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In this paper, we introduce the Theory of Bottleneck Ordering, a mathematical framework that reveals the bot-

tleneck structure of data networks. This theoretical framework provides insights into the inherent topological

properties of a network in at least three areas: (1) It identifies the regions of influence of each bottleneck;

(2) it reveals the order in which bottlenecks (and flows traversing them) converge to their steady state

transmission rates in distributed congestion control algorithms; and (3) it provides key insights into the

design of optimized traffic engineering policies. We demonstrate the efficacy of the proposed theory in TCP

congestion-controlled networks for two broad classes of algorithms: Congestion-based algorithms (TCP BBR)

and loss-based additive-increase/multiplicative-decrease algorithms (TCP Cubic and Reno). Among other

results, our network experiments show that: (1) Qualitatively, both classes of congestion control algorithms

behave as predicted by the bottleneck structure of the network; (2) flows compete for bandwidth only with

other flows operating at the same bottleneck level; (3) BBR flows achieve higher performance and fairness

than Cubic and Reno flows due to their ability to operate at the right bottleneck level; (4) the bottleneck

structure of a network is continuously changing and its levels can be folded due to variations in the flows’

round trip times; and (5) against conventional wisdom, low-hitter flows can have a large impact to the overall

performance of a network.
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1 INTRODUCTION

Congestion control algorithms such as those implemented in TCP/IP stacks focus on two general
objectives: (1) Maximizing network utilization and (2) ensuring fairness among flows competing
for network bandwidth [3]. For the past three decades since the first congestion control algorithm
was implemented as part of the TCP protocol [13], many different variations have been designed,
implemented and extensively put into practice to help address these two objectives. In this context,
it is well-known that regardless of the complexity of a communication path, the performance
of a flow is uniquely determined by the capacity of its bottleneck link and its end-to-end round
trip time (RTT) [2, 13]. This funnel view has steered much of the research towards the single-
bottleneck characterization problem (e.g., [3], [13], [2], [25]), leading to the implicit assumption
that bottlenecks in a network have a flat structure, and inadvertently hiding the need for a better
understanding of bottlenecks in distributed networks.

While the problem of characterizing the influences and relationships existing between bottlenecks
has not been addressed from a formal and practical standpoint, it has naturally not been fully
omitted from the literature. For instance, in [16] the authors refer to the bottleneck relationships as
dependency chains and observe that performance perturbations of bottleneck links may affect other
bottleneck links, “potentially weaving through all links in the network”, but do not address the
problem of formally identifying the hidden structure that controls such perturbations.

To address this subject, in this paperwe introduce the Theory of BottleneckOrdering, a framework
that, by revealing the bottleneck structure of a network, describes (qualitatively and quantitatively)
the influence that bottlenecks exert on each other. We then use three well-known congestion control
algorithms to validate whether bottlenecks and flows in real networks behave as predicted by the the-
ory. To get a broader sense of how the theory performs, we choose representatives from two widely
used classes of congestion control algorithms: BBR from the class of congestion-based algorithms
[2], and Cubic and Reno [7, 10] from the class of loss-based additive-increase/multiplicative-decrease
(AIMD) algorithms. The key contributions of this paper can be summarized as follows:

• Real networks qualitatively behave as predicted by the Theory of Bottleneck Ordering. Thus,
the proposed framework can be used as a tool to understand bottleneck and flow performance.
(Section 3.1.)

• Bottlenecks do not interact and influence each other following a flat structure, but rather
through a structure described by the bottleneck precedence graph (BPG) as introduced in this
paper. (Sections 2.4 and 3.1.)

• Similarly, flows interact and influence each other through a structure described by the flow
gradient graph, also introduced in this paper. (Sections 2.6 and 3.3.)

• Congestion control algorithms that can identify the bottleneck structure of the network
perform significantly better in key metrics such as (1) flow completion time, (2) fairness, and
(3) total throughput. The proposed theory can thus be used as a framework to evaluate the
performance of various congestion control algorithms, helping to understand their capabilities
and limitations in a rigorous approach, and providing a benchmark against an optimal baseline.
(Sections 2.5, 3.1, 3.2, and 3.4.)

• Differences in the round trip time can distort the bottleneck structure of a network. Depending
on such differences, congestion-window based algorithms such as Cubic and Reno that are
sensitive to RTT may not be able to identify the bottleneck structure; as a result, they perform
poorly in the above-mentioned key performance metrics. (Section 3.2.)

• Congestion-based algorithms such as BBR that are more resilient to variations of RTT can
identify the bottleneck structure and thus achieve significantly better performance. This
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insight provides a new formal explanation to understand the reason why such a class of
algorithms may perform better [2]. (Sections 3.1 and 3.2.)

• The BPG graph reveals with precision the bounded regions of influence that bottlenecks and
flows exert on each other. (Sections 2.4 and 3.3.)

• The convergence time of a congestion control algorithm depends on both (1) the number of
levels in the bottleneck structure and (2) the number of flows that compete with each other
in each independent bottleneck level. (Sections 2.5 and 3.4.)

• Finally, against the conventional practice, we show (mathematically and experimentally) that
low-hitter flows can have a significantly higher impact on the overall performance of the
network than heavy-hitter flows. (Sections 2.6 and 3.3.)

This paper is organized as follows. The Theory of Bottleneck Ordering is formally developed
in Section 2. In 2.1 and 2.2, we introduce its core concepts by using some initial simple examples
and develop the idea of bottleneck information as a distributed transmission problem. Section 2.3
formally introduces the concepts of direct and indirect precedent link relations, the key building
blocks to construct the bottleneck structure of a network. This allows us to introduce and analyze
the bottleneck precedence graph (BPG) algorithm in Section 2.4, the procedure that computes the
bottleneck structure of a network. In 2.5, we establish the mathematical connection between the
bottleneck structure of a network and the minimum convergence time of a distributed congestion
control algorithm, while in 2.6 we extend the bottleneck structure model to include flow information.
Section 3 provides experiments to validate the existence of bottleneck structures in modern data
networks and to illustrate how the Theory of Bottleneck Ordering can be used to optimize network
performance. Assumptions, generalizations, and the practical implications of our work are presented
in Section 4, while Section 5 summarizes related work. We conclude the paper by summarizing the
main results and presenting future lines of research in Section 6.

2 THE THEORY OF BOTTLENECK ORDERING

2.1 Transmission of Bottleneck Information

It is well-known that regardless of how many links a connection traverses, “from TCP’s viewpoint
an arbitrarily complex path behaves as a single link with the same round-trip time and bottleneck
rate” [2, 13]. What is less well-understood is the fact that not all bottleneck links are of equal
importance. To provide some intuition to this argument, let us consider some initial simple network
examples.

Consider the network configurations illustrated in Figures 1-a, 2-a and 3-a. In these three drawings,
links are represented by circles and flows by lines traversing the links. Each link li has a capacity ci
bps while each flow fi transmits data at a rate ri bps. For instance, Figure 1-a corresponds to the
case of a single bottleneck link, l1, with two flows, f1 and f2. Since the capacity of the link is c1 = 1
bps, each flow can transmit data at 0.5 bps. This value is typically referred as the link’s fair share
[3], which we denote as s1 = 0.5 bps. Thus, we trivially have r1 = r2 = s1 = 0.5 bps. Note that while
other allocation schemes could result in flow transmission rates different than the fair share, since
the existence of bottleneck links is a fundamental invariant in all of these schemes, the theoretical
framework described in this paper is applicable without loss of generality. The bottleneck structure
of a single link network is thus a trivial graph with just one vertex corresponding to the only link,
as shown in Figure 1-b.
Consider now the network configuration in Figure 2-a, corresponding to two links and three

flows. Link l1 is the most constrained since it has a lower fair share than link l2 (s1 = 0.5 while
s2 = 1). Thus, the transmission rates of flows f1 and f2 are determined by this link, taking a value
equal to its fair share: r1 = r2 = s1 = 0.5. Once these two flow rates settle, then flow f3’s rate can be
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Fig. 1. Bottleneck structure of a trivial single-link network.

Fig. 2. A 2-level bottleneck structure with direct precedence.

determined as follows: since flow f2 has a rate r2 = 0.5, flow f3 will take the excess capacity left in
link l2, corresponding to s2 = 2 − 0.5 = 1.5. In other words, since flow f3 is bottlenecked at link l2,
f3’s rate corresponds to link l2’s fair share after the rates of all other flows, which go through l2
and are bottlenecked at another link, have been subtracted from its capacity. (Note that this rate
assignment is also known in the literature as the max-min solution and can be computed using a
water-filling algorithm [1].)

While this network configuration is still very simple, an interesting question arises from its
topological structure: Are both bottleneck links l1 and l2 equally important with regards to the
overall performance of the network? For instance, it is easy to see that the derivative of s2 with
respect to c1 is 0.5, ∂s2/∂c1 = 0.5, while the derivative of s1 with respect to c2 is 0, ∂s1/∂c2 = 0. This
implies the performance of link l2 (measured in terms of its fair share) depends on the performance
of link l1, but not vice-versa, thus revealing a notion of hierarchy or ordering between these two
bottleneck links. The bottleneck structure we formally introduce in this paper is a graph that
captures these relationships.
An intuitive way of understanding the bottleneck structure of a network involves modeling

the bottleneck links as nodes communicating with each other, where these nodes implement a
distributed congestion control algorithm to determine their fair share while using the smallest
possible number of iterations. In Figure 2-a, we can say that link l2 cannot converge to its fair
share value, s2 = 1.5, until link l1 has converged to its own, s1 = 0.5. Thus, in order to settle
its own fair share, s2, link l2 has to wait until link l1 broadcasts its fair share, s1. This leads to a
bottleneck structure consisting of two nodes, l1 and l2, and a directed edge from l1 to l2 denoting the
communication that must occur so that the bottlenecks can settle their fair shares. This two-level
bottleneck structure is shown in Figure 2-b.

