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Synopsis Coral reef fishes constitute one of the most diverse assemblages of vertebrates on the planet. Color patterns are

known to serve a number of functions including intra- and inter-specific signaling, camouflage, mimicry, and defense.

However, the relative importance of these and other factors in shaping color pattern evolution is poorly understood.

Here we conduct a comparative phylogenetic analysis of color pattern evolution in the butterflyfishes (Chaetodontidae).

Using recently developed tools for quantifying color pattern geometry as well as machine learning approaches, we

investigate the tempo of evolution of color pattern elements and test whether ecological variables relating to defense,

depth, and social behavior predict color pattern evolution. Butterflyfishes exhibit high diversity in measures of chromatic

conspicuousness and the degrees of fine versus gross scale color patterning. Surprisingly, most diversity in color pattern

was not predicted by any of the measures of ecology in our study, although we did find a significant but weak

relationship between the level of fine scale patterning and some aspects of defensive morphology. We find that the

tempo of color pattern diversification in butterflyfishes has increased toward the present and suggest that rapid evolu-

tion, presumably in response to evolutionary pressures surrounding speciation and lineage divergence, has effectively

decoupled color pattern geometry from some aspects of ecology. Machine learning classification of color pattern appears

to rely on a set of features that are weakly correlated with current color pattern geometry descriptors, but that may be

better suited for the detection of discrete components of color pattern. A key challenge for future studies lies in

determining whether rapid evolution has generally decoupled color patterns from ecology, or whether convergence in

function produces convergence in color pattern at phylogenetic scales.

Introduction

Reef fishes constitute one of the most colorful

assemblages of vertebrates on the planet. This aston-

ishing biodiversity of color and pattern is associated

with diversification in visual systems, signaling, de-

velopment, and ecology of reef fish lineages

(Marshall 2000; Losey et al. 2003; Marshall et al.

2003; Cheney et al. 2009; Salis et al. 2018). For these

reasons, reef fishes have been identified as a key

group for understanding the evolution of color pat-

tern diversity (Salis et al. 2019). Key color pattern

elements, including, bars, stripes, and false eyespots,

are thought to play roles in signaling and defensive

behavior (Barlow 1972; Neudecker 1989; Domeier and

Colin 1997; Marshall 2000; Randall 2005). Color pat-

tern divergence is also important for speciational pro-

cesses (Salis et al. 2018; Hemingson et al. 2019) and

has been suggested to be more important than diver-

sification along ecological axes for the recent macro-

evolution of the reef fish fauna (Bellwood et al. 2015,

2017). However, despite the opportunities afforded by

the repeated acquisition of similar patterns and the

increasing availability of phylogenetic frameworks for

marine fishes (Rabosky et al. 2018), few phylogenetic

comparative studies have been applied to reef fish

color evolution. As a result, we have a poor under-

standing of the relative importance of hypothesized

drivers of color pattern diversity.

Here we conduct a comparative analysis of color pat-

tern evolution across butterflyfishes (Chaetodontidae).

We focused on the butterflyfishes as visual communica-

tion is known to play an important role in their evo-

lution and divergence. Members of this group typically

exhibit strongly contrasting colors including yellows,
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blacks, and whites, and ornate color patterns hypothe-

sized to be tied to different selective pressures, including

predation and sexual selection (Neudecker 1989;

McMillan et al. 1999; Stevens 2007; Kjernsmo and

Merilaita 2013; Lönnstedt et al. 2013). Butterflyfishes

exhibit conspicuous interspecific variation in color pat-

tern that exceeds intraspecific variation (Hemingson

et al. 2019), making this family ideal for cross-species

comparisons. Prior comparative studies of color pattern

evolution in butterflyfishes have revealed that although

body striping is associated with ecology, habitat, and

social behavior, many other aspects of pattern evolution,

including eye stripes, and false eye spots, are highly

evolutionarily labile (Kelley et al. 2013; Hemingson

et al. 2019). We sought to identify whether recently

developed tools for quantifying geometry and similarity

could help reveal the tempo of color pattern evolution

as well as the importance of ecology in shaping func-

tional features of color pattern diversity.

Methods

Image sources

High quality images of fishes were aggregated from

Internet databases, with the majority of the images in

this dataset acquired through a database of J.E. Randall’s

images accessible through the Bishop Museum (http://

pbs.bishopmuseum.org/images/JER/). Images from

fishbase.org and the FishWise Professional Database

were also used. Butterflyfishes are sexually monomor-

phic. We selected images of adults and excluded uncom-

mon color morphs, such as melanistic individuals for a

total of 116 species (Supplementary Table S1). We stan-

dardized images using a custom-written interface that

removed the background (source code available at

https://github.com/ShawnTylerSchwartz/FishBGRem

oval_Interface) and by orienting images so that the fish

was in left lateral view, parallel to the horizontal axis

(Supplementary Fig. S1).

