
Integration, the VLSI Journal xxx (xxxx) xxx

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

Enhancing sensitivity-based power reduction for an industry IC design

context

Hamed Fatemi a, Andrew B. Kahng b,c, Hyein Lee c,d,∗, Jiajia Li e, Jose Pineda de Gyvez a

a NXP Semiconductors, High Tech Campus 46, 5656 AE Eindhoven, Netherlands
b CSE Department, University of California at San Diego, La Jolla, California, USA
c ECE Department, University of California at San Diego, La Jolla, California, USA
d Synopsys, Inc., Sunnyvale, CA, USA
e Qualcomm Technologies, Inc., San Diego, CA, USA

A R T I C L E I N F O

Keywords:

Gate sizing

Post-route optimization

Physical optimization

Power and timing optimization

Multi-corner multi-mode

Industrial design

A B S T R A C T

For many years, discrete gate sizing has been widely used for timing and power optimization in VLSI designs. The

importance of gate sizing optimization has been emphasized by academia for many years, especially since the

2012/2013 ISPD gate sizing contests [1, 2]. These contests have provided practical impetus to academic sizers

through the use of realistic constraints and benchmark formats. At the same time, due to simplified delay/power

Liberty models and timing constraints, the contests fail to address real-world criteria for gate sizing that are

highly challenging in practice. We observe that lack of consideration of practical issues such as electrical and

multi-corner constraints – along with limited sets of benchmarks – can misguide the development of contest-

focused academic sizers. Thus, we study implications of the “gap” between academic sizers and product design

use cases. In this paper, we note important constraints of modern industrial designs that are generally not com-

prehended by academic sizers. We also point out that various optimization techniques used in academic sizers

can fail to offer benefits in product design contexts due to differences in the underlying optimization formulation

and constraints. To address this gap, we develop a new robust academic sizer, Sizer, from a fresh implementa-

tion of Trident [3]. Experimental results show that Sizer is able to achieve up to 10% leakage power and 4%

total power reductions compared to leading commercial tools on designs implemented with foundry technolo-

gies, and 7% leakage power reduction on a modern industrial design in the multi-corner multi-mode (MCMM)

context.

1. Introduction

Discrete gate sizing, i.e., change of gate width and length, and V t

type, has been widely adopted for timing and power optimization. Gate

sizing optimization can be applied at every design stage, e.g., post-

synthesis, post-placement and timing ECO. It is especially suitable for

late-stage, post-routing optimization since it incurs relatively small per-

turbation to the design netlist and layout compared to other optimiza-

tions such as logic restructuring and buffer insertion. The importance

of gate sizing optimization has been emphasized by both industry and

academia for a number of years. The 2012/2013 ISPD gate sizing con-

tests [1,2] have given practical impetus to academic research, using

industry-standard benchmark data formats and constraint types. The

∗ Corresponding author. ECE Department, University of California at San Diego, La Jolla, California, USA.

E-mail addresses: hamed.fatemi@nxp.com (H. Fatemi), abk@ucsd.edu (A.B. Kahng), hyein.lee1@synopsys.com (H. Lee), jiajial@qti.qualcomm.com (J. Li), jose.

pineda.de.gyvez@nxp.com (J. Pineda de Gyvez).

ISPD contest enablement spans consideration of interconnect parasitics,

maximum transition time (MaxTran) and capacitance (MaxCap) con-

straints, and use of a commercial signoff timer for timing analysis. Sev-

eral academic sizers achieve good performance on the contest bench-

marks. However, due to highly artificial gate delay/power modeling,

as well as the lack of real-world timing constraints, winning codes are

unlikely to be able to handle core challenges of gate sizing optimiza-

tion in modern industrial designs. Indeed, it is our observation that

the simplified constraints in contest benchmarks can potentially drive

academic sizers in wrong directions. This paper describes our experi-

ence in identifying and overcoming this mismatch, as we evolved a suc-

cessful academic sizing approach to perform well in an industry design

context.

https://doi.org/10.1016/j.vlsi.2019.01.008

Received 29 November 2018; Accepted 25 January 2019

Available online XXX

0167-9260/© 2019 Elsevier B.V. All rights reserved.

Please cite this article as: H. Fatemi, et al., Enhancing sensitivity-based power reduction for an industry IC design context, Integration, the VLSI

Journal, https://doi.org/10.1016/j.vlsi.2019.01.008



H. Fatemi et al. Integration, the VLSI Journal xxx (xxxx) xxx

Limitations of academic sizers. We observe that the academic siz-
ing context has several potential inadequacies or gaps with respect to

commercial use cases, including the following. While an academic con-

test will never match the “real world”, we wish to highlight gaps that

potentially mislead academic research efforts’ identification of promis-

ing directions.

(1) Important constraint scenarios are overlooked in the aca-
demic context. Notably, constraints given by academic con-

tests do not include multi-corner multi-mode (MCMM) timing

analysis. MCMM timing signoff is essential for modern prod-

uct designs, where chip designs typically operate (i) under var-

ious operating conditions with different temperatures and volt-

ages, (ii) in multiple functional scenarios such as sleep mode

and active mode, and (iii) in a regime of manufacturing process

variations [4,5]. In digital timing signoff, a timing corner repre-

sents a particular combination of process, voltage and temper-

ature (PVT) status, and corresponds to a set of timing libraries

(Liberty) characterized for that dedicated PVT corner. A mode

represents a functional scenario, and is characterized by timing

constraints (.sdc). A timing view is defined by a pair of a tim-

ing corner and a mode [4,5]. In the MCMM context, multiple

timing views are considered, and must be simultaneously com-

prehended by gate sizing optimization.

In the MCMM context, the electrical properties of each gate, and

of its driven net, vary over different corners. We discuss below how

achieving and maintaining timing signoff across multiple corners and

modes (e.g., nominal, turbo and test modes) seems to require very

different optimization strategies from optimizations that are successful

for a single corner/mode. Further, a gate sizing optimization that does

not comprehend multiple corners/modes cannot – to our knowledge –

achieve a timing-legal solution for all corners and modes. Handling of

other constraint types, such as multiple clock/power domains, or timing

exceptions, seems to be further removed from the core heuristic design

of a gate sizing tool.

(2) Academic sizers are not “robust” across different designs
and technologies. Due to the nature of contests, academic siz-
ers can be “over-trained” with the specific set of testcases and

objectives that are given by a contest [6] evaluates a commer-

cial sizer and a contest-winning academic sizer with both contest

benchmarks and real designs synthesized with foundry technolo-

gies. The academic sizer is observed to perform better on con-

test benchmarks while showing worse results on real designs, as

compared to the commercial sizer. The authors of [6] point out

that the change in tools’ relative superiority across technologies

raises the possibility that the academic sizer might be specialized

to the contest benchmark designs.

In our experience, an academic sizer that applies strategies par-

ticularly adapted to contest benchmarks may not be capable of pro-

ducing good solutions for real-world designs. The reasons are (i) real

designs can differ from contest designs with respect to timing slack

distribution, netlist structure, instance count, etc.; and (ii) academic

sizers trained for a particular contest technology may not perform well

with different technologies since the electrical characteristics (i.e., leak-

age/dynamic power-delay tradeoff curves of standard cells) can dif-

fer meaningfully across process technologies. We have also found that

(iii) the simplified and artificial delay/power Liberty model of aca-

demic contests cannot capture meaningful electrical attributes of pro-

duction cell libraries. More specifically, nonlinear and state-dependent

power and delay values, nonlinear input capacitance values, and mul-

tiple power/ground pins, which are generally seen in foundry Lib-

erty models, are absent from the ISPD contest Liberty models. Due to

unrealistic Liberty models, contest benchmarks might not expose core

challenges of sizing optimization in product designs. For instance, fix-

ing MaxTran violations in an MCMM context was not comprehended.

This creates a risk of misdirecting considerable academic research

effort.

(3) Sizing contests typically do not require support for stan-
dard formats of Liberty and design files. Examples of stan-
dard formats include Verilog netlist (.v), extracted interconnect

parasitics (.spef), and timing constraints (.sdc). Typically, con-

test organizers provide simplified versions of such files with a

parser that only comprehends the simplified input formats. (Yet,

open-source and arguably more robust parsers for the full stan-

dard formats are available, e.g., Refs. [7–9].) In our view, the

lack of insistence on support for standard formats unnecessarily

hampers transfer of academic sizers to real-world design appli-

cations. This necessitates workarounds such as those developed

in Ref. [6]. Importantly, efforts that chain together the executa-

bles of entries from multiple academic contests are blocked from

assessment in real-world contexts.