Consider yet another network configuration consisting of three links and four flows, as shown in
Figure 3-a. Using our communication model, the first bottleneck link to settle its fair share is l1 with
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Fig. 3. A 2-level bottleneck structure with indirect precedence.

a value of s1 = 0.5. This implies that flows f1 and f2 get a transmission rate of r1 = r2 = s1 = 0.5.
Once link l1’s fair share is communicated to links l2 and l3, link l3 becomes the next bottleneck with
a fair share of s3 = 1.25 (since this value is lower than link l2’s fair share of s2 = 1.5). Consequently,
flows f3 and f4 get a transmission rate of r3 = r4 = s3 = 1.25. Note that link l2 is not a bottleneck
link in this network, since its total flow is lower than its capacity, r2 + r3 = 1.75 < 2. Thus, the
resulting bottleneck structure consists of two nodes for links l1 and l3 and a directed edge between
them as shown in Figure 3-b.
While the bottleneck structures of the second and third examples are apparently similar (both

have two bottleneck links connected by an edge), there is a subtle yet important difference: In the
second example (Figure 2), there exists a flow that traverses both bottlenecks (flow f2 goes through
both links l1 and l2) while in the third example (Figure 3), the two bottlenecks (l1 and l3) don’t share
any flow. The latter case is important as it demonstrates that bottleneck information can travel
between two links even if there is no direct communication path between them. (In the next section
we mathematically prove this result.) In this case, links l1 and l2 are connected via flow f2 while
links l2 and l3 are connected via flow f3, enabling a bottleneck communication path between links
l1 and l3 via link l2. To differentiate the two types of communication paths between links illustrated
in Figures 2-b and 3-b, we use the terms direct precedence and indirect precedence, respectively, and
denote this in the bottleneck structure graph by using a solid and a dashed edge connecting the two
links. In the theoretical framework introduced by this paper, we refer to the bottleneck structure of
a network as its bottleneck precedence graph (BPG), which we formally introduce in Section 2.4).
Note that the BPG also reveals the number of iterations required by links to converge to their

fair share. For instance, while two links related by direct precedence can communicate in one
iteration (Figure 2), links that are connected via indirect precedence require two iterations, since
the bottleneck information needs to be conveyed via a relay link (Figure 3). In the next sections,
we mathematically prove that the BPG graph is also an effective tool to measure the minimum
convergence time required by any distributed congestion control algorithm.

The above examples helped us to informally introduce the bottleneck structure of some simple
network configurations providing initial intuition behind the existence of (1) bottleneck hierarchies,
(2) the notion of convergence time for a distributed congestion control algorithm, and (3) the concept
of direct and indirect precedence between two bottlenecks. In the next sections, we formalize all
these intuitive concepts into a mathematical theory of bottleneck ordering and introduce an
algorithm to compute the bottleneck precedence graph for arbitrary network topologies.

2.2 Parallel Convergence in the Water-Filling Algorithm

We start our work with an implicit assumption: In steady state, all congestion-controlled flows
are bottlenecked at least at one link. The general intuition for this statement is that all congestion
control algorithms—by their fundamental objective—are designed not to leave unused bandwidth.
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This fact is certainly true for algorithms implemented as part of a TCP/IP stack. The second
observation we make is that, as shown in the previous section, the max-min optimal allocation
provides a natural way to identify the bottleneck link of every flow in steady state. Intuitively, a flow
cannot get a rate above its bottleneck’s fair share as that would be a capacity violation if all other
flows acted in the same way. Thus, in what follows, we use the max-min assignment to analyze the
influence that the bottlenecks exert on each other and reveal the topological structure interrelating
them. Two notes are relevant regarding the assumption of steady-state optimal network regime

implicit in our theoretical framework. First, while we leave it outside the scope of this paper, the
same general bottleneck principles apply to other allocation schemes different than max-min (for
instance, weighted max-min or proportional fairness [17]). The bottleneck structure in these other
schemes might be different, but the concept of bottleneck structure is universal and applicable to
them too. Secondly, as we show in our experiments (Section 3), TCP’s congestion control (a widely
used algorithm in modern networks) does qualitatively follow the bottleneck structure revealed by
the max-min assumption, making this choice highly practical.
Next, we describe an algorithm to compute the max-min rate allocation of a network. The

original algorithm, called the water-filling Algorithm, was introduced by Bertsekas and Gallager in
[1]. To develop the theoretical framework, however, we use a variant of the water-filling algorithm
introduced by Ros-Giralt and Tsai in [27]. This variant, presented in Algorithm 1, exploits a
parallelization property in the original algorithm to allow certain bottleneck links to converge
concurrently, leading to a lower execution time when run on a parallel computing architecture.

Algorithm 1 FastWaterFilling (Inputs: L,F , {Fl ,∀l ∈ L}, {cl ,∀l ∈ L})

1: L := Set of links in the input network;
2: F := Set of flows in the input network;
3: Fl := Set of flows going through link l ;
4: cl := Capacity of link l ;
5: B := Set of bottleneck links;
6: rf := Rate of flow f ;

7: Lk := Set of unresolved links at iteration k ;

8: Ck := Set of converged flows at iteration k ;
9: L0 = L; C0 = {∅};
10: k = 0;
11: while Ck � F do
12: sk

l
= (cl −

∑
∀f ∈Ck∩Fl rf )/ |Fl \ Ck |, ∀l ∈ Lk ;

13: uk
l
=min {sk

l ′
| Fl ′ ∩ Fl � {∅}, ∀l ′ ∈ Lk }, ∀l ∈ Lk ;

14: for l ∈ Lk , sk
l
= uk

l
do

15: rf = s
k
l
, ∀f ∈ Fl \ Ck ;

16: Lk = Lk \ {l };
17: Ck = Ck ∪ {f , ∀f ∈ Fl \ Ck };
18: end for
19: Lk+1 = Lk ; Ck+1 = Ck ;
20: k = k + 1;
21: end while
22: B = L \ Lk ; sl = s

k
l
, ∀l ∈ B;

23: return 〈B, {rl , ∀f ∈ F}, {sl , ∀l ∈ B}, k 〉;

The algorithm tracks the set of unresolved links Lk (links whose final fair shares have not yet
been determined) and the set of converged flows Ck (flows whose final transmission rates have
been determined). Its functioning also relies on two parameters:
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• The fair share of link l at iterationk : sk
l
. As introduced in the previous section, this corresponds

to the fair share of a link after removing all flows that have converged up to iteration k and
is computed in line 12.

• The upstream fair share of link l at iterationk :uk
l
. This parameter corresponds to the minimum

fair share among all links sharing a flow with l and is computed in line 13.

At each iteration k , for each unresolved link l that has a fair share equal to its upstream fair
share, sk

l
= uk

l
(line 14), three actions are taken: (1) The transmission rate of the remaining flows

going through link l is assigned to the fair share value (line 15), (2) link l is removed from the set
of unresolved links (line 16), and (3) all remaining flows going through it are added to the set of
converged flows (line 17). As shown in [27], this process ends when all flows and bottleneck links
have converged to their final transmission rate and fair share values, respectively. Upon completion,
the algorithm returns the set of bottleneck links B, the transmission rate of all flows {rl ,∀f ∈ F },
the fair share of all bottleneck links {sl ,∀l ∈ B}, and the value of k , corresponding to the depth of
the bottleneck structure as we demonstrate in the next section.
The FastWaterFilling algorithm exploits the following property formally proven in [26]: A link

that has the minimum fair share among all links with which it shares flows, can immediately
converge to its final fair share. In general, because more than one link satisfies this property at
each iteration k , this allows multiple links to converge concurrently at the same iteration. In [26]
the author shows that on average this approach reduces the number of iterations from O(|L|) in
Bertseka’s original water-filling algorithm down to O(loд(|L|)). In this paper, we observe that this
parallelization property captures the exact natural convergence time of bottleneck links in real
networks. Our observation relies on the fact that modern networks use distributed congestion
control algorithms, such as TCP BBR, Cubic, and Reno, that effectively behave as a large parallel
computer. As we show next, this property plays a crucial role in understanding the bottleneck
structure of a network.

2.3 Precedent Link Relations

A more detailed analysis of the FastWaterFilling algorithm shows that the order of execution
of its while loop reveals a bottleneck structure that is unique to every network. In this hidden
structure, bottleneck links relate to each other by following well defined mathematical relationships
that describe how (and in what magnitude) one link can affect the performance of another link.
In particular, we show there exists only two essential relationships between bottlenecks, direct
precedence and indirect precedence, which we formally introduce as follows:

Definition 2.1. Direct precedence. Let l and l ′ be two links such that (1) l converges at iteration k ,
(2) l ′ converges at iteration k ′, for some k ′ > k , and (3) Fl ∩ Fl ′ � {∅}. Then, we say that link l is a
direct precedent link (or simply a direct precedent) of link l ′.

Definition 2.2. Indirect precedence. Let l and l ′ be two links such that (1) l converges at iteration
k , (2) l ′ converges at iteration k ′, for some k ′ > k , and (3) Fl ∩ Fl ′ = {∅} but there exists another
link lr such that (4.1) Fl ∩ Flr � {∅} and Fl ′ ∩ Flr � {∅}, (4.2) sk

l ′
> sk

lr
and (4.3) lr converges at an

iteration k ′′, for some k ′′ > k ′. Then, we say that link l is an indirect precedent link (or simply an
indirect precedent) of link l ′, and we refer to link lr as the relay link between links l and l ′.

The relevancy of these two definitions is justified in the next two lemmas, which state the order
of bottleneck convergence and the degree to which one bottleneck can affect the performance of
another one in arbitrary networks.
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Lemma 2.3. Bottleneck convergence order. A link l is removed from the set of unresolved links Lk at

iteration k , Lk = Lk \ {l}, if and only if all of its direct and indirect precedent links have already

been removed from this set at iteration k − 1.

Proof. See Appendix A.3. �

This lemma introduces the notion of bottleneck link convergence. We use this term to indicate that
a link’s fair share has been resolved and will no longer change as the FastWaterFilling algorithm
continues iterating. From Algorithm 1, it is easy to see that a link converges when it is removed
from the set of unresolved links in line 16.
Intuitively, Lemma 2.3 says that for a link l to converge, all of its direct and indirect precedent

links must have converged first (this is the necessary condition). Moreover, it also says that if k is the
highest iteration at which any of its direct and indirect precedent links converges, then link l will
converge immediately after it at iteration k + 1 (this is the sufficient condition). The importance of
this lemma lies in the fact that it reveals the hidden bottleneck structure of the network. Bottleneck
links in a network are not all equal with respect to the performance impact they exert on each other.
On the contrary, they follow a well-defined structure uniquely characterized by the topological
properties of the network. The following lemma characterizes the influence of bottlenecks onto
each other:

Lemma 2.4. Bottleneck influence. A bottleneck l can influence the performance of another bottleneck

l ′, i.e., ∂sl ′/∂cl � 0, if and only if there exists a set of bottlenecks {l1, l2, ..., ln} such that li is a direct
precedent of li+1, for 1 ≤ i ≤ n − 1, l1 = l and ln = l

′.

