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Synopsis Modern computational and imaging methods are revolutionizing the fields of comparative morphology,
biomechanics, and ecomorphology. In particular, imaging tools such as X-ray micro computed tomography (UCT)
and diffusible iodine-based contrast enhanced CT allow observing and measuring small and/or otherwise inaccessible
anatomical structures, and creating highly accurate three-dimensional (3D) renditions that can be used in biomechanical
modeling and tests of functional or evolutionary hypotheses. But, do the larger datasets generated through 3D digiti-
zation always confer greater power to uncover functional or evolutionary patterns, when compared with more traditional
methodologies? And, if so, why? Here, we contrast the advantages and challenges of using data generated via (3D) CT
methods versus more traditional (2D) approaches in the study of skull macroevolution and feeding functional mor-
phology in bats. First, we test for the effect of dimensionality and landmark number on inferences of adaptive shifts
during cranial evolution by contrasting results from 3D versus 2D geometric morphometric datasets of bat crania. We
find sharp differences between results generated from the 3D versus some of the 2D datasets (xy, yz, ventral, and frontal),
which appear to be primarily driven by the loss of critical dimensions of morphological variation rather than number of
landmarks. Second, we examine differences in accuracy and precision among 2D and 3D predictive models of bite force
by comparing three skull lever models that differ in the sources of skull and muscle anatomical data. We find that a 3D
model that relies on skull pCT scans and muscle data partly derived from diceCT is slightly more accurate than models
based on skull photographs or skull pCT and muscle data fully derived from dissections. However, the benefit of using
the diceCT-informed model is modest given the effort it currently takes to virtually dissect muscles from CT scans. By
contrasting traditional and modern tools, we illustrate when and why 3D datasets may be preferable over 2D data, and
vice versa, and how different methodologies can complement each other in comparative analyses of morphological
function and evolution.

Introduction

The fields of comparative functional morphology
and biomechanics are being revolutionized by greater
access to and the development of imaging technolo-
gies and methods to explore morphology in silico
and in three dimensions (e.g., micro computed
tomography, pCT; diffusible iodine-based contrast
enhanced pCT, diceCT; high-resolution laser scan-
ning). By using these tools, researchers have pro-
duced some of the most detailed and massive
morphological datasets for vertebrates to date, which
have already proven critical to understanding the
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function and diversity of many key morphological
structures (e.g., Sykes et al. 2016; Bardua et al.
2019; Felice et al. 2019). Simultaneously, computa-
tional advances have enabled high throughput of
large morphological datasets produced via more tra-
ditional methods to quantify morphology, including
linear measurements, photography, and histology
(e.g., Montgomery et al. 2011; Gehan et al. 2017).
In addition, increasing availability of data-rich phy-
logenetic hypotheses allows more robust tests
of functional questions within an evolutionary
context.
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3D digitization in functional morphology

Via their impact on functional morphology re-
search, imaging and computational resources are ad-
vancing the field of ecomorphology in new and
exciting directions. Ecomorphology deals with inves-
tigating how variation in morphology and behavior
results in variation in performance (the ability to
conduct fitness-relevant tasks), and how differences
in performance enable niche partitioning (Arnold
1983). In the case of dietary ecomorphology, such
a research program generally involves conducting
comparative analyses of skull and/or jaw muscle
morphology, documenting feeding behavior and/or
kinematics, and modeling or measuring feeding per-
formance metrics (e.g., bite force (BF), gape, and
suction speed) (Wainwright 1994; Irschick and
Higham 2016). For small vertebrates, nCT scanning
has produced unprecedented results in the quantifi-
cation of external and internal skull morphology
(e.g., Phillips et al. 2009; Curtis and Simmons
2017), documentation of jaw muscle architecture
(e.g., Jeffery et al. 2011; Dickinson et al. 2018;
Ford et al. 2018; Santana 2018), and the construction
of biomechanical models to predict feeding perfor-
mance (Davis et al. 2010; Cox et al. 2011; Peterson
and Miiller 2018), all of which has contributed to a
better understanding of the dietary ecomorphology
and diversification of some of the most ecologically
diverse vertebrate lineages.

Despite these advances, it is still unclear when
modern three-dimensional (3D) methods should be
chosen over more traditional approaches (e.g.,
photography-based skull shape analyses, linear meas-
urements) to quantify and compare cranial morphol-
ogy, function, and evolution. Given the costs
associated with pCT data acquisition and processing,
this could prove important for planning cost-
effective functional morphology research. As part of
the  symposium  “Comparative  Evolutionary
Morphology and Biomechanics in the Era of Big
Data,” the goal of this paper is to showcase whether
and when modern imaging tools, and the large data-
sets they generate, may be preferred when trying to
uncover patterns of morphological evolution and
model anatomical function. To do so, we use bats
as a study system in two case studies that illustrate
workflows in modern ecomorphological research.
First, we contrast results from macroevolutionary
analyses of 2D and 3D skull shape datasets to explore
how data dimensionality and specimen orientation
can affect the estimation of evolutionary patterns.
Second, we compare predictive models of bite per-
formance that integrate various levels of traditional
and modern sources of morphological data. Bats are
a morphologically and ecologically diverse group of
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small mammals, and are therefore an excellent nat-
ural experiment within which to test the sensitivity
of different tools to morphological variation.

