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Synopsis Modern computational and imaging methods are revolutionizing the fields of comparative morphology,

biomechanics, and ecomorphology. In particular, imaging tools such as X-ray micro computed tomography (mCT)

and diffusible iodine-based contrast enhanced CT allow observing and measuring small and/or otherwise inaccessible

anatomical structures, and creating highly accurate three-dimensional (3D) renditions that can be used in biomechanical

modeling and tests of functional or evolutionary hypotheses. But, do the larger datasets generated through 3D digiti-

zation always confer greater power to uncover functional or evolutionary patterns, when compared with more traditional

methodologies? And, if so, why? Here, we contrast the advantages and challenges of using data generated via (3D) CT

methods versus more traditional (2D) approaches in the study of skull macroevolution and feeding functional mor-

phology in bats. First, we test for the effect of dimensionality and landmark number on inferences of adaptive shifts

during cranial evolution by contrasting results from 3D versus 2D geometric morphometric datasets of bat crania. We

find sharp differences between results generated from the 3D versus some of the 2D datasets (xy, yz, ventral, and frontal),

which appear to be primarily driven by the loss of critical dimensions of morphological variation rather than number of

landmarks. Second, we examine differences in accuracy and precision among 2D and 3D predictive models of bite force

by comparing three skull lever models that differ in the sources of skull and muscle anatomical data. We find that a 3D

model that relies on skull mCT scans and muscle data partly derived from diceCT is slightly more accurate than models

based on skull photographs or skull mCT and muscle data fully derived from dissections. However, the benefit of using

the diceCT-informed model is modest given the effort it currently takes to virtually dissect muscles from CT scans. By

contrasting traditional and modern tools, we illustrate when and why 3D datasets may be preferable over 2D data, and

vice versa, and how different methodologies can complement each other in comparative analyses of morphological

function and evolution.

Introduction

The fields of comparative functional morphology

and biomechanics are being revolutionized by greater

access to and the development of imaging technolo-

gies and methods to explore morphology in silico

and in three dimensions (e.g., micro computed

tomography, mCT; diffusible iodine-based contrast

enhanced mCT, diceCT; high-resolution laser scan-

ning). By using these tools, researchers have pro-

duced some of the most detailed and massive

morphological datasets for vertebrates to date, which

have already proven critical to understanding the

function and diversity of many key morphological

structures (e.g., Sykes et al. 2016; Bardua et al.

2019; Felice et al. 2019). Simultaneously, computa-

tional advances have enabled high throughput of

large morphological datasets produced via more tra-

ditional methods to quantify morphology, including

linear measurements, photography, and histology

(e.g., Montgomery et al. 2011; Gehan et al. 2017).

In addition, increasing availability of data-rich phy-

logenetic hypotheses allows more robust tests

of functional questions within an evolutionary

context.

Advance Access publication June 11, 2019

� The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.

All rights reserved. For permissions please email: journals.permissions@oup.com.

Integrative and Comparative Biology
Integrative and Comparative Biology, volume 59, number 3, pp. 656–668

doi:10.1093/icb/icz101 Society for Integrative and Comparative Biology

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/59/3/656/5514054 by Yale U

niversity user on 13 July 2020

Deleted Text: C
Deleted Text: T
Deleted Text: &ndash;
Deleted Text: ,
Deleted Text: D
Deleted Text: I
Deleted Text: C
Deleted Text: E
Deleted Text: &ndash;
Deleted Text: ,
Deleted Text: A
Deleted Text: ally
https://academic.oup.com/


Via their impact on functional morphology re-

search, imaging and computational resources are ad-

vancing the field of ecomorphology in new and

exciting directions. Ecomorphology deals with inves-

tigating how variation in morphology and behavior

results in variation in performance (the ability to

conduct fitness-relevant tasks), and how differences

in performance enable niche partitioning (Arnold

1983). In the case of dietary ecomorphology, such

a research program generally involves conducting

comparative analyses of skull and/or jaw muscle

morphology, documenting feeding behavior and/or

kinematics, and modeling or measuring feeding per-

formance metrics (e.g., bite force (BF), gape, and

suction speed) (Wainwright 1994; Irschick and

Higham 2016). For small vertebrates, mCT scanning

has produced unprecedented results in the quantifi-

cation of external and internal skull morphology

(e.g., Phillips et al. 2009; Curtis and Simmons

2017), documentation of jaw muscle architecture

(e.g., Jeffery et al. 2011; Dickinson et al. 2018;

Ford et al. 2018; Santana 2018), and the construction

of biomechanical models to predict feeding perfor-

mance (Davis et al. 2010; Cox et al. 2011; Peterson

and Müller 2018), all of which has contributed to a

better understanding of the dietary ecomorphology

and diversification of some of the most ecologically

diverse vertebrate lineages.

