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Synopsis The field of comparative morphology has entered a new phase with the rapid generation of high-resolution
three-dimensional (3D) data. With freely available 3D data of thousands of species, methods for quantifying morphology
that harness this rich phenotypic information are quickly emerging. Among these techniques, high-density geometric
morphometric approaches provide a powerful and versatile framework to robustly characterize shape and phenotypic
integration, the covariances among morphological traits. These methods are particularly useful for analyses of complex
structures and across disparate taxa, which may share few landmarks of unambiguous homology. However, high-density
geometric morphometrics also brings challenges, for example, with statistical, but not biological, covariances imposed by
placement and sliding of semilandmarks and registration methods such as Procrustes superimposition. Here, we present
simulations and case studies of high-density datasets for squamates, birds, and caecilians that exemplify the promise and
challenges of high-dimensional analyses of phenotypic integration and modularity. We assess: (1) the relative merits of
“big” high-density geometric morphometrics data over traditional shape data; (2) the impact of Procrustes superimpo-
sition on analyses of integration and modularity; and (3) differences in patterns of integration between analyses using
high-density geometric morphometrics and those using discrete landmarks. We demonstrate that for many skull regions,
20-30 landmarks and/or semilandmarks are needed to accurately characterize their shape variation, and landmark-only
analyses do a particularly poor job of capturing shape variation in vault and rostrum bones. Procrustes superimposition
can mask modularity, especially when landmarks covary in parallel directions, but this effect decreases with more
biologically complex covariance patterns. The directional effect of landmark variation on the position of the centroid
affects recovery of covariance patterns more than landmark number does. Landmark-only and landmark-plus-sliding-
semilandmark analyses of integration are generally congruent in overall pattern of integration, but landmark-only
analyses tend to show higher integration between adjacent bones, especially when landmarks placed on the sutures
between bones introduces a boundary bias. Allometry may be a stronger influence on patterns of integration in
landmark-only analyses, which show stronger integration prior to removal of allometric effects compared to analyses
including semilandmarks. High-density geometric morphometrics has its challenges and drawbacks, but our analyses of
simulated and empirical datasets demonstrate that these potential issues are unlikely to obscure genuine biological signal.
Rather, high-density geometric morphometric data exceed traditional landmark-based methods in characterization of
morphology and allow more nuanced comparisons across disparate taxa. Combined with the rapid increases in 3D data
availability, high-density morphometric approaches have immense potential to propel a new class of studies of com-
parative morphology and phenotypic integration.
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Introduction

Big data approaches to morphological studies have
entered a new phase in recent years, due to the ubiq-
uity of high-resolution imaging tools, such as micro-
computed tomography imaging and surface scanning
and photogrammetry (Davies et al. 2017). Open
databases (Morphosource, Phenomel0K,
Digimorph, Morphomuseum, and institutional sites)
now host three-dimensional (3D) image files for tens
of thousands of specimens, meaning that obtaining
access to 3D scans representing a substantial propor-
tion of the extant, and even extinct diversity, for
clades as large as all vertebrates, is rapidly become
the expectation, rather than a pipe dream. These new
datasets open new possibilities for investigating bio-
logical questions (Collyer et al. 2015), including
comparative analyses that can begin to quantify
and analyse morphology at an extremely high level
of detail across wider taxonomic scales (Fig. 1).
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To date, most comparative studies using geomet-
ric morphometrics comparing morphology in a
quantitative framework have either sampled closely
related taxa that share substantial numbers of land-
marks of unambiguous homology (i.e., Type I/II
landmarks following Bookstein (1991)) or sample a
broader taxonomic scope but by using a much re-
duced number of landmarks. Alternatively, analyses
may use traditional metrics, such as linear measure-
ments, which capture some aspect of the morphol-
ogy of functionally analogous regions (e.g., rostrum)
that can be compared directly across diverse taxa,
but provide very limited detail on morphology and
cannot be used to reconstruct shape (Marugdn-
Lobén and Buscalioni 2003). Recent years have
seen development and refinement of geometric mor-
phometric expansions of alternatives to homologous
landmarks (Bookstein 1991), with application of 3D
sliding  semilandmarks  or  pseudolandmarks.
semilandmarks  and
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Fig. 1 Characterization of morphologically disparate taxa. (A) The disparity of biological shapes and presence and absence of ho-
mologous structures, as exemplified in the skulls of diapsids and amphibians and (B) the difficulty of locating discrete landmarks in some
taxa, such as the strongly sutured skulls of birds, present challenges for the quantitative analysis of morphology. High-density semi-
landmarks (C) can capture the morphology of complex regions with far more detail and allow for comparisons of homologous
structures across disparate taxa, resulting in (D) massive increases in dataset size for studies of comparative morphology. Bird data in

(B, C) from Felice and Goswami (2018).
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Big data analysis of shape and integration

pseudolandmarks are inconsistent and often inter-
changeable, but here, we refer to semilandmarks as
those whose initial position is relative to landmarks
with biological homology, whereas pseudolandmarks
are entirely automatically placed without reference to
anatomically defined landmarks, for example, by
sampling uniformly from a surface mesh (e.g.,
auto3dgm, Boyer et al. 20155 Generalized
Procrustes Surface Analysis, Pomidor et al. 2016).
Detailed descriptions, discussions, and comparisons
of these methods (Adams et al. 2004, 2013; Bardua
et al. 2019a; Bookstein et al. 2002; Boyer et al. 2015;
Gonzales et al. 2016; Gunz and Mitteroecker 2013;
Gunz et al. 2005; Mitteroecker and Gunz 2009; Rohlf
and Marcus 1993; Vitek et al. 2017; Zelditch et al.
2004) demonstrate the promise these methods offer
for quantifying regions that are poorly characterized
by use of only discrete landmarks, due to the lack of
unambiguous homology across specimens or the
presence of large areas without any appropriate
structures at which to place landmarks. The lack of
points of unambiguous homology becomes increas-
ingly challenging with comparative studies across
large clades. For example, ongoing work by our re-
search team on tetrapod skulls identified a total of
12 Type I landmarks that could be reliably placed
across the full cranial diversity of that clade, meaning
that the vast majority of cranial morphology would
go unsampled (Fig. 1). Even for less speciose clades,
such as the 32 extant genera of caecilian amphibians,
this can be a highly limiting factor due to a large
degree of variation in bone presence and suture pat-
terns (Bardua et al. 2019b). The second point is an
issue at any scale of analysis, as many structures will
only have discrete points, such as sutures, at their
boundaries, meaning that most of the shape of the
structure will be unsampled. For example, even in a
clade with relatively conserved morphology such as
birds, a high degree of bone fusion has limited pre-
vious studies to a small number of landmarks (e.g.,
11-17 landmarks in Bright et al. [2016]; Klingenberg
and Marugan-Loboén 2013) (Fig. 1).