Mapping skull shape evolution across bats: 3D versus
2D geometric morphometrics

Among mammals, bats exhibit extraordinary cranial
diversity. Some of this diversity may be adaptive and
thus directly related to function, performance, and
ecology, and some may be the result of non-adaptive
processes. These sources of variation can be teased
apart through phylogenetic comparative analyses that
test for selective regime shifts in skull shape, as these
can reveal evolutionary patterns in morphology that
may be the result of ecological adaptation (Butler
and King 2004). To inform these analyses, skull
shape can be quantified through geometric morpho-
metric (landmark-based) methods that produce var-
iables describing size-independent shape differences
(Zelditch et al. 2004). Data collection for these meth-
ods can be done in 2D from photographs or radio-
graphs of different views of the skull, or in 3D from
reconstructions based on PCT or laser scans of skulls
(but see Olsen and Westneat 2015). The advantage of
either approach is an active subject of study (e.g.,
Cardini 2014; Openshaw et al. 2017; Buser et al.
2018).

To contrast the effects of using morphological
data derived from 2D versus 3D approaches in mac-
roevolutionary analyses, we used an existing geomet-
ric morphometric dataset of bat skulls that spans 202
species (N=1-8 per species), 50-100% generic cov-
erage within bat families, ~20% total species cover-
age, and all diets and sensory modalities within
Chiroptera (Arbour et al. 2019). To build this data-
set, we (1) PCT scanned skulls from museum speci-
mens using a Skyscan 1172 (Skyscan, Belgium), (2)
reconstructed  UCT  slices  using  NRecon
(Microphotonics Inc., Allentown, PA), (3) seg-
mented bone tissue and exported *.stl (surface files)
of the skulls using Mimics (Materialize, Ann Arbor,
MI), (4) cleaned and reduced mesh size in Geomagic
Studio (3D Systems, Rock Hill, SC), and (5) placed
homologous landmarks and sliding semi-landmarks
on the skull surface using Checkpoint v.2017
(Stratovan, Davis, CA) (Fig. 1). More details about
this dataset can be found in Arbour et al. (2019).
Focusing on the cranium, and to compare results of
evolutionary analyses on 3D versus 2D geometric
morphometric datasets, we used the full, 3D dataset
in one set of analyses, and reduced (“2D”) versions
of this dataset in several additional analyses. We cre-
ated two versions of the 2D datasets to examine the
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Fig. 1 Location of 3D landmarks (numbered) and sliding semi-
landmarks used in geometric morphometric analyses of the bat
cranium.

relative impacts of the loss of dimensionality and the
reduction of landmarks on the results of macroevo-
lutionary analyses. First, to test the effect of reduced
landmark dimensionality alone, we created three 2D
datasets by removing either the x, y, or z coordinate
components of the landmarks and semilandmarks—
as the initial landmark configurations were aligned
with the major anatomical axes. These datasets
would mimic 2D data collection from frontal, ven-
tral, or lateral radiographs of the cranium,
respectively.

Second, to test the additional effect of changes in
the number of landmarks that can be placed on each
2D view of the cranium (e.g., when photographs are
used for data collection), we created three additional
datasets by removing the landmarks and semiland-
marks that would not be visible in photos of the
frontal, ventral, and lateral views of the cranium
(herein referred to as frontal, ventral, and lateral
views). The landmarks included for each of these
views are detailed in Table 1. Bat skulls vary substan-
tially in shape and not all of these landmarks may be
visible in all specimens, so we selected landmarks
that would be visible in at least 10% of all species.
Using the same original dataset to derive reduced
datasets, as opposed to creating new ones from
radiographs or photographs of crania with 2D digi-
tization, allowed us to visualize the effect of loss of
dimensionality or landmarks without introducing the
additional error that is inherent to digitizing land-
marks in two versus three dimensions (Robinson
and Terhune 2017).