Proof. See Appendix A.4. �

Note that in the above lemma we capture the influence of a link l against another link l ′ using the
derivative ∂sl ′/∂cl . That is, if a change on the effective capacity cl of link l changes the fair share
sl ′ of another link l

′, then we say that link l influences link l ′. The lemma states that a bottleneck
link l influences another bottleneck link l ′ if there exists a set of direct precedent links that form a
path between l and l ′.
In Figure 2 we saw an example of bottleneck influence: as stated by the lemma, link l1 can

influence link l2 (∂s2/∂c1 � 0) but not vice versa (∂s1/∂c2 = 0), since there is a path of direct
precedents from link l1 to l2 (but not a reverse path). Note also that in Figure 3 we have ∂s3/∂c1 = 0,
since bottlenecks l1 and l3 are related via an indirect precedence, since the lemma only works for
direct precedences.

In the next section, we provide an algorithm to compute all the precedent links to help construct
the bottleneck structure of arbitrary networks and a detailed example to illustrate the practical
implications of Lemmas 2.3 and 2.4.

2.4 The Bottleneck Structure of Networks

To compute the bottleneck structure of a network, we need to obtain the direct and indirect precedent
links of every bottleneck link. These precedent links correspond to edges in a digraph that has all
the bottleneck links as its vertices, revealing the inherent mesh structure that characterizes the
relationships between the bottlenecks and how they influence each other. This structure can be
formally defined as follows:

Definition 2.5. Bottleneck precedence graph. We define the bottleneck precedence graph (BPG) as a
tuple 〈V ,E〉 of verticesV and edges E such thatV = B and E = {Dl ,∀l ∈ B}∪ {Il ,∀l ∈ B}, where
Dl and Il are the sets of direct and indirect precedents of link l , respectively. To differentiate them,
we typically represent edges corresponding to direct and indirect precedents links with solid and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 59. Publication date: December 2019.



On the Bottleneck Structure of Congestion-Controlled Networks 59:9

dashed lines, respectively. We also equivalently refer to the BPG graph as the bottleneck structure of
a network.

As noted in Section 2.2, the FastWaterFilling algorithm already computes the set of bottleneck
links B. Thus, to obtain the bottleneck structure, we can extend this algorithm with additional logic
to compute the direct and indirect precedent links. We refer to this procedure as the Bottleneck
Precedence Graph (BPG) Algorithm, which we introduce in Algorithm 2.

Algorithm 2 BPG (Inputs: L,F , {Fl ,∀l ∈ L}, {cl ,∀l ∈ L})

1: L, F, Fl , cl , B, rf , L
k , Ck are as in Algorithm 1;

2: Dk
l
:= Set of direct precedents of link l at iteration k ;

3: Ik
l

:= Set of indirect precedents of link l at iteration k ;

4: Rk
l
:= Set of relays of link l at iteration k ;

5: L0 = L; C0 = {∅};
6: D0

l
= I0

l
= R0

l
= {∅}, ∀l ∈ L;

7: k = 0;
8: while Ck � F do
9: sk

l
= (cl −

∑
∀f ∈Ck∩Fl rf )/ |Fl \ Ck |, ∀l ∈ Lk ;

10: uk
l
=min {sk

l ′
| Fl ′ ∩ Fl � {∅}, ∀l ′ ∈ Lk }, ∀l ∈ Lk ;

11: for l ∈ Lk , sk
l
= uk

l
do

12: rf = s
k
l
, ∀f ∈ Fl ;

13: Lk = Lk \ {l };
14: Ck = Ck ∪ {f , ∀f ∈ Fl };

15: for l ′ ∈ Lk , Fl ′ ∩ Fl � {∅} do

16: Dk
l ′
= Dk

l ′
∪ l ;

17: end for
18: for l ′, lr ∈ Lk , Fl ′ ∩ Flr � {∅}, sk

lr
< sk

l ′
do

19: Rk
l ′
= Rk

l ′
∪ {lr };

20: end for
21: for l ′ ∈ Dk

lr
\ Dk

l
, lr ∈ Rk

l
\ Dk

l
do

22: Ik
l
= Ik

l
∪ {l ′ };

23: end for
24: end for
25: Lk+1 = Lk ; Ck+1 = Ck ;
26: Dk+1

l
= Dk

l
; Ik+1

l
= Ik

l
; Rk+1

l
= Rk

l
;

27: k = k + 1;
28: end while
29: B = L \ Lk ; Dl = Dk

l
, ∀l ∈ B; Il = Ik

l
, ∀l ∈ B;

30: return 〈B, {Dl , ∀l ∈ B}, {Il , ∀l ∈ B}〉;

For every link l and at every iteration k , the BPG Algorithm keeps track of the sets of direct
precedentsDk

l
, indirect precedents Ik

l
, and relays Rk

l
(lines 2-4). Every time a link converges, these

sets are updated as follows (lines 15-23):

• Direct links (lines 15-17). When a link l converges, it becomes a direct precedent of all the
links that it shares flows with and that have not converged yet.

• Relay links (lines 18-20). For any two links l ′ and lr that have still not converged, if they share
a flow and sk

lr
< sk

l ′
, then flow lr is added to the set of relays Rk

l ′
of link l ′. Note that this set

only tracks potential relays. It is not until the actual calculation of the indirect precedents
(lines 21-23) is carried out that the algorithm confirms whether an element in this set is an
actual relay leading to an indirect precedence.

• Indirect links (lines 21-23). When a link l converges, its indirect precedents correspond to the
set of direct precedents of its relay links. Note also that its own set of direct precedents has
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to be subtracted, since a link that is a direct precedent of another link, cannot be an indirect
precedent of the same link.

The BPG algorithm returns a tuple of vertices (corresponding to the bottleneck links B) and
edges (corresponding to the set of direct Dk

l
and indirect Ik

l
precedents for every bottleneck link l ,

where k is the algorithm’s last iteration), which provide all the necessary information to construct
the bottleneck structure of the network. The last value of the iterator k is also of relevance because
it corresponds to the length of the longest path in the BPG graph, as shown in the next lemma:

Lemma 2.6. Depth of the bottleneck structure. The diameter of the BPG graph is equal to the last

value of the iterator k in the BPG algorithm. We refer to this value as the depth or simply the number

of levels of the bottleneck structure.

Proof. See Appendix A.5 �

Next, we use two examples to illustrate how the BPG graph is constructed. In both of these
examples, we use the network shown in Figure 4 to illustrate the process of constructing the
bottleneck structure. This topology corresponds to the SDN WAN network called B4 that connects
twelve of Google’s large scale data centers globally using nineteen links as described in [15]. While
we could have chosen any arbitrary topology, we focus on Google’s B4 network to base the analysis
on a real network.

Fig. 4. Google’s SDN WAN B4 network as described in [15].

Example 2.7. Computation of the BPG graph. In this simple example we assume the presence of
five flows { f1, ..., f5} as shown in Figure 5-a. This configuration leads to the following initial state
of the BPG algorithm: L = {l1, ..., l19}, F = { f1, ..., f5}; F1 = { f1, f2}, F4 = { f1, f4, f5}, F5 = { f3},
F12 = { f5}, F15 = { f5}, F6 = { f3, f4}, F10 = { f5}. We also assume that the links’ effective capacities
are such that c1 = 80, c4 = 110, c6 = 130, c15 = 20 Gbps, while all the other links are assumed to
have a capacity large enough such that they are not bottlenecks. Note that in general these effective
capacities need not be equal to the physical capacity of the links. This is because it is possible to
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reserve a fraction of the physical capacity to high priority traffic (traffic whose bandwidth must
be guaranteed) so that the analysis of the bottleneck structure is performed without taking into
account such traffic, effectively reducing the available capacity of the links.

Fig. 5. Example of the B4 network with five flows used in Example 2.7.

Figure 5-b shows the BPG graph as computed by Algorithm 2. The number of levels of this
bottleneck structure is four since that’s the length of its longest path l15 − l1 − l4 − l6 (see Lemma
2.6). Link l15 is a root vertex, which means it can influence the performance of all other links. It
also means that in any distributed congestion control algorithm, flows bottlenecked at any other
link cannot converge until flows bottlenecked at l15 converge. (As noted in Lemma 2.3, this is true
for any pair of links for which there exists a path in the BPG graph.) Link l6 is a leaf vertex, which
implies it does not influence the performance of any other link. Note also that there exists an
indirect precedence between links l15 and l1. As in a direct precedent case, this also means flows
bottlenecked at link l1 cannot converge until flows bottlenecked at link l15 have converged. The
difference here is that there exists no common flow going through both links, unlike in the case of
direct precedents. Instead, execution of the BPG algorithm shows that links l15 and l1 have link
l4 as a relay link (Rk

l1
= {l4} when the algorithm terminates) that helps transmit the bottleneck

information from one to the other.

Example 2.8. B4’s bottleneck structure for full-mesh/shortest-path. In this example, we compute
the bottleneck structure of the B4 network for a more realistic case considering a larger number of
flows. In particular, we assume the existence of a flow between each pair of data centers—i.e., a
full mesh connectivity—with each flow taking the shortest path. As a first-order approximation,
we reason that the full mesh assumption is intuitively meaningful if we consider that in general,
every data center may need to communicate with each other. Also, the choice of shortest paths can
serve as a raw approximation of the actual routing. Note that in a production system, both of these
assumptions can be relaxed by using actual historical or real-time flow and routing information of
the network to compute its precise bottleneck structure. This could, for instance, be inferred using
NetFlow [4], sFlow [23] or BGP-LS [9] protocols among others—see also Appendix E for details.
The full-mesh/shortest-path model provides a simple but powerful base benchmark that can help
measure the approximate bottleneck structure of a network by using only its fixed topological
structure.
The BPG graph of the B4 network under the full-mesh/shortest-path assumption and with all

link capacities set to 100 Gbps is presented in Figure 6. As shown, the root vertex corresponds to
link l8. This vertex has a region of influence equal to the full network. (Since there exists a directed
path from this vertex to any other vertex in the BPG graph.) That is, variations on the effective
capacity of this link are critical as they propagate to (and affect the performance of) the rest of
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Fig. 6. Google’s B4 Bottleneck structure assuming full mesh connectivity with shortest path.

the links. Looking at Figure 4, link l8 is indeed a highly strategic link as it connects the US and
the EU data centers, which are the two regions with the most data centers (Asia being the less
dense region). In contrast, links l16, l11, l9, l18, l19, l14, l15, l3, l6, l7, l12, l1, are leaves in the bottleneck
structure, which means they have no impact on the performance of any other link. This analysis
reveals that when looking for high-impact bottlenecks, network operators should consider links
that are located at higher levels in the BPG graph. Of interest is comparing the influence of links l8
and l10, both being the transatlantic connections between the US and EU regions. The bottleneck
structure—which takes into account the structural properties of the topology, the routing and the
flow information of the network—indicates that link l8 has a higher influence than l10 (from Figure
6, link l8 influences all the other links, while link l10 influences only a fraction of links in the BPG
graph). Furthermore, the graph shows that link l8 can affect the performance of link l10 (since there
is a directed path from l8 to l10), but not vice versa. Similarly, on the transpacific connections side,
the BPG graph shows that link l2 has a more significant influence than link l4 in terms of nodes they
can affect, but in this case, neither of these two links can influence the performance of each other
since there is no directed path connecting them. Accordingly, the kind of structural information
that the BPG graph reveals helps network operators identify and organize the relevancy of each
bottleneck.