Color pattern analysis

We characterized color pattern geometry following

approaches developed by Endler and colleagues

(Endler 2012; Endler et al. 2018). The first step in

this pipeline is to classify colors present in an image

into k categories. The dominant colors across butter-

flyfishes are yellows, blacks, and whites (Marshall

et al. 2003; Hemingson et al. 2019) and we set

k¼ 4 to capture this variation and while accommo-

dating some of the diversity of more complex color

patterns. Following classification, we subsampled the

images using a 100 � 100 pixel grid. Color geometry

statistics are based upon the colors of the sampled

pixels, the frequency of color transitions to

adjacently sampled pixels, and the color distance be-

tween adjacent pixels (Endler 2012; Endler et al.

2018). We calculated the overall transition density

(m), the aspect ratio (ratio of row-wise to column-

wise transitions, A), the scaled Simpson color class

diversity (Jc), the scaled Simpson transition diversity

(Jt), and the mean chromatic and achromatic

boundary strength (m_dS and m_dL) using “pavo”

(Version 2.0.0; Maia et al. 2019).

We use RGB values to calculate color distances to

capture aspects of the overall color pattern. For each

color region, we calculated two color measurements

(R � G)/(RþG) and (G � B)/(GþB) and one

measurement of luminance (RþGþB) (Endler

2012). We calculated color distances between regions

by taking the Euclidean distance between the two

color measurements (dS), and separately calculated

the luminance distance by taking the Euclidean dis-

tance between the luminance measurements for each

region (dL). Ideally, boundary strength analyses

would be calculated from color distances calculated

by the photoreceptor outputs of the appropriate ob-

server (Endler 2012). These distances can be calcu-

lated by obtaining data on reflectance per wavelength

for each color region and applying a visual model,

either by using a reflectance spectrometer or a color

and luminance calibrated digital photograph (Endler

2012). Unfortunately, we could not perform these

calculations in this way for two reasons. First, our

data were not collected with a calibrated camera, so

we could not obtain objective calculations of reflec-

tance per wavelength. Second, while some species

from this family have had their visual systems de-

scribed with three cones (two based in the short

wavelengths and one in the yellow/green spectrum;

Losey et al. 2003; Marshall 2017), these data do not

exist for all species and may vary. Furthermore, the

evolution of these color patterns may be the product

of selection from both conspecifics and other organ-

isms with different visual systems (e.g. predators).

Although the image data used in our study does

not necessarily incorporate information about the

visual system of a particular aquatic viewer, we argue

that they describe empirical aspects of the color

patterns.

Comparative analyses

We sought to test evolutionary hypotheses related to

the tempo of color pattern evolution and ecological

drivers of these patterns. To conduct comparative

analyses, we used a previously published time-

calibrated phylogeny (Cowman and Bellwood 2011)

and data on the social behavior and defensive
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morphology (Hodge et al. 2018). To reduce the di-

mensionality of our color geometry dataset, we con-

ducted a phylogenetic principal component analysis

(PCA) (Revell 2009) on the log transformed color

pattern variables (m, A, Jc, Jt, m_dS, m_dL) using

the “phytools” package in R (Revell 2012). We used

Hodge et al. (2018) defensive trait measure data and

followed their procedures for size correction and

principal components analysis. We coded species so-

cial behavior (social or solitary) and foraging strategy

(benthic hunting, facultative hunting and grazing,

obligate coral grazing, and pelagic hunters) following

Hodge et al. (2018).

The tempo of color pattern evolution

Butterflyfishes have been shown to exhibit rapid di-

vergence in color pattern between closely related spe-

cies (Hemingson et al. 2019). To examine how

different components of color pattern have evolved,

we calculated Blomberg’s K for PCs 1–3. Blomberg’s

K describes the variance in evolution of a trait across

a clade relative to expectations under Brownian mo-

tion (BM). K values that are near 1 indicate that

variation amongst individuals is similar to expecta-

tions under Brownian evolution while values <1 in-

dicate that closely related individuals are more

variable than expected under BM. We also calculated

the mean disparity through time (DTT) and the

morphological disparity index (MDI) statistic

(Harmon et al. 2003; Slater et al. 2010) to test

whether butterflyfishes show greater than expected

disparity within subclades. DTT measures the aver-

age diversity within subclades compared to the di-

versity expected under BM. The MDI (Slater et al.