Our work. In this paper, we present key learnings from a multi-

year “journey” to make an academic sizing tool applicable to, and yield

benefits for, a real industrial IC. We describe aspects of modern indus-

trial designs that are generally not comprehended by academic sizers,

but that strongly affect choice of optimization and metaheuristic tech-

niques. We also observe how various optimization techniques used in

academic sizers might not be appropriate for product designs due to

practical issues such as runtime. We have addressed such gaps between

contest-driven research and the real-world application by developing

Sizer, a new, robust gate sizing optimization tool that incorporates a

near-complete change of techniques as compared to our starting point

of Trident [3]. The transition from an academic contest setting to real-

world designs shows that techniques beneficial in the contest setting

may not have benefit for real designs – forcing the development and

tuning of a number of new techniques. Ultimately, Sizer achieves 7%

leakage power reduction over the commercial tool’s high-effort solution

on a production design, with signoff at over two dozen mode-corner

combinations.

Our contributions are summarized as follows.

• We highlight gaps between academic sizers and commercial siz-

ers due to missing real-world constraints and the character-

istics of industrial designs. We describe challenges of trans-

fer/productization that include MCMM timing signoff, maximum

transition time constraints, hold time constraints, and complex tim-

ing structure of a product design.

• We suggest that the “competitive landscape” of the gate sizing opti-

mization – including aspects that are particularly challenging to aca-

demic approaches – should be better conveyed to the research com-

munity. Our experiences with Sizer highlight how obliviousness to

aspects of real-world application such as practical runtime/memory

limits, input-dependent performance models, etc. can easily prevent

assessment of an academic sizer within a commercial design context.

• We develop Sizer, a new academic gate sizing tool that is applica-

ble to modern industrial designs. Results reported below show that

Sizer achieves solution quality improvement over high-effort com-

mercial tool results, and achieves benefits for a real industrial IC.

Sizer embodies a near-total change of techniques as compared to

the starting point of Trident [3], which had been successful at the

ISPD-2013 gate sizing contest [2].

• We implement dynamic and total power estimations which enable

Sizer to go beyond the original contest optimization objective i.e.,

leakage power-only optimization, and to smoothly control the trade-

off between dynamic and leakage power optimization.

• We compare Sizer with two leading commercial sizers.1 We achieve

7% leakage power reduction over the high-effort solution of a com-

mercial tool on a design from NXP Semiconductors [13]. We also suc-

cessfully apply Sizer to various testcases synthesized with different

foundry technologies.

2



H. Fatemi et al. Integration, the VLSI Journal xxx (xxxx) xxx

• We study the impact of various sensitivity functions on the solution

quality of Sizer and provide intuition regarding the choice of sensi-

tivity functions.

The remainder of this paper is organized as follows. In Section 2, we

review related work. Section 3 summarizes key practical constraints in

industrial designs that we believe strongly affect heuristic design in a

sizing tool. We introduce our new techniques in Section 4. Our overall

optimization flow is described in Section 5. We present experimental

results in Section 6 and conclude in Section 7.

2. Related work

Reflecting the importance of the application, numerous algorithms

for both continuous and discrete gate sizing optimizations have been

proposed in the literature. Earlier works have focused on continuous

gate sizing that optimizes parameters of transistors [40] or of stan-

dard cells, such as drive strength, input-pin capacitance, etc. Discrete

or library cell-based gate sizing works have applied a wide variety of

optimization techniques – Lagrangian relaxation (LR) [17–23,25–29];

dynamic programming (DP) [30,31]; sensitivity function-based opti-

mization (SF) [3,35,36,37–39]; branch and bound (BB) [32]; linear

programming (LP) [14–16]; parallel and randomized algorithm (RA)

[34]; and Simulated Annealing (SA) [33]. Table 1 taxonomizes previ-

ous gate sizing work. Columns 2–8 contain the frameworks that are

used for each gate sizing approach. Columns 9–12 show the objective

function of each work. Columns 13–16 show the important consider-

ations for real-world gate sizing. The last column shows whether the

literature applies its approach to real product designs. An overview of

selected recent literature for two popular frameworks, LR and SF, is as

follows. Some previous works cannot be categorized into a single par-

ticular framework, since more than one frameworks or techniques are

used. We attempt to categorize each reference according to the predom-

inant framework or technique used.

LR-based approaches. A number of recent works use LR-based

methods for gate sizing optimization. A successful recent application

of LR-based gate sizing optimization for industrial designs is described

by Ozdal et al. [23,24]. In Refs. [23,24], a cost function comprehend-

ing the tradeoff between power and timing slack is formulated and

then relaxed to a Lagrangian subproblem by Karush-Kuhn-Tucker con-

ditions as in Ref. [17]. The subproblem is modeled as a graph problem

and solved by using critical tree extraction and DP-based optimization.

The work of [23,24] is notable for its thorough treatment of real-world

issues such as those we highlight. But, details of implementation are not

available to the research community. Subsequent academic work driven

by Refs. [1,2] does not capture real-world issues as [23,24] do. Huang

et al. [19] suggest a method to obtain Lagrangian multipliers based on

the timing history of previous iterations to improve the conventional

subgradient-based method. Rahman et al. [25] use an extended logi-

cal effort for gate delay modeling to formulate LR problems to which

dynamic programming is applied. Flach et al. [20] propose a gate siz-

ing optimization flow that combines LR-based framework and various

heuristics. In Ref. [20], the LR problem is solved by a sensitivity-based

approach; greedy timing and power optimization is subsequently per-

formed. Reimann et al. [26] extend [20] to adapt the LR-based gate

sizing to industrial designs. In Ref. [26], runtime scalability, preserving

timing quality and incremental optimization are considered. Roy et al.

[27] solve the gate sizing problem in the context of multiple operating

conditions. They extend the LR-based gate sizing approach of [17,23]

to support multiple scenarios. More specifically, the authors of [27] use

the weighted sum of leakage and dynamic power across different oper-

ating conditions as the objective function.

We note that many of LR-based works construct simple analytic gate

delay models to encompass the discrete gate sizes found in Liberty gate

timing libraries. Such analytic gate delay models might not be accu-

rate due to nonlinear characteristics of gate delays. The suboptimality

Ta
bl
e
1

S
u
m
m
a
ry
o
f
w
o
rk
s
o
n
g
a
te
si
zi
n
g
o
p
ti
m
iz
a
ti
o
n
.

W
o
rk

Y
e
a
r

F
ra
m
e
w
o
rk

O
b
je
ct
iv
e

In
te
rc
o
n
n
e
ct
d
e
la
y

M
a
x
T
ra
n

M
a
x
C
a
p

M
C
M
M

R
e
a
ld
e
si
g
n
s

L
P

L
R

D
P

S
F

B
B

S
A

R
A

L
e
a
k
a
g
e

T
o
ta
lP
w
r

D
e
la
y

A
re
a

[1
4
]

9
0

✓
✓

[1
5
]

0
5

✓
✓

✓
[1
6
]

0
9

✓
✓

[1
7
]

9
9

✓
✓

✓
[1
8
]

0
5

✓
✓

[1
9
]

1
1

✓
✓

✓
[2
0
–
2
2
]

1
4
,
1
2
,
1
4

✓
✓

✓
✓

✓
[2
3
,2
4
]

1
1
,
1
2

✓
✓

✓
✓

✓
✓

[2
5
,2
6
]

1
3
,
1
5

✓
✓

✓
✓

[2
7
]

1
5

✓
✓

✓
✓

✓
[2
8
]

0
2

✓
✓

✓
[2
9
]

1
5

✓
✓

✓
[3
0
]

0
9

✓
✓

[3
1
]

1
0

✓
✓

✓
[3
2
]

1
1

✓
✓

✓
✓

[3
3
]

1
3

✓
✓

✓
✓

[3
4
]

0
9

✓
✓

✓
[3
5
]

0
6

✓
✓

✓
[3
6
,3
7
]

1
2
,
1
2

✓
✓

✓
✓

✓
✓

[3
]

1
3

✓
✓

✓
✓

✓
✓

✓
[3
8
,3
9
]

0
4
,
0
0

✓
✓

o
u
r
w
o
rk

✓
✓

✓
✓

✓
✓

✓
✓

3



H. Fatemi et al. Integration, the VLSI Journal xxx (xxxx) xxx

caused by the combination of inaccurate delay models and intrinsic dis-

creteness of the gate sizing problem is one of the major limitations of

LR-based approaches. Furthermore, for industrial designs, model-based

mathematical methods may be inefficient due to complex constraints

such as MaxTran and MaxCap.