Figure 6 also shows the value of the fair share for each link (positioned to the right of each
vertex). It is easy to check that the values of the fair share are always monotonically increasing
along a directed path in this BPG graph. This is actually a mathematical property of the bottleneck
structure and is true for all BPG graphs:

Property 1. Monotonic fair shares along a precedence path. Let sl1 , sl2 , ..., sln be the fair share values
of links l1, l2, ..., ln , respectively. If li is a direct precedent of li+1, then sli < sli+1 , for all 1 ≤ i ≤ n − 1

Proof. See Appendix A.1. �

We complete this section stating the time complexity of the BPG algorithm to compute the
network’s bottleneck structure. Two bounds are provided: One to compute the bottleneck links,
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the direct and indirect precedents (i.e., the full bottleneck structure) and another one to compute
the bottleneck links and direct precedents. While both bounds are polynomial, the latter is tighter
and is useful in cases where only direct precedent relations are needed. For instance, this lower
bound can be achieved when computing the regions of influence of all bottleneck links, since as
shown in Lemma 2.4 there is no need to know the indirect precedents to perform such calculation.

Lemma 2.9. Polynomial time complexity. The time complexity of computing the set of bottleneck

links B and the sets of direct {Dl ,∀l ∈ B} and indirect precedents {Il ,∀l ∈ B} isO(|L| · |F | + |L|3).

The time complexity of computing the set of bottleneck links B and the sets of direct precedents

{Dl ,∀l ∈ B} is O(H · |L|2 + |L| · |F |), where H is the maximum number of links traversed by any

flow.

Proof. See Appendix A.2. �

2.5 Minimum Convergence Time of Distributed Congestion Control Algorithms

In Section 2.1 we saw that an intuitive way to understand the bottleneck structure of a network
consists of modeling its bottleneck links as nodes that are trying to compute a globally optimal
fair-share value by exchanging locally available information. This dualism between the twomodels—
bottleneck structure and distributed communication—provides a robust framework to measure
the minimum convergence time attainable by any distributed congestion control algorithm. We
capture this concept in the following lemma:

Lemma 2.10. Minimum convergence time of a distributed congestion control algorithm. Let τ (li , lj )
be a weight assigned to each edge (li , lj ) of the BPG graph as follows: (1) If li is a direct precedent of
lj , then τ (li , lj ) is the time that it takes for a message to be sent from li to lj ; (2) If li is an indirect

precedent of lj , then τ (li , lj ) = max{τ (li , lr ) + τ (lr , lj ) | for any relay link lr between li and lj }. Let
l1 − l2 − ... − ln be a longest path terminating at link ln according to these weights. Then the minimum

convergence time for link ln is
∑

1≤i≤n−1 τ (li , li+1).

Proof. See Appendix A.6. �

It is important to note that the above lower bound is not attainable in the case of TCP conges-
tion control algorithms because, in such distributed protocols, there is no direct communication
mechanism between links—since they are end-to-end protocols [29]. Instead, TCP algorithms rely
on implicit feedback based on signals such as packet loss or round trip time, effectively requiring a
significantly longer time to propagate from one link to another. Nevertheless, the importance of
the above lemma is in the claim that convergence time increases as the depth of the bottleneck
structure increases, and this general principle holds even for end-to-end protocols. In Section 3.4,
we test this lemma against a TCP congestion control algorithm and empirically demonstrate that
convergence time does increase as the depth of the bottleneck structure increases.

2.6 The Influence of Flows onto Bottleneck Links and Onto Each Other

While the Theory of Bottleneck Ordering helps understand the relations that exist between links
and the influences they exert on each other, the BPG graph resulting from this mathematical
framework does not reveal any information regarding the performance of flows. There exists,
however, a simple way to transform the BPG graph into a structure that does take into account
flows and helps characterize their performance. We refer to this new structure as the flow gradient

graph, formally defined as follows:

Definition 2.11. Flow gradient graph. The flow gradient graph is a digraph such that:

• For every bottleneck link and for every flow, there exists a vertex.
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• For every flow f : (1) If f is bottlenecked at link l , then there exists a directed edge from l to
f ; (2) If f is not bottlenecked at link l but it passes through it, then there exists a directed
edge from f to l .

The flow gradient graph can be constructed using either the FastWaterFilling or the BPG algo-
rithms, since both of these procedures compute the set of bottleneck links B and, for every flow
in the network f , they both discover its bottleneck link l when f is entered into the converged
set: Ck = Ck ∪ { f ,∀f ∈ Fl } (line 17 in Algorithm 1 and line 14 in Algorithm 2). Next, we use an
example to illustrate how this graph is constructed.

Example 2.12. Computation of the flow gradient graph. Consider the network in Figure 7-a
consisting of 4 links and 6 flows. If we run the BPG algorithm and construct the flow gradient
graph as indicated in Definition 2.11, we obtain the graph structure shown in Figure 7-b.

Fig. 7. Construction of the flow gradient graph.

The flow gradient graph is a useful extension of the BPG since it allows to generalize the
bottleneck analysis onto flows. We can see bottlenecks and flows as two sides of the same coin
so that, if the network were an economy, links and flows would correspond to the supply and the
demand, respectively. This duality principle implies that all the general lemmas and properties
described in this paper regarding the bottleneck structure of a network have a dual correspondence
in the domain of flows. For instance, Lemma 2.4 (bottleneck influence) can be translated to the
domain of flows as follows:

Lemma 2.13. Flow influence. A flow f can influence the performance of another flow f ′, i.e.,
∂rf ′/∂rf � 0, if and only if there exists a set of bottlenecks {l1, l2, ..., ln} such that (1) li is a direct

precedent of li+1, for 1 ≤ i ≤ n − 1, (2) flow f ′ is bottlenecked at link ln and (3) flow f goes through l1.

Proof. See Appendix A.7. �

Using this Lemma, we can infer the following properties from the flow gradient graph in Figure
7-b: (1) Flow f5 has no influence on any of the other flows, since its bottleneck links (l3 and l4) have
no influence on any other bottlenecks; (2) flows f1, f3 and f6 have an influence on all other flows,
since their bottleneck l1 is a root vertex in the BPG graph; (3) flow f4 can only influence flows f2
and f5; and (4) flow f2 can only influence flows f4 and f5. In Section 3.3, we perform an experiment
where we leverage the insights revealed by the flow gradient graph to identify flows that have a
high impact on the performance of a network.
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3 EXPERIMENTAL RESULTS

To experimentally evaluate the ability of the proposed theory to predict bottleneck and flow
performance in real networks, we developed a sandbox [18] using Mininet [22] and the POX SDN
controller [24]. The sandbox takes as input information related to a network’s topology, routing,
and traffic flows. With that, the sandbox can create the desired network configurations, including
the configurations presented in Figures 4 and 7 and others introduced in this section. As part of
the sandbox, we also implemented a new forwarding module for POX to allow static routing on
emulated network architectures. This routing module allows us to compose networks with the
desired number of bottleneck levels. We used iPerf [11] to generate network traffic. The sandbox
also provides the ability to select a specific TCP congestion control algorithm (e.g., BBR, Cubic, or
Reno) and scale to larger network configurations on multi-core machines. Since our sandbox utilizes
Mininet, the implementation of these algorithms is based on real production TCP/IP code from the
Linux kernel. The Linux kernel version used was 4.15.0-54. To test the various principles of the
proposed theory, we developed Python scripts that process the results from the experiments run on
the sandbox. In particular, for each experiment, we measured instantaneous network throughput,
flow completion times, flow convergence times, and Jain’s fairness indexes [14]. Essentially, the
sandbox provides a flexible way to create and analyze general network architectures. We have
open sourced the sandbox [18], including all the network configurations used in this paper so the
Mininet research community can verify the following results.

3.1 On the Bottleneck Structure of TCP Networks

In this initial experiment, we test the hypothesis that TCP congestion-controlled networks behave
as predicted by the Theory of Bottleneck Ordering. We carry out three experiments based on
Google’s B4 network (Figure 8), each with a different number of BPG levels (from 2 to 4 levels),
and evaluate whether three well-known congestion control algorithms—BBR [2], Cubic [10] and
Reno [7]—are able to recognize the bottleneck structure. We choose these three algorithms as
representatives of two broad classes of algorithms. Cubic and Reno are amongst the most widely
used algorithms within the class of additive-increase/multiplicative-decrease (AIMD) methods. BBR
is a new algorithm developed by Google [2] and widely used in its infrastructure that belongs to a
class known as congestion-based methods.
We show the corresponding BPG graphs in Figure 8 to the right of each network. The graphs

include also the fair share si and the link capacity ci in Mbps next to each vertex corresponding to
bottleneck link li ∈ B. The rest of the links are assumed to have a capacity large enough so that
they are not bottlenecks. All flows are configured to transmit a data set of 250MB using TCP, and all
links have a 2-millisecond latency. Throughout all tests, switch buffer sizes are set to 1000 packets.

In this experiment, we also measure the degree of fairness achieved by each congestion control
algorithm using Jain’s fairness index [14] normalized to the max-min rate allocation. (See Appendix
D for a description of this index.) Since the bottleneck structure of the network is also the solution
to the theoretical max-min problem, this index effectively serves as an indicator of the degree to
which the congestion control algorithm under test can assign rates according to the bottleneck
structure itself.

The results for BBR and Cubic are presented in Figure 9, while the results for Reno are presented
in Appendix B. In this figure, flows are labeled according to their source and destination data
centers. (For instance, the label h1−h7 corresponds to flow f1 in Figure 8 that goes from data center
1 to data center 7). We make the following observations:

• BBR can cleanly capture the bottleneck structure, but AIMD algorithms (Cubic and Reno)
fail to do so. For instance, for the 3-level network (Figure 9-b/e), each BBR flow converges to
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Fig. 8. Network configurations to benchmark (a) 2-level, (b) 3-level and (c) 4-level bottleneck structures.

a rate corresponding to its bottleneck level (see the BPG graph in Figure 8-b), while the two
lower throughput flows in the Cubic case collapse onto a single level. We believe this is a
direct effect of the congestion-based approach taken by BBR [2], which aims at determining
the actual bottleneck capacity and effectively tries to stabilize the flow’s transmission rate
to its bottleneck fair share. In contrast, AIMD algorithms implement loss-based heuristics
and have no notion of bottleneck’s fair share. Instead they act by constantly increasing and
decreasing the flow rate, and as a result, flows have a higher propensity to jump between
consecutive levels in the bottleneck structure, as shown in Figure 9.

