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Synopsis Coral reef fishes constitute one of the most diverse assemblages of vertebrates on the planet. Color patterns are
known to serve a number of functions including intra- and inter-specific signaling, camouflage, mimicry, and defense.
However, the relative importance of these and other factors in shaping color pattern evolution is poorly understood.
Here we conduct a comparative phylogenetic analysis of color pattern evolution in the butterflyfishes (Chaetodontidae).
Using recently developed tools for quantifying color pattern geometry as well as machine learning approaches, we
investigate the tempo of evolution of color pattern elements and test whether ecological variables relating to defense,
depth, and social behavior predict color pattern evolution. Butterflyfishes exhibit high diversity in measures of chromatic
conspicuousness and the degrees of fine versus gross scale color patterning. Surprisingly, most diversity in color pattern
was not predicted by any of the measures of ecology in our study, although we did find a significant but weak
relationship between the level of fine scale patterning and some aspects of defensive morphology. We find that the
tempo of color pattern diversification in butterflyfishes has increased toward the present and suggest that rapid evolu-
tion, presumably in response to evolutionary pressures surrounding speciation and lineage divergence, has effectively
decoupled color pattern geometry from some aspects of ecology. Machine learning classification of color pattern appears
to rely on a set of features that are weakly correlated with current color pattern geometry descriptors, but that may be
better suited for the detection of discrete components of color pattern. A key challenge for future studies lies in
determining whether rapid evolution has generally decoupled color patterns from ecology, or whether convergence in
function produces convergence in color pattern at phylogenetic scales.

Introduction has been suggested to be more important than diver-

Reef fishes constitute one of the most colorful sification along ecological axes for the recent macro-

assemblages of vertebrates on the planet. This aston-
ishing biodiversity of color and pattern is associated
with diversification in visual systems, signaling, de-
velopment, and ecology of reef fish lineages
(Marshall 2000; Losey et al. 2003; Marshall et al.
2003; Cheney et al. 2009; Salis et al. 2018). For these
reasons, reef fishes have been identified as a key
group for understanding the evolution of color pat-
tern diversity (Salis et al. 2019). Key color pattern
elements, including, bars, stripes, and false eyespots,
are thought to play roles in signaling and defensive
behavior (Barlow 1972; Neudecker 1989; Domeier and
Colin 1997; Marshall 2000; Randall 2005). Color pat-
tern divergence is also important for speciational pro-
cesses (Salis et al. 2018; Hemingson et al. 2019) and
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evolution of the reef fish fauna (Bellwood et al. 2015,
2017). However, despite the opportunities afforded by
the repeated acquisition of similar patterns and the
increasing availability of phylogenetic frameworks for
marine fishes (Rabosky et al. 2018), few phylogenetic
comparative studies have been applied to reef fish
color evolution. As a result, we have a poor under-
standing of the relative importance of hypothesized
drivers of color pattern diversity.

Here we conduct a comparative analysis of color pat-
tern evolution across butterflyfishes (Chaetodontidae).
We focused on the butterflyfishes as visual communica-
tion is known to play an important role in their evo-
lution and divergence. Members of this group typically
exhibit strongly contrasting colors including yellows,
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blacks, and whites, and ornate color patterns hypothe-
sized to be tied to different selective pressures, including
predation and sexual selection (Neudecker 1989;
McMillan et al. 1999; Stevens 2007; Kjernsmo and
Merilaita 2013; Lonnstedt et al. 2013). Butterflyfishes
exhibit conspicuous interspecific variation in color pat-
tern that exceeds intraspecific variation (Hemingson
et al. 2019), making this family ideal for cross-species
comparisons. Prior comparative studies of color pattern
evolution in butterflyfishes have revealed that although
body striping is associated with ecology, habitat, and
social behavior, many other aspects of pattern evolution,
including eye stripes, and false eye spots, are highly
evolutionarily labile (Kelley et al. 2013; Hemingson
et al. 2019). We sought to identify whether recently
developed tools for quantifying geometry and similarity
could help reveal the tempo of color pattern evolution
as well as the importance of ecology in shaping func-
tional features of color pattern diversity.

Methods
Image sources

High quality images of fishes were aggregated from
Internet databases, with the majority of the images in
this dataset acquired through a database of J.E. Randall’s
images accessible through the Bishop Museum (http://
pbs.bishopmuseum.org/images/JER/). Images from
fishbase.org and the FishWise Professional Database
were also used. Butterflyfishes are sexually monomor-
phic. Wesselected images of adults and excluded uncom-
mon color morphs, such as melanistic individuals for a
total of 116 species (Supplementary Table S1). We stan-
dardized images using a custom-written interface that
removed the background (source code available at
https://github.com/ShawnTylerSchwartz/FishBGRem
oval_Interface) and by orienting images so that the fish
was in left lateral view, parallel to the horizontal axis
(Supplementary Fig. S1).

Color pattern analysis

We characterized color pattern geometry following
approaches developed by Endler and colleagues
(Endler 2012; Endler et al. 2018). The first step in
this pipeline is to classify colors present in an image
into k categories. The dominant colors across butter-
flyfishes are yellows, blacks, and whites (Marshall
et al. 2003; Hemingson et al. 2019) and we set
k=4 to capture this variation and while accommo-
dating some of the diversity of more complex color
patterns. Following classification, we subsampled the
images using a 100 x 100 pixel grid. Color geometry
statistics are based upon the colors of the sampled
pixels, the frequency of color transitions to
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adjacently sampled pixels, and the color distance be-
tween adjacent pixels (Endler 2012; Endler et al
2018). We calculated the overall transition density
(m), the aspect ratio (ratio of row-wise to column-
wise transitions, A), the scaled Simpson color class
diversity (Jc), the scaled Simpson transition diversity
(Jt), and the mean chromatic and achromatic
boundary strength (m_dS and m_dL) using “pavo”
(Version 2.0.0; Maia et al. 2019).