2010) uses simulation to test whether observed pat-

terns of DTT differ from Brownian expectations. A

significant MDI statistic means that that observed

subclade diversity is unlikely to have been produced

by Brownian evolution. We calculated DTT using

phylogenetic PCs 1–3 of the color geometry variables

using the pruned Cowman et al. tree (Cowman and

Bellwood 2011). We performed the MDI test using

1000 simulated trees. To avoid biases that can be

created by incomplete taxonomic sampling, we ex-

cluded the last 5% of the tree in calculating the MDI

statistic. Finally, we tested whether color pattern evo-

lution is more rapid at the tips of the tree using the

node heights test (Freckleton and Harvey 2006) for

PCs 1–3. The node heights test examines the abso-

lute magnitude of independent contrasts in a trait as

a function of the “height” or distance of the contrast

from the root of the tree. A significant node heights

test indicates that the rate of evolution has increased

toward the present.

Ecological and social drivers of color pattern

evolution

We tested the fit of BM versus Ornstein–Uhlenbeck

(OU) models, using the “geiger” package in R

(Pennell et al. 2014), to determine which model

would be the best fit for our comparative analyses.

To test the relationship between pattern geometry

and anti-predator defenses, we ran a Phylogenetic

Generalized Least Squares (PGLS) regression on

PCs 1–3 of the defensive morphology traits against

the color pattern PCs 1–3 using the “nmle” package

in R (Pinheiro et al. 2018). Additionally, we tested

PCs 1–3 of the color pattern variables against average

depth. Average depth (Supplementary Table S2) was

calculated from the reported minimum and maxi-

mum depth for each species in fishbase.org (Froese

and Pauly 2019) via the “rfishbase” package in R

(Boettiger et al. 2012). To evaluate the contribution

of ecology and social behavior on pattern geometry,

we ran A PGLS regression on PCs 1–3 of the color

pattern variables against categorical assignments of

foraging strategy and social behavior, both coded

following Hodge et al. (2018). We also ran PGLS

regressions of color pattern variable PCs 1–3 against

depth with interactions of foraging strategy and so-

cial behavior.

Machine learning

Coral reef fishes exhibit startling diversity in their

color patterns. When patterns are simple, such as

solid blocks of color or repeated stripes along the

body, similarity can be readily identified. However,

the sheer number of permutations of hue and ar-

rangement of color patches present in even a rela-

tively small family like butterflyfishes defies easy

categorization. Machine learning has been shown to

outperform human beings in identifying pattern cat-

egories under some conditions (Pang et al. 2002)

and we explored the utility of machine learning in

classifying fish color pattern as part of this study.

Currently, the best image processing algorithms

are convolutional neural networks (CNNs), deep

learning networks modeled after the neural connec-

tivity in the animal visual cortex that can handle

high levels of complexity (Krizhevsky et al. 2012).

Some of these networks have shown to be equivalent

or superior to the performance of human experts

(Cireşan et al. 2012). We utilized the VGG-16

CNN (Simonyan and Zisserman 2014), which con-

sists of a uniform architecture of 16 convolutional
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layers and allows for feature extraction from images.

Through the implementation of an unsupervised

machine learning algorithm with the VGG-16 pre-

weighted CNN using the Keras API (Version 2.2.4)

with a TensorFlow backend (Version 1.11.0) written

in Python (Version 3.6.5), we extracted 1000 feature

layer activation proportions per image. We then used

this matrix of fish images and feature layers to per-

form hierarchical agglomerative (bottom-up) cluster-

ing through an unsupervised machine learning

algorithm (Pedregosa et al. 2011) with Euclidean dis-

tance and ward linkage.

We performed unsupervised machine learning on

the image feature activation matrix for the

background-removed image sets. We partitioned

these data into a range of 2–20 clusters for the hier-

archical agglomerative clustering algorithm, and mea-

sured the classifiers’ Cali�nski and Harabasz (Variance

Ratio Criterion) score (Cali�nski and Harabasz 1974),

for each of the 2–20 hierarchical clusters. This metric

allowed us to both quantify the performance of the

machine learning algorithm, as well as to aid us in

deciding on the optimal number of clusters for our

dataset. This was necessary since an unsupervised ma-

chine learning algorithm does not have associated

truth labels, as compared to a supervised algorithm

which can assess its performance accuracy by com-

paring the classification labels to the truth labels. The

Cali�nski and Harabasz score for each of the 2–20

clusters allowed us to understand the within-cluster

and between-cluster dispersion ratio (Cali�nski and

Harabasz 1974), which helped us decide on the num-

ber of clusters to visualize our dataset. Finally, we

orthogonally reduced the 1000 feature layer activa-

tions of each fish image from the VGG-16 CNN to

two-dimensions through a PCA. This provided us

with a two-coordinate system to visualize the relative

distances in image feature similarity and relatedness

between the Chaetodontidae images and their

assigned cluster. We then regressed PCs 1 and 2

from the machine learning against the color pattern

geometry variables to compare the machine learning

clustering to features identified by analysis of color

pattern geometry.