While semilandmarks and pseudolandmarks are
now frequently deployed to circumvent these
landmark-only issues (Polly 2008), questions have
been raised about their necessity and applicability
for the study of phenotypic integration and other
topics in which the covariance structure of shape
data is important (Cardini 2019; Lele and
Richtsmeier 1990; Richtsmeier and Lele 2001).
Phenotypic integration refers to the correlation or
covariance of traits due to genetic, developmental,
or functional interactions (Olson and Miller 1958),
and analysis of these relationships among traits relies
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on accurate quantification of their morphology and
their correlations or covariances. Pseudolandmarks
have not yet been used in studies of integration,
and their use in such studies is likely hindered by
their lack of reference to biological homology. In
contrast, many studies have used semilandmarks to
quantify the relationships among different elements
or regions of structures ranging from the vertebrate
skulls and mandibles (e.g., Bardua et al. 2019a,
2019b; Felice and Goswami 2018; Marshall et al.
2019; Parr et al. 2016; Watanabe et al. 2019;
Zelditch et al. 2009) to fish fins (Larouche et al.
2018; Du et al. 2019) to trilobite cranidia (Webster
and Zelditch 2011). For this reason, we focus here
on the use of semilandmarks (and more specifically,
sliding semilandmarks) in studies of phenotypic in-
tegration, and more broadly, on their contribution
to comparative studies of morphological evolution.
The concerns about using semilandmarks for such
analyses fall into two categories. First, and most
broadly, all geometric morphometric data, including
Type I/Il landmarks as well as semilandmarks, re-
quire registration prior to analysis in order to re-
move the non-shape aspects of position,
orientation, and isometric size. The most common
method of registering specimens is generalized
Procrustes superimposition (Rohlf 1990; Rohlf and
Slice 1990), which is a least-squares approach that
minimizes variance across an entire landmark (and/
or semilandmark) configuration and rescales each
configuration to unit centroid size. Because this ap-
proach minimizes variance across the entire config-
uration, it can have the effect of spreading variance
across landmarks. In other words, it may shift vari-
ance from more variable landmarks to less variable
ones and imposes a common scaling on a structure
that may have differential scaling in different regions
(Baab 2013; Klingenberg 2009), both of which can
alter the covariance structure of the landmarks and
change the inferred pattern of integration among
traits. It has been recently asserted that this effect
may be exacerbated in larger geometric morphomet-
ric datasets, such as those generated through the ap-
plication of semilandmarks, although such an effect
was not demonstrated, and assumed that the effects
would reduce the ability to detect biological modu-
larity in data (Cardini 2019). Second, and more spe-
cifically, it has also been asserted that closely packed
semilandmarks may falsely inflate the pattern of
modularity (the division of structures into highly-
integrated, but semi-independent subunits) because
the position of each semilandmark is conditional on
its neighbors and therefore multiplication of semi-
landmarks could increase the total covariance within
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Fig. 2 Landmark-only (A, D) and full landmark and semilandmark configurations (B, E) for caecilians (A, B) and squamates (D, E), and
landmark sampling curves generated by LaSEC for (C) the frontal bone of caecilians and (F) the supraoccipital of squamates. Colours in
A, B, D, and E indicate Procrustes variance at each landmark position, demonstrating that full and landmark-only configurations
produce similar overall patterns but that some areas of high or low variance are entirely unsampled in landmark-only analyses.
Sampling curve (C, F) illustrate that 25-35 landmarks and semilandmarks are required to confidently and robustly characterize the
shape variation in these individual bones. Caecilian data from Bardua et al. (2019b), and squamate data from Watanabe et al. (2019).

a putative module. For these reasons, it has been
suggested that “big data” is not necessarily better
data when it comes to geometric morphometric
analyses, especially analyses of phenotypic integration
and modularity (Cardini 2019).

Here, we examine these issues and their potential
impact on phenomic analyses of phenotypic integra-
tion. To do so, we first assess whether the gains are
worth these potential drawbacks by considering: (1)
do high-density semilandmark datasets actually cap-
ture shape better than Type I/II landmark data? If so,
we then consider the practical consequences of using
these high-density data, or geometric morphometric
data more generally, for analyses of phenotypic inte-
gration, by addressing: (2) does Procrustes superim-
position mislead analyses of phenotypic integration
and modularity; and (3) how do analyses of integra-
tion with high-dimensional semilandmarks compare
to those with only landmarks?