Despite these advances, it is still unclear when

modern three-dimensional (3D) methods should be

chosen over more traditional approaches (e.g.,

photography-based skull shape analyses, linear meas-

urements) to quantify and compare cranial morphol-

ogy, function, and evolution. Given the costs

associated with mCT data acquisition and processing,

this could prove important for planning cost-

effective functional morphology research. As part of

the symposium “Comparative Evolutionary

Morphology and Biomechanics in the Era of Big

Data,” the goal of this paper is to showcase whether

and when modern imaging tools, and the large data-

sets they generate, may be preferred when trying to

uncover patterns of morphological evolution and

model anatomical function. To do so, we use bats

as a study system in two case studies that illustrate

workflows in modern ecomorphological research.

First, we contrast results from macroevolutionary

analyses of 2D and 3D skull shape datasets to explore

how data dimensionality and specimen orientation

can affect the estimation of evolutionary patterns.

Second, we compare predictive models of bite per-

formance that integrate various levels of traditional

and modern sources of morphological data. Bats are

a morphologically and ecologically diverse group of

small mammals, and are therefore an excellent nat-

ural experiment within which to test the sensitivity

of different tools to morphological variation.

Mapping skull shape evolution across bats: 3D versus

2D geometric morphometrics

Among mammals, bats exhibit extraordinary cranial

diversity. Some of this diversity may be adaptive and

thus directly related to function, performance, and

ecology, and some may be the result of non-adaptive

processes. These sources of variation can be teased

apart through phylogenetic comparative analyses that

test for selective regime shifts in skull shape, as these

can reveal evolutionary patterns in morphology that

may be the result of ecological adaptation (Butler

and King 2004). To inform these analyses, skull

shape can be quantified through geometric morpho-

metric (landmark-based) methods that produce var-

iables describing size-independent shape differences

(Zelditch et al. 2004). Data collection for these meth-

ods can be done in 2D from photographs or radio-

graphs of different views of the skull, or in 3D from

reconstructions based on mCT or laser scans of skulls

(but see Olsen and Westneat 2015). The advantage of

either approach is an active subject of study (e.g.,

Cardini 2014; Openshaw et al. 2017; Buser et al.

2018).

To contrast the effects of using morphological

data derived from 2D versus 3D approaches in mac-

roevolutionary analyses, we used an existing geomet-

ric morphometric dataset of bat skulls that spans 202

species (N¼ 1–8 per species), 50–100% generic cov-

erage within bat families, �20% total species cover-

age, and all diets and sensory modalities within

Chiroptera (Arbour et al. 2019). To build this data-

set, we (1) mCT scanned skulls from museum speci-

mens using a Skyscan 1172 (Skyscan, Belgium), (2)

reconstructed mCT slices using NRecon

(Microphotonics Inc., Allentown, PA), (3) seg-

mented bone tissue and exported *.stl (surface files)

of the skulls using Mimics (Materialize, Ann Arbor,

MI), (4) cleaned and reduced mesh size in Geomagic

Studio (3D Systems, Rock Hill, SC), and (5) placed

homologous landmarks and sliding semi-landmarks

on the skull surface using Checkpoint v.2017

(Stratovan, Davis, CA) (Fig. 1). More details about

this dataset can be found in Arbour et al. (2019).

Focusing on the cranium, and to compare results of

evolutionary analyses on 3D versus 2D geometric

morphometric datasets, we used the full, 3D dataset

in one set of analyses, and reduced (“2D”) versions

of this dataset in several additional analyses. We cre-

ated two versions of the 2D datasets to examine the
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relative impacts of the loss of dimensionality and the

reduction of landmarks on the results of macroevo-

lutionary analyses. First, to test the effect of reduced

landmark dimensionality alone, we created three 2D

datasets by removing either the x, y, or z coordinate

components of the landmarks and semilandmarks—

as the initial landmark configurations were aligned

with the major anatomical axes. These datasets

would mimic 2D data collection from frontal, ven-

tral, or lateral radiographs of the cranium,

respectively.

Second, to test the additional effect of changes in

the number of landmarks that can be placed on each

2D view of the cranium (e.g., when photographs are

used for data collection), we created three additional

datasets by removing the landmarks and semiland-

marks that would not be visible in photos of the

frontal, ventral, and lateral views of the cranium

(herein referred to as frontal, ventral, and lateral

views). The landmarks included for each of these

views are detailed in Table 1. Bat skulls vary substan-

tially in shape and not all of these landmarks may be

visible in all specimens, so we selected landmarks

that would be visible in at least 10% of all species.

Using the same original dataset to derive reduced

datasets, as opposed to creating new ones from

radiographs or photographs of crania with 2D digi-

tization, allowed us to visualize the effect of loss of

dimensionality or landmarks without introducing the

additional error that is inherent to digitizing land-

marks in two versus three dimensions (Robinson

and Terhune 2017).