We ran a generalized Procrustes analysis on each
of the seven landmark datasets (3D, xy, xz, yz, and
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simulated frontal, ventral, and lateral views) to re-
move the effects of scale, rotation, and position
(Zelditch et al. 2004). Aligned landmark configura-
tions were averaged by species and across bilaterally
symmetrical landmarks after mirroring. We used
phylogenetic principal component analysis (pPCA;
Revell 2012) to examine the major patterns of vari-
ation across the aligned landmark datasets while ac-
counting for evolutionary relatedness, using the R
function phyl.pca. We used parallel analysis (Horn
1965) as a stopping rule to select a number of axes
for consideration, following the implementation by
Peres-Neto et al. (2005) (e.g., using the 95th percen-
tile of simulated values; see Supplementary Material).
We calculated cutoff values per dataset using the
relative eigenvalues from pPCA of 100 simulated
datasets of random, uncorrelated variables with var-
iances equal to the observed shape data. We used a
Brownian motion model on all pPCAs due to com-
putational limitations for re-scaling branch lengths
in phyl.pca. We used the pPCA scores generated
for each of the 3D and 2D datasets in subsequent
shape analyses.

To test the impact of removing non-visible land-
marks on shape results, we used a two-block partial
least squares test (R package geomorph, function
two.b.pls; Adams and Otdrola-Castillo 2013) com-
paring each of the three pairs of landmark datasets
matched by view (i.e., xy vs. ventral, xz vs. lateral,
and yz vs. frontal). We also examined whether each
of the resulting pPCA axes showed similar patterns
of morphological variation across species by
regressing the scores of each phylogenetic principal
component (pPC) axis from the ventral, lateral,
and frontal datasets on the xy, xz, and yz datasets,
respectively. Lastly, we contrasted the results of the
3D and 2D datasets, both on the original land-
marks and pPCA scores in two ways: (1) a two-
block partial least squares (PLS) test to contrast the
3D landmarks with each of the six 2D landmark
datasets (R function two.b.pls in geomorph), and
(2) a Mantel test on Euclidean distance matrices
from the critical pPC scores (function mantel.rtest,
ade4 package).

To investigate if there are differences in the esti-
mated patterns of cranial evolution when different
datasets are used, we estimated the configuration of
adaptive shifts through the 11ou method (Khabbazian
et al. 2016). This method wuses the Ornstein—
Uhlenbeck (OU) process to model a changing adap-
tive landscape over time and over lineages, and selects
evolutionary shifts using a “lasso” approach and no a
priori assumptions of the number or location of
adaptive shifts (Khabbazian et al. 2016). We
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Table 1 Landmarks and semilandmarks included in each of the simulated lateral, ventral, and frontal view datasets

Lateral

Ventral Frontal

Landmarks 1:10, 13:22, 27:36

Semilandmark Series Zygomatic dorsal (all), zygomatic

ventral (all), dorsal midline (all)

1:26 1:7, 26, 27, 29, 30, 33, 34

Zygomatic ventral (all) Zygomatic dorsal (anteriormost 5),
zygomatic ventral (anteriormost 4),

dorsal midline (anteriormost 7)

See Fig. 1 for landmark locations.

performed these analyses on the pPC scores of all
critical axes for each of the multivariate morphospa-
ces (below) in R v.3.3.3 using functions in the pack-
age geomorph (Adams and Otdrola-Castillo 2013),
llou (Khabbazian et al. 2016), and phytools (Revell
2012). We used the l1lou method and pPC scores for
these analyses because, to date, there are no estab-
lished comparative methods to conduct analyses of
adaptive regime shifts (using OU models) on high-
dimensional shape data. Since it is currently not com-
putationally feasible to carry out such adaptive shift
fitting analyses on the full geometric morphometric
landmark data, some reduction of trait dimensional-
ity—through PCA or similar approaches—is neces-
sary. It is important to note that all currently
available approaches for automatic detection of adap-
tive shifts for multivariate data (llou, surface,
phylogenetic EM, etc.) implement a reduced version
of the multivariate OU model, excluding either trait
covariation or assuming that selective constraints are
constant across traits. In addition, as shown by
Adams and Collyer (2018), all methods exhibit excep-
tionally high rates of model misspecification, and
analyses limited to the first few PCs/pPCs tend to
be biased. In the case of pPCA, this bias depends
on the fit of the underlying Brownian model to the
data (Uyeda et al. 2015). Moreover, analyses that re-
move phylogenetic correlations by pPCA before using
a method designed for independent traits (such as
llou) can be misleading in the presence of shifts
(Bastide et al. 2018). Here, we emphasize the differ-
ences in macroevolutionary results inferred by differ-
ences in the dimensionality of landmark coordinates,
rather than other specific conclusions. Nevertheless,
we doubt that the differences between 2D and 3D
coordinate data in our results are merely methodo-
logical artifacts.

