Land Cover Classification at the Wildland Urban Interface using High-Resolution Satellite Imagery and Deep Learning

Mai H. Nguyen∗, Jessica Block†, Daniel Crawl∗, Vincent Siu†, Akshit Bhatnagar∗, Federico Rodriguez†, Alison Kwan†, Namrita Baru∗, Ilkay Altintas∗

Abstract—Land cover classification analysis from satellite imagery is important for monitoring change in ecosystems and urban growth over time. However, the land cover classifications that are widely available in the United States are generated at a low spatial and temporal resolution, so that the spatial distribution between vegetation and urban areas in the wildland urban interface is difficult to measure. High spatial and temporal resolution analysis is essential for understanding and managing changing environments in these regions. This paper describes an end to end satellite data ingestion and analysis pipeline using deep learning on high resolution satellite imagery for generating pixel-based land cover classification.

Index Terms—satellite image analysis, deep learning, land data products, CNNs, U-Nets

I. INTRODUCTION

Understanding land cover classification has applications in many areas including planning for fire hazards and response. Understanding land cover at the wildland urban interface (WUI) is especially important because the proximity of structures to different vegetation significantly affects how a fire will burn in that area. There are many data land cover products that classify vegetation in the United States and others that classify urban (or impervious) surfaces, but none investigate vegetation at the urban interface with the intention to understand how the WUI is changing.

WIFIRE [1], [2] is an integrated system for wildfire analysis, which integrates networked observations such as heterogeneous satellite data and real-time remote sensing data, with computational techniques in signal processing, visualization, modeling, and data assimilation to provide a scalable method to monitor such phenomena as weather patterns that can help predict a wildfire’s rate of spread. The amount, size and moisture content of surface fuels determine how fast a fire spreads, how hot it burns and how high its flames reach. Accurate and up-to-date fuel maps are critical for accurately modeling wildfire rate of spread and potential burn areas. Our goal is to create a machine learning method for automating a burnability or “fuel” model from satellite imagery. However, in order to do that, we must first refine a technique for land cover classification. Land cover determines a type of vegetation or density of urban land. Fuel is determined from additional attributes that cannot necessarily be determined from satellites such as canopy height, percent of live versus dead vegetation, and the burn history of that area. Therefore our goal for this paper is to create accurate land cover as a step towards identifying fuels.

New advances in satellite imagery now provide data at an unprecedented rate and resolution. This remote sensing data combined with data science techniques provide a unique opportunity to monitor natural resource and development activities on an ongoing basis.

Deep learning on satellite imagery represents a number of typical big data challenges related to the data volume and computational scale required to analyze and interpret. Deep learning models are composed of many layers of interconnected processing units, allowing for the learning of data representations at multiple and increasingly complex and task-specific levels of abstraction, leading to automatic feature learning for prediction tasks across many domains, including image analysis. In this paper, we present a data-driven approach to measure the WUI using deep learning on satellite imagery at high spatial and temporal resolution for a better understanding of fire hazard and response needs.

Based on this motivation and our prior work [3], the new contributions of this paper are as follows:

(i) An end to end satellite data ingestion and analysis pipeline using deep learning;

(ii) Land cover maps generated by the presented analytical pipeline that defines vegetation and urban areas at the WUI on a pixel by pixel basis; and

(iii) A comparison of the experimental results from using convolutional neural network (CNN) and U-Net models for detecting land cover classes.

The rest of this paper is organized as follows: Section II reviews related work, Section III discusses our data and methods, and Section IV describes our results. Finally, we conclude and discuss future work in Section V.

II. RELATED WORK

A. Vegetation Maps using Satellite Imagery

There are several existing map products derived from satellite imagery made available for analyzing fire. These free products
are derived from Landsat [4] satellite imagery, which are 30m/pixel resolution.

LANDFIRE [5], the Landscape Fire and Resource Management Planning Tools, provides vegetation and fire fuel data for resource planning and analysis every two years by using a workflow that combines Landsat imagery, vegetation plots throughout the United States, and ecological expertise to create the seamless product across the US. The result is a map that describes ecosystem-scale vegetation types and urban areas.