The effect of high-density geometric
morphometric data on shape analyses

To quantify whether high-density semilandmark data
add important additional information on morphol-
ogy, we analysed two datasets. The first dataset is
from a recently published study of the cranium of
caecilian amphibians (Fig. 2A, B), with 16 cranial
regions quantified across 32 genera using 53 land-
marks and 687 curve and 729 surface sliding semi-
landmarks (Bardua et al. 2019b). The second is a
recently published dataset of squamates (Fig. 2D,
E), with 13 cranial regions quantified in 174 species
with 47 landmarks and 595 curve and 580 surface
sliding semilandmarks (Watanabe et al. 2019). To
examine how many landmarks/semilandmarks are
required to capture the shape of a region in these
datasets, we implemented Landmark Sampling
Evaluation Curve (LaSEC) analysis, using the ‘lasec’
function in the R  package LaMDBA
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Table 1 Results from performing LaSEC with 1000 iterations on individual cranial partitions of extant caecilian datasets

# landmarks

Fit of landmark-only

Structure # landmarks  + semilandmarks Fit = 0.90 Fit = 0.95 Fit = 0.99 dataset
Basisphenoid 4 155 15 25 69 0.583

Frontal 4 125 13 21 61 0.617

Jaw joint 3 50 13 19 37 0.306
Maxillopalatine (interdental shelf) 4 110 13 19 52 0.782
Maxillopalatine (lateral surface) 3 134 14 23 64 0.238
Maxillopalatine (palatal surface) 5 75 13 19 44 0.602
Nasopremaxilla (dorsal surface) 7 148 13 21 61 0.684
Nasopremaxilla (palatal surface) 3 59 8 12 29 0.770

Occipital condyle 2 34 1" 15 27 NA (only two landmarks)
Occipital region 5 153 16 27 73 0.605

Parietal 3 126 1 18 51 0.361

Pterygoid - 50 7 10 24 NA

Quadrate (lateral surface) 2 57 12 18 38 NA (only two landmarks)
Squamosal 4 104 15 25 61 0.574

Stapes - 20 10 12 17 NA

Vomer 3 69 12 18 41 0.538

Values for Fit = 0.9, 0.95, and 0.99 denote the median number of randomly subsampled landmarks degree of fit (0 to 1) of randomly
subsampled landmark configurations and fixed-only datasets to the respective full high-dimensional coordinate data. Separate analysis of
landmarks + curve sliding semilandmarks was not conducted for caecilians, as curves for some regions (e.g., maxillopalatine) were not
homologous and removed prior to analyses. For details and definitions of cranial regions, see Bardua et al. (2019b).

(Watanabe 2018). This function subsamples the orig-
inal dataset through random addition of landmarks
and semilandmarks, determining the fit of each re-
duced dataset to the complete dataset, and repeating
this for a selected number of iterations. Fit is calcu-
lated based on Procrustes distance between the full
and subsampled datasets with respect to position of
the specimens in high-dimensional morphospace
(i.e., not position of the landmarks). We performed
LaSEC for (1) landmarks-only and (2) subsampled
landmarks and semilandmarks (curve and surface
points) for the caecilian and squamate datasets, for
individual cranial regions. The function generates a
sampling curve (Fig. 2C, F), where a plateau in the
curve signifies stationarity in characterization of
shape variation and fewer landmarks than the pla-
teau indicates inadequate characterization. We com-
pared the fit of the landmark-only and full datasets
and also determined the number of landmarks and
semilandmarks that would have been sufficient for
each region, given a required fit of 0.9, 0.95, and
0.99 between the reduced and complete datasets
(Tables 1 and 2). To compare the relative contribu-
tion of curve and surface semilandmarks to shape
characterization, we further conducted LaSEC analy-
sis comparing the fit of landmarks and curve sliding
semilandmarks to the full dataset of landmarks and

curve and surface sliding semilandmarks to the squa-
mate dataset.

These analyses demonstrate that landmark-only
datasets do not fully capture the variation of these
analysed structures, with the fit between landmark-
only and full landmark plus semilandmark datasets
ranging between 0.24 and 0.81 for individual cranial
regions. To achieve a fit of 0.95 to a high-density
dataset, cranial regions need to be sampled by >20
landmarks and semilandmarks. While this cannot
distinguish between the value of large numbers of
landmarks and similarly large numbers of curve
and/or surface sliding semilandmarks, it is uncontro-
versial that semilandmarks can sample more mor-
phology than Type I/Il landmarks. In these
datasets, for example, our attempt to maximize rep-
resentation of cranial structures with Type I/II land-
marks resulted in 2-7 landmarks sampled per region,
in comparison to the >20 landmarks and semiland-
marks that our analyses estimated, which are needed
to represent the variation in each region. Thus, land-
mark data alone are insufficient to fully characterize
morphological variation for many datasets. In terms
of the respective contribution of curve and surface
sliding semilandmarks to characterizing variation,
the addition of curve sliding semilandmarks alone
is a vast improvement on landmark-only analyses,
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Table 2 Results from performing LaSEC with 1000 iterations on individual cranial partitions of extant squamate datasets

# curve  # surface Fit of landmark-  Fit of landmark +
Structure # LMs sLMs sLMs Fit = 090 Fit = 0.95 Fit = 0.99 only dataset curve dataset
Premaxilla 4 35 39 15 23 49 0.713 0.981
Nasal 4 40 42 15 25 54 0.664 0.977
Maxilla 5 65 92 16 27 74 0.696 0.913
Jugal 3 60 31 13 20 51 0.645 0.962
Frontal 4 40 86 14 25 66 0.721 0.993
Parietal 4 60 34 16 28 64 0.647 0.987
Squamosal 3 30 19 17 25 43 0.452 0.993
Jaw joint 4 20 18 20 27 38 0.484 0.999
Supraoccipital 5 60 67 30 55 90 0.597 0.979
Occipital condyle - 15 22 22 27 34 N/A 0.988
Basioccipital 4 60 58 14 26 66 0.805 0.982

Values for Fit = 0.9, 0.95, and 0.99 denote the median number of randomly subsampled landmarks required for respective degree of fit of
randomly subsampled landmark configurations to the respective full (landmark + curve and surface sliding semilandmark) dataset. Fit of
landmark-only and landmark + curve sliding semilandmark datasets compared to full dataset is also provided for comparison, demonstrating
that the addition of curve sliding semilandmarks alone greatly improves representation of shape over landmark-only analyses (although see
discussion regarding issues with curves for some highly-variable structures in the caecilian skull). The occipital condyle, pterygoid, and palatine
are not listed as they lack either unique landmarks or surface sliding semilandmarks for some taxa. For details definitions of cranial regions, see