Our results (Figs. 2 and 3) illustrate that the mor-
phological and macroevolutionary patterns estimated
by llou are highly dependent not only on the di-
mensionality of the geometric morphometric dataset
(2D versus 3D), but which views (frontal, ventral, or
lateral) are used to capture cranial morphology in
2D. We found strong relationships between

landmark coordinate datasets with and without vis-
ible landmarks (two-block PLS: all three r> 0.99, all
three P = 0.001). Similarly, each of the matched 2D
datasets (i.e., those with and without visible land-
marks in the same anatomical plane) showed similar
major axes of morphological variation from pPCA.
Scores from each of these respective axes were
strongly correlated (Table 2), reflecting the shape
changes in the anatomical structures favored by
each view. The yz and simulated frontal datasets re-
cover only one critical axis, describing primarily ros-
tral flexure. In contrast, the xy and simulated ventral
datasets recover two critical axes, which describe ros-
tral elongation (pPCl) and width of the zygomatic
and basicranium (pPC2). The xz and simulated lat-
eral datasets also recover two axes, which describe
the degree of rostral elongation (pPC1) and flexure
(pPC2) across bats. Logically, the 3D dataset is able
to capture all the major patterns of morphological
diversity contained in the six 2D datasets, which are
summarized in three major axes of variation
(Table 2). These describe the degree of rostral elon-
gation (pPCl) and flexure (pPC2), and skull height
(pPC3). Qualitatively, many of the 2D pPC axes
overlap with major morphological patterns seen in
the 3D analyses (e.g., rostral elongation and flexure;
Fig. 3). However, the 3D analysis further captures an
axis of variation (skull height) not observed among
the major axes recovered by the 2D analyses.
Quantitative comparisons of both the landmark co-
ordinate data and the pPCA scores further demon-
strated significant relationships between the 2D and
3D datasets, with each of the 2D datasets varying in
its degree of correlation with the full 3D dataset.
Both the two-block PLS and the Mantel tests indi-
cated that the lateral/yz configurations have the
strongest correlation with the 3D data, followed by
the frontal/xz datasets, and then the ventral/xy data-
set (Table 3).

The results from the llou analyses further illus-
trate that using only the xy, yz frontal, or ventral
view datasets leads to recovering patterns of adaptive
evolution that are sharply different from those
resulting from analyses of the 3D dataset (Figs. 2
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Fig. 2 Evolutionary shifts (*) in cranium shape across bats, as determined by |1ou adaptive landscape model fitting on pPCA scores
from the full 3D dataset. Morphological variation along critical (pPC) axes is illustrated by the barplots to the right of the phylogeny.

and 3A, B, E, F). However, the same analyses on the
xz and lateral view datasets recovered nearly identical
results to those from the 3D dataset (Figs. 2 and 3C,
D). This finding makes intuitive sense if we consider
that the major traits that underlie morphological
patterns in 3D (rostral elongation and flexure) are
also captured by the xz and lateral view data.
Conversely, as these traits are not completely cap-
tured by the frontal and ventral views (or xy, yz
datasets), these yield dramatically different interpre-
tations about the adaptive evolution of cranial mor-
phology in bats. Evolutionary analyses on the ventral
and frontal views showed few differences with the xy
and yz dataset, respectively (Fig. 3). Thus, the differ-
ences observed between the 3D dataset versus some
of the 2D datasets (xy, yz, ventral, and frontal) do
not appear to be primarily driven by the decrease in
the number of landmarks used to generate each
dataset, but rather by the loss of critical dimensions
of morphological variation. This suggests that 2D
radiographs in some views are unlikely to capture

sufficient shape variation when compared with 3D
approaches.

Ventral and lateral views of the cranium are the
gold standard in 2D geometric morphometric anal-
yses of mammal skulls (e.g., Figueirido et al. 2013;
Xia et al. 2013; Linde-Medina et al. 2016). Our
results highlight that, for clades that have similar
morphological trends as bats, the ventral view by
itself is not sufficient to estimate patterns of cranial
evolution and making inferences about the potential
ecological forces shaping cranial diversity. Similar
issues have been documented by other studies of
cranial morphology in which the shape information
missing from the 2D dataset had a strong impact on
statistical tests of ecomorphological hypotheses
(Buser et al. 2018). Since the results from the lateral
view are consistent with those from the 3D dataset, a
well-planned 2D geometric morphometric study
could potentially overcome some of these issues.
However, the selection of appropriate views for 2D
analyses might not be straightforward in cases where
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Fig. 3 Comparisons of evolutionary shifts (*) in cranium shape across bats, as determined by [1ou adaptive landscape model fitting on
pPCA scores from the 2D and visible landmarks datasets (see text): (A) xy, (B) simulated ventral view, (C) xz, (D) simulated lateral
view, (E) yz, and (F) simulated frontal view. Morphological variation along critical (pPC) axes is illustrated by the barplots to the right of
each phylogeny.
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Table 2 Summary of pPCA derived from geometric morphometric analyses on the 2D and 3D datasets

Percent variation

Percent variation Correlation (r)

Dataset Dataset

pPC1 pPC2 pPC3 pPC1 pPC2 pPC3 pPC1 pPC2
3D 374 22.5 9.9
Xy 339 314 - Ventral 375 27.4 - 0.971 0.976
Xz 41.2 25.1 - Lateral 49.6 18.2 - 0.986 0.976
yz 59.5 - - Frontal 63.0 - - 0.992 NA

Percent variation, percentage of variation explained by each of the critical pPC axes; Correlation, correlation coefficients from linear regression
between pPC scores from each of the matched datasets with and without visible landmarks (e.g., xy vs. ventral). All regressions were significant

after a Bonferroni correction of o values (P <0.01).