SF-based approaches. Wei et al. [39] use the sensitivity function
(SF) approach (i.e., iteratively making discrete sizing moves to follow

the gradient of a given SF) for simultaneous sizing and dual-V t assign-

ment. Srivastava et al. [38] propose a dual-V dd and dual-V t assign-

ment method based on sensitivity calculations. Gupta et al. [35] use

the sensitivities of leakage and delay to gate-length biasing for leak-

age power optimization. Rahman et al. [37] apply a cost function that

considers total slack and leakage changes. Kahng et al. [36] propose

sensitivity-guided metaheuristics based on sequential importance sam-

pling and a multistart technique with various sensitivity functions to

optimize gate sizing and V t flavor for minimized leakage. In follow-on

work, the optimizer is improved with an efficient and accurate internal

timer based on various delay models [3]. To ensure the accuracy of the

internal timer, timing information is correlated to the signoff timer’s

analysis during the gate sizing optimization, using techniques proposed

in Refs. [41,42].

Our work is distinguished from previous literature in that – to the

best of our knowledge – it is the first academic work, available to

public [43], that simultaneously addresses all the essential constraints

for industrial designs. Further, we provide evaluation using a product

design in an industry context.

3. Constraints for modern industrial designs

We now review examples of practical constraints that are not

emphasized in previous published works and academic contests, but

are critical for modern industrial designs.

Ozdal et al. [23,24] give a comprehensive summary of the main

optimization challenges for gate sizing in modern industrial designs.

These challenges are formulated in the ISPD-2012 and the ISPD-2013

Gate Sizing Contests [1,2]; many practical considerations such as use of

a golden signoff timer, interconnect parasitics, maximum transition and

capacitance constraints are addressed in the provided testcases. How-

ever, in addition to unrealistic Liberty, we find that there are several

missing constraints that must be considered for a product design in

industry.

Multi-Corner Multi-Mode (MCMM). For modern product designs,
a number of PVT corners, along with various functional modes, must be

considered during timing signoff. Due to the different delay and power

characteristics of cells across multiple corners, it is difficult to achieve

a converged solution in the MCMM context. In other words, a signed-

off netlist at a particular corner and mode could have timing violations

at other corners and modes. Furthermore, there exist “ping-pong” situa-

tions where an upsizing move for setup timing recovery in a timing view

(a pair of PVT corner and mode) causes timing violations in another

timing view. Fig. 1 shows an Example of the ping-pong situation. We

assume that C2 and C4 are on the setup timing-critical path in view1,

and that C1, C3, C5 and C6 are on the timing-critical path in view2. To

reduce the critical path delay in view1, C2 must be upsized. However,

the increased input capacitance of C2 increases the load capacitance of

C1 (a fanin cell of C2) and thus increases C1’s delay. As a result, a timing

violation occurs in view2. Similarly, upsizing cells in view2 can create

timing violations in view1. In modern process technologies, the ping-

pong situations become significantly worse with the explosion of PVT

corners [44]. A gate sizing optimization must comprehend the timing

impact of each V t swapping or width sizing move in all views simul-

taneously, and be able to avoid the ping-pong situations efficiently to

obtain a converged solution.

Importance of transition time. The maximum transition (Max-

Tran) constraint is an upper limit for the transition time at a pin of a

gate [1,2,4,5]. The MaxTran constraints are specified in timing libraries

Fig. 1. Example showing a ping-pong situation during timing recovery for

MCMM.

or via the set_max_transition command in EDA tools [4,5]. The actual

transition time is checked against the MaxTran constraint for every pin

in the netlist. For Example, if the input pin of an INVX1 instance has

a MaxTran constraint of 10, and the actual transition time at the input

pin is 15, then the pin violates the MaxTran constraint.

Fixing MaxTran violations is important for product designs for (i) an

accurate timing analysis, and (ii) total power optimization. More specif-

ically, in NLDM (Non-Linear Delay Model)-library-based timing analy-

sis, which is still widely used in mature process technologies, violating

the MaxTran constraint can induce an inaccurate cell delay calculation

due to extrapolation of the cell delay table. A large transition time also

increases the internal power of gate instances and harms netlist quality

in terms of total power.

The ISPD contest benchmarks [1,2] include MaxTran constraints as

one of the criteria for legal solutions. However, due to the unrealis-

tic timing library, MaxTran violations are relatively easy to fix in the

contest technology. For Example, the sensitivity of the output transi-

tion time of a cell to its load capacitance is relatively small compared

to the sensitivity to its drive strength. Thus, in the contest technology,

upsizing a cell will always trivially cure a MaxTran violation without

causing any new violation on its upstream driving cell. However, in

reality, depending on netlist topology (e.g., having many high-fanout

nets) and technology, MaxTran constraints can be easily violated and

the violations are difficult to fix. For example, upsizing cells causes tran-

sition time violations at the output pins of their fanin cells due to load

capacitance increase. Thus, a viable strategy for fixing MaxTran viola-

tions must comprehend both the topology of the input netlist and the

ripple effect of upsizing cells. We observe that in practice, the MaxTran

constraint becomes a “first-class” concern at 65 nm and below enable-

ments; a gate sizing optimization that is oblivious to such constraints

can result in numerous violations, even when other timing constraints

such as setup and hold are met.

Hold time consideration. Hold time violations are more critical

than setup time violations in product designs since the functionality of a

design fails if any hold time violation exists. Despite its importance, the

hold time constraint has not been emphasized in academic benchmarks

due to the nature of gate sizing for power optimization; most cells are

downsized and replaced with higher-V t cells, which are less likely to

incur many hold time violations. However, hold time violations become

more critical in the MCMM context, as well as during timing recovery

and MaxTran fix optimizations. In particular, upsizing width or decreas-

ing V t during the timing recovery can lead to hold time violations in a

hold-critical timing view, depending on the structure of timing paths in

the input design.

Complex structure of a product design. A product design is more
complicated than academic benchmarks in many aspects, as it may

involve multiple power domains, multiple clocks, and the existence of

memories and macros. To support multiple power domains, instances in

different power domains must be analyzed with multiple timing/power

Liberty tables. Different clock periods due to multiple clocks per timing

endpoint such as flip-flops and primary outputs must be handled for

an accurate timing analysis. Additional handling in timing analysis is

required for memories and macro blocks. That is, the timing graph of a

4



H. Fatemi et al. Integration, the VLSI Journal xxx (xxxx) xxx

Table 2
Comparisons of Trident [3] (Tri) and this work (Szr).

Techniques Tri [3] Szr

MCMM-aware static timing analysis – ✓
MCMM-aware timing recovery – ✓
MCMM-aware sensitivity function – ✓
Transition time correlation – ✓
Total power estimation – ✓
Dynamic change of sensitivity function – ✓
Prioritization of moves – ✓
Kick move ✓ ✓
Go-with-the-winner (GWTW) ✓ –

Peephole optimization ✓ –

design must properly capture.sdc constraints pertaining to timing paths

involved with memories or macros. Lack of understanding of memories

and macro blocks in an academic sizer results in significantly degraded

solution quality with inaccurate timing slack values.

4. Our techniques

We now describe key techniques incorporated in Sizer. Driven by

practical constraints seen in product designs, we introduce new fea-

tures and techniques including (i) MCMM-aware SF; (ii) total power

estimation; and (iii) MaxTran violation fixing.

4.1. Comparisons to Trident [3]

Trident is an academic sizer originally developed for the ISPD-

2013 Gate Sizing Contest [2]. The core engine is based on sensitivity-

guided metaheuristics. A multistart technique (go-with-the-winners, or

GWTW [45]), kick moves (following the large-step Markov chain opti-

mization technique [46]) and peephole optimization are used in Trident.