• Because BBR flows can identify their correct bottleneck levels, they don’t compete against
each other. AIMD flows, however, are not able to identify their bottleneck levels and end up
competing against each other, leading to worse performance.

• As a result, the flow completion times for BBR are significantly lower than those of AIMD
algorithms (see Table 1).

• BBR performance is relatively independent of the number of levels, as its slowest flow com-
pletion time stays between 230 and 235 seconds. For AIMD algorithms, however, performance
degrades significantly when increasing the number of levels from 3 to 4, with an increase of
the slowest flow completion time from 385 seconds to 810 (more than double), for Cubic.
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(a) 2-level BPG with BBR. (b) 3-level BPG with BBR. (c) 4-level BPG with BBR.

(d) 2-level BPG with Cubic. (e) 3-level BPG with Cubic. (f) 4-level BPG with Cubic.

Fig. 9. BBR can identify the bottleneck structure of the network (thus achieving significantly better perfor-

mance), while AIMD algorithms can’t.

Table 1. Completion time of the slowest flow (seconds).

Algorithm 2-Level 3-Level 4-Level

BBR 230 235 230
Cubic 380 385 810
Reno 375 370 750

Table 2. Jain’s fairness index.

Algorithm 2-Level 3-Level 4-Level

BBR 0.99 0.98 0.92
Cubic 0.94 0.96 0.72
Reno 0.93 0.96 0.73

• BBR achieves better fairness as measured by Jain’s fairness index (see Table 2). Fairness index
deteriorates significantly for AIMD flows when going from 3 levels to 4 levels, while BBR
flows continue to maintain a good level of fairness. This result is also because BBR can better
identify the bottleneck structure of the network.

3.2 On The Effect of Latency on the Bottleneck Structure of a Network

In Section 3.1, we saw that AIMD algorithms fail to identify the bottleneck structure of the test
networks, and as a consequence, they perform significantly poorer than BBR. In this section, we
study this phenomenon in more detail.

The first observation we make is that differences in flow RTTs can play a role in the capabilities
of a congestion control algorithm to identify the bottleneck structure. For instance, in Figure 9-d
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corresponding to the 2-level network with Cubic, the RTT of the flow at the highest level (flow
f2 corresponding to h5 − h12 in the plot’s legend) is 22 milliseconds while the RTT of the flow at
the lowest level (flow f1 corresponding to h1 − h7 in the plot’s legend) is 16 milliseconds. (These
RTT values are the sum of the latencies of the links each flow goes through multiplied by two.)
Due to its lower RTT, the lower level flow f1 can capture bandwidth from the higher-level flow f2,
and this leads to the collapse of the 2 levels in the Cubic case. This is in contrast with BBR (Figure
9-a), where flows show to be resilient against these RTT variations and can stay confined at their
correct bottleneck levels. Similarly, in Figure 9-e the same two flows f1 and f2 collapse on each
other for the same reason, this time though as part of the two lower bottleneck levels in a 3-level
network. As mentioned in Section 3.1, this is in contrast with BBR that, for these tested networks,
can identify the bottleneck levels despite these differences in RTT.

To demonstrate the effect of RTT, we test the 3-level network (Figure 8) using Cubic and setting
all link latencies to zero. While queuing delay at the switches is still non-zero, this has the effect
of setting all flows to a much more similar latency, thus reducing the distortions introduced by
highly different RTTs. The results are presented in Figure 10, which show that Cubic flows are now
able to identify the bottleneck structure of the network. This result is in contrast with Figure 9-e,
where Cubic flows were not able to identify their bottleneck rates. A relevant outcome is that due
to the bottleneck distortion introduced by RTT, the performance of flows deteriorates from a flow
completion time of 245 seconds in Figure 10 to 385 seconds in Figure 9-e. Note also that BBR flows
were able to perform well even under the presence of link latencies. (As shown in Figures 9-a, 9-b
and 9-c, BBR achieves a flow completion time of 235 seconds with non-zero link latencies, even
lower than Cubic with zero link latencies.) Thus this seems to indicate that BBR is a significantly
more robust congestion control algorithm against the distorting effects of RTT.

Fig. 10. By eliminating round trip times, AIMD algorithms are able to identify the bottleneck structure.

The above results show that BBR does significantly better at identifying each flow’s true bottle-
neck, but can we still fool this congestion control algorithm to collapse its bottleneck structure? In
the next experiment, we take this objective by using the 3-level network, initially setting all link
latencies to zero, and progressively increasing the RTT of the flows on the upper bottleneck levels
to verify whether the structure collapses. To control the RTT of each flow individually, we add a
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Fig. 11. The bottleneck structure of a network can be collapsed by progressively increasing the round trip

time of those flows in the upper levels (BBR case).

fictitious link attached to the source of each flow with a large capacity (so it does not become a
bottleneck) and a latency that we adjust to achieve a specific end-to-end RTT value for each flow.
Figure 11 presents the sequence of steps that lead to the collapse of the bottleneck structure. First,
flow f3 (from data centers 9 to 12) is folded onto flow f2 by increasing its RTT to 4 milliseconds.
Then, flows f3 and f2 are folded onto flow f1 by increasing their RTTs to 10 and 6 milliseconds,
respectively. Thus, this experiment shows that while BBR is a more robust algorithm to the effects
of RTT, its bottleneck structure can still collapse if RTTs are carefully chosen.

In Figure 12 we show the effect of collapsing the bottleneck structure on the overall performance
of the network for both BBR and Reno. (Although omitted from this figure, a similar qualitative
result was obtained with Cubic.) On the x axis we show the series of steps taken to collapse the
bottleneck structure. Each step progressively increases the flow RTT values of the upper level
flows to collapse them onto the lower neighboring flows, until the structure is fully collapsed in
the last step. (So for the BBR case, the six steps shown in Figure 12-a correspond to the six graphs
shown in Figure 11.) As shown, the performance of the network decreases significantly in terms
of both total throughput (measured by summing up all flow rates) and fairness (measured using
the Jain’s fairness index). The connection between the collapse of the bottleneck structure and
network performance provides a formal model to understand the reason why the performance of
TCP congestion control algorithms severely deteriorates due to the distorting effects of flow RTT
variations. This result also indicates the importance of designing congestion control algorithms
that can robustly identify the bottleneck structure of the network against of such distortions.

3.3 On How Low-Hitter Flows Can Be High-Impact Flows

Next, we illustrate an example of how the Theory of Bottleneck Ordering can be used to support
traffic engineering operations. We start with an initial network configuration, and our objective is
to identify the flows that have the largest impact on the performance of the rest of the flows. Based
on the information from this analysis, a network operator can choose to re-route high-impact traffic
or assign it to a lower priority queue to help improve the overall performance of the network.
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(a) BBR case (b) Reno case

Fig. 12. As the bottleneck structure collapses, network performance (measured in terms of total throughput

and fairness) collapses too.

To drive this experiment, we consider the network introduced in Figure 7-a and previously used in
Example 2.12. Running the BPG algorithm we obtain the following theoretical flow rate allocations:
r1 = 8.3, r2 = 16.6, r3 = 8.3, r4 = 16.6, r5 = 75, and r6 = 8.3 Mbps. Following a traditional traffic
optimization approach (e.g., [20], [8], [19], [34] , [30]), we could reach the conclusion that flow f5 at
a rate of 75 Mbps is a high-impact flow since it takes the highest bandwidth. (This flow uses more
than four times the bandwidth of the second highest throughput flow.) This approach however
does not take into account the bottleneck structure of the network and, as we will see, leads to a
non-optimal choice.
In Figure 13-a we show the results of running BBR on the network in Figure 7. The resulting

average flow throughputs are (see Table 3): r1 = 7.7, r2 = 15.1, r3 = 7.5, r4 = 15.4, r5 = 65.8, and
r6 = 8.1 Mbps, which are relatively similar to the flow rates computed by the BPG Algorithm as
provided in the previous paragraph. In Figure 13-b, we see the result of removing the heavy hitter
flow f5 from the network, showing that the impact on the rest of the flows is effectively none. (See
also Table 3 for the exact values of the flows’ average throughputs and completion times.) If instead
we remove flow f6 (a flow about 8 times smaller than f5 in terms of its average throughput), we
see that the rest of the flows improve their performance significantly (Figure 13-c). For instance,
as shown in Table 3, the flow completion time of the slowest flow is reduced from 679 to 457
seconds. This result might seem counter-intuitive if we consider the fact that flow f6 is among the
smallest throughput flows, but it is easy to explain if we take into account the bottleneck structure
of the network. In particular, from the flow gradient graph in Figure 7-b, we observe that flow f5 is
bottlenecked at links l3 and l4, which are leaf vertices in the bottleneck structure and thus have
no impact on the performance of any other links and flows. However, flow f6 is bottlenecked at
link l1 which sits right in the middle of the bottleneck structure, thus having a significantly higher
impact. This result indicates that traditional approaches, which focus on finding the heavy hitter
flows, might tend to sub-optimal choices because they do not take into account the full bottleneck
structure of the network. In this paper, we reason that network operators interested in finding the
high impact flows should also consider the BPG and the flow gradient graph structures to aid their
optimization process.
Finally, we also note that we performed the same experiments using TCP Cubic and Reno and

obtained the same behavior in both algorithms. (We include these results in Appendix C.) Overall,
these experiments show that the same traffic engineering analysis based on the bottleneck structure
of the network applies not only to BBR but to TCP congestion-controlled networks in general.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 59. Publication date: December 2019.



On the Bottleneck Structure of Congestion-Controlled Networks 59:21

Table 3. As predicted by the Theory of Bottleneck Ordering, flow f6 is a significantly higher impact flow than

flow f5.

Comp. time (secs) f1 f2 f3 f4 f5 f6 Slowest

With all flows 664 340 679 331 77 636 679
Without flow f5 678 350 671 317 — 611 678
Without flow f6 416 295 457 288 75 — 457

Avg rate (Mbps) f1 f2 f3 f4 f5 f6 Total

With all flows 7.7 15.1 7.5 15.4 65.8 8.1 119.6
Without flow f5 7.5 14.5 7.6 16.1 — 8.3 54
Without flow f6 12.2 17.2 11.1 17.7 68.1 — 126.3

(a) Without removing any flow. (b) Removing the heavy-hitter. (c) Removing a low-hitter.

Fig. 13. Against general best practices but as predicted by the Theory of Bottleneck Ordering, removing flow

f6 (which is a smallest low-hitter flow), maximally reduces flow completion time for the rest of flows.

