2017. Upon closer inspection, this appears

to be primarily caused by an increase in vegetation cover

and again seasonal variations. However, a more detailed

analysis, including additional images throughout the year, is

necessary to validate these observations. While population

between December 2017 and February 2018 did not increase

significantly according to the conducted counting exercises,

we are able to detect westward expansions, especially in the

northern part of the camp.

B. Understanding the Internal Structure of the Camp

All tiles identified as built-up in step one of our process

were clustered again in order to gain insights into the

structural changes and evolution of the expansion site. In this

step, the clustering algorithm was run with seven clusters.

For the two post influx images, the three tiles closest to the

corresponding cluster center are shown in Fig. 6. The first

two clusters 0 and 1 display densely built-up locations with

small houses and little to no vegetation. Clusters 2 and 3 are

less densely built-up, here called medium built-up. They

show slightly more vegetation than clusters 0 and 1 and often

display larger buildings that might indicate infrastructure

such as community centers, markets or hospitals. However,

future research is necessary to validate these findings. The

next cluster, cluster 4, appears to be defined by the red roofs,

and the last two clusters 5 and 6 show a low building density

with large parts of the tiles covered by vegetation or surface

waters, here called low built-up. Again, building size is

above average. As these low built-up tiles were dominant in

the pre-influx images (Table II), we can conclude that they

include settlements outside of the refugee camp.
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Figure 5. Map of the distribution of the four original clusters (forest, shrub,
agriculture, and built-up) for each of the analyzed images. The border of
the expansion site is given in black

Fig.7 displays a Sankey chart [17] showing changes

between the two images from December 2017 and February

2018. Only tiles identified as built-up area in both images are

analyzed. An increase in Cluster 1, densely built-up areas,

and a decrease in Cluster 3, medium built-up areas, become

apparently, indicating a densification of the existing refugee

camp. At the same time, tiles that are sorted in the built-up

cluster for the first time in February 2018, are more often

sorted into cluster 3, medium built-up areas than tile that

already where built-up before. (25% compared to 14% when

analyzing all tiles in Table II). Additionally it appears that

Cluster 4, primarily defined by buildings with red roofs, is

shrinking. This change might be related to a simple change

in color due to dust and fading colors from sun exposure

(comp Fig. 6).

Densification of the camp can also be observed in the

percentages of tiles in each cluster in Table II: In February

2018 densely built-up tiles make up 46% of the entire

built-up area compared to 37% in December 2019. The

spatial visualization of all clusters in Fig. 8 allows a more

detailed analysis of the observed densification. We find

that in December 2017, large areas of the expansion site,

especially along the eastern border, previously covered by

shrub and agricultural area, were primarily replaced by a

homogeneous distribution of medium to low built-up tiles.

In the February 2018 image, these tiles are partially sorted

into densely build up clusters resulting in a much more

heterogeneous camp with a high structure density.

It is of interest to note that the original Kutupalong

refugee camp is primarily not sorted into the built-up cluster.

While a densely built-up area center exists in the southwest

region of the camp, most built-up tiles are isolated and

primarily surrounded by agricultural and shrub land. This

is caused by the small tile size of only 50 × 50 m detecting

vegetable gardens associated with individual parcels.

At the same time, we can observe an extension of the

camp area to the west, primarily consisting of low built-

up clusters. In addition, tiles in this area are for the first

time sorted into the agricultural cluster during the initial

classification process, indicating the development of small-

scale agriculture in the area. However, more detailed anal-

ysis including the seasonality of farming in Bangladesh is

necessary to validate these findings.

Table II
PERCENTAGE OF TILES IN EACH CLUSTER OF RUN OF SEVEN FOCUSING

ON BUILT-UP AREAS.

Pre-Influx Post-Influx
Jan 2016 May 2017 Dec 2017 Feb 2018

Cluster 0 17% 4% 17% 18%
Cluster 1 4% 8% 20% 28%
Cluster 2 11% 4% 15% 17%
Cluster 3 19% 36% 19% 14%
Cluster 4 0% 1% 10% 5%
Cluster 5 37% 28% 9% 10%
Cluster 6 12% 18% 9% 8%

V. CONCLUSION

Through a combination of satellite imagery and deep

learning, we analyzed the expansion of Kutupalong-

Balukhali refugee camp which has been mushroomed since

summer of 2017 due to ethnic conflicts in Myanmar. Our

study deepens the knowledge of the refugee camp’s ex-

pansion as well as its structural changes by developing a

scientifically robust method that classifies the campsite into

ten clusters. Using deep learning and unsupervised learning,

we first classified 50 × 50 m tiles of the images into four

clusters: forest, shrub, agricultural and built-up, based on

the same cluster model. Results show that our approach

exceeds in detecting and displaying small scale changes in
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Figure 6. The three tiles closest to the corresponding cluster center for each of the seven built-up clusters for the two post influx images.
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Figure 7. Sankey diagram displaying the changes between the seven built-
up clusters for all images post influx.

a meaningful way, independent of preprocessing and color

balance. We find that built-up areas increased tremendously

from 0.4 km2 in January 2016 to 9.5 km2 in February 2018,

primarily in the eastern parts of the expansion site.

In the second step, we analyzed built-up areas more

closely by again classifying the corresponding tiles into

seven clusters. This way, we were able to illustrate the

structural changes within the camp from December 2017 to

February 2018. Data indicate that structural density increases

for most of the built-up area, especially in the eastern side of

the expansion site. At the same time, newly developed low

built-up settlements are located in the western areas of the

camp. While we find several homogeneous areas with low

to medium building density in the December 2017 imagery,

in February 2018, the camp becomes more heterogeneous,

developing features at a smaller scale. We identified two

unique spatial patterns (i.e., aggregation and densification).

As discussed in [18], the limited accessibility and availability

of existing infrastructure have led incoming migrants to

reside in areas close to pre- existing neighborhoods, which

conclude the aggregation and densification.

While we successfully developed a novel technique to

analyze dynamic changes of informal settlements, there is a

room for development. In the future, we hope to extend this

study with additional imagery taken after spring 2018 to help

answer questions of the long-term structural development

of rapidly expanding refugee camps such as the one in

Bangladesh. Furthermore, in contrast to existing methods,

our study does not rely on ground truth data. Hence, in the

future, our method can be applied immediately to emerging

refugee camps worldwide where it has the potential to help

with the distribution of humanitarian aid in a timely manner

to the most vulnerable people on this planet.
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