We ran a generalized Procrustes analysis on each

of the seven landmark datasets (3D, xy, xz, yz, and

simulated frontal, ventral, and lateral views) to re-

move the effects of scale, rotation, and position

(Zelditch et al. 2004). Aligned landmark configura-

tions were averaged by species and across bilaterally

symmetrical landmarks after mirroring. We used

phylogenetic principal component analysis (pPCA;

Revell 2012) to examine the major patterns of vari-

ation across the aligned landmark datasets while ac-

counting for evolutionary relatedness, using the R

function phyl.pca. We used parallel analysis (Horn

1965) as a stopping rule to select a number of axes

for consideration, following the implementation by

Peres-Neto et al. (2005) (e.g., using the 95th percen-

tile of simulated values; see Supplementary Material).

We calculated cutoff values per dataset using the

relative eigenvalues from pPCA of 100 simulated

datasets of random, uncorrelated variables with var-

iances equal to the observed shape data. We used a

Brownian motion model on all pPCAs due to com-

putational limitations for re-scaling branch lengths

in phyl.pca. We used the pPCA scores generated

for each of the 3D and 2D datasets in subsequent

shape analyses.

To test the impact of removing non-visible land-

marks on shape results, we used a two-block partial

least squares test (R package geomorph, function

two.b.pls; Adams and Ot�arola-Castillo 2013) com-

paring each of the three pairs of landmark datasets

matched by view (i.e., xy vs. ventral, xz vs. lateral,

and yz vs. frontal). We also examined whether each

of the resulting pPCA axes showed similar patterns

of morphological variation across species by

regressing the scores of each phylogenetic principal

component (pPC) axis from the ventral, lateral,

and frontal datasets on the xy, xz, and yz datasets,

respectively. Lastly, we contrasted the results of the

3D and 2D datasets, both on the original land-

marks and pPCA scores in two ways: (1) a two-

block partial least squares (PLS) test to contrast the

3D landmarks with each of the six 2D landmark

datasets (R function two.b.pls in geomorph), and

(2) a Mantel test on Euclidean distance matrices

from the critical pPC scores (function mantel.rtest,

ade4 package).

To investigate if there are differences in the esti-

mated patterns of cranial evolution when different

datasets are used, we estimated the configuration of

adaptive shifts through the l1ou method (Khabbazian

et al. 2016). This method uses the Ornstein–

Uhlenbeck (OU) process to model a changing adap-

tive landscape over time and over lineages, and selects

evolutionary shifts using a “lasso” approach and no a

priori assumptions of the number or location of

adaptive shifts (Khabbazian et al. 2016). We

Fig. 1 Location of 3D landmarks (numbered) and sliding semi-

landmarks used in geometric morphometric analyses of the bat

cranium.

658 S. E. Santana et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/59/3/656/5514054 by Yale U

niversity user on 13 July 2020

Deleted Text: &thinsp;
Deleted Text:  &ndash; 
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: G
Deleted Text: P
Deleted Text: A
Deleted Text: (GPA) 
Deleted Text: &thinsp;
Deleted Text: P
Deleted Text: C
Deleted Text: A
Deleted Text: Files
Deleted Text: phylogenetic 
Deleted Text: phylogenetic 
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;


performed these analyses on the pPC scores of all

critical axes for each of the multivariate morphospa-

ces (below) in R v.3.3.3 using functions in the pack-

age geomorph (Adams and Ot�arola-Castillo 2013),

l1ou (Khabbazian et al. 2016), and phytools (Revell

2012). We used the l1ou method and pPC scores for

these analyses because, to date, there are no estab-

lished comparative methods to conduct analyses of

adaptive regime shifts (using OU models) on high-

dimensional shape data. Since it is currently not com-

putationally feasible to carry out such adaptive shift

fitting analyses on the full geometric morphometric

landmark data, some reduction of trait dimensional-

ity—through PCA or similar approaches—is neces-

sary. It is important to note that all currently

available approaches for automatic detection of adap-

tive shifts for multivariate data (l1ou, surface,

phylogenetic EM, etc.) implement a reduced version

of the multivariate OU model, excluding either trait

covariation or assuming that selective constraints are

constant across traits. In addition, as shown by

Adams and Collyer (2018), all methods exhibit excep-

tionally high rates of model misspecification, and

analyses limited to the first few PCs/pPCs tend to

be biased. In the case of pPCA, this bias depends

on the fit of the underlying Brownian model to the

data (Uyeda et al. 2015). Moreover, analyses that re-

move phylogenetic correlations by pPCA before using

a method designed for independent traits (such as

l1ou) can be misleading in the presence of shifts

(Bastide et al. 2018). Here, we emphasize the differ-

ences in macroevolutionary results inferred by differ-

ences in the dimensionality of landmark coordinates,

rather than other specific conclusions. Nevertheless,

we doubt that the differences between 2D and 3D

coordinate data in our results are merely methodo-

logical artifacts.