We use RGB values to calculate color distances to
capture aspects of the overall color pattern. For each
color region, we calculated two color measurements
(R — G)/(R+G) and (G — B)/(G+B) and one
measurement of luminance (R4 G+B) (Endler
2012). We calculated color distances between regions
by taking the Euclidean distance between the two
color measurements (dS), and separately calculated
the luminance distance by taking the Euclidean dis-
tance between the luminance measurements for each
region (dL). Ideally, boundary strength analyses
would be calculated from color distances calculated
by the photoreceptor outputs of the appropriate ob-
server (Endler 2012). These distances can be calcu-
lated by obtaining data on reflectance per wavelength
for each color region and applying a visual model,
either by using a reflectance spectrometer or a color
and luminance calibrated digital photograph (Endler
2012). Unfortunately, we could not perform these
calculations in this way for two reasons. First, our
data were not collected with a calibrated camera, so
we could not obtain objective calculations of reflec-
tance per wavelength. Second, while some species
from this family have had their visual systems de-
scribed with three cones (two based in the short
wavelengths and one in the yellow/green spectrum;
Losey et al. 2003; Marshall 2017), these data do not
exist for all species and may vary. Furthermore, the
evolution of these color patterns may be the product
of selection from both conspecifics and other organ-
isms with different visual systems (e.g. predators).
Although the image data used in our study does
not necessarily incorporate information about the
visual system of a particular aquatic viewer, we argue
that they describe empirical aspects of the color
patterns.

Comparative analyses

We sought to test evolutionary hypotheses related to
the tempo of color pattern evolution and ecological
drivers of these patterns. To conduct comparative
analyses, we used a previously published time-
calibrated phylogeny (Cowman and Bellwood 2011)
and data on the social behavior and defensive
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morphology (Hodge et al. 2018). To reduce the di-
mensionality of our color geometry dataset, we con-
ducted a phylogenetic principal component analysis
(PCA) (Revell 2009) on the log transformed color
pattern variables (m, A, J¢ Jt, m_dS, m_dL) using
the “phytools” package in R (Revell 2012). We used
Hodge et al. (2018) defensive trait measure data and
followed their procedures for size correction and
principal components analysis. We coded species so-
cial behavior (social or solitary) and foraging strategy
(benthic hunting, facultative hunting and grazing,
obligate coral grazing, and pelagic hunters) following
Hodge et al. (2018).

The tempo of color pattern evolution

Butterflyfishes have been shown to exhibit rapid di-
vergence in color pattern between closely related spe-
cies (Hemingson et al. 2019). To examine how
different components of color pattern have evolved,
we calculated Blomberg’s K for PCs 1-3. Blomberg’s
K describes the variance in evolution of a trait across
a clade relative to expectations under Brownian mo-
tion (BM). K values that are near 1 indicate that
variation amongst individuals is similar to expecta-
tions under Brownian evolution while values <1 in-
dicate that closely related individuals are more
variable than expected under BM. We also calculated
the mean disparity through time (DTT) and the
morphological disparity index (MDI) statistic
(Harmon et al. 2003; Slater et al. 2010) to test
whether butterflyfishes show greater than expected
disparity within subclades. DTT measures the aver-
age diversity within subclades compared to the di-
versity expected under BM. The MDI (Slater et al.
2010) uses simulation to test whether observed pat-
terns of DTT differ from Brownian expectations. A
significant MDI statistic means that that observed
subclade diversity is unlikely to have been produced
by Brownian evolution. We calculated DTT using
phylogenetic PCs 1-3 of the color geometry variables
using the pruned Cowman et al. tree (Cowman and
Bellwood 2011). We performed the MDI test using
1000 simulated trees. To avoid biases that can be
created by incomplete taxonomic sampling, we ex-
cluded the last 5% of the tree in calculating the MDI
statistic. Finally, we tested whether color pattern evo-
lution is more rapid at the tips of the tree using the
node heights test (Freckleton and Harvey 2006) for
PCs 1-3. The node heights test examines the abso-
lute magnitude of independent contrasts in a trait as
a function of the “height” or distance of the contrast
from the root of the tree. A significant node heights
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test indicates that the rate of evolution has increased
toward the present.

Ecological and social drivers of color pattern
evolution

We tested the fit of BM versus Ornstein—Uhlenbeck
(OU) models, using the “geiger” package in R
(Pennell et al. 2014), to determine which model
would be the best fit for our comparative analyses.
To test the relationship between pattern geometry
and anti-predator defenses, we ran a Phylogenetic
Generalized Least Squares (PGLS) regression on
PCs 1-3 of the defensive morphology traits against
the color pattern PCs 1-3 using the “nmle” package
in R (Pinheiro et al. 2018). Additionally, we tested
PCs 1-3 of the color pattern variables against average
depth. Average depth (Supplementary Table S2) was
calculated from the reported minimum and maxi-
mum depth for each species in fishbase.org (Froese
and Pauly 2019) via the “rfishbase” package in R
(Boettiger et al. 2012). To evaluate the contribution
of ecology and social behavior on pattern geometry,
we ran A PGLS regression on PCs 1-3 of the color
pattern variables against categorical assignments of
foraging strategy and social behavior, both coded
following Hodge et al. (2018). We also ran PGLS
regressions of color pattern variable PCs 1-3 against
depth with interactions of foraging strategy and so-
cial behavior.

Machine learning

Coral reef fishes exhibit startling diversity in their
color patterns. When patterns are simple, such as
solid blocks of color or repeated stripes along the
body, similarity can be readily identified. However,
the sheer number of permutations of hue and ar-
rangement of color patches present in even a rela-
tively small family like butterflyfishes defies easy
categorization. Machine learning has been shown to
outperform human beings in identifying pattern cat-
egories under some conditions (Pang et al. 2002)
and we explored the utility of machine learning in
classifying fish color pattern as part of this study.
Currently, the best image processing algorithms
are convolutional neural networks (CNNs), deep
learning networks modeled after the neural connec-
tivity in the animal visual cortex that can handle
high levels of complexity (Krizhevsky et al. 2012).
Some of these networks have shown to be equivalent
or superior to the performance of human experts
(Ciresan et al. 2012). We utilized the VGG-16
CNN (Simonyan and Zisserman 2014), which con-
sists of a uniform architecture of 16 convolutional
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layers and allows for feature extraction from images.
Through the implementation of an unsupervised
machine learning algorithm with the VGG-16 pre-
weighted CNN using the Keras API (Version 2.2.4)
with a TensorFlow backend (Version 1.11.0) written
in Python (Version 3.6.5), we extracted 1000 feature
layer activation proportions per image. We then used
this matrix of fish images and feature layers to per-
form hierarchical agglomerative (bottom-up) cluster-
ing through an unsupervised machine learning
algorithm (Pedregosa et al. 2011) with Euclidean dis-
tance and ward linkage.