Results

Color pattern geometry

Species with high transition density (m) tended to

possess fine patterning at the level of individual scales

such as Chaetodon reticulatus (Supplementary Table

S3) while low transition density species tended to

possess color patterns dominated by a single or few

large body patches. As expected, high aspect ratio (A)

species typically exhibited prominent vertical stripes

while low aspect ratio species had horizontal stripes.

Species with high transition diversity (Jt) tended to

show significant texture and fine patterning around

individual scales, while low Jt species did not. High

color diversity (Jc) species also tended to have color

patches distributed widely across the body while low

Jc species were characterized by thick, two tone ver-

tical stripes. Chaetodontids varied widely in their

chromatic boundary strength (Supplementary Table

S4) with high m_dS species showing conspicuous

patches of black against yellows and whites and low

m_dS species tending toward monochromatic with

few large patches of contrasting colors. Achromatic

boundary strength was less variable (Supplementary

Table S4). Chromatic and achromatic boundary

strengths were significantly but weakly correlated

(R2 ¼ 0.1914, F¼ 20.82, df ¼ 82, P< 0.0001).

Phylogenetic PCA analysis

PCs 1–3 color pattern variables explained 90% of the

cumulative variation in the dataset (Tables 1 and 2).

Chromatic boundary strength (m_dS) exhibited an ef-

fectively perfect correlation with PC1 with achromatic

boundary strength (m_dL) and transition density (m)

also showing strong loadings. This axis ordered similarly

colored taxa with high transitions between them to taxa

with highly dissimilar colors and few transitions.

Loadings on PC2 were dominated by m, Jc (color diver-

sity), and m_dL. This axis ordered taxa with high fre-

quency of color transitions and relatively even

distribution of color to species with few color transi-

tions and a dominant color. Transition diversity (Jt),

aspect ratio (A), and m_dL loaded heavily on PC3.

This axis ordered taxa from vertically striped species

with most transitions between a small number of colors

to horizontally striped species with a more even number

of color transitions. Visualization of color pattern PC

space is shown in Fig. 1.

Tempo of color pattern evolution

Blomberg K values for PCs 1–3 were significantly

lower than 1 (PC1 k¼ 0.122, P¼ 0.005; PC2

k¼ 0.192, P¼ 0.001; PC3 k¼ 0.136, P¼ 0.006) indi-

cating that color geometry evolution in closely re-

lated species is faster than expected under BM.

DTT plots for PCs 1–3 showed among clade diversity

near the present that was higher than expected under

BM (Fig. 2, DTT). These differences were significant

for PC1 (P¼ 0.0238), PC2 (P¼ 0.0476), and PC3

(P¼ 0.0476). The node heights test similarly revealed

a significant increase in the rate of evolution of color

pattern traits toward the present (Fig. 3 node heights
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test), for PCs 1–3 (PC1 P¼ 0.0066; PC2 P¼ 0.00163,

PC3 P¼ 0.0001).

Ecological and social drivers of color pattern

evolution

All continuous traits tended to fit the OU model

better than the BM model (Table 3). The PGLS anal-

yses of PCs 1–3 of the defensive morphology traits

against color pattern variables revealed a significant

relationship between anti-predator morphology and

some measures of pattern geometry (Tables 4–6).

PC1 was not correlated with any of the variables

tested. PC2 of color pattern variables was found to

be negatively predicted by both PC1 (an axis strongly

influenced by dorsal and anal fin spine length,

Table 2) and PC3 (an axis strongly influenced by

body depth), of antipredator morphology variables.

PC2 of color pattern variables was also found to be

predicted by foraging strategy for facultative hunting

and grazing and obligate coral grazing (Table 6), as

well as negatively associated with average depth

(Tables 5). Color pattern geometry was not predicted

by social behavior.

Machine learning

Our analysis identified k¼ 4 as the optimal number

of clusters, as suggested by both the Cali�nski and

Harabasz score (Cali�nski and Harabasz 1974) and

feature dendrogram output from the hierarchical

clustering algorithm (Pedregosa et al. 2011)

(Supplementary Fig. S2). Within this feature space,

Clusters 0 and 2 showed strong overlap with Cluster

3 along PC1 with Cluster 1 showing the greatest

degree of separation (Fig. 4). With respect to color

pattern geometry, machine learning PC1 was signif-

icantly correlated with transition density (m), color

diversity (Jc), transition diversity (Jt), and chromatic

(m_dS) and achromatic (m_dL) boundary strength,

but not aspect ratio (Table 7). However, these cor-

relations tended to be weak (R2 ¼ 0.7–0.8). Along

machine learning PC2, all four clusters exhibited

substantial overlap. PC2 was most significantly cor-

related with color pattern diversity and chromatic

and achromatic boundary strength, but again the

overall relationship was weak (R2 ¼ 0.06–0.08).