Our results (Figs. 2 and 3) illustrate that the mor-

phological and macroevolutionary patterns estimated

by l1ou are highly dependent not only on the di-

mensionality of the geometric morphometric dataset

(2D versus 3D), but which views (frontal, ventral, or

lateral) are used to capture cranial morphology in

2D. We found strong relationships between

landmark coordinate datasets with and without vis-

ible landmarks (two-block PLS: all three r> 0.99, all

three P ¼ 0.001). Similarly, each of the matched 2D

datasets (i.e., those with and without visible land-

marks in the same anatomical plane) showed similar

major axes of morphological variation from pPCA.

Scores from each of these respective axes were

strongly correlated (Table 2), reflecting the shape

changes in the anatomical structures favored by

each view. The yz and simulated frontal datasets re-

cover only one critical axis, describing primarily ros-

tral flexure. In contrast, the xy and simulated ventral

datasets recover two critical axes, which describe ros-

tral elongation (pPC1) and width of the zygomatic

and basicranium (pPC2). The xz and simulated lat-

eral datasets also recover two axes, which describe

the degree of rostral elongation (pPC1) and flexure

(pPC2) across bats. Logically, the 3D dataset is able

to capture all the major patterns of morphological

diversity contained in the six 2D datasets, which are

summarized in three major axes of variation

(Table 2). These describe the degree of rostral elon-

gation (pPC1) and flexure (pPC2), and skull height

(pPC3). Qualitatively, many of the 2D pPC axes

overlap with major morphological patterns seen in

the 3D analyses (e.g., rostral elongation and flexure;

Fig. 3). However, the 3D analysis further captures an

axis of variation (skull height) not observed among

the major axes recovered by the 2D analyses.

Quantitative comparisons of both the landmark co-

ordinate data and the pPCA scores further demon-

strated significant relationships between the 2D and

3D datasets, with each of the 2D datasets varying in

its degree of correlation with the full 3D dataset.

Both the two-block PLS and the Mantel tests indi-

cated that the lateral/yz configurations have the

strongest correlation with the 3D data, followed by

the frontal/xz datasets, and then the ventral/xy data-

set (Table 3).

The results from the l1ou analyses further illus-

trate that using only the xy, yz, frontal, or ventral

view datasets leads to recovering patterns of adaptive

evolution that are sharply different from those

resulting from analyses of the 3D dataset (Figs. 2

Table 1 Landmarks and semilandmarks included in each of the simulated lateral, ventral, and frontal view datasets

Lateral Ventral Frontal

Landmarks 1:10, 13:22, 27:36 1:26 1:7, 26, 27, 29, 30, 33, 34

Semilandmark Series Zygomatic dorsal (all), zygomatic

ventral (all), dorsal midline (all)

Zygomatic ventral (all) Zygomatic dorsal (anteriormost 5),

zygomatic ventral (anteriormost 4),

dorsal midline (anteriormost 7)

See Fig. 1 for landmark locations.
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and 3A, B, E, F). However, the same analyses on the

xz and lateral view datasets recovered nearly identical

results to those from the 3D dataset (Figs. 2 and 3C,

D). This finding makes intuitive sense if we consider

that the major traits that underlie morphological

patterns in 3D (rostral elongation and flexure) are

also captured by the xz and lateral view data.

Conversely, as these traits are not completely cap-

tured by the frontal and ventral views (or xy, yz

datasets), these yield dramatically different interpre-

tations about the adaptive evolution of cranial mor-

phology in bats. Evolutionary analyses on the ventral

and frontal views showed few differences with the xy

and yz dataset, respectively (Fig. 3). Thus, the differ-

ences observed between the 3D dataset versus some

of the 2D datasets (xy, yz, ventral, and frontal) do

not appear to be primarily driven by the decrease in

the number of landmarks used to generate each

dataset, but rather by the loss of critical dimensions

of morphological variation. This suggests that 2D

radiographs in some views are unlikely to capture

sufficient shape variation when compared with 3D

approaches.

Ventral and lateral views of the cranium are the

gold standard in 2D geometric morphometric anal-

yses of mammal skulls (e.g., Figueirido et al. 2013;

Xia et al. 2013; Linde-Medina et al. 2016). Our

results highlight that, for clades that have similar

morphological trends as bats, the ventral view by

itself is not sufficient to estimate patterns of cranial

evolution and making inferences about the potential

ecological forces shaping cranial diversity. Similar

issues have been documented by other studies of

cranial morphology in which the shape information

missing from the 2D dataset had a strong impact on

statistical tests of ecomorphological hypotheses

(Buser et al. 2018). Since the results from the lateral

view are consistent with those from the 3D dataset, a

well-planned 2D geometric morphometric study

could potentially overcome some of these issues.