We performed unsupervised machine learning on
the image feature activation matrix for the
background-removed image sets. We partitioned
these data into a range of 2-20 clusters for the hier-
archical agglomerative clustering algorithm, and mea-
sured the classifiers’ Caliniski and Harabasz (Variance
Ratio Criterion) score (Calinski and Harabasz 1974),
for each of the 2-20 hierarchical clusters. This metric
allowed us to both quantify the performance of the
machine learning algorithm, as well as to aid us in
deciding on the optimal number of clusters for our
dataset. This was necessary since an unsupervised ma-
chine learning algorithm does not have associated
truth labels, as compared to a supervised algorithm
which can assess its performance accuracy by com-
paring the classification labels to the truth labels. The
Calinski and Harabasz score for each of the 2-20
clusters allowed us to understand the within-cluster
and between-cluster dispersion ratio (Calinski and
Harabasz 1974), which helped us decide on the num-
ber of clusters to visualize our dataset. Finally, we
orthogonally reduced the 1000 feature layer activa-
tions of each fish image from the VGG-16 CNN to
two-dimensions through a PCA. This provided us
with a two-coordinate system to visualize the relative
distances in image feature similarity and relatedness
between the Chaetodontidae images and their
assigned cluster. We then regressed PCs 1 and 2
from the machine learning against the color pattern
geometry variables to compare the machine learning
clustering to features identified by analysis of color
pattern geometry.

Results
Color pattern geometry

Species with high transition density () tended to
possess fine patterning at the level of individual scales
such as Chaetodon reticulatus (Supplementary Table
S3) while low transition density species tended to
possess color patterns dominated by a single or few
large body patches. As expected, high aspect ratio (A)
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species typically exhibited prominent vertical stripes
while low aspect ratio species had horizontal stripes.
Species with high transition diversity (Jf) tended to
show significant texture and fine patterning around
individual scales, while low Jt species did not. High
color diversity (Jc) species also tended to have color
patches distributed widely across the body while low
Jc species were characterized by thick, two tone ver-
tical stripes. Chaetodontids varied widely in their
chromatic boundary strength (Supplementary Table
S4) with high m_dS species showing conspicuous
patches of black against yellows and whites and low
m_dS species tending toward monochromatic with
few large patches of contrasting colors. Achromatic
boundary strength was less variable (Supplementary
Table S4). Chromatic and achromatic boundary
strengths were significantly but weakly correlated
(R = 0.1914, F=20.82, df = 82, P<0.0001).

Phylogenetic PCA analysis

PCs 1-3 color pattern variables explained 90% of the
cumulative variation in the dataset (Tables 1 and 2).
Chromatic boundary strength (m_dS) exhibited an ef-
fectively perfect correlation with PC1 with achromatic
boundary strength (m_dL) and transition density (m)
also showing strong loadings. This axis ordered similarly
colored taxa with high transitions between them to taxa
with highly dissimilar colors and few transitions.
Loadings on PC2 were dominated by m, Jc (color diver-
sity), and m_dL. This axis ordered taxa with high fre-
quency of color transitions and relatively even
distribution of color to species with few color transi-
tions and a dominant color. Transition diversity (J1),
aspect ratio (A), and m_dL loaded heavily on PC3.
This axis ordered taxa from vertically striped species
with most transitions between a small number of colors
to horizontally striped species with a more even number
of color transitions. Visualization of color pattern PC
space is shown in Fig. 1.

Tempo of color pattern evolution

Blomberg K values for PCs 1-3 were significantly
lower than 1 (PCl1 k=0.122, P=0.005; PC2
k=0.192, P=0.001; PC3 k=0.136, P=0.006) indi-
cating that color geometry evolution in closely re-
lated species is faster than expected under BM.
DTT plots for PCs 1-3 showed among clade diversity
near the present that was higher than expected under
BM (Fig. 2, DTT). These differences were significant
for PC1 (P=0.0238), PC2 (P=0.0476), and PC3
(P=0.0476). The node heights test similarly revealed
a significant increase in the rate of evolution of color
pattern traits toward the present (Fig. 3 node heights
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test), for PCs 1-3 (PC1 P=0.0066; PC2 P=0.00163,
PC3 P=10.0001).

Ecological and social drivers of color pattern
evolution
All continuous traits tended to fit the OU model

better than the BM model (Table 3). The PGLS anal-
yses of PCs 1-3 of the defensive morphology traits

Table 1 Loadings, variance, and cumulative variance for phyloge-
netic PCA analysis of color pattern geometry

Descriptor PC1 PC2 PC3

m 0.33 0.90 —0.13
A 0.16 —0.31 0.63
Je —0.02 0.44 0.06
Jt —0.29 —0.33 -0.77
m_dS —1.00 0.09 0.04
m_dL —0.49 —0.47 —0.46
Variance explained 0.68 0.16 0.06
Cumulative variance 0.68 0.83 0.90

Table 2 Loadings, variance, and cumulative variance for phyloge-
netic PCA analysis of antipredator morphology

M. E. Alfaro et al.

against color pattern variables revealed a significant
relationship between anti-predator morphology and
some measures of pattern geometry (Tables 4-6).
PC1 was not correlated with any of the variables
tested. PC2 of color pattern variables was found to
be negatively predicted by both PC1 (an axis strongly
influenced by dorsal and anal fin spine length,
Table 2) and PC3 (an axis strongly influenced by
body depth), of antipredator morphology variables.
PC2 of color pattern variables was also found to be
predicted by foraging strategy for facultative hunting
and grazing and obligate coral grazing (Table 6), as
well as negatively associated with average depth
(Tables 5). Color pattern geometry was not predicted
by social behavior.