Table 3 Comparisons of the 3D and each of the 2D landmark
configurations

r P r P

Two-block PLS

xy 0.919 0.001 Ventral 0.937 0.001
xz 0.998 0.001 Lateral 0.997 0.001
yz 0.974 0.001 Frontal 0.967 0.001
Mantel test

Xy 0.8379 0.001 Ventral 0.7951 0.001
xz 0.9805 0.001 Lateral 0.9669 0.001
yz 0.8533 0.001 Frontal 0.8484 0.001

Two-block PLS tests were carried out on the landmark coordinates.
Mantel tests were carried out on Euclidean distance matrices calcu-
lated from the pPC scores (see Table 2). r, correlation coefficient; P,
significance from randomization tests.

clade-wide trends in morphological variation of a
complex structure are unknown. Therefore, we rec-
ommend using 3D methods in comparative analyses
of bony structures due to their ability to capture
morphological variation comprehensively and with-
out the need for a priori assumptions about major
trends. Although some forms of 3D data acquisition
(e.g., LCT scanning) are still costly, methods such as
stereo-photography provide a practical, low-cost, and
fast approach to 3D morphometric analyses (e.g.,
StereoMorph; Olsen and Westneat 2015), and repos-
itories of 3D data (e.g., Morphosource) are rapidly
expanding due to increasing digitization efforts.

Estimating bite performance in bats: traditional
versus digital methods

In recent years, 3D biomechanical modeling has
allowed ecomorphologists to fine-tune the links be-
tween dietary demands and morphological variation
in the feeding apparatus across a wide range of verte-
brates (e.g., Slater et al. 2009; Dumont et al. 2011;
Watson et al. 2014; Santana 2016).
Methodologically, constructing these models lies at

the interface of modern and traditional comparative
morphology; they integrate 3D data on skull shape
(e.g., from pCT scans) with data on jaw muscle anat-
omy (e.g., mass, attachment sites, fiber lengths and
orientations). The latter are primarily derived from
dissections, which—as a destructive sampling ap-
proach—limits the number of specimens and species
that can be incorporated into these analyses. In recent
years, however, methods such as diceCT (Gignac et al.
2016) have facilitated the non-destructive documenta-
tion of jaw muscle anatomy in sity, in 3D, and in
great detail (e.g., Cox and Faulkes 2014; Gignac and
Kley 2014; Dickinson et al. 2018; Santana 2018),
thereby holding great promise to study rare specimens
and/or generate high-resolution, 3D anatomical data-
sets for potentially more accurate biomechanical mod-
els (e.g., Cox et al. 2011).

Currently, data generation via diceCT involves a
substantial cost, primarily because segmentation of
muscle tissue from CT scan slices still has to be
performed manually. For example, it can take 10—
30h to digitally segment the jaw musculature of a
very small (~2cm) bat head that has been scanned at
a high enough resolution to document skull detail
(~10-30 um). This is substantially greater than the
time it would take to collect the same data (muscle
mass and attachment areas) through a dissection
(0.5-1h, on average). Second, the staining time to
achieve appropriate tissue contrast is still not easily
predictable, and seems to depend on specimen size,
age, and preservation method (Gignac and Kley
2014, 2019; Santana 2018). Third, although there
have been advances in the automated detection and
measurement of muscle fiber lengths from diceCT
scans (Jeffery et al. 2011; Dickinson et al. 2018),
these methods still need refinement, and thus muscle
fiber length data still need to be generated via dis-
section. Finally, jaw adductor physiological cross-
sectional areas (PCSA) partly derived from diceCT
data are equivalent to those generated fully from
dissection (Santana 2018). All these issues raise the
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Fig. 4 Illustration of the models used to estimate BF, using the skull of the bat Trachops cirrhosus as an example: (A) Dis2D method,
with jaw adductor lines of action (solid lines), moment arms (dashed lines), and out levers calculated from a skull photograph; (B)
Dis3D method, with jaw adductor attachment regions defined on a 3D model of the cranium, and mandible and muscle forces (arrows)
directed toward the respective insertion area centroids on the mandible; (C) Vol3D method, a modification of the Dis3D method in
which muscle forces are calculated from muscles volumes derived from diceCT scans. BF predictions from these models were
compared with in vivo BFs from wild bats, measured using a piezoelectric transducer setup (D).

question: when are the costs of using modern imag-
ing tools outweighed by their benefits when building
predictive models of feeding performance?