However, the selection of appropriate views for 2D

analyses might not be straightforward in cases where

Fig. 2 Evolutionary shifts (*) in cranium shape across bats, as determined by l1ou adaptive landscape model fitting on pPCA scores

from the full 3D dataset. Morphological variation along critical (pPC) axes is illustrated by the barplots to the right of the phylogeny.
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Fig. 3 Comparisons of evolutionary shifts (*) in cranium shape across bats, as determined by l1ou adaptive landscape model fitting on

pPCA scores from the 2D and visible landmarks datasets (see text): (A) xy, (B) simulated ventral view, (C) xz, (D) simulated lateral

view, (E) yz, and (F) simulated frontal view. Morphological variation along critical (pPC) axes is illustrated by the barplots to the right of

each phylogeny.

3D digitization in functional morphology 661

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/59/3/656/5514054 by Yale U

niversity user on 13 July 2020



clade-wide trends in morphological variation of a

complex structure are unknown. Therefore, we rec-

ommend using 3D methods in comparative analyses

of bony structures due to their ability to capture

morphological variation comprehensively and with-

out the need for a priori assumptions about major

trends. Although some forms of 3D data acquisition

(e.g., mCT scanning) are still costly, methods such as

stereo-photography provide a practical, low-cost, and

fast approach to 3D morphometric analyses (e.g.,

StereoMorph; Olsen and Westneat 2015), and repos-

itories of 3D data (e.g., Morphosource) are rapidly

expanding due to increasing digitization efforts.

Estimating bite performance in bats: traditional

versus digital methods

In recent years, 3D biomechanical modeling has

allowed ecomorphologists to fine-tune the links be-

tween dietary demands and morphological variation

in the feeding apparatus across a wide range of verte-

brates (e.g., Slater et al. 2009; Dumont et al. 2011;

Watson et al. 2014; Santana 2016).

Methodologically, constructing these models lies at

the interface of modern and traditional comparative

morphology; they integrate 3D data on skull shape

(e.g., from mCT scans) with data on jaw muscle anat-

omy (e.g., mass, attachment sites, fiber lengths and

orientations). The latter are primarily derived from

dissections, which—as a destructive sampling ap-

proach—limits the number of specimens and species

that can be incorporated into these analyses. In recent

years, however, methods such as diceCT (Gignac et al.

2016) have facilitated the non-destructive documenta-

tion of jaw muscle anatomy in situ, in 3D, and in

great detail (e.g., Cox and Faulkes 2014; Gignac and

Kley 2014; Dickinson et al. 2018; Santana 2018),

thereby holding great promise to study rare specimens

and/or generate high-resolution, 3D anatomical data-

sets for potentially more accurate biomechanical mod-

els (e.g., Cox et al. 2011).

Currently, data generation via diceCT involves a

substantial cost, primarily because segmentation of

muscle tissue from CT scan slices still has to be

performed manually. For example, it can take 10–

30 h to digitally segment the jaw musculature of a

very small (�2cm) bat head that has been scanned at

a high enough resolution to document skull detail

(�10–30mm). This is substantially greater than the

time it would take to collect the same data (muscle

mass and attachment areas) through a dissection

(0.5–1 h, on average). Second, the staining time to

achieve appropriate tissue contrast is still not easily

predictable, and seems to depend on specimen size,

age, and preservation method (Gignac and Kley

2014, 2019; Santana 2018). Third, although there

have been advances in the automated detection and

measurement of muscle fiber lengths from diceCT

scans (Jeffery et al. 2011; Dickinson et al. 2018),

these methods still need refinement, and thus muscle

fiber length data still need to be generated via dis-

section. Finally, jaw adductor physiological cross-

sectional areas (PCSA) partly derived from diceCT

data are equivalent to those generated fully from

dissection (Santana 2018). All these issues raise the

Table 2 Summary of pPCA derived from geometric morphometric analyses on the 2D and 3D datasets

Dataset
Percent variation

Dataset
Percent variation Correlation (r)

pPC1 pPC2 pPC3 pPC1 pPC2 pPC3 pPC1 pPC2

3D 37.4 22.5 9.9

xy 33.9 31.4 – Ventral 37.5 27.4 – 0.971 0.976

xz 41.2 25.1 – Lateral 49.6 18.2 – 0.986 0.976

yz 59.5 – – Frontal 63.0 – – 0.992 NA

Percent variation, percentage of variation explained by each of the critical pPC axes; Correlation, correlation coefficients from linear regression

between pPC scores from each of the matched datasets with and without visible landmarks (e.g., xy vs. ventral). All regressions were significant

after a Bonferroni correction of a values (P< 0.01).