Table 1 Loadings, variance, and cumulative variance for phyloge-

netic PCA analysis of color pattern geometry

Descriptor PC1 PC2 PC3

m 0.33 0.90 �0.13

A 0.16 �0.31 0.63

Jc �0.02 0.44 0.06

Jt �0.29 �0.33 �0.77

m_dS �1.00 0.09 0.04

m_dL �0.49 �0.47 �0.46

Variance explained 0.68 0.16 0.06

Cumulative variance 0.68 0.83 0.90

Table 2 Loadings, variance, and cumulative variance for phyloge-

netic PCA analysis of antipredator morphology

Descriptor PC1 PC2 PC3

Anal fin spine length 0.49 �0.01 �0.33

Body depth 0.16 0.31 0.94

Caudal fin shape �0.05 �0.09 0.21

Dorsal anal fin spine offset 0.47 0.85 �0.23

Dorsal fin spine length 0.93 �0.35 0.02

Eye diameter 0.31 �0.12 �0.01

Pelvic fin spine length 0.50 0.09 0.23

Maximum body size 0.09 �0.05 0.06

Variance explained 0.44 0.29 0.21

Cumulative variance 0.44 0.73 0.94

Fig. 1 Phylogenetic principal components analysis of color geometry descriptors. (A) PC1 versus PC2. (B) PC1 versus PC3. (C) PC2

versus PC3. Color patterns in PC space shown for a randomly chosen subset of species for visualization.
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Discussion

Butterflyfishes exhibit high diversity in each of the

measures of color pattern geometry considered in

this study, and the tempo of diversification of these

elements has increased toward the present. Species

especially vary in their chromatic boundary strength

which is one measure of pattern conspicuousness.

Analysis of the tempo of color pattern evolution

reveals a strong signal of increasingly rapid evolution

toward the present for all aspects of color pattern

geometry. Although color patterns are thought to

play a role in defense and social behavior and the

perception of pattern is strongly affected by available

light, we found few aspects of defensive morphology,

sociality, or depth that predicted patterns of color

evolution. Machine learning based clustering identi-

fied four groups with similar features. Although the

machine learning feature space was significantly cor-

related with other measures of color pattern geome-

try, these relationships were weak.
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Fig. 2 DTT analysis of principal components 1–3. Subclade dis-

parity for all three PCs was significantly higher than expected

under BM indicating that clades tended to vary more in color

pattern more within clades than across clades. Departure from

Brownian expectation increased toward the present.
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increase toward the present.
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The tempo of color pattern evolution

Our comparative analyses considered diverse aspects

of color pattern including the total diversity of col-

ors, the frequency of transitions to other colors, the

general orientation of color patches, and the

expected chromatic and achromatic conspicuousness

of the overall pattern. We found that at the shallow-

est time scales, divergences in these pattern elements

were rapid. Diversity within young subclades tends

to be high and tends to capture a large fraction of

the total diversity present within the family (Fig. 2)

and tempo of diversification of all pattern elements

shows a strong trend of increasing toward the pre-

sent (Fig. 3). Although analyses of pairs of sister

species reveal that time of divergence is a poor pre-

dictor of color pattern diversity (Hemingson et al.

2019), our results show that time-dependence of

rates emerges with a deeper phylogenetic perspective.

This increase in the tempo of color pattern diversi-

fication may help explain the pattern of relationships

observed between ecology and color pattern geome-

try (see below).

Color pattern evolution and ecology

Analysis of color pattern geometry revealed that but-

terflyfishes have diversified along all of the axes mea-

sured in our study. Across the family, species vary

3�–6� in the amount of transition density, aspect

ratio, color and transition diversity, and achromatic

boundary strength. However, species vary 25� in

their chromatic boundary strength. Phylogenetic

PCA analysis reflected this high diversity of chromatic

boundary strength with PC1 being perfectly corre-

lated with m_dS (Tables 1 and 2). Thus, the major

axis of butterflyfish color pattern diversification has

been with respect to a measure of color pattern con-

spicuousness and species within this group range

from highly inconspicuous to highly conspicuous

with respect to color. Diversification along this axis

suggests that color patterns have evolved across the

group in response to pressures relating to crypsis and

communication. The second major axes of diversifi-

cation relates to transition density, with m showing a

very high loading on PC2. High transition density

indicates that the colors change quickly across the

fish while low m indicates a low degree of turnover

in color across the pattern. Thus butterflyfishes also

vary widely in whether they possess fine-scale pattern-

ing to diverse colors or whether color patterns tend

to be concentrated in patches.

Diversification along an axes of color conspicu-

ousness, might suggest that depth, social behavior,

and defensive morphology would predict color pat-

tern evolution. Social species might be expected to

rely on more conspicuous patterns than asocial spe-

cies. Shallow-water habitats would allow conspicu-

ous color patterns to be more easily perceived than

deep water habitats. And highly defended species

might be able to afford greater conspicuousness by

virtue of being less vulnerable to predation.