3.4 Convergence Time with Increased Number of Bottleneck levels and Flow
Competition

In Section 2.5, we saw that the depth of the bottleneck structure of a network is closely related
to the convergence time of a distributed congestion control algorithm. We set to experimentally
verify this property by using the network configuration in Figure 14-a. Its BPG graph is shown in
14-b, which corresponds to a linear (single path) graph, with a fair share for each link li of si = 10i ,
1 ≤ i ≤ n. This configuration has one BPG level per-link, and thus it corresponds to a network with
maximal depth for a given number of links.

Fig. 14. Network configuration with a linear BPG graph of depth n.

To complement the convergence time analysis, we also test the impact of increasing the number of
flows at each level. With this objective, we implement a flow multiplier factor as part of our sandbox
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Table 4. Converge time (in seconds) increases with the number of levels and the number of level-competing

flows.

1-Level 2-Level 3-Level 4-Level

num. flows x 1 2 2 2 2
num. flows x 2 2 2 12 26
num. flows x 3 4 16 14 54
num. flows x 4 14 26 34 72

[18]. Multiplying the number of flows by a factorm means that each flow in a given network is
replicated (preserving its source, destination, and route)m times. This approach effectively increases
bym the number of flows competing at the same level, without modifying the bottleneck structure
of the network.

Table 4 presents the results of running the described experiment varying the number of levels n
and the flow multiplier factorm from 1 to 4, for a total of 16 experiments, using the BBR algorithm.
The results show the behavior predicted by the theoretical framework: Convergence time increases
(1) as the number of bottleneck levels increases, and (2) as the number of flows at the same level
increases.

While network operators cannot influence the number of flows, they have some ability to alter
the number of levels in the BPG graph. For instance, one strategy would consist of configuring
routes (or even design network topologies) that tend to generate bottleneck structures of smaller
depth. This strategy would help flows converge faster and lead to networks operating at higher
utilization. The study and design of routes and topologies that yield shallow bottleneck structures,
while very interesting, is left for future work.

4 ASSUMPTIONS, GENERALIZATIONS, AND PRACTICAL IMPLICATIONS

As mentioned in Section 2.2, the Theory of Bottleneck Ordering presented in this paper assumes a
steady-state optimal network regime. Real-world networks, however, are highly dynamic systems
continually transitioning from one operational regime to another due to the arrival and departure
of flows. Our first observation is that, at any given time, even highly dynamic production networks
have a bottleneck structure. Such a structure is not random, on the contrary, it exposes general
patterns that are both qualitatively and quantitatively meaningful to understand the performance of
a network. For instance, if a network shows that certain links (or certain flows) consistently tend to
have a large region of influence, that reveals a specific structural pattern that network operators can
use to optimize system-wide performance. Secondly, the concept of bottleneck structure provides
a base mathematical framework that can open a new line of research in the field of network
performance modeling and optimization. While not developed in this paper, the proposed model
can be extended with both generalizations and specific features to make the model progressively
more accurate. For instance, bottleneck structures can also be developed for other optimization
objectives different than max-min, such as generalized weighted max-min [1] or proportional
fairness [17]. Extending the theory to support proportional fairness can be of particular interest as
it is believed that the Internet behaves closely to this model due to the AIMD heuristic implemented
in most of TCP congestion control algorithms [17].
While in this paper we provide empirical evidence that congestion-controlled networks based

on TCP qualitatively behave as predicted by their bottleneck structures, there exists a class of
distributed algorithms for which the present model would theoretically achieve perfect accuracy.
This class corresponds to the group ofmax-min explicit rate congestion control algorithms available
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in the literature (e.g., [16, 27]). By leveraging explicit feedback from the network nodes (routers
and switches), these protocols are known to converge to steady state about one or two orders of
magnitude faster than TCP [16, 27, 28]. Further, as these algorithms are capable of converging
to max-min, the result is that bottleneck links and flows behave precisely as forecasted by the
bottleneck structure model introduced in this paper.
We reason there are at least five different areas where the Theory of Bottleneck Ordering can

have a practical impact:

• Traffic engineering. The bottleneck structure reveals patterns in the network that can help
identify critical bottlenecks and flows. For instance, in Section 3.3, we used the proposed
framework to identify a low-hitter flow that—against conventional wisdom—had a high
impact on the performance of the network.

• Design of congestion control algorithms. Between today’s implicit rate-based congestion control
algorithms implemented as part of TCP and the more theoretical explicit rate approaches,
there is a continuum of algorithm solutions that can function according to the bottleneck
structure to a greater or lesser degree. As shown in Section 3.1, those algorithms that behave
closer to the bottleneck structure will have better performance according to the optimization
objective captured by it. Thus, the proposed framework can also be used to help design and
evaluate congestion control algorithms.

• Network baselining. Because the bottleneck structure provides an ideal model of network
behavior, network operators can use it to create a baseline. Using such a framework, links
and flows whose performance deviates from the model can be flagged for further analysis.

• Network capacity planning. The bottleneck structure reveals that not all bottleneck links
have an equal impact on the overall performance of the network. For instance, increasing
the capacity of a link that has a high region of influence can result in higher system-wide
performance. Thus, network planners can use the framework described in this paper to
identify optimal link upgrade strategies.

• Artificial intelligence. As an explicit representation of the network, the bottleneck structure
could also be used to create more accurate machine learning models of modern data networks.

5 RELATEDWORK

To the best of our knowledge, the proposed theoretical framework is the first to address the problem
of characterizing the bottleneck structure of a network and the influences and relationships existing
between bottlenecks from both formal and practical standpoints. Previous research that comes
close to the proposed framework includes work presented in [16]. In that paper, the authors refer
to the bottleneck relationships as dependency chains and observe that performance perturbation
of bottleneck links may affect other bottleneck links. The authors, however, do not address the
problem of formally identifying the hidden structure that controls such perturbations.
The majority of the previous research on bottleneck characterization has implicitly assumed

that bottlenecks in a network are structured according to a flat structure, e.g., [2, 3, 13, 21, 25]. A
classic result from this line of research is the well-known Mathis equation [21], which models the
transmission rate of a TCP flow based on the performance characteristics of its single bottleneck
link. This approach, however, does not take into account the distributed nature of communication
networks. In contrast, the proposed approach reveals the bottleneck structure of a network, which
allows to model flow performance by taking into account the network’s topological, routing, and
flow properties.
In this work, we base the bottleneck analysis on the max-min rate assignment. An algorithm

to compute the max-min rate allocation of a network was initially introduced in [1] and later
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improved by [27]. Our algorithm to construct the bottleneck structure is based on an extension of
the algorithm proposed in [27], although in that paper the authors use the algorithm to design a
distributed algorithm, without addressing the general bottleneck structure of networks.

6 CONCLUSIONS

Congestion control algorithms have been one of the most widely researched subjects in the field of
computer communications since the Internet collapsed in 1986 due to the lack of them. Starting
from the first TCP congestion control algorithm implemented in 1987, key research has focused
on characterizing the bottleneck to help maximize the performance of flows individually while
achieving fairness collectively. Such single-bottleneck oriented approach, however, has left a gap
in attempting to understand the global structure of the problem. In this paper, we address this gap
by introducing the Theory of Bottleneck Ordering. The theoretical framework leads to the BPG
algorithm, a procedure that reveals the bottleneck structure of a network in the form of a graph—the
BPG graph. This graph provides vital insights to the understanding of the collective bottleneck
behavior in a distributed network, among others: (1) The implicit relationships that exist between
bottlenecks; (2) the bounded regions in the network that links and flows can influence; and (3) the
convergence properties of the congestion control algorithm run by the network. Our experimental
results show that: (1) Real networks do have a bottleneck structure that may follow the BPG graph
closely; (2) RTT variations can lead to imperfections (levels that fold) in the bottleneck structure,
which can severely affect performance; (3) congestion-based algorithms such as BBR are able to
infer the bottleneck structure significantly better than loss-based/AIMD algorithms such as Cubic
and Reno, which leads them to achieve superior performance in both throughput and fairness. The
theory also reveals intriguing results, including the fact that low-hitter flows can have a higher
impact on a network than heavy-hitter flows, or the notion that routing and topology can play a
role in the design of shallower bottleneck structures that would improve the convergence time of
congestion control algorithms.

Current and future work centers around three lines of effort. First, in this paper, we have primarily
focused on the problem of constructing the bottleneck structure, and the resulting analysis has
been qualitative. In forthcoming work, we will show that the flow gradient graph structure (only
briefly introduced in this paper) reveals an algorithm to efficiently compute the flow and bottleneck
gradients. The theoretical development of the flow gradient graph leads to a formal quantitative
framework, providing a quantifiable methodology to measure the impact that bottlenecks and
flows exert on each other. Secondly, the concept of bottleneck structure can be generalized to
include other optimal objectives beyond max-min, such as weighted max-min or proportional
fairness, among others. Lastly, while in this paper we provide empirical evidence of the existence
of a bottleneck structure in TCP networks using Mininet, more experiments should be performed
on real-world production networks. We are currently undertaking such tests in three different
networks: the US nationwide ESnet 100Gbps Testbed Network [6], the Cosmos Wireless network
in New York City [5] and the SCinet terabit network implemented as part of the Supercomputing
industry event [31].

REFERENCES

[1] Dimitri P. Bertsekas and Robert G. Gallager. 1992. Data Networks. Vol. 2. Prentice-Hall Inc., Englewood Cliffs, New

Jersey 07632.

[2] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson. 2016. BBR: Congestion-

Based Congestion Control. ACM Queue 14, 5, Article 50 (October 2016), 34 pages. https://doi.org/10.1145/3012426.

3022184

[3] Dah-Ming W. Chiu and Raj Jain. 1989. Analysis of the Increase and Decrease Algorithms for Congestion Avoidance

in Computer Networks. Computer Networks and ISDN systems 17, 1 (June 1989), 1–14. https://doi.org/10.1016/

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 59. Publication date: December 2019.



On the Bottleneck Structure of Congestion-Controlled Networks 59:25

0169-7552(89)90019-6

[4] Benoit Claise, Ganesh Sadasivan, Vamsi Valluri, and Martin Djernaes. 2004. NetFlow Specifications, Cisco Systems.