Table 3 Comparisons of the 3D and each of the 2D landmark

configurations

r P r P

Two-block PLS

xy 0.919 0.001 Ventral 0.937 0.001

xz 0.998 0.001 Lateral 0.997 0.001

yz 0.974 0.001 Frontal 0.967 0.001

Mantel test

xy 0.8379 0.001 Ventral 0.7951 0.001

xz 0.9805 0.001 Lateral 0.9669 0.001

yz 0.8533 0.001 Frontal 0.8484 0.001

Two-block PLS tests were carried out on the landmark coordinates.

Mantel tests were carried out on Euclidean distance matrices calcu-

lated from the pPC scores (see Table 2). r, correlation coefficient; P,

significance from randomization tests.
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question: when are the costs of using modern imag-

ing tools outweighed by their benefits when building

predictive models of feeding performance?

To identify the advantages of using diceCT versus

exclusively traditional methods in informing predic-

tive models of bite performance in bats, we com-

pared the accuracy and precision of three models

that differed in the sources of skull and muscle an-

atomical data (Fig. 4). These models rely on the

principle that the jaw of most mammals approxi-

mates a third-class lever system (Hylander 1975),

in which the in levers are defined by attachments

of the jaw adductors (temporalis, pars suprazygoma-

tica, zygomaticomandibularis, masseter, medial and

lateral pterygoids), the fulcrum is the temporoman-

dibular joint (TMJ), the out lever is defined by the

biting point along the mandible, and forces applied

are proportional to the PCSAs of the jaw adductors.

We applied these models across 10 species of mor-

phologically distinct noctilionoid bats (Table 4), and

sourced all input data (mCT skull data, dissection

PCSAs, and diceCT PCSAs) from Santana (2018).

Dis2D model: dissection PCSA and 2D skull method

We estimated BFs across species by applying a mod-

ification of a method that combines linear

measurements from images of the skull with dissec-

tion data (Hartstone-Rose et al. 2012) using the

equation:

BF ¼ 2 � Muscle Stress

� PCSAm�MAmð Þ þ PCSAt�MAtð Þ þ ðPCSAp �MApÞ
Out Lever

� �

where Muscle Stress is 25 N/cm2, the median value

for mammalian muscle at body temperature (Herzog

1994); PCSAm, PCSAt, and PCSAp are the PCSA for

the masseter, temporalis, and medial pterygoid, re-

spectively (from Santana 2018); MAm, MAt, and

MAp are the moment arms for the masseter, tempo-

ralis, and medial pterygoid, respectively, which were

measured as the perpendicular distance from the

TMJ to each muscle’s line of action (Fig. 4A); and

Out Lever is the distance between the TMJ and the

tip of the canine for canine bites, and the center of

the first molar for molar bites. We used ImageJ

(Schneider et al. 2012) to measure moment arms

and out levers from lateral skull photos. Our mod-

ified equation multiplies the BF calculation by 2 to

account for bilateral symmetry, since we could not

calculate forces generated on the balancing side (as

in Hartstone-Rose et al. 2012) due to the lack of

electromyography data for the species studied.

Fig. 4 Illustration of the models used to estimate BF, using the skull of the bat Trachops cirrhosus as an example: (A) Dis2D method,

with jaw adductor lines of action (solid lines), moment arms (dashed lines), and out levers calculated from a skull photograph; (B)

Dis3D method, with jaw adductor attachment regions defined on a 3D model of the cranium, and mandible and muscle forces (arrows)

directed toward the respective insertion area centroids on the mandible; (C) Vol3D method, a modification of the Dis3D method in

which muscle forces are calculated from muscles volumes derived from diceCT scans. BF predictions from these models were

compared with in vivo BFs from wild bats, measured using a piezoelectric transducer setup (D).
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Dis3D: dissection PCSA and 3D skull method

We estimated BFs by applying a custom-written R

program (BiteR; Supplementary Material) that com-

bines data on forces of all jaw adductor muscles,

generated from dissections, with a 3D representation

of the skull generated through mCT. As input, the

model requires (1) centroids of the muscle attach-

ment areas on one side of the skull and the two TMJ

fossae, (2) PCSAs of each of the adductor muscles,

(3) the side of the skull of the considered muscles,

(4) a value for muscle stress (in this case, 25 N/cm2),

and (5) an out lever measurement. The centroids of

the TMJ fossae and the side of the skull are used to

define a TMJ axis, whereas the other data are used to

define the torques generated by the muscles about

the TMJ axis and the total BF. This model is equiv-

alent to that used by Davis et al. (2010), with the

exception that BiteR considers the entire muscle

force to be applied at the centroid of the muscle

attachment on the cranium and does not distribute

the applied muscle force across the entire cranial

attachment area. The full code with detailed input

data is provided in the Supplementary Material.