Machine learning

Our analysis identified k=4 as the optimal number
of clusters, as suggested by both the Calinski and
Harabasz score (Calinski and Harabasz 1974) and
feature dendrogram output from the hierarchical
clustering algorithm (Pedregosa et al. 2011)
(Supplementary Fig. S2). Within this feature space,
Clusters 0 and 2 showed strong overlap with Cluster
3 along PC1 with Cluster 1 showing the greatest

Descriptor PC1 PC2 PC3 d ¢ . (Fig. 4). With ‘1 )
egree of separation (rig. 4). 1th respect to color
Anal fin spine length 0.49 —0.01 —0.33 & P g . P .
pattern geometry, machine learning PC1 was signif-
Body depth 0.16 0.31 094 icantly correlated with transition density (), color
Caudal fin shape —0.05 —0.09 0.21 diversity (Jc), transition diversity (Jt), and chromatic
Dorsal anal fin spine offset 0.47 0.85 —-0.23 (m_dS) and achromatic (m_dL) boundary strength,
Dorsal fin spine length 0.93 —-0.35 002  but not aspect ratio (Table 7). However, these cor-
Eye diameter 031 —-0.12 —001 relations tended to be weak (R* = 0.7-0.8). Along
Pelvic fin spine length 0.50 0.09 023 Mmachine learning PC2, all four clusters exhibited
Maximum body size 0.09 0,05 0,06 sulbstzntm‘l sver}ap. PC2 wasd .mos.t 51gn1(fiica}r11tly cor-
Variance explained 0.44 0.29 0pq Telated wit color pattern diversity and c rgmanc
Cumula ) 0.44 073 0.94 and achromatic boundary strength, but again the
umulative variance . . : overall relationship was weak (R* = 0.06-0.08).
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Fig. 1 Phylogenetic principal components analysis of color geometry descriptors. (A) PC1 versus PC2. (B) PC1 versus PC3. (C) PC2
versus PC3. Color patterns in PC space shown for a randomly chosen subset of species for visualization.

020z AINP €1 uo Jasn Ays1aAlun oleA Ad L960ESS/F09/E/6G/10BISAB-8]01E/GO1/LO0d"dNO"0ILSPEDE//:SARY WO PEPEOIUMOQ


https://academic.oup.com/icb/article-lookup/doi/10.1093/icb/icz119#supplementary-data

Color pattern evolution in fishes

2.0

. PCl1

1.0

disparit
BJ 20y30 0.0
|

0.0

20

1.0

0.0

0.0 0.2 0.4 0.6 0:8 1.0
relative time

Fig. 2 DTT analysis of principal components 1-3. Subclade dis-
parity for all three PCs was significantly higher than expected

under BM indicating that clades tended to vary more in color
pattern more within clades than across clades. Departure from
Brownian expectation increased toward the present.
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Discussion

Butterflyfishes exhibit high diversity in each of the
measures of color pattern geometry considered in
this study, and the tempo of diversification of these
elements has increased toward the present. Species
especially vary in their chromatic boundary strength
which is one measure of pattern conspicuousness.
Analysis of the tempo of color pattern evolution
reveals a strong signal of increasingly rapid evolution
toward the present for all aspects of color pattern
geometry. Although color patterns are thought to
play a role in defense and social behavior and the
perception of pattern is strongly affected by available
light, we found few aspects of defensive morphology,
sociality, or depth that predicted patterns of color
evolution. Machine learning based clustering identi-
fied four groups with similar features. Although the
machine learning feature space was significantly cor-
related with other measures of color pattern geome-
try, these relationships were weak.
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Fig. 3 Absolute value of standardized independent contrasts ordered by branching times for principal components 1-3. The slope of
contrasts (red line) was significantly different than O for all three PCs indicating that rates of evolution in color pattern have tended to

increase toward the present.
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The tempo of color pattern evolution

Our comparative analyses considered diverse aspects
of color pattern including the total diversity of col-
ors, the frequency of transitions to other colors, the
general orientation of color patches, and the
expected chromatic and achromatic conspicuousness
of the overall pattern. We found that at the shallow-
est time scales, divergences in these pattern elements
were rapid. Diversity within young subclades tends
to be high and tends to capture a large fraction of
the total diversity present within the family (Fig. 2)
and tempo of diversification of all pattern elements
shows a strong trend of increasing toward the pre-
sent (Fig. 3). Although analyses of pairs of sister
species reveal that time of divergence is a poor pre-
dictor of color pattern diversity (Hemingson et al.
2019), our results show that time-dependence of
rates emerges with a deeper phylogenetic perspective.
This increase in the tempo of color pattern diversi-
fication may help explain the pattern of relationships
observed between ecology and color pattern geome-
try (see below).

Table 3 Model fits of PCs 1-3 of color pattern geometry and
average depth for comparative analyses (91 species)

Trait Model LnL AIC A AIC
PC1 BM —113.45 230.89 54.02
ou —85.43 176.87 0.00
PC2 BM —37.62 79.24 36.97
ou —18.14 42.27 0.00
PC3 BM 4.40 —4.80 37.42
ou 24.11 —42.22 0.00
Average depth BM —478.36 960.72 65.37
ou —444.68 895.35 0.00

For each model, we report the log-likelihood (LnL), Akaike information
criterion (AIC), and the model’'s mean AIC minus the min. AIC (AAIC).
The best fit models, determined by lowest AIC score, are bolded.