The GWTW metaheuristic performs repeated optimizations within ran-

domized multistarts to effectively explore a large search space. More

specifically, Trident runs multiple optimizations concurrently, guided

by different sensitivity functions, and records the best solution at pre-

scribed intervals. The kick move technique, which originated in large-

step Markov chain optimization, attempts to make a large change, i.e.,

by upsizing many cells at once, to escape local optima and reach a

solution that is closer to a global optimum. The peephole optimization

entails exhaustive search for the best size combination for a small path-

connected series of cells.

Table 2 summarizes the optimization techniques used in Trident

([3]) and Sizer (our work). We do not include the sensitivity func-

tion (SF) framework itself in the table since SF-based gradient-following

(greedy, steepest descent) algorithm is not new to Ref. [3]; it was in the

SensOpt package [47] from which [3] was derived. The Blaze MO tool

[12] is another Example of sensitivity-based sizer. MCMM-awareness

is our key improvement to support product designs. Data structures

in Sizer store timing information for each timing view. New sensi-

tivity functions for MCMM are developed to enable effective MCMM-

aware optimization for both timing recovery and power reduction.

Total power estimation is added as well, to guide the total power opti-

mization. Additionally, with the increased importance of transition time

in real designs, we notice that obtaining accurate transition time is

essential for the optimization. We thus implement the internal timer

of Sizer to improve the accuracy of transition time. We adopt the tran-

sition time correlation method of [42], whereas Trident [3] performs

only slack correlation.

We note that a number of distinguishing innovations in Ref. [3]

such as the use of GWTW and peephole optimization were eventually

discarded in Sizer because no benefit could be seen in the production

context. For realistic designs with many (i.e., >30) timing views and

multiple clocks, the optimization complexity increases dramatically.

Table 3
Notations.

Notation Meaning

P weighted sum of leakage and dynamic power

D clock period

TNS total negative setup time slack

WNS worst negative setup time slack

si setup time slack of cell i

di delay of cell i

ci load of cell i

tranj transition time at pin j

tranmax maximum transition time

stran
i

maximum transition time slack of cell i

#pathsi number of register-to-register paths going through cell i

𝜷v weighting factor for view v for MSF3

𝛾 normalizing factor for transition time slack

For Example, the GWTW paradigm requires additional cores according

to the number of multistarts, and each individual optimization requires

multiple timers to support MCMM. Thus, GWTW demands huge com-

puting resources in the production context, due to its greater complex-

ity of timing analysis. Peephole optimization is also computationally

demanding, since it attempts to evaluate multiple combinations of solu-

tions for several cells at a time. Such approach is infeasible if computing

resources and runtime are limited. Crucially, our background experi-

ments showed that even with huge computing resource consumption,

the two techniques have little or no benefit in terms of solution quality.

For example, the additional leakage reduction obtained from GWTW

is 1% at the cost of 2.5 × runtime, for the aes design. For the m0

design, 3% more leakage reduction can be achieved, but at the cost

of 4.3 × runtime. With use of peephole optimization, our background

studies found that the final leakage power worsens for both the aes and

m0 designs, by 2.6% and 1.0%, respectively.

4.2. New sensitivity functions in the MCMM context

Sensitivity functions (SFs) are used as guidance to select sizingmoves

(V t swapping or sizing) that give the maximum power reduction ben-

efit with the minimum timing impact. 2 For this purpose, an SF should

calibrate the power benefit at the expense of timing slack degradation,

or vice versa. However, it is not straightforward to estimate timing or

power impact of a sizing move on the design since (i) the entire timing

graph, which is very complex in modern product designs must be com-

prehended due to the nature of timing calculation propagation toward

downstream cells, and (ii) in the MCMM context, variations across mul-

tiple corners must be considered as discussed in Section 3.

To address these challenges, we introduce new estimations of timing

and power impact, considering MCMM, for our SFs as follows.

Table 3 summarizes the notations that we use in our SFs. Each nota-

tion can be extended by adding subscript v to represent the notation

associated with timing view v. I.e., si,v is slack of cell i in timing view v.

• P denotes a weighted sum of leakage and dynamic power. We

provide a detailed discussion of power calculation in Section 4.3

below.

• si denotes the timing slack of cell i. We consider only setup time

slack for our SFs. We consider hold time differently in our optimizer.

We revert any V t-swapping/sizing move that results in any hold

time violation. This is for two main reasons. First, during the power

reduction stage, due to the nature of power optimization where cells

are downsized and/or swapped to higher V t cells, delays of the opti-

mized cells typically increase, which is actually better for timing

paths with respect to hold time. Second, during timing recovery,

as we seek to cure setup-violating paths, the target cells for upsiz-

ing are mostly setup-critical.3 Also, inclusion of hold time increases

computation complexity.

5



H. Fatemi et al. Integration, the VLSI Journal xxx (xxxx) xxx

Table 4
Sensitivity functions for a single view and MCMM.

Type Index Equation

Single SF1 ΔP
SF2 ΔP · si
SF3 ΔP∕Δdi
SF4 (ΔP · si)∕#pathsi
SF5 (ΔP · si)∕(Δdi ·#pathsi)
SF6 −ΔP∕(Δsi ·#pathsi)

MCMM MSF1 ΔP ·min(minv∈views(si,v −Δdi,v), 𝛾 ·minv∈viewsstrani,v
)

MSF2 (ΔP ·min(minv∈views(si,v − Δdi,v)∕ci,v, 𝛾 ·minv∈viewsstrani,v
∕ci,v))

MSF3 ΔP ·#pathsi · sumv∈views𝜷v∕Δdi,v

• di denotes the delay of cell i. For Δdi in SFs, we calculate the delay
of each input to output timing arc of cell i before and after a given

move, and return the largest arc delay change.

• ci is the output load of cell i; this output load includes wire capaci-

tance and the sum of input pin capacitances of cell i’s fanout cells.

• stran
i

is the minimum value of (tranmax − tranj), over all pins j of cell

i.

• #pathsi is the number of register-to-register paths that pass

through cell i. #pathsi is calculated by multiplying the number

of downstream registers and the number of upstream registers of

cell i.

Table 4 shows SFs for single-view and MCMM optimizations. ΔP,
Δsi and Δdi denote the differences in P, si and di values, respectively,
before and after a move of cell i. For Example, ΔP is the power (total
or leakage power) of the design after a move subtracted by the original

power value.

SF for a single view. In Table 4, SF1 simply prioritizes cells that
offer large power reduction. SF2 prioritizes cells with large timing

slacks that also offer large power reduction. SF3 selects cells that have

a smaller delay penalty but a larger power reduction. SF4 is a varia-

tion of SF2, but we add #paths so that we do not pick cells that affect

slacks of many timing paths. SF5 is a combination of SF3 and SF4.

SF6 picks cells that have less impact on total negative slack (TNS) but

have more power reduction. To reduce runtime, we estimate ΔTNS as
(−Δsi · #paths).

SF for MCMM. Simultaneous consideration of multiple timing views
is important since (i) power-critical views are different from timing-

critical views, and (ii) timing must be signed off in all the given timing

views. Thus, SFs always need to consider the “worst” timing/power

impact considering each of the given timing views. We propose new

SFs to guide the optimizations in the MCMM context, i.e., MSF1, MSF2

and MSF3, as shown in Table 4. Here, ΔP in all MSFs is calculated in
the most power-critical view. MSF1 prioritizes cell moves that lead to

large setup time slack (si −Δdi) and MaxTran slack, in conjunction with
large power reduction. For the setup time slack and MaxTran slack, the

minimum values across all timing views are considered. For 𝛾, normal-

izing factor for MaxTran slack, we empirically use 0.5 in our reported

studies based on results of background experiments. MSF2 is a variation

of MSF1. In MSF2, ci is used as a denominator to avoid downsizing cells

with larger load capacitance (or many fanout cells). This helps to avoid

MaxTran violations.

MSF3 uses weighting factor 𝛃v to prioritize timing-critical views

and thus address different timing constraints and slacks for each timing

view. We study three weighting factors: (i)
1

Dv
; (ii)

TNSv
Dv

; and (iii)
WNSv
Dv

.