However, in our analyses, none of these factors

Table 3 Model fits of PCs 1–3 of color pattern geometry and

average depth for comparative analyses (91 species)

Trait Model LnL AIC D AIC

PC1 BM �113.45 230.89 54.02

OU �85.43 176.87 0.00

PC2 BM �37.62 79.24 36.97

OU �18.14 42.27 0.00

PC3 BM 4.40 �4.80 37.42

OU 24.11 �42.22 0.00

Average depth BM �478.36 960.72 65.37

OU �444.68 895.35 0.00

For each model, we report the log-likelihood (LnL), Akaike information

criterion (AIC), and the model’s mean AIC minus the min. AIC (DAIC).

The best fit models, determined by lowest AIC score, are bolded.

Table 4 PGLS results of adjacency PCs 1–3 against antipredator morphology PCs 1–3, estimated under an OU model (84 species)

Adjacency Morphology Estimate SE t-value P-value

PC1 PC1 �4.70 � 10�3 7.16 � 10�3 �0.66 0.51

PC1 PC2 2.04 � 10�3 0.01 0.19 0.85

PC1 PC3 0.02 0.01 1.35 0.18

PC2 PC1 �8.58 � 10�3 4.21 � 10�3 �2.04 0.04

PC2 PC2 4.3194E-05 5.60 � 10�3 7.72 � 10�3 0.99

PC2 PC3 �0.01 6.24 � 10�3 �2.34 0.02

PC3 PC1 �1.47 � 10�3 2.25 � 10�3 �0.65 0.52

PC3 PC2 3.94 � 10�3 3.26 � 10�3 1.21 0.23

PC3 PC3 5.52 � 10�3 3.98 � 10�3 1.39 0.17

Phylogenetic signal was optimized using maximum likelihood as Pagel’s k. Degrees of freedom for all regressions were 84. Significant P-values

bolded.
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predicted the diversity in color pattern along PC1.

The main color pattern axis predicted by ecological

variables was PC2, which is dominated by variation

in color pattern transition frequency. Species with

the highest m, which appears to reflect fine scale

patterning at the level of individual scales, also

tended to be less physically defended and to inhabit

shallower depths. The ecological significance of this

Table 6 PGLS results of adjacency PCs 1–3 against foraging strategy—benthic invert., facultative, obligate, and planktivore—as well as

solitary vs. paired social behavior (84 species)

Model Trait/interaction Estimate SE t-value P-value

PC1 � Foraging (Intercept) �0.05 0.12 �0.40 0.69

Facultative 0.11 0.18 0.60 0.55

Obligate 0.37 0.19 1.98 0.05

Planktivore 0.07 0.26 0.28 0.78

PC2 � Foraging (Intercept) �0.07 0.06 �1.28 0.21

Facultative 0.28 0.08 3.36 1.2 �10-3

Obligate 0.35 0.09 4.05 1 � 10-4

Planktivore 0.08 0.12 0.66 0.51

PC3 � Foraging (Intercept) �0.02 0.04 �0.49 0.63

Facultative 0.02 0.06 0.36 0.72

Obligate 1.66 � 10-3 0.06 0.03 0.98

Planktivore �0.04 0.08 �0.43 0.67

PC1 � Social Behavior (Intercept) 0.05 0.09 0.60 0.55

Solitary 0.10 0.14 0.69 0.49

PC2 � Social Behavior (Intercept) 0.10 0.05 1.98 0.05

Solitary 0.07 0.07 0.97 0.34

PC3 � Social Behavior (Intercept) �0.04 0.03 �1.42 0.16

Solitary 0.07 0.04 1.54 0.13

Table 7 Linear regressions of color geometry statistics for overall transition density (m), aspect ratio (A), scaled Simpson color class

diversity (Jc), scaled Simpson transition diversity (Jt), and mean chromatic and achromatic boundary strength (m_dS and m_dL) with

machine learning PC1 and PC2 from the PCA of the VGG-16 image classifications for fish images of the family Chaetodontidae

m A Jc Jt m_dS m_dL

(Intercept) �428.00** 441.60† 367.50 872.30** 227.99** 842.60**

(3.05) (1.93) (1.58) (3.28) (2.92) (3.32)

PC1 2995.30** �389.60† �543.20 �1391.20** �1616.12*** �884.40**

(3.20) (1.97) (1.61) (3.32) (3.45) (3.36)

R2 0.08 0.03 0.02 0.09 0.09 0.09

Adj. R2 0.07 0.02 0.01 0.08 0.09 0.08

(Intercept) 95.23 �31.09 �599.70*** �360.20† �147.79* 2556.70**

(0.83) (0.17) (3.43) (1.67) (2.38) (2.76)

PC2 �666.63 27.41 886.50*** 574.40† 1047.46** 584.30**

(0.87) (0.17) (3.49) (1.69) (2.82) (2.80)

R2 0.01 0.0002 0.10 0.02 0.07 0.06

Adj. R2 �0.002 �0.01 0.09 0.02 0.06 0.06

Num. obs. 116 116 116 116 116 116

†P< 0.1, *P< 0.05, **P< 0.01, ***P< 0.001. t statistics in parentheses.