Watanabe et al. (2019).

with a fit of >0.9 for all cranial regions in squamates
and approaching a near perfect fit to the full dataset
for relatively flat structures. However, it is important
to note that the reason a similar analysis would be
less informative, and thus was not conducted, for the
caecilian dataset, is that some of the most variable
regions, including the maxillopalatine and pteryoid,
required the use of some non-homologous curves to
accommodate variably present structures, such as the
tentacular canal (Bardua et al. 2019a, 2019b). These
curves were then excluded, with only landmarks and
surface sliding semilandmarks used in further analy-
ses. Thus, although curves may capture much of the
morphological variation of the full landmark, curve,
and surface dataset for many structures, they can be
problematic and inapplicable in some of the most
interesting, highly variable regions, particularly as
comparisons expand across increasingly disparate
taxa. Similarly, surface points cannot always be ap-
plied to all structures, such as the extremely narrow
palatal region of snakes. Both curve and surface slid-
ing semilandmarks provide important and comple-
mentary information on shape variation and our
results demonstrate that both are improvements
over analyses of landmarks alone for characterizing
complex morphologies.

This result is further demonstrated by examining
patterns of variance across landmarks and semiland-
marks (Fig. 2). While the overall distribution of var-
iance is similar in both datasets, large areas of the
cranium are unsampled in landmark-only datasets,

and thus some regions that are highly variable across
taxa, such as the maxillopalatine of caecilians, are
inadequately represented by landmarks. Thus, high-
density configurations clearly contain important
aspects of shape variation that is not captured by
landmark-only analyses.

The effect of Procrustes superimposition
on analyses of modularity

In order to assess how Procrustes superimposition
impacts covariance patterns between landmarks and
the ability to recover modular patterns from them,
we performed a controlled series of simulation
experiments in which we varied the degree of vari-
ability at each landmark, the direction of covariation,
and the number of landmarks. Each experiment is
described in detail below.

Experimental samples were modeled by randomly
perturbing landmarks around a base configuration
(or “archetype”; Fig. 3A) based on a multivariate
normal covariance matrix V that we varied system-
atically with each experiment (Fig. 3B). Each in-
stance of V was given two modules in which
covariances among landmarks (and semilandmarks)
within modules was higher than between modules.
The number of rows and columns (landmark coor-
dinates) in V and the magnitude of their covariances
was varied to match the conditions of each experi-
ment. Residual variation was then simulated by
post-multiplying the Cholesky decomposition of V
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Fig. 3 Simulation experiments 1 and 2 of the effect of Procrustes superimposition on covariance patterns and recovery of biological
modules. Starting with a base archetype (A), we perturbed variances and covariances (B) in each experiment, with resultant effects on
shape centroids (C), to generate a sample of “naturally superimposed” shapes (D), which are then subjected to Procrustes super-

imposition. In Experiment 1, we test the effect of direction of covariance, with covariances of two modules set at 90° to each other
(E), one module of invariant landmarks (F), and both modules with covariances oriented away from their respective centroids (G). In
Experiment 2, we vary the magnitude of variance, with variances initially identical to that of Experiment 1 (H), and then reduced to
80% () and 60% (J). For each experiment, landmark configurations are shown on the left, and clusters of recovered modules are

shown on the right.

by a kp x n matrix of points drawn from 7 univar-
iate normal distributions with mean of 0 and vari-
ance v, where k is the number of landmarks (and
semilandmarks), p is the dimensionality of each
landmark (or semilandmark), and #n is the number
of individuals in the sample. This multiplication pro-
duces a matrix of n individuals with kp landmarks
(and semilandmarks) with covariance V. Finally, the
residuals were added to the base configuration of
landmarks (and semilandmarks) to produce a sample
of shapes (Fig. 3D). Each simulated dataset consisted
of 500 individual shapes unless otherwise noted.
Note that covariance between the x and y (and z)
axes of a landmark produces a scatter of variation
that has a directional orientation. For example, if a
landmark has equal variances in both the x and y
axes, any covariance between them will produce an
ellipse of points with a major axis at an angle of 45°.
For convenience, all coordinates were given the same
variance, which produced this 45° angle in all land-
marks (either in a positive or negative direction). For
experiments where a more directionally complex

covariance pattern was desired, individual scatters
of simulated residual points were rotated into new
orientations (i.e., the ellipsoids in Fig. 3B were piv-
oted around their corresponding landmark into new
orientations), which is equivalent to altering the var-
iances and covariances of their coordinates.

In each experiment, we assessed the effect of
Procrustes superimposition on recoverability of
modules using two metrics: (1) we tested whether
the original modular pattern was significantly sup-
ported after Procrustes superimposition using the
covariance ratio (CR) coefficient randomization test
(Adams 2016) and (2) we compared the modules
recovered from the original and Procrustes superim-
posed shapes using hierarchical clustering analysis.
The CR test determines whether the ratio of covari-
ation within and between the original modules is
strongly enough preserved to produce a statistically
significant correlation compared to randomized
modules. CR values are high when between module
correlations are higher than within module correla-
tions (i.e., when modules are not distinct) and they
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decline toward 0 as modularity becomes stronger.
Significance is tested by randomizing landmarks be-
tween modules and comparing the observed CR
value with the distribution of randomized values
(Adams 2016). The hierarchical clustering analysis
used Ward’s minimum variance linkage algorithm
on a k X k covariance matrix using canonical corre-
lations between landmarks (Goswami and Polly
2010). This approach minimizes total within-cluster
variance to cluster landmarks and was used to deter-
mine whether the same organization of traits (i.e.,
modules) was recovered before and after Procrustes
superimposition and whether that pattern matched
the modules constructed in V. Hereafter, we refer to
the original simulated shapes before Procrustes su-
perimposition as “naturally superimposed,” and we
discuss the assumptions and implications of that
concept further below. The number of significant
modules in each cluster was estimated by comparing
the observed eigenvalue structure to a null distribu-
tion derived from a Monte Carlo simulation using
the same base shape but with zero covariance with
100 iterations (see Goswami and Polly 2010; Polly
and Goswami 2010). All analyses were performed
in Mathematica (Wolfram Research, 2018) using
the Modularity for Mathematica (v. 2.0) and
Geometric Morphometrics for Mathematica packages
(Polly 2019; Polly and Goswami 2010).