Based on our experimental results on design m0 in 28 nm LP technol-

ogy, using weighting factors (i), (ii) and (iii) respectively leads to 26%,

13% and 4% less runtime needed to achieve a timing-feasible solution,

compared to timing recovery without weighting factors.

Example. The following example illustrates how SF values for a sin-

gle timing view and MCMM are calculated. Let us assume three timing

views, i.e., v1, v2, v3, and v3 is the power-critical view. The correspond-

Table 5
Parameter conditions and their implications.

Index Parameter Condition Implication

ΔP si Δdi Δsi
1 ± ± + + N/A

2 ± ± – –

3 – ± – + Always pick

4 + ± + – Always avoid

5 + – – + Timing recovery (TR)

6 + + – + Avoid (Aggressive TR)

7 – + + – Power reduction (PR)

8 – – + – Avoid (Aggressive PR)

ing power, setup time slack, delay, transition time slack, #paths and

output load for cell i are summarized as follows.

• Setup time slack: si,1 = 10, si,2 = 5, si,3 = 20

• Transition time slack: stran
i,1

= 20, stran
i,2

= 16, stran
i,3

= 40

• ΔPower: ΔP1 = 3, ΔP2 = 4, ΔP3 = 6

• ΔDelay: Δd1 = 6, Δd2 = 3, Δd3 = 1

• The number of paths: #paths = 5

• Output load: ci,1 = 2, ci,2 = 2, ci,3 = 2

• 𝜷: 𝜷1 = 0.3, 𝜷2 = 0.2, 𝜷3 = 0.1

Each SF considering view v1 only is calculated as follows.

• SF1: ΔP1 = ΔP = 3

• SF2: 3 · 20 = 60

• SF3: 3∕6 = 0.5

• SF4: 3 · 20∕5 = 12

• SF5: 3 · 20∕(6 · 5) = 2

• SF6: −3∕(20 · 5) = − 0.03

And, each MSF considering all timing views, i.e., v1, v2 and v3, is

calculated as follows.

• MSF1:ΔP =ΔP3 = 6;minvsi,v −Δdi,v = 2;minvstrani,v
= 16;MSF1 = 6 ·

min(2,8) = 12

• MSF2:ΔP = maxvΔPv = 6;minv(si,v −Δdi,v)∕ci,v = 1;minvstrani,v
∕ci,v =

8;MSF2 = 6 ·min(1,4) = 6

• MSF3: 6∕5 · (0.3∕6 + 0.2∕3 + 0.1∕1) = 0.26

The complexity of SF and MSF computation for a single cell are O{1}

and O(N), respectively, where N is the number of timing views.

Parameter conditions for SF usage. Table 5 summarizes parame-
ter conditions and their implications. “+” means a positive value, “-”
means a negative value. Δdi and Δsi cannot be both positive or neg-
ative, so we do not consider such cases (Conditions 1 and 2). If fanin

and/or fanout cells of target cell i are affected, Δdi and Δsi can be

both positive or both negative. However, such cases are extremely rare

in our experiments. We always pick moves that provide both power

and timing benefits (Condition 3). Similarly, we avoid moves leading

to both power and delay penalties (Condition 4). For timing recovery,

we use SF6 and MSF3 if Condition 5 is met. We do not consider cells in

Condition 6 for upsizing or decreasing V t. During power reduction, we

calculate SFs for a move such that Condition 7 is met. SF1-6, MSF1-2

are used for such cases in our experiments. For Condition 8, we do not

allow downsizing/increasing V t since aggressive power reduction leads

to excessive timing violations.

4.3. Total power estimation

In this subsection, we describe Sizer’s capability to perform total

(weighted) power reduction. To comprehend the total power optimiza-

tion, we consider both leakage and dynamic power. Dynamic power

consists of net switching power and cell internal power.

6



H. Fatemi et al. Integration, the VLSI Journal xxx (xxxx) xxx

Fig. 2. Example internal power estimation of a 2-input cell.

For leakage power calculation, we directly use the leakage value

of each cell from Liberty files. Since leakage is state-dependent in

the Liberty files, we use the average leakage value across different

states as an approximation. We empirically observe that such approx-

imation overall improves optimization runtime while offering rela-

tively accurate leakage estimation. If state probabilities are avail-

able from dynamic simulation and power analysis, then replacing

the arithmetic mean across states with a weighted average would be

straightforward.

We estimate the net switching power of a net as
CV2 Tr

2
, where C

is the total net capacitance, i.e., the sum of wire capacitance and the

capacitance of cell input pins connected to the output of the wire, V

is the supply voltage, and Tr is the toggle rate of the net. We extract

the toggle rate and wire capacitance of each net from a golden sig-

noff timer; input pin capacitances of cells are obtained from Liberty

files.

For cell internal power, we obtain the values from lookup tables

(LUTs) in Liberty files based on input slew and output load of the cell.

We note that there exist multiple internal power LUTs for a given cell,

where each table corresponds to a particular transition arc, that is, a

pair of an input pin and an output pin. As our power analysis is vector-

less, we normalize the internal power values related to different input

pins based on the toggle rates at pins of the cell. An Example of a 2-

input cell is given in Fig. 2, where cell G has input pins A and B. We

estimate the internal power of cell G (PG) as follows.

PG =
(Pint ,A · TrA + Pint ,B · TrB) · TrZ

TrA + TrB
(1)

Here, (i) Pint,A and Pint,B are respectively the internal power values

related to input pins A and B based on LUTs, and (ii) TrA, TrB and

TrZ are respectively the toggle rates at input pins A, B and output pin

Z. In the Example, PG is calculated as 0.67 according to Eq. (1).

Note that for every sizing or V t swapping, pin capacitance and

slew values change and thus the net switching power and internal

power change. To adapt our sensitivity functions for total power opti-

mization, we replace the power terms P in SFs in Section 4.2 with

𝛼 · Pleak + (1 − 𝛼) · (Pint + Psw), where Pleak, Pint and Psw indi-

cate leakage power, internal power and net switching power respec-

tively. 𝛼 is a weighting factor to trade off between leakage power and

dynamic power optimization. A larger (resp. smaller) 𝛼 value leads to

a greater reduction in leakage power (resp. dynamic power). To our

knowledge, previous literature on gate sizing optimization for total

power optimization typically uses gate capacitance or transistor width

for dynamic power estimation. By contrast, to achieve a more accu-

rate total power estimation, we follow industrial standard practice and

estimate dynamic power based on both net switching power and cell

internal power.

4.4. Handling maximum transition constraints

Our Sizer has two specific features to handle MaxTran violations:

(i) transition time correlation, and (ii) a dedicated procedure for fixing

MaxTran violations.

As pointed out in Section 4.1, Trident [3] performs slack correlation

between its internal timer and the signoff timer for a more accurate

slack estimation. However, lack of transition time correlation in its opti-

mization can result in additional MaxTran violations due to transition

time mismatches. We thus perform transition time correlation in Sizer

using the method of [42], in addition to the slack correlation.

Algorithm 1 Procedures for fixing MaxTran violations.
Procedure: FixMaxTran(netlist,max_tran)
Input: netlist netlist, MaxTran constraint max_tran
Output: optimized netlist with reduced transition time violations
1: for all cell c ∈ netlist, in topological order do
2: for all violating pin vp ∈ c do
3: if vp is an output pin of c then
4: for all focell ∈ fanout cells of c do
5: downsize focell

6: if sc < 0 then revert the move
7: if tranvp ≤ max_tran then break
8: end for
9: while tranvp > max_tran do
10: UpsizeCellforTran(vp, c)

11: end While
12: else
13: ficell← the fanin cell of the input net of vp

14: while tranvp > max_tran do
15: UpsizeCellforTran(vp, ficell)

16: end While
17: end if
18: end for
19: end for

Procedure: UpsizeCellforTran(vp, cell)
Input: violating pin vp, cell cell
Output: updated netlist

20: SF_size← Δtranvp∕ΔP (when upsized)
21: SF_vt ← Δtranvp∕ΔP (when Vt swapped)
22: if SF_size = = 0 and SF_vt = = 0 then return
23: if SF_size < SF_vt then
24: upsize cell

25:else
26: decrease V t of cell

27: end if
28: if scell < 0 then revert the move

Algorithm 1 shows procedures to fix MaxTran violations. In the

FixMaxTran procedure, if the violation occurs at an output pin, we visit

all fanout cells of the violating pin (focell), and perform downsizing

on each of the fanout cells until the maximum transition violation is

fixed, unless the downsizing move leads to a timing violation (Lines

4–8). If downsizing moves of the fanout cells do not fix the maximum

transition violation, we perform upsizing or decreasing V t of the vio-

lating cell by invoking the UpsizeCellforTran procedure (Lines 9–11).