Table 5 PGLS results of adjacency PCs 1–3 against average

depth (91 species)

PC Estimate SE t-value P-value

PC1 �1.59 � 10�3 2.04 � 10�3 �0.78 0.44

PC2 �2.01 � 10�3 9.76 � 10�4 �2.06 0.04

PC3 �7.91 � 10�4 6.30 � 10�4 �1.26 0.21
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relationship is not clear. If high transition-based

color patterns are important to intraspecific signal-

ing then perception of these patterns would be most

effective at shallower depths with more light.

However, high transition patterns are not more con-

spicuous with respect to chromatic boundary

strength as might be expected if they evolved under

selection for intraspecific communication. Species at

shallower depths do tend to have lower achromatic

boundary strength values (Tables 1 and 5), making

them less visible at distance (Endler et al. 2018).

This raises the possibility that high transition

patterns have evolved to be less visible to shallow-

water predators.

The general lack of relationship between color

pattern and ecology, although surprising, is consis-

tent with prior work on body, eyestripe, and eye-

spot evolution (Kelley et al. 2013). Color patterns

are presumed to play a key role in multiple aspects

of butterfly fish ecology including intraspecific

communication as well as predator avoidance and

deception (Marshall 2000). The widespread preva-

lence of yellows, blacks, and whites across this

group (Hemingson et al. 2019) should produce

Fig. 4 A visualization of the first two principal components, and their cluster assignment, from the two-dimensional PCA based on the
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high-contrast patterns that should be relatively con-

spicuous (Marshall 2000; Endler et al. 2018).

Furthermore, many species inhabit shallow water

(Supplementary Table S2) and possess eyes with

spectral sensitivity appropriate for perceiving pat-

terns of other members of the family (Losey et al.

2003; Marshall 2017). Yet we found weak to non-

existent or relationships between almost all ecolog-

ical predictors and color pattern. Social species do

not possess color patterns that are distinctive from

solitary species despite the expectation that sociality

might favor patterns that are more conspicuous.

Heavily defended species, which might be expected

to advertise their defenses or at least be able to

possess more conspicuous patterns dues to de-

creased vulnerability to predation (Hodge et al.

2018) do not significantly differ in boundary

strength from less defended species. And despite

the attenuation of light with depth in marine envi-

ronments, we found little evidence that color pat-

tern systematically varies with mean depth.

One possible exception to this lack of a trend be-

tween ecology and coloration may be the distribu-

tion of high transition patterning. Species with high

m and low achromatic boundary strength tend to i)

occur in shallow water, ii) have reduced physical

defenses, and iii) be more associated with corals

(Tables 1–6). These results suggest that the the trend

towards a low defense, shallow-bodied phentoype

identified by Hodge et al. (2018) as characteristic

of species that forage and seek refuge furthermore

includes a color pattern with high color transitions

and low achromatic boundary strength. It is possible

that this color pattern enhances camouflage within

corals by breaking up the bpdy outline and by re-

ducing conspicuousness at distance to predators

(Endler et al. 2018).

One possibility for the lack of a strong relationship

between ecology and color pattern is that we have not

included key aspects of pattern in our analysis. A pos-

sible example could be false eyespots which occur

across chaetodontids (Kelley et al. 2013). This color

pattern trait presumably functions to confuse preda-

tors and thus might be strongly favored under con-

ditions where species are vulnerable to predation

(Kjernsmo and Merilaita 2013; Kjernsmo et al.

2016). However, this trait shows high variability

with respect to the size, position, and number of spots

(Kelley et al. 2013) and might thus be poorly captured

by the methods employed here. It is possible that

comparative analyses that discretize key pattern ele-

ments might prove more useful in identifying rela-

tionships between ecology and color pattern (Salis

et al. 2018, 2019). However, we note that Kelley

et al. (2013) also found a generally weak relationship

between ecology and a set of discretely coded pattern

elements. Since our analysis was restricted to digital

photographs, it is also possible that more ecologically

relevant aspects of color pattern would emerge from

an analysis that included the entire visual spectrum,

including ultraviolet. However, given that most mem-

bers of this family are diurnally active, inhabit shallow

water, and do not appear to have visual sensitivity to

short wavelengths (Losey et al. 2003), we believe that

is unlikely.