To identify the advantages of using diceCT versus
exclusively traditional methods in informing predic-
tive models of bite performance in bats, we com-
pared the accuracy and precision of three models
that differed in the sources of skull and muscle an-
atomical data (Fig. 4). These models rely on the
principle that the jaw of most mammals approxi-
mates a third-class lever system (Hylander 1975),
in which the in levers are defined by attachments
of the jaw adductors (temporalis, pars suprazygoma-
tica, zygomaticomandibularis, masseter, medial and
lateral pterygoids), the fulcrum is the temporoman-
dibular joint (TM]J), the out lever is defined by the
biting point along the mandible, and forces applied
are proportional to the PCSAs of the jaw adductors.
We applied these models across 10 species of mor-
phologically distinct noctilionoid bats (Table 4), and
sourced all input data (UCT skull data, dissection
PCSAs, and diceCT PCSAs) from Santana (2018).

Dis2D model: dissection PCSA and 2D skull method

We estimated BFs across species by applying a mod-
ification of a method that combines linear

measurements from images of the skull with dissec-
tion data (Hartstone-Rose et al. 2012) using the
equation:

BF =2 x Muscle Stress

y (PCSAm x MAm) + (PCSAt x MAt) + (PCSAp x MAp)
Out Lever

where Muscle Stress is 25N/cm?, the median value
for mammalian muscle at body temperature (Herzog
1994); PCSAm, PCSAt, and PCSAp are the PCSA for
the masseter, temporalis, and medial pterygoid, re-
spectively (from Santana 2018); MAm, MAt, and
MAp are the moment arms for the masseter, tempo-
ralis, and medial pterygoid, respectively, which were
measured as the perpendicular distance from the
TM]J to each muscle’s line of action (Fig. 4A); and
Out Lever is the distance between the TMJ and the
tip of the canine for canine bites, and the center of
the first molar for molar bites. We used Image]
(Schneider et al. 2012) to measure moment arms
and out levers from lateral skull photos. Our mod-
ified equation multiplies the BF calculation by 2 to
account for bilateral symmetry, since we could not
calculate forces generated on the balancing side (as
in Hartstone-Rose et al. 2012) due to the lack of
electromyography data for the species studied.
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Table 4 Canine and molar BFs (in Newtons) estimated by the three methods applied in this study

Canine Molar
Species Measured Dis2D Dis3D Vol3D Measured Dis2D Dis3D Vol3D
Artibeus lituratus 16.343 = 7.212 7.285 6.147 6.843 21.754 = 8532 10.55 10.012 11.145
Artibeus phaeotis 2.837 = 1437 1.352 1252 1.666 5.631 = 1.630 2.638 1.871 2.490
Carollia perspicillata 5.755 *= 2.461 2.338 2.051 2.850 7929 = 2.711 3.442 3.079 4.280
Desmodus rotundus 2.901 £ 1.500 2.587 2.646 3.332 6.063 * 0.368 4.437 3.545 4.464
Glossophaga soricina 1286 = 0914 0.391 0.471 0.362 1.366 = 0.700 0.711 0.746 0.574
Micronycteris hirsuta 7468 = 1.924 3.926 3.072 4.109 12,480 * 3.604 6.184 5.145 6.880
Noctilio leporinus 19.900 = 8.910 7.000 7.124 9.113 - 11.093 9.813 12.552
Pteronotus parnellii 3.890 * 2.347 6.229 2.678 2.969 7.758 £ 0.999 8.760 4.149 4.600
Sturnira lilium 5724 = 2792 1.266 1.697 1.814 8.055 * 3.737 2.508 2428 2.596
Trachops cirrhosus 8.009 = 2.611 4.649 3.522 4.307 11.741 £ 4.667 8.316 5.401 6.604

Averages of measured maximum BFs (from Aguirre et al. 2002; Santana et al. 2010; Santana 2016) are shown for comparison. Dash indicates no

BF value available.