Experiment 1: Direction of covariance

In this experiment, the direction of landmark covari-
ance was systematically altered (Fig. 3E-G). A simple
archetype of eight landmarks arranged in a rectangle
with two modules of four landmarks symmetrically
arranged to the left and right of the archetype’s cen-
troid was used. Correlations between landmarks
within each module was set at 0.8, except for the
second test where one module was given completely
invariant landmarks except for a small amount of
uncorrelated noise. In the first test, the orientation
of covariance in the left module was set at positive
45° with respect to the length of the archetypal rect-
angle and in the right module it was set at 135°,
which is 90° to the first module (Fig. 3E). In the
second test, the left module had four invariant land-
marks and the right module was identical to the
right module in the first test (Fig. 3F). In the third
test of this experiment, the orientation of variation
in both modules was such that each landmark had a
positive covariance pointing away from its respective
module’s center (Fig. 3G).

In the first test in this experiment, Procrustes su-
perimposition altered the covariance pattern so
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much that the original modules were unrecoverable.
Despite having a strongly modular pattern that was
easily recovered from the naturally superimposed
data, the modules were not recovered from the
Procrustes superimposed shapes. The pattern of co-
variance was strongly altered by Procrustes superim-
position, which is seen visually in Fig. 3E and
indicated by their comparatively high CR value
(CR = 1.27; P=0.94). Note that the centroids of
the original shapes are highly variable in their posi-
tion, with an unconstrained scatter that is nearly as
large as the scatter of points around any of the land-
marks (Fig. 3E). The stability of the centroid point
turns out to be an important factor determining how
much Procrustes superimposition alters the covari-
ance pattern of the landmarks.

The second test, in which one module consisted of
invariant landmarks, performed no better and argu-
ably worse in terms of module recoverability
(Fig. 3F). The two modules were not recoverable
even from the naturally superimposed data, largely
because the “invariant” module is not truly modular
because its landmarks do not covary. The dendro-
gram based on the naturally superimposed shapes
recovered a tight cluster between the four landmarks
in the right module, but they were not significantly
distinguished from the landmarks of the left
“module” based on the eigenvalue variance random-
ization tests. Similarly, only one module was recov-
ered from the Procrustes superimposed data, but
there was no hint of similarity between the land-
marks of the right module in the dendrogram. CR
was also high and non-significant (CR=1.14;
P=0.30). The position of the centroid of the natu-
rally superimposed shapes was more constrained
than in the first test, although it was still quite
variable.

In the third test, in which the direction of varia-
tion was symmetrically radial in each module instead
of perfectly parallel, the true modular pattern was
easily recovered (Fig. 3G). Variability in the position
of the centroid in the naturally superimposed shapes
was much less than in the previous two tests, and
much smaller than the variability at individual land-
marks. The relative consistency of the position of the
centroid is a result of the symmetry of the landmark
variability. Because the original centroids are close
together, changes in the overall pattern of covariance
due to Procrustes superimposition are small. The CR
test indicated that the original modules were recov-
erable after Procrustes superimposition (CR=0.51;
P <0.001).

This experiment suggests that the symmetry (or
lack thereof) in the directions of covariance patterns
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within and between modules affects variability in
position of the centroid from one shape to the
next and that the degree of variation in the position
of the centroid relative to variation in individual
landmarks is a major determinant of how much
Procrustes superimposition, which recenters shapes
on their centroids, alters the covariance structure.

Experiment 2: Magnitude of variance

One possible interpretation of the first experiment is
that the less variation there is in shape, the more
constrained will be the position of the centroid
and the less the covariance pattern will be altered
by Procrustes superimposition. In the second exper-
iment, we therefore tested whether the magnitude of
shape variation has an effect on recoverability of
modular patterns; it does not.

This experiment used the same directional covari-
ance structure as in the first test of the previous
experiment (Fig. 3E) but systematically varied the
amount of variance in the landmark coordinates
(Fig. 3H-J). The first test in Experiment 2 was sto-
chastically identical to the first test in Experiment 1
(CR=1.25; P=0.93). In the second and third tests,
the variance at each landmark was reduced to 80 and
60%, respectively (and the strength of covariance was
maintained at 0.8). Even though variation in the po-
sition of the centroid was progressively smaller in the
second and third tests (Fig. 31, J), the CR coefficient
remained approximately the same (CR=1.24 and
1.25; P=0.90 and 0.93) and the original modules
were not recovered from the Procrustes superim-
posed data.

Even though the centroid position was less vari-
able in the second and third tests, the effect of
Procrustes superimposition on the covariance struc-
ture remained approximately constant because the
centroid remained just as variable with respect to
the variation at the individual landmarks. The trans-
lational and rotational components of Procrustes su-
perimposition therefore had a proportionally similar
effect on the relative positions of the landmarks (and
therefore their covariance structure) regardless of the
absolute magnitude of shape variation. This experi-
ment shows that it is not the magnitude of shape
variation per se that matters.