Based on photo documentation during dissec-

tions, we defined the TMJ fossae and muscle origin

and insertion areas on surface files (*.stl) of the cra-

nium and mandible, which were derived from mCT

scans (Santana 2018). The surface files of the cra-

nium and mandible had first been set at a 30�

gape to match the in vivo measurements taken

with a BF meter (Fig. 4D). We exported the attach-

ment areas as binary 3D surface (*.stl) files (Fig. 4B)

and then used the readstl function (rgl R package) as

part of a custom function to calculate the centroids

of the stls by geometric decomposition of the

triangles defined by the stl file. The full code for

calculating these centroids is provided in the

Supplementary Material.

BiteR outputs moments about the TMJ axis by

each jaw adductor and a total BF estimate that is

the sum of all torques produced by the muscles, di-

vided by the defined out lever, and multiplied by 2

to account for bilateral symmetry. We measured out

levers from 3D skull models in Geomagic (3D

Systems, Rock Hill, SC) as the distance from the

TMJ to either the tip of the canine or the center

of the occlusal surface of the first molar (Fig. 4B).

Vol3D: diceCT PCSA and 3D skull method

We applied BiteR as in the Dis3D method, but with

jaw adductor attachment area and muscle volume

data derived from diceCT scans (from Santana

2018; Fig. 4C). To do so, we defined each jaw ad-

ductor origin and insertion areas at the regions of

contact between the meshes of each muscle and the

cranium and mandible. We calculated the volume of

each muscle mesh in Geomagic Studio (3D Systems,

Rock Hill, SC), and used these data to calculate mus-

cle forces (PCSA ¼ muscle volume/fiber length;

Muscle Force ¼ PCSA � 25 N/cm2). We ran BiteR

with these data as described above.

For most species in our dataset, we compiled data

on mean in vivo maximum canine and molar BFs

from our previous published work (Santana et al.

2010; Santana 2016). In these studies, we used a pi-

ezoelectric force transducer to measure BFs from

free-ranging animals at a 30� gape angle (Fig. 4D).

For Noctilio leporinus, we used maximum canine BF

values from Aguirre et al. (2002), who used the same

BF meter setup. To compare the accuracy of the BF

Table 4 Canine and molar BFs (in Newtons) estimated by the three methods applied in this study

Canine Molar

Species Measured Dis2D Dis3D Vol3D Measured Dis2D Dis3D Vol3D

Artibeus lituratus 16.343 6 7.212 7.285 6.147 6.843 21.754 6 8.532 10.55 10.012 11.145

Artibeus phaeotis 2.837 6 1.437 1.352 1.252 1.666 5.631 6 1.630 2.638 1.871 2.490

Carollia perspicillata 5.755 6 2.461 2.338 2.051 2.850 7.929 6 2.711 3.442 3.079 4.280

Desmodus rotundus 2.901 6 1.500 2.587 2.646 3.332 6.063 6 0.368 4.437 3.545 4.464

Glossophaga soricina 1.286 6 0.914 0.391 0.471 0.362 1.366 6 0.700 0.711 0.746 0.574

Micronycteris hirsuta 7.468 6 1.924 3.926 3.072 4.109 12.480 6 3.604 6.184 5.145 6.880

Noctilio leporinus 19.900 6 8.910 7.000 7.124 9.113 – 11.093 9.813 12.552

Pteronotus parnellii 3.890 6 2.347 6.229 2.678 2.969 7.758 6 0.999 8.760 4.149 4.600

Sturnira lilium 5.724 6 2.792 1.266 1.697 1.814 8.055 6 3.737 2.508 2.428 2.596

Trachops cirrhosus 8.009 6 2.611 4.649 3.522 4.307 11.741 6 4.667 8.316 5.401 6.604

Averages of measured maximum BFs (from Aguirre et al. 2002; Santana et al. 2010; Santana 2016) are shown for comparison. Dash indicates no

BF value available.
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predictive methods (Dis2D, Dis3D, and Vol3D), we

used paired t-tests to explore if there was a signifi-

cant difference between the model predictions and

in vivo BFs, and a two-way ANOVA and Tukey’s

honest significant difference test to determine if

there was a significant difference in BF prediction

error among the three models and across species.

We calculated the BF prediction error as a percent-

age of mean in vivo maximum BFs as follows: Error

¼ ([estimated BF–measured BF]/measured BF) �
100). All statistical analyses were conducted in R

(R Development Core Team 2019).