Table 4 PGLS results of adjacency PCs 1-3 against antipredator

M. E. Alfaro et al.

Color pattern evolution and ecology

Analysis of color pattern geometry revealed that but-
terflyfishes have diversified along all of the axes mea-
sured in our study. Across the family, species vary
3x—6x in the amount of transition density, aspect
ratio, color and transition diversity, and achromatic
boundary strength. However, species vary 25X in
their chromatic boundary strength. Phylogenetic
PCA analysis reflected this high diversity of chromatic
boundary strength with PC1 being perfectly corre-
lated with m_dS (Tables 1 and 2). Thus, the major
axis of butterflyfish color pattern diversification has
been with respect to a measure of color pattern con-
spicuousness and species within this group range
from highly inconspicuous to highly conspicuous
with respect to color. Diversification along this axis
suggests that color patterns have evolved across the
group in response to pressures relating to crypsis and
communication. The second major axes of diversifi-
cation relates to transition density, with m showing a
very high loading on PC2. High transition density
indicates that the colors change quickly across the
fish while low m indicates a low degree of turnover
in color across the pattern. Thus butterflyfishes also
vary widely in whether they possess fine-scale pattern-
ing to diverse colors or whether color patterns tend
to be concentrated in patches.

Diversification along an axes of color conspicu-
ousness, might suggest that depth, social behavior,
and defensive morphology would predict color pat-
tern evolution. Social species might be expected to
rely on more conspicuous patterns than asocial spe-
cies. Shallow-water habitats would allow conspicu-
ous color patterns to be more easily perceived than
deep water habitats. And highly defended species
might be able to afford greater conspicuousness by
virtue of being less vulnerable to predation.
However, in our analyses, none of these factors

morphology PCs 1-3, estimated under an OU model (84 species)

Adjacency Morphology Estimate SE t-value P-value
PC1 PC1 —4.70 x 1073 7.16 x 1073 —0.66 0.51
PC1 PC2 204 x 1073 0.01 0.19 0.85
PC1 PC3 0.02 0.01 1.35 0.18
PC2 PC1 —858 x 1073 421 x 1073 —2.04 0.04
PC2 PC2 4.3194E-05 560 x 1073 772 x 1073 0.99
PC2 PC3 —0.01 624 x 1073 —2.34 0.02
PC3 PC1 —147 x 1073 225 x 1073 —0.65 0.52
PC3 PC2 3.94 x 1073 326 x 1073 1.21 0.23
PC3 PC3 552 x 1073 3.98 x 1073 1.39 0.17

Phylogenetic signal was optimized using maximum likelihood as Pagel’s 1. Degrees of freedom for all regressions were 84. Significant P-values

bolded.
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Table 5 PGLS results of adjacency PCs 1-3 against

depth (91 species)
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average  predicted the diversity in color pattern along PCI.
The main color pattern axis predicted by ecological

PC Estimate SE t-value P-value
PC1 —1.59 x 1073 204 x 1073 —-0.78 0.44
PC2 —2.01 x 1073 9.76 x 107* —2.06 0.04
PC3 -791 x 107* 6.30 x 107* —1.26 0.21

variables was PC2, which is dominated by variation
in color pattern transition frequency. Species with
the highest m, which appears to reflect fine scale
patterning at the level of individual scales, also
tended to be less physically defended and to inhabit

shallower depths. The ecological significance of this

Table 6 PGLS results of adjacency PCs 1-3 against foraging strategy—benthic invert., facultative, obligate, and planktivore—as well as
solitary vs. paired social behavior (84 species)

Model Trait/interaction Estimate SE t-value P-value
PC1 ~ Foraging (Intercept) —0.05 0.12 —0.40 0.69
Facultative 0.11 0.18 0.60 0.55
Obligate 0.37 0.19 1.98 0.05
Planktivore 0.07 0.26 0.28 0.78
PC2 ~ Foraging (Intercept) —0.07 0.06 —1.28 0.21
Facultative 0.28 0.08 336 1.2 x10°
Obligate 0.35 0.09 4.05 1% 10
Planktivore 0.08 0.12 0.66 0.51
PC3 ~ Foraging (Intercept) —0.02 0.04 —0.49 0.63
Facultative 0.02 0.06 0.36 0.72
Obligate 1.66 x 1073 0.06 0.03 0.98
Planktivore —0.04 0.08 —0.43 0.67
PC1 ~ Social Behavior (Intercept) 0.05 0.09 0.60 0.55
Solitary 0.10 0.14 0.69 0.49
PC2 ~ Social Behavior (Intercept) 0.10 0.05 1.98 0.05
Solitary 0.07 0.07 0.97 0.34
PC3 ~ Social Behavior (Intercept) —0.04 0.03 —-1.42 0.16
Solitary 0.07 0.04 1.54 0.13

Table 7 Linear regressions of color geometry statistics for overall transition density (m), aspect ratio (A), scaled Simpson color class
diversity (Jc), scaled Simpson transition diversity (/t), and mean chromatic and achromatic boundary strength (m_dS and m_dL) with
machine learning PC1 and PC2 from the PCA of the VGG-16 image classifications for fish images of the family Chaetodontidae

m A Je Jt m_dS m_dL
(Intercept) —428.00** 441,607 367.50 872.30** 227.99** 842.60**
(3.05) (1.93) (1.58) (3.28) (2.92) (3.32)
PC1 2995.30°* —389.60" —543.20 —1391.20%* —1616.12%%* —884.40°*
(3.20) (1.97) (1.61) (3.32) (3.45) (3.36)
R? 0.08 0.03 0.02 0.09 0.09 0.09
Adj. R? 0.07 0.02 0.01 0.08 0.09 0.08
(Intercept) 95.23 -31.09 —599.70%+* —360.20" —147.79* —556.70+*
(0.83) 0.17) (3.43) (1.67) (2.38) (2.76)
PC2 —666.63 27.41 886.50°* 574.401 1047.46%* 584.30%*
(0.87) 0.17) (3.49) (1.69) (2.82) (2.80)
R? 0.01 0.0002 0.10 0.02 0.07 0.06
Adj. R? —0.002 —0.01 0.09 0.02 0.06 0.06
Num. obs. 116 116 116 116 116 116

P< 0.1, ¥*P < 0.05, **P < 0.01, ***P < 0.001. t statistics in parentheses.
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Fig. 4 A visualization of the first two principal components, and their cluster assignment, from the two-dimensional PCA based on the

relationship is not clear. If high transition-based
color patterns are important to intraspecific signal-
ing then perception of these patterns would be most
effective at shallower depths with more light.
However, high transition patterns are not more con-
spicuous with respect to chromatic boundary
strength as might be expected if they evolved under
selection for intraspecific communication. Species at
shallower depths do tend to have lower achromatic
boundary strength values (Tables 1 and 5), making
them less visible at distance (Endler et al. 2018).
This raises the possibility that high transition

patterns have evolved to be less visible to shallow-
water predators.