The North American Forest Dynamics (NAFD) [6], managed by NASA, is intended to show forest disturbance over the conterminous United States using Landsat data between 1986-2010. This product provides annual maps for these dates that describe whether pixel is water, forest, not forest, and how much that pixel has been disturbed from the previous year.

National Land Cover Database (NLCD) [7], housed by the Multi-Resolution Land Characteristics Consortium, classifies the conterminous US into 16 general land cover classifications into general vegetation types and urban densities, for the purpose of measuring change from 2001-2011.

Forest Inventory Analysis (FIA) [8], managed by the US Forest Service, creates maps that quantify forest disturbance for carbon accounting across the conterminous United States.

While all of these efforts focus on forests and forest health with a specific focus on forest disturbance, they do not address the diversity and challenges of vegetation or fuels at the edges or at some times, inside, of urban areas.

B. Deep Learning for Image Analysis

Convolutional neural networks (CNNs), a particular type of deep learning model, are extensively used and are now the de facto approach for several image tasks such as image classification and object detection, as can be seen from the outcomes of the highly influential ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [10]. CNN performance on the ImageNet database [11] has surpassed human performance on a standard image classification task [12].

Several groups have applied CNNs to land cover classification. For example, there are studies to classify crop types using medium-resolution satellite imagery [13], analyze urban land use patterns from aerial images [14], classify land cover from geo-tagged field photos [15], and study urban environment patterns from satellite images [16].

Another type of deep learning model known as U-Net have shown to be very effective at image segmentation in biomedical and medical applications [17]. Recently, U-Nets have also been applied to other domains, such as scene segmentation (e.g., [18]) and satellite image analysis (e.g., [19]).

Our work applies deep learning to satellite images to study land cover classification. Our analysis pipeline makes use of up-to-date, high-resolution satellite imagery, and classifies land cover types at the pixel level rather than the image level in order to provide the granularity necessary to distinguish between urban materials from vegetation, and where they intermix.

III. APPROACH

A. Data Acquisition and Preprocessing

For this study, we picked an area in Southern California. The study area is displayed in Figure 1, and exists on the southwestern border of Escondido, California, precisely on the WUI where fire hazard is high. We chose this location because it contains a diversity of Southern Californian vegetation, varied topography, water bodies, and a spectrum of dense to sparse urban development. The Cocos Fire occurred in this study area in May 2014 as well, which provides the opportunity to test deep learning techniques on recently burned vegetation. The left-hand image shows the entire study extent. The right hand image of Figure 1 shows the region that was chosen for hand-labeling. The deep learning training region is in the lower right box, and the test area as a combination of the northern and western image strips. These training and testing areas were defined to maintain as similar a distribution of land cover types between the train and test areas as possible.

As mentioned in Section II, existing vegetation products derived from satellite are highly variable, possibly due to the low spatial resolution of Landsat and the infrequent rate of publication of these products. LANDFIRE publishes a vegetation and fuels map for the continuous United States every two years. At the time of this writing, Planet imagery [20] is collected almost daily, at 3-5m/pixel. While it has fewer spectral bands, the spatial resolution increases the accuracy of what we identify. Additionally, as more frequent imagery is made available with satellites like those from Planet, this pipeline can be used to monitor and account for rapid land cover change due to environmental and social events. Our approach tests the use of the Planet satellite data on a Landsat-based workflow. As we are testing our results against Landsat-derived products, we aggregate the Planet data to the 30m resolution of these Landsat-derived products.

We collected imagery from Landsat (30m) and Planet’s PlanetScope (5m) sensors over the study area, each collected from the same month and each image cloud free. We preprocessed each scene by projecting each to the same map projection. We then chose a subset of the Escondido area to hand label each pixel. We clipped each scene to the same extent of this subset area, then tiled the imagery using commands from the

![Fig. 1: Study area from Escondido, California.](image-url)
Acquisition and we chose to hand label the entire region, and use NLCD land cover categories as a guideline. This is indicated as the Hand Labeling step in Figure 2.