(2004). Retrieved October 24, 2019 from https://www.ietf.org/rfc/rfc3954.txt

[5] COSMOS Lab. 2019. The Cosmos Testbed. (2019). Retrieved October 24, 2019 from https://cosmos-lab.org

[6] ESnet. 2019. ESnet Energy Sciences Network. (2019). Retrieved October 24, 2019 from http://es.net/network-r-and-d/

experimental-network-testbeds/test-circuit-service/

[7] Kevin Fall and Sally Floyd. 1996. Simulation-based Comparisons of Tahoe, Reno and SACK TCP. SIGCOMM Computer

Communication Review 26, 3 (July 1996), 5–21. https://doi.org/10.1145/235160.235162

[8] Tiago Fioreze, Lisandro Granville, Ramin Sadre, and Aiko Pras. 2009. A Statistical Analysis of Network Parameters

for the Self-Management of Lambda-Connections. In Scalability of Networks and Services. Springer Berlin Heidelberg,

Berlin, Heidelberg, 15–27. https://doi.org/10.1007/978-3-642-02627-0_2

[9] Hannes Gredler, Jan Medved, Stefano Previdi, Adrian Farrel, and Saikat Ray. 2016. BGP-LS Protocol Specification.

(2016). Retrieved October 24, 2019 from https://tools.ietf.org/html/rfc7752

[10] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A New TCP-friendly High-speed TCP Variant. SIGOPS operating

systems review 42, 5 (July 2008), 64–74. https://doi.org/10.1145/1400097.1400105

[11] Iperf.fr. 2019. iPerf - The ultimate speed test tool for TCP, UDP and SCTP. (2019). Retrieved October 24, 2019 from

https://iperf.fr/

[12] M. Schoffstall J. Davin J. Case, M. Fedor. 1990. A Simple Network Management Protocol (SNMP). (1990). Retrieved

October 24, 2019 from https://tools.ietf.org/html/rfc1157

[13] Van Jacobson. 1988. Congestion Avoidance and Control. SIGCOMM computer communication review 18, 4 (August

1988), 314–329. https://doi.org/10.1145/52325.52356

[14] Raj Jain, Dah-Ming W. Chiu, and William R. Hawe. 1998. A Quantitative Measure Of Fairness And Discrimination For

Resource Allocation In Shared Computer Systems. CoRR cs.NI/9809099 (1998), 38. http://arxiv.org/abs/cs.NI/9809099

[15] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata, Jim

Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2013. B4: Experience with a

Globally-Deployed Software Defined WAN. SIGCOMM Computer Communication Review 43, 4 (August 2013), 3–14.

https://doi.org/10.1145/2534169.2486019

[16] Lavanya Jose, Lisa Yan, Mohammad Alizadeh, George Varghese, Nick McKeown, and Sachin Katti. 2015. High Speed

Networks Need Proactive Congestion Control. In Proceedings of the 14th ACM Workshop on Hot Topics in Networks

(HotNets-XIV). ACM, New York, NY, USA, Article 14, 7 pages. https://doi.org/10.1145/2834050.2834096

[17] Frank P. Kelly, Aman K. Maulloo, and David K. H. Tan. 1998. Rate Control for Communication Networks: Shadow

Prices, Proportional Fairness and Stability. Journal of the Operational Research society 49, 3 (01 March 1998), 237–252.

https://doi.org/10.1057/palgrave.jors.2600523

[18] Reservoir Labs. 2019. G2-Mininet Sandbox: Mininet extensions to support the analysis of the bottleneck structure of

networks. (2019). Retrieved October 24, 2019 from https://github.com/reservoirlabs/g2-mininet

[19] Kun-Chan Lan and John Heidemann. 2006. A Measurement Study of Correlations of Internet Flow Characteristics.

Computer Networks 50, 1 (2006), 46–62. https://doi.org/10.1016/j.comnet.2005.02.008

[20] Yi Lu, Mei Wang, Balaji Prabhakar, and Flavio Bonomi. 2007. ElephantTrap: A Low Cost Device for Identifying

Large Flows. In 15th Annual IEEE Symposium on High-Performance Interconnects (HOTI 2007). IEEE, 99–108. https:

//doi.org/10.1109/HOTI.2007.13

[21] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. 1997. The Macroscopic Behavior of the TCP

Congestion Avoidance Algorithm. SIGCOMM Comput. Commun. Rev. 27, 3 (July 1997), 67–82. https://doi.org/10.1145/

263932.264023

[22] Mininet. 2019. Mininet: An Instant Virtual Network on your Laptop (or other PC). (2019). Retrieved October 24, 2019

from http://mininet.org/

[23] Peter Phaal, Sonia Panchen, and Neil McKee. 2001. sFlow Specifications, InMon Corporation. IETF RFC 3176 (2001).

[24] NOX Repo POX. 2019. The POX Network Software Platform. (2019). Retrieved October 24, 2019 from https:

//noxrepo.github.io/pox-doc/html/

[25] Konstantinos Psounis, Arpita Ghosh, Balaji Prabhakar, and Gang Wang. 2005. SIFT: A Simple Algorithm for Tracking

Elephant Flows, and Taking Advantage of Power Laws. In 43rd Allerton Conference on Communication, Control and

Computing.

[26] Jordi Ros-Giralt. 2003. A Theory of Lexicographic Optimization for Computer Networks. University of California,

Irvine, Irvine, California. https://doi.org/10.13140/RG.2.1.2188.1368 AAI3101616.

[27] Jordi Ros-Giralt and Wei K. Tsai. 2001. A Theory of Convergence Order of Maxmin Rate Allocation and an Optimal

Protocol. In Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint

Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213), Vol. 2. IEEE, 717–726 vol.2. https:

//doi.org/10.1109/INFCOM.2001.916260

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 59. Publication date: December 2019.



59:26 Jordi Ros-Giralt et al.

[28] Jordi Ros-Giralt and Wei K. Tsai. 2010. A Lexicographic Optimization Framework to the Flow Control Problem. IEEE

Transactions on Information Theory 56, 6 (June 2010), 2875–2886. https://doi.org/10.1109/TIT.2010.2046227

[29] Jerome H. Saltzer, David P. Reed, and David D. Clark. 1984. End-to-end Arguments in System Design. ACM Transactions

on Computer Systems (TOCS) 2, 4 (November 1984), 277–288. https://doi.org/10.1145/357401.357402

[30] Shriram Sarvotham, Rudolf Riedi, and Richard Baraniuk. 2001. Connection-level Analysis and Modeling of Network

Traffic. In Proceedings of the 1st ACM SIGCOMMWorkshop on Internet Measurement (IMW ’01). ACM, New York, NY,

USA, 99–103. https://doi.org/10.1145/505202.505215

[31] SCinet. 2019. The SCinet Network at Supercomputing. (2019). Retrieved October 24, 2019 from https://sc19.

supercomputing.org/scinet/all-about-scinet/

[32] Suricata. 2019. Suricata: Open Source IDS / IPS / NSM engine. (2019). Retrieved October 24, 2019 from https:

//suricata-ids.org/

[33] Zeek. 2019. The Zeek Network Security Monitor. (2019). Retrieved October 24, 2019 from https://www.zeek.org/

[34] Yu Zhang, Binxing Fang, and Yongzheng Zhang. 2010. Identifying High-Rate Flows based on Bayesian Single

Sampling. In 2010 2nd International Conference on Computer Engineering and Technology, Vol. 1. IEEE, V1–370–V1–374.

https://doi.org/10.1109/ICCET.2010.5486097

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 59. Publication date: December 2019.



On the Bottleneck Structure of Congestion-Controlled Networks 59:27

A MATHEMATICAL PROOFS

Property 2. Monotonic fair shares. Let sk
l
be the fair share of link l at iteration k of the BPG

algorithm. Then sk
l
≤ sk+1

l
.

Proof. This result was proven by Ros-Giralt in Property 3.6 of [26]. �

A.1 Property 1: Monotonic fair shares along a precedence path

Let sl1 , sl2 , ..., sln be the fair share values of links l1, l2, ..., ln , respectively. If li is a direct precedent of
li+1, then sli < sli+1 , for all 1 ≤ i ≤ n − 1

Proof. By induction, it is sufficient to prove that the lemma holds for n = 2. Let k1 and k2 be
the value of k at the iteration when links l1 and l2 are removed from the set of unresolved links

(line 13 in the BPG algorithm), respectively. This implies sl1 = s
k1
l1

and sl2 = s
k2
l2
, since the fair share

of these links is no longer modified after they are removed from the set of unresolved links. Now
assume l1 is a direct precedent of l2. It must be that k2 > k1, since from lines 15 and 16 of the
BPG algorithm, at any arbitrary iteration k , a link l is only added to the set of direct precedents of
another link l ′ (Dk

l ′
= Dk

l ′
∪ l ) if link l has been resolved (l � Lk ) and link l ′ has not been resolved

(l ′ ∈ Lk ). At iteration k1 when link l1 is resolved, we have s
k1
l1
< sk1

l2
, since link l1 and l2 share at

least one flow and sk1
l1
= uk1

l1
. Using Property 2 we have that k2 > k1 implies sk1

l2
≤ sk2

l2
. Thus, we

have sl1 = s
k1
l1
< sk1

l2
≤ sk2

l2
= sl2 .

�

A.2 Lemma 2.9: Polynomial time complexity

The time complexity of computing the set of bottleneck links B and the sets of direct {Dl ,∀l ∈ B}

and indirect precedents {Il ,∀l ∈ B} is O(|L| · |F | + |L|3). The time complexity of computing the set

of bottleneck links B and the sets of direct precedents {Dl ,∀l ∈ B} is O(H · |L|2 + |L| · |F |), where

H is the maximum number of links traversed by any flow.

Proof. We start by noting that since a link is removed from Lk at line 13 of the BPG algorithm,
then lines 9, 10, 12, 13, 14, 15, 18 and 21 cannot be executed more than |L| times. We then analyze
the complexity of these lines organizing them in three groups:

• Lines 9 and 10. The complexity of invoking once each of these two lines is O(|L|) and
O(|L| · H ), respectively, where H is the maximum number of links traversed by any flow.
Thus, the aggregated total execution time of these lines in one execution of the algorithm is
O(|L| · (|L| + |L| · H )) = O(H · |L|2).

• Lines 12, 13 and 14. The complexity of invoking once each of these three lines is O(|F |),
O(1) andO(|F |), respectively. Thus, the aggregated total execution time of these lines in one
execution of the algorithm is O(|L| · |F |).

• Lines 15, 18 and 21. The complexity of invoking once each of these three for loops is O(|L|),
O(|L|2) and O(|L|), respectively. Thus, the aggregated total execution time of these lines in
one execution of the algorithm is O(|L|3).

Adding up the above three values, we obtain O(H · |L|2 + |L| · |F | + |L|3). But since H < |L|,
we have that the time complexity of the BPG algorithm isO(|L| · |F | + |L|3). Finally, it is also easy
to see that if we omit the calculation of indirect precedents, then the for loops in lines 18 and 21
are not executed and the time complexity is reduced to O(H · |L|2 + |L| · |F |).