The general lack of relationship between color
pattern and ecology, although surprising, is consis-
tent with prior work on body, eyestripe, and eye-
spot evolution (Kelley et al. 2013). Color patterns
are presumed to play a key role in multiple aspects
of butterfly fish ecology including intraspecific
communication as well as predator avoidance and
deception (Marshall 2000). The widespread preva-
lence of yellows, blacks, and whites across this
group (Hemingson et al. 2019) should produce
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high-contrast patterns that should be relatively con-
spicuous (Marshall 2000; Endler et al. 2018).
Furthermore, many species inhabit shallow water
(Supplementary Table S2) and possess eyes with
spectral sensitivity appropriate for perceiving pat-
terns of other members of the family (Losey et al.
2003; Marshall 2017). Yet we found weak to non-
existent or relationships between almost all ecolog-
ical predictors and color pattern. Social species do
not possess color patterns that are distinctive from
solitary species despite the expectation that sociality
might favor patterns that are more conspicuous.
Heavily defended species, which might be expected
to advertise their defenses or at least be able to
possess more conspicuous patterns dues to de-
creased vulnerability to predation (Hodge et al.
2018) do not significantly differ in boundary
strength from less defended species. And despite
the attenuation of light with depth in marine envi-
ronments, we found little evidence that color pat-
tern systematically varies with mean depth.

One possible exception to this lack of a trend be-
tween ecology and coloration may be the distribu-
tion of high transition patterning. Species with high
m and low achromatic boundary strength tend to i)
occur in shallow water, ii) have reduced physical
defenses, and iii) be more associated with corals
(Tables 1-6). These results suggest that the the trend
towards a low defense, shallow-bodied phentoype
identified by Hodge et al. (2018) as characteristic
of species that forage and seek refuge furthermore
includes a color pattern with high color transitions
and low achromatic boundary strength. It is possible
that this color pattern enhances camouflage within
corals by breaking up the bpdy outline and by re-
ducing conspicuousness at distance to predators
(Endler et al. 2018).

One possibility for the lack of a strong relationship
between ecology and color pattern is that we have not
included key aspects of pattern in our analysis. A pos-
sible example could be false eyespots which occur
across chaetodontids (Kelley et al. 2013). This color
pattern trait presumably functions to confuse preda-
tors and thus might be strongly favored under con-
ditions where species are vulnerable to predation
(Kjernsmo and Merilaita 2013; Kjernsmo et al
2016). However, this trait shows high variability
with respect to the size, position, and number of spots
(Kelley et al. 2013) and might thus be poorly captured
by the methods employed here. It is possible that
comparative analyses that discretize key pattern ele-
ments might prove more useful in identifying rela-
tionships between ecology and color pattern (Salis
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et al. 2018, 2019). However, we note that Kelley
et al. (2013) also found a generally weak relationship
between ecology and a set of discretely coded pattern
elements. Since our analysis was restricted to digital
photographs, it is also possible that more ecologically
relevant aspects of color pattern would emerge from
an analysis that included the entire visual spectrum,
including ultraviolet. However, given that most mem-
bers of this family are diurnally active, inhabit shallow
water, and do not appear to have visual sensitivity to
short wavelengths (Losey et al. 2003), we believe that
is unlikely.

An alternative possibility is that color pattern evo-
lution evolves so rapidly under pressures related to
reproductive isolation and species maintenance that
it becomes effectively decoupled from ecology. Our
analyses of the tempo of color pattern evolution are
consistent with rapid diversification under such a
scenario. Indeed, some species pairs of butterflyfishes
have been shown to develop substantial color differ-
ences in as little as 300,000 years (Hemingson et al.
2019). Paleontological and comparative studies have
revealed that almost all innovation in functional
traits related to feeding and ecology in modern reef
fish communities has taken place between 5 and 50
million years ago (Bellwood et al. 2015, 2017; Floeter
et al. 2018) and suggest that species diversification
over the last 5 million years is dominated by changes
in coloration without functional innovation
(Bellwood et al. 2017). Our analyses provide support
for scenarios of rapid changes in color pattern over
this time frame and furthermore, that color pattern
may be so plastic that convergences in pattern ele-
ments across species with diverse ecologies are com-
mon. Hemingson et al. (2019) suggested that color
pattern evolution is an extreme example of many-to-
one mapping (Wainwright et al. 2005) such that
pressures for lineage diversification relating to spe-
cies recognition can be met through nearly uncon-
strained diversification in pattern. This idea is
intriguing and consistent with the lack of relation-
ship between ecology and pattern found in our
study, and such a relationship is broadly consistent
with some predictions of macroevolutionary
“radiation in stages” models (Streelman and Danlel
2003; Sallan and Friedman 2012). Yet it is difficult to
reconcile with the wide range of studies demonstrat-
ing the ecological importance of color pattern vari-
ation (Marshall 2000, 2017; Losey et al. 2003; Endler
et al. 2018; Salis et al. 2018). Disentangling the rel-
ative importance of the drivers of pattern evolution
remains a key frontier in understanding color pat-
tern diversity in reef fishes (Salis et al. 2019).
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Machine learning and identification of fish color
patterns