Data Preprocessing

We then collected the NLCD Land Cover map for the same area for 2011, the most recently published year. The map’s resolution is 30m/pixel. These first two steps of our satellite image processing pipeline are illustrated in Figure 2 as Data Acquisition and Data Preprocessing.

Label Generation

One of the greatest challenges was using the land cover datasets derived from satellite as labels for machine learning as none of the existing products have great accuracy. The NLCD labels have inconsistencies, because it was generated from 2011 data and is a generalized product for the conterminous US; thus, we could not use this data for training labels. Instead, we chose to hand label the entire region, and use NLCD land cover categories as a guideline. This is indicated as the Hand Labeling step in Figure 2.

There were approximately one million pixels in the study area. To speed the process of labeling, we performed clustering of the Planet pixels into 20 clusters. We reviewed the cluster to find a predominant land cover type, and then hand labeled the pixels within that cluster that deviated from the predominant land cover type. We created the hand labels by converting the cluster image centers into a point Shapefile and then manually editing groups of points or individual points and labeling them in QGIS and ArcGIS. We used Worldview 3 (0.5m) imagery as a basemap to validate our hand labels. After labeling the 5m Planet data, we pooled the 6x6 pixels in each tile to choose a predominant land cover type for that 30m resolution tile. See Figure 3 for a comparison of the original NLCD labels, 5m hand labels, and pooled 30m hand labels for the area that we hand-labeled.

The discrepancy between our labels and the NLCD labels can be explained by the labeling approach. The NLCD map identifies a pixel classification by the dominant land cover type in that 30m pixel. Note the NLCD image on the right of Figure 3. The eastern half of the image has a lot of developed open space and developed low intensity areas, colored in pink. In our approach, we labeled each 5m pixel in Planet imagery, thus explicitly identifying the vegetation between buildings and neighborhoods, and aggregated the 5m labels to create 30m labels using a simple majority rule. We explicitly labeled regions that are vegetated as such, even if the vegetation is there because it was put there in a suburban context. Therefore, there are more details identifiable in our layers, and more explicit distribution of the vegetation versus the NLCD labels.

To further show the need for refined labels, some of the NLCD labels in Figure 3 are incorrect. Note the reservoir in the southern center part of the scene. The center of the reservoir is classified as partly developed.

C. Deep Learning Models

We use CNNs and U-Nets, two types of deep learning models that have been successfully applied to image data.

A CNN is made up of different types of layers [22]–[24]. A CNN model used for classification typically consists of several blocks of convolutional layers followed by a pooling layer. Batch normalization and dropout layers can also be added. The last pooling layer then feeds into a fully connected layer where class scores are computed for the final classification.

A U-Net [17] is a type of convolutional auto-encoder with an encoding path that performs feature extraction with convolutional and pooling layers, followed by a decoding path that performs segmentation with upsampling and convolutional layers. Skip connections concatenate features from an encoding layer to the corresponding decoding layer, allowing for higher-resolution features to be combined with contextual information in generating output for the next layer in the decoding path.

Preparing the data for the models, and training and testing them are indicated as Data Conditioning and Augmentation and Modeling in Figure 2, and are detailed in the next section.

IV. EXPERIMENTAL SETUP AND RESULTS

We built a CNN model and a U-Net model to predict the hand-labeled categories. The train area with 25,685 pixels was used to train the models, and both top and left test areas (with 13,547 pixels together) were used to test generalization.

A. CNN Model

For the CNN, we initially experimented with pre-trained CNNs and transfer learning. The use of CNNs trained on ImageNet data for transfer learning to other image data has proven to be very successful [25], [26]. We tested the use of transfer learning to our hand-labeled categories with the ResNet-50 [27] and VGG-19 [28] models. Results with the pre-trained models were poor, however, since the input images, at 6x6 pixels, had to be resized eight times for the VGG-19 and 36 times for the ResNet-50.