Experiment 3: Number of landmarks

The third experiment doubled and tripled the orig-
inal number of landmarks to determine whether ad-
ditional landmarks help minimize the effect of
Procrustes superimposition (Fig. 4A-C). They do
not (at least not without the contribution of other
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factors, as explained below). The first test in this
experiment (Fig. 4A) was stochastically identical to
that in Fig. 3E (CR=1.28; P=0.96). In the second
test, four new landmarks were added to each module
positioned one-quarter of the way toward the respec-
tive center of the module (Fig. 4B). In the third test,
four more landmarks were added, these equidistant
from the original four landmarks along the periphery
of each module (Fig. 4C). The direction of covaria-
tion of the new landmarks in each module was iden-
tical to its original four.

The addition of landmarks had no substantial ef-
fect on variation in the position of the centroid of
the naturally superimposed shapes, and only minor
improvements in the CR test (CR=1.11 and 1.09;
P=0.88 and 1.00) and offered no improvement in
the recoverability of modules. Because the additional
landmarks covary in the same direction and with the
same magnitude as the original landmarks, they do
not constrain the position of the centroid and are
thus equally affected by the Procrustes superimposi-
tion process. Therefore, the effects of Procrustes su-
perimposition on covariance structure are not
increased by the addition of landmarks (or semiland-
marks), contra Cardini (2019), but neither are they
decreased.

Experiment 4: Direction of covariance Il

The first three experiments indicate that Procrustes
superimposition has a strong effect on the covariance
matrix, and thus recoverability of modules, when
variation in position of the centroid is only loosely
constrained relative to variation in the individual
landmarks. Neither the absolute variability nor the
number of the landmarks has an effect, but the over-
all pattern of directionality of covariation in the
landmarks does. The effect of Procrustes superimpo-
sition was minimized in the third test of the first
experiment when directionality of variation was sym-
metric with respect to both the center of each mod-
ule and the centroid of the entire shape.

Next, we tested how random patterns of direc-
tional variation within and between modules affect
recoverability of modules (Fig. 4D-F). Variation in
real biological structures is much more directionally
complex than any of the examples tested in the first
experiment (e.g., Zelditch et al. 1993). It is difficult
to imagine a biological example in which trait vari-
ation across a complex morphology is structured in
entirely parallel or perpendicular directions. Thus, in
this experiment we randomly oriented the direction
of covariance at each landmark to produce a pattern
that is not strictly symmetric as in the third test of
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Fig. 4 Simulation experiments 3-5 of the effect of Procrustes superimposition on covariance patterns and recovery of biological
modules. In Experiment 3, we increase landmark numbers from the 8 landmarks of Experiment 1 (A), to 16 landmarks (B), and 24

landmarks (C). In Experiment 4, we vary the directionality of landmarks, from the symmetric variation of Experiment 1 (D) to random
directions of variation (E, F). Finally, in Experiment 5, we combine the effects of Experiments 3 and 4, by randomly rotating landmarks
for the initial set of 8 landmarks (G), and then 16 landmarks (H) and 24 landmarks (). For each experiment, landmark configurations
are shown on the left, and clusters of recovered modules are shown on the right.

the first experiment, but which varies in a more
complex, and arguably more “biological” manner
than any of the examples in the first experiment.

The first test of Experiment 4 used parameters
identical to the first in Experiment 2 as a reference
(Fig. 4D; CR=1.27; P=0.96), but in the second two
tests (Fig. 4E, F) the directions of variation at each
landmark were randomly rotated by 0° to 360°. In
both cases, the effect was to dramatically constrain
the position of the centroid with respect to the var-
iation in the landmarks, to improve recoverability as
measured by CR (CR=0.42 and 0.74; P<0.001 and
0.01), and to recover the original modular patterns
accurately. While Procrustes superimposition had a
small effect on the covariance matrix and the per-
ceived closeness of relation between landmarks in
each module, this effect was minimal.

The results of the first experiment can now be
reinterpreted in light of the fourth: it is not symmet-
ric shape variation that matters as much as the lack
of systematically directional variation. In both the
first and second tests of the first experiment, the
direction of variation at all landmarks was somewhat
parallel. In the first experiment all of the landmarks
shared half of their variation as a vertical

component, whereas in the second experiment all
of the landmarks that varied shared their direction.
The symmetrical pattern in the third test of the first
experiment performed no better than the random
patterns in the second and third tests of the fourth
experiment. Regardless of whether the landmark var-
iation is directionally random or symmetrical, the
effect is to severely constrain variation in the posi-
tion of the centroid relative to the landmarks, and
therefore to minimize the effects of Procrustes super-
imposition on the covariance matrix.

Experiment 5: Direction of covariance and number
of landmarks

If the complexity of the directional variation matters,
then more landmarks should increase that complex-
ity if their direction of variation is independent. We
tested that possibility in our fifth and final experi-
ment (Fig. 4G-I). We used the same 8, 16, and 24
landmarks as in the third experiment, but this time
randomly rotated the direction of variation at each
landmark. When the major axis of variation at each
landmark is oriented in a different direction, increas-
ing the number of landmarks has a positive effect on
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the recoverability of modules. As the number of
landmarks increased, the CR ratio declined (CR =
0.34 and P < 0.001 for k=8, CR = 0.17 and P=0.00
for k=16 and CR=0.18 and P<0.001 for k=24).
With 24 landmarks with randomly varying direction-
ality, Procrustes superimposition had little visible ef-
fect on the covariance pattern or on the modularity
dendrogram (Fig. 4I).