If the violation occurs at an input pin, we perform upsizing width or

decreasing V t of the fanin cell by invoking the UpsizeCellforTran proce-

dure (Lines 14–16). In UpsizeCellforTran, we first evaluate the resultant

transition time reductions from upsizing and decreasing V t as well as

the corresponding power penalties (Lines 20–21). If the transition time

does not improve with both moves, we do not perform upsizing (Line

22). Between upsizing and decreasing V t, we pick the move that has a

larger ratio of transition time reduction to power penalty (Lines 23–25).

We revert the move if it leads to a timing violation (Line 28).

4.5. Other techniques for better optimization

In this subsection, we describe several other techniques used to

achieve improved optimization.

7



H. Fatemi et al. Integration, the VLSI Journal xxx (xxxx) xxx

Fig. 3. Leakage vs. delay of V t swapping and sizing in (a) 140 nm (TT, 1.5 V, 25 ◦C) (b) 28 nm LP (TT, 1.0 V, 25 ◦C).

Prioritization of move type. We introduce prioritization of a cer-
tain move type on top of the SF-based prioritization for the follow-

ing two reasons. First, the types of SFs we use cannot differentiate

between (i) a move that leads to large power reduction as well as

large delay increase, versus (ii) a move that has small impact on

both power and delay. Second, at early optimization stages when

there is sufficient timing slack for power optimization, (i) is pre-

ferred to (ii), in order to achieve faster convergence to the local

minima.

Fig. 3 shows the leakage-delay tradeoff of buffers (with two V t

flavors and various gate sizes) in (a) 140 nm and (b) 28 nm LP tech-

nologies. The leakage and delay values of higher (resp. lower) V t

cells are shown in red (resp. blue) dots. The delay values of each

gate are calculated based on NLDM libraries with a fixed input tran-

sition 50 ps and a load equal to four times the input pin capacitance

of the driving gate. Fig. 3 shows that the leakage values of higher

V t cells (i.e., UVT and RVT) are lower than those of lower V t cells

(i.e., SVT and LVT). The naming conventions for high and low V ts

vary according to particular foundries and technology nodes. In the

140 nm dual-V t library, UVT (Ultra-high threshold voltage) and SVT

(Standard threshold voltage) respectively correspond to high and low

V ts. In the 28 nm dual-V t library, RVT (Regular threshold voltage)

and LVT (Low threshold voltage) respectively correspond to high and

low V ts.

V t flavor has much larger impact on leakage power than does gate

size. We therefore expect that V t swapping is a stronger lever than siz-

ing for leakage optimization. However, if we use SF3, move2 in Fig. 3

will be selected over move1, even though move2 is a stronger solu-

tion for leakage optimization. For dynamic power optimization, due to

its direct impact on total design capacitance, sizing is preferred over

V t swapping. Thus, in the contest of different optimization objectives,

we prioritize either V t swapping or sizing during our optimization.

More specifically, we pick the moves with preferred move type among

the top-k candidate moves (sorted by the sensitivity scores4) to exe-

1 The two commercial sizers are from two commercial entities and are

selected from among various commercial sizers (standalone, or integrated in

a timing or a place-and-route tool) that are listed under Timing Analysis, ASIC

Layout and/or Power Analysis and Optimization by the industry analyst firm

Gary Smith EDA [10] over the past three years. The universe for this selection

includes Synopsys PrimeTime [5], Cadence Encounter Digital System/Innovus

[11], Blaze MO [12], and Cadence Tempus [4]. We are unable to identify the

tools more specifically due to license restrictions and sensitivity of EDA ven-

dors.
2 Throughout this work, a “move” indicates a V t-swapping or sizing move of

a cell, not a physical movement in placement.
3 Even in industrial timing ECO flows, the setup-hold critical paths are typi-

cally fixed by engineers manually instead of commercial sizers [48].
4 We use “sensitivity score” to refer to the values calculated by SF.

Table 6
User-defined input parameters.

Notation Meaning (default)

SFp, SF
′
p

sensitivity functions for power reduction (MSF1, MSF2)

SFt sensitivity function for timing recovery (MSF3)

X #trials for cell V t swapping or sizing (20% of total #cells)

𝛼 controls leakage and dynamic power optimizations (0.0)

Omax number of optimization loops {8}

Tmax maximum number of iterations of timing recovery {30}

PRmax maximum number of candidate moves for prioritization {40}

Smax threshold for dynamic change of SF {5}

Xk maximum #trials allowed for kick move (0.05% of total #cells)

thp minimum allowed slack threshold for power reduction (−20 ps)
thk maximum allowed slack threshold for kick move (20 ps)
𝛿 threshold for correlation (5% of total #cells)

cute. Put another way: we ignore the non-preferred move type dur-

ing our optimization unless there is no move of the preferred move

type among the top-k candidate moves. Note that the value of k trades

off the effect of sensitivity function versus that of the preferred move

type for selection of optimization moves (e.g., a small k indicates that

the optimization honors sensitivity scores more). Based on our sep-

arate study, we empirically use k = 40 (PRmax in Table 6) in our

experiments.

Dynamic change of SF. In a SF-based optimization, the definition
of SF can significantly affect the optimization solution quality. An opti-

mal SF choice is dependent on the status of netlists as well as input

design information that is initially given (e.g., foundry technologies

or libraries, initial netlists, timing constraints, and optimization objec-

tives). Thus, using a single SF throughout the entire optimization pro-

cedure increases the likelihood of getting stuck at local minima. To

avoid such a situation, we dynamically change the SF during our opti-

mization to adapt to the status of the input netlist. More specifically,

Sizer changes SF whenever the optimization with the current SF can-

not achieve further power reduction. Based on our experimental results

in foundry 140 nm technology, such a dynamic change of SF achieves

∼2% further leakage power reduction.

4.6. Unsuccessful techniques

In this subsection, we describe several techniques that have not

shown noticeable benefits in our experiments and were eventually

dropped.

Tabu search. We have attempted a form of Tabu search [49] dur-

ing our gate sizing optimization to avoid being stuck at a local mini-

mum. More specifically, we record three to five most recent sizing/V t-

swapping moves performed in the power reduction (resp. timing recov-

ery) stage and forbid these moves for the following timing recovery

(resp. power reduction) stage. We initially thought that this would

8



H. Fatemi et al. Integration, the VLSI Journal xxx (xxxx) xxx

Fig. 4. Overview of the overall optimization flow.

reduce the likelihood of being stuck at a local minimum. However, the

Tabu-search-inspired strategy has not helped to improve the solutions

for our testcases since there were not many cells that went back to their

previous status. We believe that the use of different SFs in the power

reduction and timing recovery stages might help avoid previously-

visited solutions for each cell.

Smart guardband. We have attempted “smart”, or variable

guardband-based, optimization. Here, we refer to a timing margin that

is added to timing slack as a guardband. Using a positive (resp. nega-

tive) guardband means that timing analysis becomes optimistic (resp.

pessimistic) by the amount of the guardband. We have tried varying

these guardbands depending on the iteration count within the overall

optimization. More specifically, we have used a positive guardband at

the initial several iterations of the optimization procedure. We then

gradually decrease the guardband at the later iterations of the opti-

mization procedure; in the end, zero guardband is applied so that no

timing violation is allowed. In our experiments, this approach has not

improved the solution but has only rather increased runtime.5 Due

to the optimism introduced at the first few iterations, Sizer downsizes

and/or V t-swaps gates too aggressively and ends up spending a lot of

time on timing recovery.