We then proceeded to build our own custom CNN. After some experimentation, we decided on the architecture in Table I.

We also tested different combinations of spectral bands in the input images. In addition to the five bands native to the Planet data (Section III-A), we also used these additional derived bands: EVI (Enhanced Vegetation Index), CCCI (Canopy Chlorophyll Content Index), and SAVI (Soil Adjusted Vegetation Index). These are vegetation indices commonly used in remote sensing applications with natural materials [29]. Our
tests indicated that using the five Planet bands along with EVI provided best results; thus, we used these six bands for all CNN experiments.

Image rotation was not used since only marginal prediction improvement was seen in preliminary experiments. The train area was split into train and validation datasets with a 80:20 ratio using stratified sampling. The CNN was trained with categorical cross entropy as the loss function, and a batch size of 128 using the SGD optimizer [30]. The best model was selected based on the lowest validation error.

B. U-Net Model

Preliminary testing indicated that multinomial classification with the U-Net yielded poor performance. We therefore decided to build a set of U-Net models instead, with a separate model trained on binary classification for each land cover category.

Each U-Net was trained to perform image segmentation for a specific land cover class; that is, the model was trained to output a binary mask with one for pixels belonging to that class, and zero otherwise. The general configuration of the various U-Net models was inspired by the winner of the Dstl Satellite Imagery Competition [19], and is described in Table II. The convolutional layers used the exponential linear unit (ELU) activation function, which is a modified version of ReLU that has been shown to speed up learning in deep networks [31].

Since each U-Net was trained separately and on a different class, we experimented with different numbers of layers and numbers of feature maps for each model. For a U-Net with three layers, the feature-map-per-layer configuration was 8-16-32, meaning that the first, second, and third layer had 8, 16, and 32 feature maps, respectively. We also tested four layers with 8-16-32-64 feature maps, and five layers with 8-16-32-64-128 feature maps.

Additionally, as with the CNN, we tested different combinations of spectral bands to use for each U-Net model. From these preliminary tests with model depth and spectral bands, the final U-Net model architecture was selected for each class as listed in Table III. Here, ‘PL-5’ indicates the original five Planet bands; ‘RGB’ indicates red, green, and blue bands; and ‘Derived’ indicates derived bands EVI, CCCI, and SAVI.

Preliminary analysis also indicated that image rotation helped with segmentation results, so data was augmented using rotation of 0, 90, 180, and 270 degrees. Image tiles of size 48x48 pixels with a padding of 16 were used as input to each U-Net. Since these are Planet images, the spatial resolution is 5m.

Each model was trained to output the binary mask of size

Fig. 3: Comparison of 5m hand labels, pooled 30m hand labels, and original NLCD labels for the hand-labeled area.
We also used GDAL for processing the satellite imagery, and we observed the following: with a 80:20 ratio. The models were trained with a batch size Y where \(Y \) is the set intersection. The dice coefficient compares the similarity of two datasets, and is commonly used as a performance metric in image segmentation. The train area was split into train and validation datasets with a 80:20 ratio. The models were trained with a batch size of 128 and the Nesterov Adam optimizer [30], and the best model was selected based on the lowest validation error.

\[
\text{DSC} = \frac{2 \times |Y_{\text{true}} \cap Y_{\text{pred}}|}{|Y_{\text{true}}| + |Y_{\text{pred}}|}
\]
\[
\text{DSC Loss} = 1 - \text{DSC}
\]

where \(Y_{\text{true}} \) are the true labels, \(Y_{\text{pred}} \) are the predictions for the land cover categories, and \(\cap \) is the set intersection. The dice coefficient compares the similarity of two datasets, and is commonly used as a performance metric in image segmentation.

The system setup

Our deep learning models were trained and tested using the Cognitive Hardware And Software Ecosystem Community Infrastructure (CHASE-CI), which is managed by the container orchestration system Kubernetes [33]. Our environment consisted of Ubuntu containers running interactive Jupyter notebooks. We used the Keras library [34] with the TensorFlow backend to implement, train, and evaluate our models. We also used GDAL for processing the satellite imagery, and Spark [36] for clustering.