Further considerations on centroids and natural
superimpositions
The original simulated shapes before Procrustes su-
perimposition can be considered to be in their
“natural” superimposition, especially if the base
shape has a centroid size of one. The concept of
“natural superimposition” warrants philosophical
consideration. It is a biologically vague idea, yet
the crux of the issue of whether Procrustes superim-
position alters the “real” covariances between land-
marks depends upon the idea of a “natural
superimposition.” The strategy of the Procrustean
paradigm in geometric morphometrics is to remove
the so-called “nuisance” parameters of size, transla-
tion, and rotation by translating landmarks (and
semilandmarks) so that the centroid of each shape
is at the origin, scaling them to have centroid size of
one, and rotating them to minimize the sum-of-
squared distance between shapes. Upon completion
of the superimposition, the new shape data are
placed in a single comparable coordinate system
where their differences can be analysed, analogous
to mean-centering normal variables and standardiz-
ing them to unit variance. The strategy we adopt
here assumes that individuals are generated by
some process (e.g., ontogenetic development) that
produces variants on a general theme (our base land-
mark configuration, which we refer to as the arche-
type after Richard Owen’s notion that vertebrate
species were all variations on an underlying theme)
with a covariance structure V that arises from the
generating process. Since our modeling procedure
(Fig. 3A) generates residual variation from a multi-
variate normal covariance distribution with a mean
of zero, the shapes are invariant with respect to
translation and rotation; and since the residuals are
all added to the same archetypal configuration of
landmarks (and semilandmarks), they are also in-
variant in scale with respect to the process that gen-
erated them.

Individual simulated shapes, however, do not have
a centroid size of one, their individual centroids are
not aligned, they are not in optimal alignment, and
their shapes are not the same as the archetype.
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Figure 3C shows two simulated shapes along with
their centroids to illustrate this fact. Instead, having
a centroid size of one, a centroid centred at the or-
igin, and an archetypal shape are properties of the
mean of the simulated shapes (Fig. 3D). Thus, the
simulated shapes are not aligned using Procrustes
superimposition, but they are in the optimal align-
ment with regard to the process that generated them.
This difference between the two alignments is the
source of Procrustes-induced covariance patterns.
Accurately representing the natural superimposition,
and thus the processes generating shape variation, is
a critical concern in most analyses employing geo-
metric morphometrics, and thus understanding the
cause of these deviations is an important theoretical
and practical consideration.

The reason why the centroids are not perfectly
aligned is because the generating process used in
these examples makes no explicit reference to the
centroid. Instead, the generating process produces
random deviations from an archetypal configuration
of landmarks with a modular covariance pattern.
Each deviation has its own centroid, centroid size,
and orientation relative to the archetype. One can
imagine other generating processes that do make ref-
erence to the centroid (or, at very least, to a land-
mark that has an invariant position). For example,
the development of the tribosphenic molar involves a
process of tissue growth that begins with the apex of
a particular tooth cusp (the protoconid) and via a
cascade of molecular signaling and folding produces
additional cusps in a complex pattern around the
original one (Jernvall 1995; Thesleff and Sahlberg
1996). One can therefore say that the natural align-
ment of tribosphenic tooth shapes is invariant at the
protoconid cusp tip with a variance and covariance
structure determined by the cascade of subsequent
cusp formation. Polly (2005) simulated tooth shapes
using an analogous cascading process that started
with the protoconid landmark. But even in this ex-
ample, the protoconid cusp is not equivalent to the
centroid, which varies in its relative position depend-
ing on the arrangement of other cusp landmarks.

If there were a generating process that began with
an object’s centroid, such as development of a radi-
ally symmetric structure like a coral polyp (cf., Budd
et al. 1994) the “natural” and Procrustes superimpo-
sitions could be nearly identical once standardized
for size, rotation, and translation. But, as our experi-
ments show, a complex pattern in the direction of
variation around landmarks with respect to one an-
other coupled with strong covariance has the effect
of constraining the location of the centroid, regard-
less of the generating process. The greater the
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complexity, the greater the constraint on the cen-
troid position, and the more similar the “natural”
and Procrustes superimpositions.

Presuming that real biological shapes have similar
directional diversity of landmark variation within
modules as in our fifth experiment, our results sug-
gest that Procrustes superimposition is unlikely to
interfere with the recoverability of modular patterns,
even when the number of landmarks is small
Properties that matter for recoverability of modular
patterns include: (1) variation in directional varia-
tion within and between modules and (2) centroids
whose “natural” position varies little in proportion
to variation in individual landmarks. Properties that
do not matter for recoverability of modular patterns
include: (1) total number of landmarks (or semi-
landmarks) and (2) absolute magnitude of shape
variation.

Thus, on the question of whether the use of slid-
ing semilandmarks exacerbates the effect of
Procrustes superimposition on covariance structure
(Cardini 2019), the results of our third experiment
suggest that adding landmarks neither improves nor
inhibits the recoverability of modules. The fact that
the direction of variation in sliding semilandmarks
tends to be fairly uniform as a result of their fitting
procedure (e.g., Perez et al. 2006) suggests that they
will not improve recoverability to the same extent as
covarying landmarks (or non-sliding semilandmarks)
whose direction varies with respect to one another.
However, sliding semilandmarks improve representa-
tion of complex structures, such as surfaces, far be-
yond the abilities of landmarks, and thus the
increased complexity, and added variation in direc-
tionality of variation, will constrain centroid varia-
tion, improve the Procrustes fit relative to the
“natural superimposition,” and thus increase the ac-
curacy of recovering modules for biological
structures.

Comparing analyses of integration with landmark
and semilandmark datasets

In the above sections, we demonstrate that high-
density semilandmark datasets add important detail
on morphology beyond that which is captured by
Type I/I landmarks. In addition, our simulations
indicate that Procrustes superimposition does not
mislead analyses of integration in biologically realis-
tic scenarios, that is, those with complex directions
of variation sampled by geometric morphometric
data, regardless of number of landmarks or semi-
landmarks. Finally, we address the question of how
using semilandmarks in analyses of integration and

A. Goswami et al.

modularity may change results and interpretations of
these quantities, compared to analyses based on
landmarks alone. Because semilandmarks and sliding
semilandmarks are not independent of each other
due to their fitting procedure, there are expected
effects on analyses of integration and modularity.
Specifically, adjacent semilandmarks and sliding
semilandmarks will be correlated because their place-
ment is relative to each other, in addition to any
biological correlation amongst the structures they
represent. The effect of this fitting may be to exag-
gerate the correlations or covariance of proximal
semilandmarks relative to those farther away, which
may increase the appearance of modularity across
regions. On the other hand, landmarks (and also
curves based on element boundaries) may have the
opposite effect. Because Type I landmarks in a struc-
ture such as a skull will be largely limited to sutures
between elements, they may suffer from boundary
bias, exaggerating the apparent integration of those
elements compared to aspects of their respective
morphologies that are not located at their point of
juncture. It is important to recognize that both
approaches suffer from statistical artefacts due to
the nature of the data collection approach and may
have opposing biases in reconstructing trait integra-
tion and modularity. Thus, the comparison of results
generated by these different approaches is critical for
identifying the magnitude and impact of their re-
spective biases and artifacts.