Multi-step sizing and V t swapping.We have attemptedmulti-step
sizing and V t swapping during timing recovery stages. For Example, if

1 × , 2 × and 4 × sizing options are given for a specific gate instance,

we have considered 1 × to 4 × (two-step) sizing in addition to 1 × to

2 × (one-step) sizing. Similarly, if LVT, RVT and HVT V t flavors are

given, we have considered LVT to HVT swapping. In our studies, we

calculated sensitivity scores for multi-step moves and added them to

the candidate list. However, multi-step moves were rarely picked based

on the sensitivity scores. Rather, calculating sensitivity scores of these

additional moves increases runtime significantly. We conclude that one-

step moves are sufficient to consider for timing recovery in our experi-

ence.

5. Overall optimization flow

In this section, we describe the overall optimization flow of Sizer

and the details of key procedures. Fig. 4 shows the overall optimiza-

5 This recalls the metaheuristic paradigm of threshold acceptance; see, e.g.,

Ref. [50].

tion flow of Sizer. The optimization flow is an adapted version of [3]

with our new techniques that are essential for commercial product

designs. The optimization consists of three stages: (i) the sensitivity-

based power reduction stage, (ii) the timing recovery stage, and (iii)

the kick move stage. In the power reduction stage, Sizer attempts

to downsize cells or swap cells to high-V t cells based on sensitiv-

ity scores until timing becomes infeasible in any timing view. In this

stage, the dynamic change of SF, the MCMM-aware sensitivity func-

tion and the prioritization of moves are applied as discussed in Sections

4.2 and 4.5. In the timing recovery stage, upsizing and/or V t swap-

ping based on SF is performed to fix any timing violation occurred

during the power optimization stage. In the kick move stage, Sizer

attempts to upsize/swap cells in order to escape local optima and

increase timing slack so that more cells can be downsized. We iter-

ate the optimization loop multiple times and store the best solution

(i.e., minimum power solution with legal timing) obtained during the

optimizations.

Algorithm 2 The overall optimization flow.
Procedure: PowerOpt(netlist,…)
Input: netlist netlist, user-defined inputs (See Table 6)
Output: an optimized netlist
1: best_sol← input

2: SF← SFp
3: for i = 1 to Omax do
4: stuck_count← 0

5: PowerReduction(SF,X, thp)
6: for j = 1 to Tmax do
7: if no timing violation exist then break
8: TimingRecovery(SFt , 0, X)

9: end for
10: if no timing violation and power is improved with current_sol
11: best_sol← current_sol

12: decrease thk, Xk
13: else
14: stuck_count← stuck_count + 1

15: increase thk, Xk
16: end if
17: KickMove(thk,Xk)
18: if stuck_count > Smax
19: SF ← SF′p
20: end if
21: end for

Overall optimization. We have several user-defined input param-
eters that can tune the optimization flow. Table 6 shows the user-

defined input parameters and default values. The details of the over-

all optimization flow are shown in Algorithm 2. We first store the ini-

tial solution to best_sol to set it as our starting point (Line 1). We set

SF to the input SFp for power recovery procedure (Line 2). We then

perform power reduction with SF, the trial rate X and thp (Line 5).

We give a small negative slack margin thp as default to allow aggres-

sive downsizing and V t swapping for power reduction. We observe

from our experiments that optimization with a negative slack margin

followed by timing recovery typically achieves better solution qual-

ity compared to the conventional zero-margin optimization. After the

power reduction step, we iteratively perform the procedures for fix-

ing timing violations until all violations are fixed or j = Tmax. If there

is no timing violation with the current solution, and its power is less

than the best power value, we store the current solution as the best

solution (Lines 10–11). And, thk and Xk are decreased so that less cells

are upsized in the kick move stage (Line 12). If not, we increase the

stuck_count which indicates that the optimization gets stuck (Line 14).

And, we increase thk and Xk (Line 15) so that more cells are upsized

in KickMove. We then perform KickMove (Line 17). If stuck_count is

larger than Smax, SF is changed to SF
′
p (Line 19). We iterate the opti-

9



H. Fatemi et al. Integration, the VLSI Journal xxx (xxxx) xxx

mization loop by Omax. In our current implementation, the cells and

moves in the KickMove procedure are determined by a given SF, thk
and Xk (Algorithm 5). The SF is deterministic, while thk and Xk change

throughout the entire optimization process. And, although we change

thk and Xk throughout the optimization as described in Algorithm 2,

the values are not randomly selected. Therefore, our current KickMove

implementation is not completely stochastic. However, as the parame-

ters thk and Xk, and the slacks of cells, change throughout multiple iter-

ations, the target cells for V t swap or sizing will change. The net result

is a kick move whereby the current state of the circuit is “perturbed”

in a manner designed to escape the current local minimum – some-

times referred to as a basin of attraction – and thus avoid cycling in the

optimization.

Algorithm 3 Procedure of power reduction.
Procedure: PowerReduction(SFp,X, thp)
Input: sensitivity function SFp, trial rate X, slack threshold thp
Output: an updated netlist with less power
1: for all cell c ∈ netlist except for clock do
2: for all move m ∈ candidate moves Mcdo
3: sol.cell← c; sol.move← m

4: sol.score← CalculateSensitivity(c,m, SFp)
5: if ΔP < 0 then sol_list← sol_list

⋃{sol}
6: end for
7: end for
8: sort sol_list in order of increasing sensitivity score
9: cnt ← 0

10: while cnt < X do
11: if any prior move exists in top PRmax solutions then
12: sol← PickFirstPriorMove(sol_list); PRmax ← PRmax − 1

13: else
14: sol← sol_list.front()
15: end if
16: commit sol

17: sol_list← sol_list ⧵ {sol}
18: if mod(cnt, 𝛿) = 0 then TimingCorr()
19: if ssol.cell < thp or new MaxTran/MaxCap occurs in any

timing view then
20: revert sol

21: else
22: cnt ← cnt + 1

23: end if
24: if worst_slack < thp then break
25: end While

Power reduction. Algorithm 3 illustrates the sensitivity-

based power reduction procedure (PowerReduction). The inputs to

PowerReduction include the sensitivity function SFp, trial rate X and the

slack threshold thp. We first build a list of candidate solutions where a

solution sol indicates a (target cell sol.cell, target move sol.move) pair,

together with its sensitivity score sol.score. We calculate the sensitivity

score for each (cell, move) pair (Line 4). If ΔP of the candidate (cell,
move) pair is negative (indicating that power decreases), we add the

solution to the solution list sol_list (Line 5). As we downsize or increase

V t, the delay of the target cell increases while the power decreases

in most cases. Thus, the sensitivity score is typically a negative value,

where a smaller value (i.e., a larger absolute value) indicates a better

solution. Therefore, the solution list is sorted in increasing order of

sensitivity scores (Line 8). The only case where the sensitivity score

can be positive is when both delay and power decrease. In this case, we

set the sensitivity score to the negative infinite number so that we can

always pick such moves first. For details, please see Table 5 in Section

4.2.

We attempt each candidate move in the solution list (Lines 10–25).

To prioritize V t swapping (resp. sizing) for leakage (resp. dynamic)

power optimization (as described in Section 4.5), we search prioritized

moves among the first PRmax solutions in the solution list (Lines

11–12). In a leakage-only optimization, if we find a V t-swapping

move, we pick the corresponding solution (Line 12), otherwise we pick

the first solution among sol_list (Lines 13–14). We then commit the

move (Line 16). The committed move is removed from the solution

list (Line 17). We then update design timing and check the updated

slack of the optimized cell in all timing views. During the timing

update process, we periodically correlate timing with a signoff timer

for accuracy (Line 18). We revert the move if there is any setup timing

(i.e., with respect to thp), MaxTran or MaxCap violation (Lines 19–20).

Even though we check timing for every move to avoid violations, the

mismatch between the internal timer and the signoff timer can result

in timing violations during our optimization. In this case, we quit the

procedure (Line 24) and call the TimingRecovery procedure. The trials

for sizing or Vt-swapping continue until the number of trials reaches X

(Line 10)

Algorithm 4 Procedure of timing recovery.
Procedure: TimingRecovery(SFt , th,X)
Input: sensitivity function SFt , slack threshold th, trial rate X
Output: an updated netlist with an improved worst slack
1: if MaxCap violations exist then FixMaxCap()
2: if MaxTran violations exist then FixMaxTran()
3: for all cell c ∈ netlist except for clock do
4: if sc > th continue//skip this cell
5: for all move m ∈ candidate moves Mcdo
6: sol.cell← c; sol.move← m

7: sol.score← CalculateSensitivity(c,m, SFt)
8: if Δdsol.cell < 0 then sol_list← sol_list

⋃{sol}
9: end for
10: end for
11: sort sol_list in order of decreasing sensitivity score
12: cnt ← 0

13: while cnt < Xdo
14: sol← sol_list.first()
15: orig_slack← ssol.cell
16: commit sol

17: sol_list← sol_list ⧵ {sol}
18: if mod(cnt, 𝛿) = 0 then TimingCorr()
19: if ssol.cell < orig_slack or creates hold violations then
20: revert sol

21: else
22: cnt ← cnt + 1

23: end if
24: end While .