All predictive methods significantly underesti-

mated in vivo BFs (P< 0.05 in all paired t-tests;

Fig. 5). On average, Vol3D underestimated in vivo

BFs the least, followed by Dis2D and Dis3D. The

three methods did not differ significantly in their

error in predicting canine BFs (ANOVA:

P¼ 0.313), but they did differ in their error in pre-

dicting molar BFs (ANOVA: df ¼ 2, SS ¼ 894, MS

¼ 446.8, F¼ 3.596, P¼ 0.04854). Dis2D had signifi-

cantly lower error than Dis3D for molar BFs (differ-

ence: 13.28%; P¼ 0.0399), although this was driven

by one outlier (Fig. 5). Dis3D and Vol3D did not

differ significantly from each other in their BF error

(P> 0.05 in pairwise comparisons for canine and

molar bites). Across all methods, there was a statis-

tically significant effect of skull morphology (species)

in error magnitude (Canine bites: P¼ 0.0003; Molar

bites: P¼ 0.006). Our sample size did not allow us to

test for the interaction between method and species.

In all, these results suggest that the three methods

predict BF with a similar degree of error, although

the Dis3D method appears to do so with slightly

greater precision. That is, this method was relatively

more consistent in the degree of BF underestimation

across different morphologies than the other two

methods.

Although the 3D methods did not differ statisti-

cally in their amount of predictive error, Vol3D pro-

vided higher BF estimations than Dis3D. This is

because muscle volumes (from diceCT scans) result

in greater PCSA calculations (Santana 2018), and

thus muscle force estimates, in Vol3D; Dis3D relies

on muscle mass and a muscle density constant from

the literature for PCSA calculations. The higher ac-

curacy provided by Vol3D is modest, however, espe-

cially considering that building these models requires

considerably greater effort (i.e., manually segmenting

muscles from diceCT scans is a time-consuming

task). Nevertheless, diceCT scans can enable

researchers to explore aspects of muscle anatomy

(e.g., fiber density and architecture, Jeffery et al.

2011; Dickinson et al. 2018), which are difficult to

examine with dissections alone. These data could

eventually improve the predictions of BF models.

Importantly, while the 3D methods modeled BF at

the same gape at which it was measured from live

animals, Dis2D calculated BF at dental occlusion;

this allows controlling for changes in muscle stretch-

ing that cannot be easily accommodated by the

model (Hartstone-Rose et al. 2012). BF decreases as

Fig. 5 Error (difference from measured BF as a percentage of measured BF) across methods (from Fig. 4A–C) and bite types tested in

this study (n¼ 10 species per method). Error bars represent the upper and lower quartiles.
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gape increases in mammals (Herring and Herring

1974; Dumont and Herrel 2003; Williams et al.

2009; Santana 2016); thus, some of the relatively

higher BF estimates from Dis2D are partially an ar-

tifact of the modeled gape. In turn, the lower preci-

sion of this method may be partly a product of not

including some of the smaller jaw muscles and their

forces (e.g., pterygoids, zygomaticomandibularis), as

their attachment areas are difficult to define in pho-

tographs. Jaw muscles vary significantly in their rel-

ative importance for BF production across bat

species and diets (Herrel et al. 2008; Santana et al.

2010). Therefore, Dis2D may be less desirable when

comparing BF predictions across species that differ

dramatically in cranial morphology. However, this

approach could still be adequate for datasets com-

posed of more morphologically similar species.

The factors that cause the 3D models to have low

accuracy in BF estimation are much less clear. Since

there is a linear relationship between muscle stress

and BF predictions in these types of 3D lever models

(Davis et al. 2010), our results suggest that a higher

stress value could be used to scale jaw adductor

PCSA to forces. However, increasing muscle stress

to the highest values reported for mammals

(27.5 N/cm2; Close 1972) does not account for the

large discrepancies between the in vivo and modeled

data. In a previous study, Santana et al. (2010) used

the same individual bats to collect in vivo BFs and

generate anatomical data for a 3D modeling ap-

proach akin to BiteR. In that study, we found that

the model also underestimated in vivo BFs—albeit to

a lesser degree—but regressions between model pre-

dictions and measurements had a slope not signifi-

cantly different from 1. Thus, some of the error in

Dis3D and Vol3D predictions could be attributed to

intraspecific morphological variation, since we did

not use the same individuals for in vivo measure-

ments. Importantly, simple lever models do not fully

account for the complex arrangement of mammalian

jaw adductors and their internal architecture, includ-

ing the effect of muscle wrapping and stacking, and

fiber orientation. Since testing those factors is be-

yond the scope of this paper, future studies could

build upon models like BiteR to evaluate the effect of

braincase curvature and focal node location on BF

estimates, and the value of incorporating fiber ori-

entation data to calculate muscle vectors (e.g.,

Watson et al. 2014).

Altogether, our findings from this modeling case

study emphasize several advantages and shortcom-

ings of applying 2D and 3D modeling approaches

in functional morphology and biomechanics re-

search. Although mCT and diceCT provide

outstanding levels of anatomical detail, there are still

significant costs, challenges, and a need for refine-

ment of models to effectively translate these massive

morphological datasets into accurate predictions of

performance metrics.
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