Our application of machine learning to the problem
of color pattern identification suggests that chaeto-
dontids can be divided into four categories.
Although some color pattern elements within these
grouping are obvious (Clusters 0 and 2, Fig. 4), pat-
terns appear to be highly diverse within others
(Cluster 3). Features identified by machine learning
as important to explaining variation in the dataset
are related to color pattern geometry but the corre-
lation between them is weak. This is not surprising
and reflects both the strengths and weaknesses of
machine learning approaches in general. Unlike our
analysis of color pattern geometry, which subsamples
both the color diversity and number of pixels within
the image, ML clustering considers the entire image
in searching for features. On one hand, this may
provide ML an advantage in identifying pattern ele-
ments that are restricted to parts of a fish such as the
strong dorsal banding seen in most members of
Cluster 1 (Fig. 4). However, ML is also likely weight-
ing image features relating to body shape more
heavily than our analysis of color pattern geometry.
The relationship between body shape and color pat-
tern has yet to be explored within fishes, so whether
this is an advantage or disadvantage for this ap-
proach is not known. Although a more restricted
sampling of the image area in our dataset could re-
duce or eliminate the contribution of body shape to
clustering, the problem of identifying the key ele-
ments of pattern that contribute to clustering is dif-
ficult with current ML implementations. The general
area of feature extraction in ML is a major frontier
in the field and so solutions to this problem may
emerge in the near future. With respect to pattern
identification, another consideration of this study is
the size of our data. Our clustering analysis is based
upon 116 images. This is an exceedingly small sam-
ple size from a machine learning perspective.
Although the utility of pattern recognition within
chaetodontids appears somewhat limited, feature
identification is expected to improve substantially
with increasing dataset size. Thus, ML may provide
an important tool for identifying color patterns at
the scale of all reef fishes (Salis et al. 2019), or al-
ternatively, in nested studies that include multiple
images per species.

Conclusions and future directions

The study of color pattern evolution across coral reef
fishes is just emerging. The development of new
tools for quantifying pattern (Endler 2012; Van

M. E. Alfaro et al.

Belleghem et al. 2018; Maia et al. 2019) combined
with the extraordinary diversity of fish color patterns
on reefs (Salis et al. 2019) makes this a promising
system for understanding the factors responsible for
this conspicuous aspect of biodiversity. A key chal-
lenge is to identify the relative importance of ecology
versus species identification in driving color pattern
evolution. Although studies on the history of fishes
on reefs suggest that color is decoupled from func-
tional innovations, the evidence for ecological rele-
vant diversity in reef fish color and visual systems is
widespread. Further comparative study at broader
phylogenetic scales, in conjunction with new ma-
chine learning approaches for identifying pattern
similarities, will help illuminate how temporal scale,
ecology, and phylogeny relate to understanding color
pattern evolution.

Acknowledgments

The authors wish to thank the anonymous commu-
nity scientists who helped with the background re-
moval of fish images. We also thank Jennifer Hodge
for helpful discussion regarding trends in physical
defense, habitat use, and color patterning in
butterflyfishes.

Supplementary data
Supplementary data available at ICB online.

References

Barlow GW. 1972. The attitude of fish eye-lines in relation to
body shape and to stripes and bars. Copeia 1972:4-12.
Bellwood DR, Goatley CHR, Bellwood O. 2017. The evolution
of fishes and corals on reefs: form, function and interde-

pendence. Biol Rev Camb Philos Soc 92:878-901.

Bellwood DR, Goatley CHR, Cowman PF, Bellwood O. 2015.
The evolution of fishes on coral reefs: fossils, phylogenies
and functions. In: Mora C, editor. Ecology of Fishes on
Coral Reefs. Cambridge, UK: Cambridge University Press.
p. 55-63.

Boettiger C, Lang DT, Wainwright PC. 2012. rfishbase: ex-
ploring, manipulating and visualizing FishBase data from
R. J Fish Biol 81:2030-9.

Calinski T, Harabasz J. 1974. A dendrite method for cluster
analysis. Commun Stat Simul Comput 3:1-27.

Cheney KL, Grutter AS, Blomberg SP, Marshall NJ. 2009.
Blue and vyellow signal cleaning behavior in coral reef
fishes. Curr Biol 19:1283-7.

Ciresan D, Meier U, Schmidhuber J. 2012. Multi-column
deep neural networks for image classification. 2012 IEEE
Conference on Computer Vision and Pattern Recognition.
p. 3642-9.

Cowman PF, Bellwood DR. 2011. Coral reefs as drivers of
cladogenesis: expanding coral reefs, cryptic extinction
events, and the development of biodiversity hotspots. ]
Evol Biol 24:2543-62.

020z AINP €1 uo Jasn Ays1aAlun oleA Ad L960ESS/F09/E/6G/10BISAB-8]01E/GO1/LO0d"dNO"0ILSPEDE//:SARY WO PEPEOIUMOQ


https://academic.oup.com/icb/article-lookup/doi/10.1093/icb/icz119#supplementary-data

Color pattern evolution in fishes

Domeier ML, Colin PL. 1997. Tropical reef fish spawning
aggregations: defined and reviewed. Bull Mar Sci
60:698-726.

Endler JA. 2012. A framework for analysing colour pattern
geometry: adjacent colours. Biol J Linn Soc Lond
107:233-53.

Endler JA, Cole GL, Kranz AM. 2018. Boundary strength
analysis: combining colour pattern geometry and coloured
patch visual properties for use in predicting behaviour and
fitness. Methods Ecol Evol 23:347.

Floeter SR, Bender MG, Siqueira AC, Cowman PF. 2018.
Phylogenetic perspectives on reef fish functional traits.
Biol Rev Camb Philos Soc 93:131-51.

Freckleton RP, Harvey PH. 2006. Detecting non-Brownian
trait evolution in adaptive radiations. PLoS Biol 4:e373.

Froese R, Pauly D. 2019. FishBase (www.fishbase.org).

Harmon L], Schulte JA, Larson A, Losos JB. 2003. Tempo and
mode of evolutionary radiation in iguanian lizards. Science
301:961-4.

Hemingson CR, Cowman PF, Hodge JR, Bellwood DR. 2019.
Colour pattern divergence in reef fish species is rapid and
driven by both range overlap and symmetry. Ecol Lett
22:190-9.