Dis3D: dissection PCSA and 3D skull method

We estimated BFs by applying a custom-written R
program (BiteR; Supplementary Material) that com-
bines data on forces of all jaw adductor muscles,
generated from dissections, with a 3D representation
of the skull generated through pCT. As input, the
model requires (1) centroids of the muscle attach-
ment areas on one side of the skull and the two TM]
fossae, (2) PCSAs of each of the adductor muscles,
(3) the side of the skull of the considered muscles,
(4) a value for muscle stress (in this case, 25 N/cm?),
and (5) an out lever measurement. The centroids of
the TM]J fossae and the side of the skull are used to
define a TMJ axis, whereas the other data are used to
define the torques generated by the muscles about
the TM]J axis and the total BF. This model is equiv-
alent to that used by Davis et al. (2010), with the
exception that BiteR considers the entire muscle
force to be applied at the centroid of the muscle
attachment on the cranium and does not distribute
the applied muscle force across the entire cranial
attachment area. The full code with detailed input
data is provided in the Supplementary Material.
Based on photo documentation during dissec-
tions, we defined the TMJ fossae and muscle origin
and insertion areas on surface files (*.stl) of the cra-
nium and mandible, which were derived from pCT
scans (Santana 2018). The surface files of the cra-
nium and mandible had first been set at a 30°
gape to match the in vivo measurements taken
with a BF meter (Fig. 4D). We exported the attach-
ment areas as binary 3D surface (*.stl) files (Fig. 4B)
and then used the readstl function (rgl R package) as
part of a custom function to calculate the centroids
of the stls by geometric decomposition of the

triangles defined by the stl file. The full code for
calculating these centroids is provided in the
Supplementary Material.

BiteR outputs moments about the TM] axis by
each jaw adductor and a total BF estimate that is
the sum of all torques produced by the muscles, di-
vided by the defined out lever, and multiplied by 2
to account for bilateral symmetry. We measured out
levers from 3D skull models in Geomagic (3D
Systems, Rock Hill, SC) as the distance from the
TM]J to either the tip of the canine or the center
of the occlusal surface of the first molar (Fig. 4B).

Vol3D: diceCT PCSA and 3D skull method

We applied BiteR as in the Dis3D method, but with
jaw adductor attachment area and muscle volume
data derived from diceCT scans (from Santana
2018; Fig. 4C). To do so, we defined each jaw ad-
ductor origin and insertion areas at the regions of
contact between the meshes of each muscle and the
cranium and mandible. We calculated the volume of
each muscle mesh in Geomagic Studio (3D Systems,
Rock Hill, SC), and used these data to calculate mus-
cle forces (PCSA = muscle volume/fiber length;
Muscle Force = PCSA x 25N/cm?). We ran BiteR
with these data as described above.

For most species in our dataset, we compiled data
on mean in vivo maximum canine and molar BFs
from our previous published work (Santana et al.
2010; Santana 2016). In these studies, we used a pi-
ezoelectric force transducer to measure BFs from
free-ranging animals at a 30° gape angle (Fig. 4D).
For Noctilio leporinus, we used maximum canine BF
values from Aguirre et al. (2002), who used the same
BF meter setup. To compare the accuracy of the BF

020z AINr €1 uo Jasn Ays1aAlun ojeA Ad $501 1 GS/9G9/E/6G/10BISqB-8]01E/GO1/L0D"dNO"0ILBPEDE//:SARY WO PEPEOIUMOQ


Deleted Text: B) 
Deleted Text: &thinsp;
Deleted Text: . 
Deleted Text: bite force
Deleted Text: Files
Deleted Text: &thinsp;
Deleted Text: while 
Deleted Text: bite force
https://academic.oup.com/icb/article-lookup/doi/10.1093/icb/icz101#supplementary-data
Deleted Text: s
Deleted Text: bite force
Deleted Text: &thinsp;
https://academic.oup.com/icb/article-lookup/doi/10.1093/icb/icz101#supplementary-data
Deleted Text: s
Deleted Text: bite force
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: C) 
Deleted Text: &thinsp;
Deleted Text: . 
Deleted Text: &thinsp;
Deleted Text: bite force
Deleted Text: 5
Deleted Text: bite force
Deleted Text: bite force
Deleted Text: bite force
Deleted Text: bite force

3D digitization in functional morphology

Canine bites

B
(=]
|

n
o
1

(=]
1

I
n
o

1
S
o

L

% Difference from measured bite force
5

-80+

665

Molar bites

-20

-40-

-60-] L |

T T
Dis2D Dis3D Vol3D

T T
Dis2D Dis3D Vol3D

Fig. 5 Error (difference from measured BF as a percentage of measured BF) across methods (from Fig. 4A—C) and bite types tested in
this study (n=10 species per method). Error bars represent the upper and lower quartiles.

predictive methods (Dis2D, Dis3D, and Vol3D), we
used paired t-tests to explore if there was a signifi-
cant difference between the model predictions and
in vivo BFs, and a two-way ANOVA and Tukey’s
honest significant difference test to determine if
there was a significant difference in BF prediction
error among the three models and across species.
We calculated the BF prediction error as a percent-
age of mean in vivo maximum BFs as follows: Error
= ([estimated BF-measured BF]/measured BF) x
100). All statistical analyses were conducted in R
(R Development Core Team 2019).