�
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A.3 Lemma 2.3: Bottleneck convergence order

A link l is removed from the set of unresolved links Lk at iteration k in the BPG algorithm, Lk =

Lk \ {l}, if and only if all of its direct and indirect precedent links have already been removed from

this set at iteration k − 1.

Proof. (Note that in what follows, the sentences "a link has converged" and "a link has been
removed from the set of unresolved links" are considered equivalent.) We start with the sufficient
condition. Assume that at an arbitrary iteration k all direct and indirect precedents of a link l1
have converged. We will also assume that link l1 does not converge at iteration k and arrive at a
contradiction. It must be that sk

l1
� uk

l1
, otherwise from lines 11 and 13 of the BPG algorithm link l1

would converge at iteration k . This implies the existence of at least one link lr that shares a flow
with l1, Fl1 ∩ Flr � {∅}, such that at iteration k it has not converged yet, lr ∈ Lk , and sk

lr
< sk

l1
.

Note from lines 18 and 19 such link is added to the relay set of link l1, lr ∈ Rk
l1
. Assume link l1

converges at iteration k1, then since all of its direct precedents converged at iteration k , we have

sk1
l1
= sk

l1
. This also means that sk1

lr
> sk

lr
, which necessarily implies the existence of at least one link

l2 that converges at an iteration k2 such that k < k2 < k1 and Flr ∩ Fl2 � {∅}. Such link l2 is a
direct precedent of lr and, since lr is in the relay set of link l1, at line 22 of the BPG algorithm, link
l2 must become an indirect precedent of l1. Since link l2 converges at iteration k2 and k2 > k , we
arrive at a contradiction.

To address the necessary condition, suppose that a link l1 converges at iterationk and that another
link l2 that has not converged yet at the same iteration is either a direct or indirect precedent of link
l1. By construction of the BPG algorithm, however, this is not possible since once link l1 converges
at iteration k , it is removed from the set of unresolved links Lk , thus no further direct or indirect
links can be added to it.

�

A.4 Lemma 2.4: Bottleneck influence

A bottleneck l can influence the performance of another bottleneck l ′, i.e., ∂sl ′/∂cl � 0, if and only if

there exists a set of bottlenecks {l1, l2, ..., ln} such that li is a direct precedent of li+1, for 1 ≤ i ≤ n − 1,
l1 = l and ln = l

′.

Proof. By induction, it is enough to show the case n = 2. We start with the sufficient condition.
Assume that link l1 is a direct precedent of link l2, then from lines 15 and 16 of the BPG algorithm
there must exist a flow f bottlenecked at link l1 that traverses both links l1 and l2, f ∈ Fl1 ∩ Fl2 .
Note that any infinitesimal change on the capacity of link l1 changes the rate of such flow, rf , since
this flow is bottlenecked at the same link (lines 9 and 12 in the BPG algorithm). Note also that such
variation in the value of rf propagates to link l2 inducing a change in its fair share (line 9), which
implies ∂sl2/∂cl1 � 0.
To address the necessary condition, note first that the performance of a link l is uniquely

determined by the fair share equation (line 9), since this value determines the rate of all flows
bottlenecked at link l :

skl = (cl −
∑

∀f ∈Ck∩Fl
rf )/|Fl \ C

k |,∀l ∈ Lk (1)

This equation depends on internal link parameters (such as its capacity cl and the set of flows
going through it Fl ) as well as external parameter (such as the set of flows bottlenecked at some
other link and their rate values {rf | ∀f ∈ Ck ∩ Fl }). Thus, sl can only be externally influenced by
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changing these rates. From lines 15 and 16, these rates correspond to flows that are bottlenecked at
links that are direct precedents of link l . Thus, the fair share of a link can only change if the rate of
one or more of its flows bottlenecked at one of its direct precedent links changes. Since the rates of
these flows are equal to the fair share of the direct precedent links, this implies that in order to
induce a change in the fair share of sl , it is necessary to change the capacity of one or more of its
direct precedent links.

�

A.5 Lemma 2.6: Bottleneck structure depth

The diameter of the BPG graph—which we will also refer as the depth or the number of levels of the

bottleneck structure—is equal to the last value of the iterator k in the BPG algorithm.

Proof. Since the diameter of the BPG graph corresponds to the maximum length of any of its
paths and since at every iteration the algorithm adds one more vertex to any longest path in the
graph, the value of k at the end of the algorithm must be equal to the size of any longest path. �

A.6 Lemma 2.10: Minimum convergence time of a distributed congestion control
algorithm

Let τ (li , lj ) be a weight assigned to each edge (li , lj ) of the BPG graph as follows: (1) If li is a direct
precedent of lj , then τ (li , lj ) is the time that it takes for a message to be sent from li to lj ; (2) If li is an
indirect precedent of lj , then τ (li , lj ) =max{τ (li , lr )+τ (lr , lj ) | for any relay link lr between li and lj }.
Let l1 − l2 − ... − ln be a longest path terminating at link ln according to these weights. Then the

minimum convergence time for link ln is
∑

1≤i≤n−1 τ (li , li+1).

Proof. From Lemma 2.3, we know that a link l cannot resolve its fair share until all of its direct
and indirect precedents have resolved their own fair share. Furthermore, we know that if all the
direct and indirect precedents of a link l have been resolved at iteration k , then link l can converge
immediately after at iteration k + 1. To derive the current lemma, we only need to take into account
the time that it takes to communicate a message from the direct and indirect links of link l to link l
itself. Because direct precedent links share a flow, communication can propagate directly. For the
case of indirect precedence, communication has to go through the relay link. In particular, we need
to select the relay link that imposes the longest distance, as that’s the longest time it can take to
propagate the state between a link and its indirect precedent. The τ () function introduced in the
lemma captures the value of these communication times for the two possible relations between
bottleneck links. �

A.7 Lemma 2.13: Flow influence

A flow f can influence the performance of another flow f ′, i.e., ∂rf ′/∂rf � 0, if and only if there exists
a set of bottlenecks {l1, l2, ..., ln} such that (1) li is a direct precedent of li+1, for 1 ≤ i ≤ n − 1, (2) flow
f ′ is bottlenecked at link ln and (3) flow f goes through l1.

Proof. Let f and f ′ be two arbitrary flows and assume that flow f ′ is bottlenecked at link
l ′. From lines 9 and 12 of the BPG algorithm, the rate of a flow corresponds to the fair share of
its bottleneck. Thus, flow f can only influence flow f ′ if it can affect its bottleneck’s fair share,
sl ′ . Assume that we apply an infinitesimal change to flow f ’s rate rf . This could be achieved by
applying a traffic shaper that slightly decreases its rate (negative infinitesimal) or by imposing a
minimum rate constraint that assigns a rate slightly higher than the fair share of its bottleneck
link sl (positive infinitesimal). For any link l traversed by flow f , such small perturbation will
lead to an infinitesimal change in its fair share sl . Now from Lemma 2.4 we know that a link l
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(a) 2-level BPG with BBR. (b) 3-level BPG with BBR. (c) 4-level BPG with BBR.

(d) 2-level BPG with Reno. (e) 3-level BPG with Reno. (f) 4-level BPG with Reno.

Fig. A1. Comparison of BBR and Reno’s bottleneck structures: Unlike BBR, Reno is not able to identify the

bottleneck structure of the network.

can only influence another link l ′ if there exists a directed path from l to l ′ in the BPG graph.
Furthermore, Lemma 2.4 is a necessary and sufficient condition. Thus, both the necessary and
sufficient conditions of this lemma must hold too if we set l = l1 and l

′ = ln . �

B RESULTS OF THE BOTTLENECK STRUCTUREWITH TCP RENO

Section 3.1 demonstrated that BBR generally performs better in capturing a given network’s
bottleneck structure than AIMD-based protocols such as Cubic and Reno. While the results of BBR
and Cubic are presented in Figure 9, Figure A1 presents the same results for BBR and Reno.

C RESULTS OF THE LOW-HITTER FLOW EXPERIMENT FOR TCP CUBIC AND RENO

The plots in Figure A2 correspond to the experiment described in Section 3.3 using TCP Cubic and
Reno instead of TCP BBR. Note that the same qualitative results are obtained in Cubic and Reno as
with BBR—the biggest reduction in flow completion time is achieved when the low-hitter flow f6 is
removed.

D JAIN’S FAIRNESS INDEX

Jain’s index [14] is a metric that rates the fairness of a set of values x1,x2, ...,xn according to the
following equation:

J(x1,x2, ...,xn) =
(
∑n

i=1 xi )
2

n ·
∑n

i=1 x
2
i

=
x
2

x
2

The index value ranges from 1
n
(worst case) to 1 (best case). As suggested in [14], for multi-link

networks the value xi must be normalized to an optimal fairness allocation. Throughout this paper,
we normalize xi as the ratio fi/Oi , where fi is the rate of flow fi achieved through the experiments
and Oi is its expected max-min fair throughput.
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(a) Without removing any flow. (b) Removing the heavy-hitter. (c) Removing a low-hitter.

(d) Without removing any flow. (e) Removing the heavy-hitter. (f) Removing a low-hitter.

Fig. A2. The low-hitter flow is also a high-impact flow when using TCP Cubic and Reno. (a), (b), (c) are for

Cubic; (d), (e), (f) are for Reno.

E NOTES ON USING THE FRAMEWORK IN PRODUCTION NETWORKS

In this section, we present practical considerations to enable the integration of the proposed Theory
of Bottleneck Ordering into modern data networks. To construct the bottleneck structure, the BPG
algorithm requires three inputs:

• Flow information. The set of flows: { fi | ∀li ∈ L}. This input requires knowing the flows’
IP tuples (source and destination IP addresses and port numbers), which can be obtained
from network monitoring protocols such as NetFlow [4] and sFlow [23], or from security
monitoring tools such as Zeek [33] and Suricata [32]. Such information is commonly available
in modern high-speed data networks, both for real-time consumption and for offline analysis.

• Routing information. The set of links traversed by each flow or, equivalently, the set of flows
traversing each link: {Fl | ∀l ∈ L}. This information can be inferred from routing table
information provided by protocols such as BPG-LS [9]. Since the flow information input
provides the source and destination IP addresses of each flow, the routing information allows
to reconstruct the set of links traversed by each flow.

• Network topology. The capacity of each link: {ci | ∀li ∈ L}. Such information can be obtained
from software defined networking (SDN) components or from traditional protocols like
SNMP [12]

If the network runs NetFlow or sFlow in all of its routers (as is often the case in advanced
high-speed networks), then the bottleneck structure can be reconstructed by just reading flow
information from these protocols together with the link capacity values. In such cases, routing
information is not needed explicitly, as both of these protocols provide in each packet record the IP
address of the router where the packet sample is taken and the IP address of its next hop router.
This information allows to reconstruct flow path information.
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