An alternative possibility is that color pattern evo-

lution evolves so rapidly under pressures related to

reproductive isolation and species maintenance that

it becomes effectively decoupled from ecology. Our

analyses of the tempo of color pattern evolution are

consistent with rapid diversification under such a

scenario. Indeed, some species pairs of butterflyfishes

have been shown to develop substantial color differ-

ences in as little as 300,000 years (Hemingson et al.

2019). Paleontological and comparative studies have

revealed that almost all innovation in functional

traits related to feeding and ecology in modern reef

fish communities has taken place between 5 and 50

million years ago (Bellwood et al. 2015, 2017; Floeter

et al. 2018) and suggest that species diversification

over the last 5 million years is dominated by changes

in coloration without functional innovation

(Bellwood et al. 2017). Our analyses provide support

for scenarios of rapid changes in color pattern over

this time frame and furthermore, that color pattern

may be so plastic that convergences in pattern ele-

ments across species with diverse ecologies are com-

mon. Hemingson et al. (2019) suggested that color

pattern evolution is an extreme example of many-to-

one mapping (Wainwright et al. 2005) such that

pressures for lineage diversification relating to spe-

cies recognition can be met through nearly uncon-

strained diversification in pattern. This idea is

intriguing and consistent with the lack of relation-

ship between ecology and pattern found in our

study, and such a relationship is broadly consistent

with some predictions of macroevolutionary

“radiation in stages” models (Streelman and Danlel

2003; Sallan and Friedman 2012). Yet it is difficult to

reconcile with the wide range of studies demonstrat-

ing the ecological importance of color pattern vari-

ation (Marshall 2000, 2017; Losey et al. 2003; Endler

et al. 2018; Salis et al. 2018). Disentangling the rel-

ative importance of the drivers of pattern evolution

remains a key frontier in understanding color pat-

tern diversity in reef fishes (Salis et al. 2019).
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Machine learning and identification of fish color

patterns

Our application of machine learning to the problem

of color pattern identification suggests that chaeto-

dontids can be divided into four categories.

Although some color pattern elements within these

grouping are obvious (Clusters 0 and 2, Fig. 4), pat-

terns appear to be highly diverse within others

(Cluster 3). Features identified by machine learning

as important to explaining variation in the dataset

are related to color pattern geometry but the corre-

lation between them is weak. This is not surprising

and reflects both the strengths and weaknesses of

machine learning approaches in general. Unlike our

analysis of color pattern geometry, which subsamples

both the color diversity and number of pixels within

the image, ML clustering considers the entire image

in searching for features. On one hand, this may

provide ML an advantage in identifying pattern ele-

ments that are restricted to parts of a fish such as the

strong dorsal banding seen in most members of

Cluster 1 (Fig. 4). However, ML is also likely weight-

ing image features relating to body shape more

heavily than our analysis of color pattern geometry.

The relationship between body shape and color pat-

tern has yet to be explored within fishes, so whether

this is an advantage or disadvantage for this ap-

proach is not known. Although a more restricted

sampling of the image area in our dataset could re-

duce or eliminate the contribution of body shape to

clustering, the problem of identifying the key ele-

ments of pattern that contribute to clustering is dif-

ficult with current ML implementations. The general

area of feature extraction in ML is a major frontier

in the field and so solutions to this problem may

emerge in the near future. With respect to pattern

identification, another consideration of this study is

the size of our data. Our clustering analysis is based

upon 116 images. This is an exceedingly small sam-

ple size from a machine learning perspective.

Although the utility of pattern recognition within

chaetodontids appears somewhat limited, feature

identification is expected to improve substantially

with increasing dataset size. Thus, ML may provide

an important tool for identifying color patterns at

the scale of all reef fishes (Salis et al. 2019), or al-

ternatively, in nested studies that include multiple

images per species.

Conclusions and future directions

The study of color pattern evolution across coral reef

fishes is just emerging. The development of new

tools for quantifying pattern (Endler 2012; Van

Belleghem et al. 2018; Maia et al. 2019) combined

with the extraordinary diversity of fish color patterns

on reefs (Salis et al. 2019) makes this a promising

system for understanding the factors responsible for

this conspicuous aspect of biodiversity. A key chal-

lenge is to identify the relative importance of ecology

versus species identification in driving color pattern

evolution. Although studies on the history of fishes

on reefs suggest that color is decoupled from func-

tional innovations, the evidence for ecological rele-

vant diversity in reef fish color and visual systems is

widespread. Further comparative study at broader

phylogenetic scales, in conjunction with new ma-

chine learning approaches for identifying pattern

similarities, will help illuminate how temporal scale,

ecology, and phylogeny relate to understanding color

pattern evolution.
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