In two recent studies of variational or static
(Marshall et al. 2019) and evolutionary (Bardua
et al. 2019b) integration and modularity in caecilian
crania, we conducted extensive analyses of integra-
tion across 16-17 cranial regions using 66
(Idiocranium russeli), 68 (Boulengerula boulengeri),
or 53 (32 caecilian genera) landmarks and 1363-
1558 curve and surface sliding semilandmarks.
These datasets were analysed using CR analysis
(Adams 2016) and a maximum likelihood approach
(Goswami and Finarelli 2016), with allometric and
phylogenetic (for the intergeneric analysis) correc-
tions. In both studies, results were compared across
analyses of the full dataset and analyses of the
landmark-only datasets. In the intergeneric study of
evolutionary modularity, both datasets significantly
supported a highly modular pattern (16 module
model, full dataset CR = 0.59, P < 0.01; landmark-
only dataset CR = 0.88, P<0.01). Despite support-
ing a modular pattern, the landmark-only dataset
returned a CR much closer to one, indicating rela-
tively more integration among modules. In particu-
lar, the major differences were increased integration
of the bones forming the cranial vault, which, in
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landmark-only analyses are defined entirely by their
sutures (mainly with each other), and reduced
within-region integration in the landmark-only anal-
yses, as expected (Fig. S2 in Bardua et al. 2019b). A
similar result is observed in the intraspecific study of
two species of caecilieans (Marshall et al. 2019), with
all analyses again significantly supporting a highly
modular skull. For example, CR analyses of the 17-
module model for I russeli were highly significant
for the full dataset before (CR = 0.621, P<0.001)
and after (CR = 0.519, P< 0.001) allometric correc-
tion and with the landmark-only dataset before (CR
= 0.851, P<0.001) and after allometric correction
(CR = 0.738, P<0.001). As before, the landmark-
only analyses returned CR values closer to one, sug-
gesting more integration than the analysis of the full
dataset, and removing allometric effects resulted in
reduced CR values, supporting a more modular pat-
tern. Despite this overall consistency across datasets
and analyses, examination of the pairwise CR values
between regions, in addition to the mean CR across
the full cranium, suggests the allometry may have a
stronger influence on landmark-only analyses. For
example, in the I russeli dataset, landmark-only
analyses identify 49 out of 120 region pairs with
CR values >0.9, with some exceeding a value of
one (indicating integration). Following removal of
allometry, only 16 region pairs show CR values
>0.9, and the overall pattern of integration across
regions is congruent with the analysis of the full
dataset. Allometric correction did not have a similar
effect on the analyses of the full dataset. These
results, while supporting that analyses are largely
consistent across datasets, suggest that allometry
may have a stronger influence on recovered patterns
of integration in landmark-only datasets. If so, this
effect may reflect the tendency for many landmarks
to be placed at element boundaries, resulting in a
stronger signal of structure size relative to the com-
plexity of its shape, with the latter being better cap-
tured by semilandmarks.

Conclusions

Capturing and quantifying morphology using
high-resolution imaging has opened the door to
high-density morphometric data analysis with semi-
landmarks or pseudolandmarks. Our analyses on
both simulated and empirical datasets demonstrate
that semilandmarks provide far more comprehensive,
as well as accurate, characterizations of morpholog-
ical variation than analysis of landmarks alone,
which suffer from limitations to points that can be
identified repeatedly on specimens and often leave
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large areas of complex structures entirely unsampled.
However, these gains in quantifying morphology
raise questions about the biases that these datasets
may bring, in terms of quality of data, procedural
artefacts, and ability to accurately recover attributes
such as trait integration. Here we demonstrate that
some of the concerns with geometric morphometric
analysis of trait integration and modularity are un-
likely to affect analyses of complex structures, such
as those encountered in biological specimens. We
also demonstrate that increasing landmark or semi-
landmark sampling alone does not exacerbate issues
with procedures such as Procrustes analysis. We fur-
ther suggest that analyses incorporating semiland-
marks may be less influenced by boundary bias
and allometric effects, which may exaggerate degree
of integration across regions in landmark-only anal-
yses, while analyses of sliding semilandmark may ex-
aggerate within- region integration and between-
region modularity. It remains a continuing challenge
to develop methods that alleviate these effects. In
doing so, we should prioritize improving the repre-
sentation of morphology, rather than limiting future
studies to existing methods that quantify complex
structures with a small number of lengths or land-
marks and leave much of the available biological
information unused (Collyer et al. 2015). Similarly,
most existing methods for the analysis of phenotypic
integration and modularity are overly simplistic and
incapable of accurately conveying the complex hier-
archy of relationships across traits. Furthermore,
most of these methods have not been developed or
tested for high-density datasets, which will certainly
present new challenges as these datasets become in-
creasingly common in studies of phenotypic integra-
tion and morphological evolution. It is thus critical
to remember that all methods have costs and bene-
fits, including both landmarks and semilandmarks.
Nonetheless, the benefits of high-density geometric
morphometrics for more precisely representing mor-
phology solves many issues with reconstructing the
evolution of complex structures across disparate taxa
and is a promising path forward for “Big Data”
approaches to comparative morphology.
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of them do not disagree with all of it. Thank you to
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sium and to the editors and reviewers who offered
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