Hodge JR, Alim C, Bertrand NG, Lee W, Price SA, Tran B,
Wainwright PC. 2018. Ecology shapes the evolutionary
trade-off between predator avoidance and defence in coral
reef butterflyfishes. Ecol Lett 21:1033.

Kelley JL, Fitzpatrick JL, Merilaita S. 2013. Spots and stripes:
ecology and colour pattern evolution in butterflyfishes.
Proc Biol Sci 280:2012-730.

Kjernsmo K, Gronholm M, Merilaita S. 2016. Adaptive con-
stellations of protective marks: eyespots, eye stripes and
diversion of attacks by fish. Anim Behav 111:189.

Kjernsmo K, Merilaita S. 2013. Eyespots divert attacks by fish.
Proc Biol Sci 280:20131458.

Krizhevsky A, Sutskever I, Hinton GE. 2012. ImageNet clas-
sification with deep convolutional neural networks. In:
Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors.
Advances in neural information processing systems 25.
Curran Associates, Inc. p. 1097-105.

Lonnstedt OM, McCormick MI, Chivers DP. 2013. Predator-
induced changes in the growth of eyes and false eyespots.
Sci Rep 3:2259.

Losey GS, McFarland WN, Loew ER, Zamzow JP, Nelson PA,
Marshall NJ. 2003. Visual biology of Hawaiian coral reef
fishes. I. ocular transmission and visual pigments. Copeia
2003:433-54.

Maia R, Gruson H, Endler JA, White TE. 2019. pavo 2: new
tools for the spectral and spatial analysis of colour in R.
Methods Ecol Evol 427658.

Marshall J. 2017. Vision and lack of vision in the ocean. Curr
Biol 27:R494-502.

Marshall NJ. 2000. Communication and camouflage with the
same “bright” colours in reef fishes. Philos Trans R Soc
Lond B Biol Sci 355:1243-8.

Marshall NJ, Jennings K, McFarland WN, Loew ER, Losey
GS. 2003. Visual biology of Hawaiian coral reef fishes. II.
colors of Hawaiian coral reef fish. Copeia 2003:455-67.

McMillan WO, Weigt LA, Palumbi SR. 1999. Color pattern
evolution, assortative mating, and genetic differentiation in

615

brightly  colored (Chaetodontidae).
Evolution 53:247-60.

Neudecker S. 1989. Eye camouflage and false eyespots:
Chaetodontid responses to predators. In: Motta PJ, editor.
The butterflyfishes: success on the coral reef Dordrecht.
Netherlands: Springer. p. 143-58.

Pang B, Lee L, Vaithyanathan S. 2002. Thumbs Up?: senti-
ment classification using machine learning techniques.
Proceedings of the ACL-02 Conference on Empirical
Methods in Natural Language Processing - Volume 10.
EMNLP °02, Stroudsburg (PA): Association for
Computational Linguistics. p. 79-86.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,
et al. 2011. Scikit-learn: machine learning in python. J
Mach Learn Res 12:2825-30.

Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC,
FitzJohn RG, Alfaro ME, Harmon LJ. 2014. geiger v2.0: an
expanded suite of methods for fitting macroevolutionary
models to phylogenetic trees. Bioinformatics 30:2216-8.

Pinheiro ], Bates D, DebRoy S, Sarkar D. 2018. R Core Team
(2018). nlme: linear and nonlinear mixed effects models. R
package version 3.1-137.

Rabosky DL, Chang J, Title PO, Cowman PF, Sallan L,
Friedman M, Kaschner K, Garilao C, Near TJ, Coll M,
et al. 2018. An inverse latitudinal gradient in speciation
rate for marine fishes. Nature 559:392-5.

Randall JE. 2005. A review of mimicry in marine fishes. Zool
Stud 44:299-328.

Revell LJ. 2009. Size-correction and principal components for
interspecific comparative studies. Evolution 63:3258—68.
Revell LJ. 2012. phytools: an R package for phylogenetic compar-

ative biology (and other things). Methods Ecol Evol 3:217-23.

Salis P, Lorin T, Laudet V, Frédérich B. 2019. Magic traits in
magic fish: understanding color pattern evolution using
reef fish. Trends Genet 35:265-78.

Salis P, Roux N, Soulat O, Lecchini D, Laudet V, Frédérich B.
2018. Ontogenetic and phylogenetic simplification during
white stripe evolution in clownfishes. BMC Biol 16:90.

Sallan LC, Friedman M. 2012. Heads or tails: staged diversi-
fication in vertebrate evolutionary radiations. Proc Biol Sci
279:2025-32.

Simonyan K, Zisserman A. 2014. Very deep convolutional
networks for large-scale image recognition. arXiv
[csCV]:1409.1556.

Slater GJ, Price SA, Santini F, Alfaro ME. 2010. Diversity
versus disparity and the radiation of modern cetaceans.
Proc Biol Sci 277:3097-104.

Stevens M. 2007. Predator perception and the interrelation
between different forms of protective coloration. Proc
Biol Sci 274:1457-64.

Streelman TJ, Danlel PD. 2003. The stages of vertebrate evo-
lutionary radiation. Trends Ecol Evol 18:126-31.

Van Belleghem SM, Papa R, Ortiz-Zuazaga H, Hendrickx F,
Jiggins CD, McMillan WO, Counterman BA. 2018. patter-
nize: an R package for quantifying colour pattern variation.
Methods Ecol Evol 9:390-8.

Wainwright PC, Alfaro ME, Bolnick DI, Hulsey CD. 2005.
Many-to-one mapping of form to function: a general prin-
ciple in organismal design? Integr Comp Biol 45:256—62.

butterflyfishes

020z AINP €1 uo Jasn Ays1aAlun oleA Ad L960ESS/F09/E/6G/10BISAB-8]01E/GO1/LO0d"dNO"0ILSPEDE//:SARY WO PEPEOIUMOQ


http://www.fishbase.org

	icz119-TF1
	icz119-TF2
	icz119-TF3