D. Experimental Results

Results of classifying the land cover categories for the CNN and U-Net are detailed in Figure 4 and Tables IV and V.

• The F1-score was highest for Shrub in both models. This was the most abundant category, so the models saw plenty of examples of Shrub during training. Other vegetation types (e.g., Mixed Forest) were misclassified as Shrub, however. This is likely due to the similarity in appearance in these categories as well as the abundance of Shrub samples and their proximity to other vegetation types.
• The Developed-Low/Med/High categories had relatively low F1-scores and were often misclassified as Developed-Open Space. These categories look very similar and are physically close together, and can be easily confused even with the human eye. There were also very few samples of each category in the training set, less that 4% each.
• Neither model was able to correctly classify Cultivated Crops. This was due to the fact that there were only 7 samples of this category, out of the total 18,496 training samples. It is interesting to note that the CNN misclassified Cultivated Crops mostly as a single category, whereas the U-Net’s misclassifications were spread out over several categories. This may be because the CNN was trained on multiclass classification with softmax, forcing it to choose a single category, while the U-Net models were trained on binary classification, which can allow several models to produce similar classification scores on difficult classes.

In general, performance results of the CNN and U-Net were very similar, as seen by the F1-scores in Figure 5. The CNN performed better than the U-Net on some categories, notably Barren Land, Mixed Forest, and Grassland, while the U-Net performed better on the Developed categories. Overall, however, there was no significant difference in performance, as can also be seen in Figure 4 and Tables IV and V.

Figure 6 shows how the CNN and U-Net predictions compare
V. CONCLUSIONS AND FUTURE WORK

This paper presents an approach using deep learning to generate land cover maps from satellite imagery. Our approach is unique in that it applies a pixel-based approach to high resolution imagery to classify land cover. Our goal is to process land classifications that better depict vegetation types in the WUI, where land cover changes rapidly, and where the location of interspersed vegetation and homes are critical for understanding fire behavior. The results presented in this paper indicate that our classifications would do much better at representing the distribution of vegetation than the NLCD model in this part of Escondido, California.

As a part of future work to improve the prediction performance of the models we plan to investigate the use of more data augmentation techniques such as shift and zoom. This will add more variability to the training data and enable the models to be more robust to slight changes in the input image. Additionally, many of the smaller classes yielded worse results than larger classes, suggesting that addressing class imbalance may lead to improved classification performance. Incorporating other spectral bands, e.g., infrared and short-wave infrared, will provide additional input information to the models, and should also help to improve performance. These bands, with longer wavelengths than visible light, can help to separate vegetation from non-vegetation materials as well as different types of urban materials such as concrete and tile to help further distinguish between the Developed categories.

Our models can now be used to automate the process of labeling pixels in other areas with similar land cover. To improve the accuracy of the current models, we can examine predictions that have low scores or small differences between the top N scores, which indicate predictions with low confidence, and re-label them as necessary. This can be considered a type of active learning to selectively choose samples to guide training. The new labels can then be used to refine existing models to generate more accurate predictions, which can be used to fully automate the labeling process.

Since hand labeling is a time-consuming, tedious, and error-prone process, the ability to use our models to automate the labeling process adds scalability and accuracy to our analytics pipeline. This is essential as we proceed with applying our approach to larger and more diverse areas.

ACKNOWLEDGEMENTS

This work was supported in part by NSF-1331615 under CI, Information Technology Research, and SEES Hazards programs and NSF-1730158 for Cognitive Hardware and Software Ecosystem Community Infrastructure (CHASE-CI).

The authors also appreciate the collaboration and in-kind support of Jenny Palomino, Planet, Digital Globe, the Google Earth Engine, and Pradeep Saddi.

REFERENCES

Fig. 7: Comparing NLCD labels, CNN predictions, and U-Net predictions for entire study area.