All predictive methods significantly underesti-
mated in vivo BFs (P<0.05 in all paired t-tests;
Fig. 5). On average, Vol3D underestimated in vivo
BFs the least, followed by Dis2D and Dis3D. The
three methods did not differ significantly in their
error in  predicting canine BFs (ANOVA:
P=0.313), but they did differ in their error in pre-
dicting molar BFs (ANOVA: df = 2, SS = 894, MS
= 446.8, F=3.596, P=0.04854). Dis2D had signifi-
cantly lower error than Dis3D for molar BFs (differ-
ence: 13.28%; P=0.0399), although this was driven
by one outlier (Fig. 5). Dis3D and Vol3D did not
differ significantly from each other in their BF error
(P>0.05 in pairwise comparisons for canine and
molar bites). Across all methods, there was a statis-
tically significant effect of skull morphology (species)
in error magnitude (Canine bites: P=0.0003; Molar
bites: P=10.006). Our sample size did not allow us to
test for the interaction between method and species.

In all, these results suggest that the three methods
predict BF with a similar degree of error, although
the Dis3D method appears to do so with slightly
greater precision. That is, this method was relatively
more consistent in the degree of BF underestimation
across different morphologies than the other two
methods.

Although the 3D methods did not differ statisti-
cally in their amount of predictive error, Vol3D pro-
vided higher BF estimations than Dis3D. This is
because muscle volumes (from diceCT scans) result
in greater PCSA calculations (Santana 2018), and
thus muscle force estimates, in Vol3D; Dis3D relies
on muscle mass and a muscle density constant from
the literature for PCSA calculations. The higher ac-
curacy provided by Vol3D is modest, however, espe-
cially considering that building these models requires
considerably greater effort (i.e., manually segmenting
muscles from diceCT scans is a time-consuming
task). Nevertheless, diceCT scans can enable
researchers to explore aspects of muscle anatomy
(e.g., fiber density and architecture, Jeffery et al
2011; Dickinson et al. 2018), which are difficult to
examine with dissections alone. These data could
eventually improve the predictions of BF models.
Importantly, while the 3D methods modeled BF at
the same gape at which it was measured from live
animals, Dis2D calculated BF at dental occlusion;
this allows controlling for changes in muscle stretch-
ing that cannot be easily accommodated by the
model (Hartstone-Rose et al. 2012). BF decreases as
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gape increases in mammals (Herring and Herring
1974; Dumont and Herrel 2003; Williams et al.
2009; Santana 2016); thus, some of the relatively
higher BF estimates from Dis2D are partially an ar-
tifact of the modeled gape. In turn, the lower preci-
sion of this method may be partly a product of not
including some of the smaller jaw muscles and their
forces (e.g., pterygoids, zygomaticomandibularis), as
their attachment areas are difficult to define in pho-
tographs. Jaw muscles vary significantly in their rel-
ative importance for BF production across bat
species and diets (Herrel et al. 2008; Santana et al.
2010). Therefore, Dis2D may be less desirable when
comparing BF predictions across species that differ
dramatically in cranial morphology. However, this
approach could still be adequate for datasets com-
posed of more morphologically similar species.

The factors that cause the 3D models to have low
accuracy in BF estimation are much less clear. Since
there is a linear relationship between muscle stress
and BF predictions in these types of 3D lever models
(Davis et al. 2010), our results suggest that a higher
stress value could be used to scale jaw adductor
PCSA to forces. However, increasing muscle stress
to the highest values reported for mammals
(27.5N/cm?; Close 1972) does not account for the
large discrepancies between the in vivo and modeled
data. In a previous study, Santana et al. (2010) used
the same individual bats to collect in vivo BFs and
generate anatomical data for a 3D modeling ap-
proach akin to BiteR. In that study, we found that
the model also underestimated in vivo BFs—albeit to
a lesser degree—but regressions between model pre-
dictions and measurements had a slope not signifi-
cantly different from 1. Thus, some of the error in
Dis3D and Vol3D predictions could be attributed to
intraspecific morphological variation, since we did
not use the same individuals for in vivo measure-
ments. Importantly, simple lever models do not fully
account for the complex arrangement of mammalian
jaw adductors and their internal architecture, includ-
ing the effect of muscle wrapping and stacking, and
fiber orientation. Since testing those factors is be-
yond the scope of this paper, future studies could
build upon models like BiteR to evaluate the effect of
braincase curvature and focal node location on BF
estimates, and the value of incorporating fiber ori-
entation data to calculate muscle vectors (e.g.,
Watson et al. 2014).

Altogether, our findings from this modeling case
study emphasize several advantages and shortcom-
ings of applying 2D and 3D modeling approaches
in functional morphology and biomechanics re-
search. Although pCT and diceCT provide

S. E. Santana et al.

outstanding levels of anatomical detail, there are still
significant costs, challenges, and a need for refine-
ment of models to effectively translate these massive
morphological datasets into accurate predictions of
performance metrics.
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