Timing recovery. Algorithm 4 illustrates the TimingRecovery proce-

dure. In the TimingRecovery procedure, we upsize or swap a cell to a

lower-V t cell to fix timing violations caused during the PowerReduction

procedure. Fixing MaxTran and MaxCap violations is performed first

(Lines 1–2). We fix MaxTran and MaxCap violations before perform-

ing the SF-based upsizing/V t-swapping, since we observe that fixing

maximum transition and capacitance violations also helps to fix setup

time violations by improving gate delays in our experiments. This is

because large transitions and/or load capacitance tend to increase gate

delays. We also note that it is recommended to first fix electrical rule

violations (e.g., maximum transition and capacitance violations) in the

DAC Knowledge Center article of MacDonald [51]. For each non-clock

cells with slacks less than th (Lines 3–4), we calculate sensitivity scores

(Lines 6–7) for its candidate moves (i.e., one-step upsizing or one-step

decreasing V t). If the Δdsol.cell decreases, we add sol to sol_list. We then
sort the solution list in decreasing order of sensitivity scores (Line 11).

The delay terms (i.e., Δdi, −Δsi) are negative values, and the ΔP term
is a positive value since delay decreases and power increases with

10



H. Fatemi et al. Integration, the VLSI Journal xxx (xxxx) xxx

Table 7
Timing view definitions.

Lib. View Mode Proc. Volt. (V) Temp. (C) RC

140 nm V1 Func SS 1.1 150 Cmax

V2 Test SS 1.1 150 Cmax

V3 Func SS 1.1 −40 Cmax

V4 Test SS 1.1 −40 Cmax

65 nm V1 Func SS 0.9 125 Cmax

V2 Func TT 1.0 25 Cmax

V3 Func FF 1.1 125 Cmax

V4 Func FF 1.1 −40 Cmax

28 nm V1 Func SS 0.9 125 Cmax

V2 Func SS 0.9 −40 Cmax

V3 Func SS 1.1 125 Cmax

V4 Func SS 1.1 −40 Cmax

upsizing or decreasing V t, in most cases. As a result, the sensitiv-

ity scores for timing recovery are negative values, and the solutions

with larger sensitivity scores (i.e., smaller absolute values) should have

higher priorities. For each solution in the solution list, we commit the

corresponding move and update timing (Line 16). During the proce-

dure, we periodically correlate timing with a signoff timer for accuracy,

similarly as in the power reduction procedure (Line 18). We then check

whether the committed move degrades slack and creates a hold viola-

tion in the given timing view v (Line 19). If so, we revert the move (Line

20).

Kick move. Algorithm 5 illustrates the KickMove procedure. The

purpose of KickMove is to perturb the current status so that the

optimization does not get stuck at local minima. Thus, for the

KickMove procedure, we perform upsizing on cells that have posi-

tive slacks but less than thk, with a sensitivity function that con-

siders only timing (Line 1). The number of cell moves during the

KickMove is limited by Xk. The default number of Xk is set to 0.05%

of the total number of cells so as not to allow overly aggressive

perturbation.

Algorithm 5 Procedure of kick move.
Procedure: KickMove(thk,Xk)
Input: slack threshold for kick move thk, maximum #trials Xk
Output: an updated netlist
1: SF← 1∕(Δdi · #pathsi)
2: TimingRecovery(SF, thk,Xk)

6. Experimental setups and results

Sizer is implemented with C++ and a Tcl socket interface [52]

to communicate with golden signoff timers. Sizer supports the stan-

dard.spef/.v formats by using OpenAccess (OA) 22.43 [9] API. We

extend the Liberty parser provided by ISPD-2013 contest to support gen-

eral Liberty (.lib) files and collect internal power information of cells.

The extended Liberty parser is validated with various foundry libraries,

i.e., 140 nm, 65 nm GP and 28 nm LP.

6.1. Experimental setup

Testcases. We use five testcases in our experiments, each of which
is implemented with two foundry technologies – 65 nm GP with triple-

V t libraries and 28 nm LP with dual-V t libraries. To validate solution

quality as well as scalability of Sizer, we use one design (aes) from

OpenCores website [53], a simplified version of ARM Cortex M0 (m0),

and testcases with three and five copies of the M0 (i.e., m0x3, m0x5)

as well as matrix multiplier (mmult) from the ISPD-2013 benchmark

suite. To implement m0x3 and m0x5, we connect primary inputs and

outputs of m0 with muxes at the RTL level. We synthesize from RTL

to gate-level netlist using Synopsys Design Compiler H-2013.03-SP3 [54]

for aes, m0, m0x3 and m0x5. For mmult, we map the gate-level netlist

from ISPD testcases to given technologies using Synopsys Design Com-

piler H-2013.03-SP3 [54]. To perform placement and routing (P&R), we

use Cadence Encounter Digital Implementation System XL 14.2 [11]. We

further optimize the designs using a leading commercial tool, namely,

C1, with high-effort leakage and dynamic power optimizations. For

golden signoff timers, we use Synopsys PrimeTime J-2014.12 [5] (PT)

and Cadence Tempus 14.2 [4] (TMP). The tool versions represent the

most up-to-date common flow that could be realized across multiple

organizations when this work was performed (see Section 6.5). We do

not map specific results to specific tools (although we do indicate a

“universe” of tools that we have used), in order to avoid any reporting

that could possibly be construed to be “benchmarking”.

We also validate Sizer on a design from NXP Semiconductors [13]

implemented with a 140 nm foundry technology (dual-V t), which we

refer to as NXPIC. The design is used in an application of RFCMOS

for the keyless entry/go system of automobiles. We apply our Sizer to

one of the blocks of NXP’s design, which contains ∼140 K standard-cell
instances.

MCMM implementation. To implement the designs in the MCMM
context, we define multiple views with various PVT corners and func-

tion modes. Table 7 summarizes function modes (Column 3), PVT cor-

ners (Columns 4–6) and wire RC corner (Column 7) for each view in

three foundry technologies. We use four views selected from avail-

able libraries in 65 nm and 28 nm foundry technologies. For 140 nm

foundry technology, we use four representative views (Rows 2–5 of

Table 7) selected from among 35 views with which the NXPIC is imple-

mented.6 We experimentally confirm that the selected four views are

the dominant views among the 35 views based on timing criticality.

Ideally, considering all timing views in sizing optimization will pro-

duce more robust results that honor timing constraints in every timing

view. However, the computation costs increases in proportion to the

number of timing views. Thus, the timing views to consider in opti-

mization must be carefully selected to reduce the computational cost.

In particular, a timing view having sufficiently large positive slack on

its worst timing path will typically not be a dominant view. In the

NXPIC case, we exclude the timing views with more than 20 × of the

worst (positive) slack throughout all the timing views. For Example,

since the worst initial slack is 0.033ns in V1 (Table 8), we exclude

the timing views with slack values > 0.66 ns. The timing information

in Table 8 is reported by TMP. We do not include TT and FF corners

as our optimization corners since (i) setup time violations are dom-

inant in the testcases in our experiments; (ii) downsizing/increasing

V t usually creates setup time violations, and slow corners are more

critical during our optimization; and (iii) as we do not touch cells

on clock trees, extra (hold) violations are not created at non-slow

corners, i.e., TT and FF corners. We experimentally confirm that no

extra hold violations are created in optimized designs. In particular,

the optimized NXPIC in Table 15 does not have any hold or setup

violations in the 31 views other than the selected four views. The

detailed information of the testcases is summarized in Table 8. For

65 nm and 28 nm designs, we set the clock period of each view to

a view-specific value in order to avoid the situation that a particu-

lar view dominates others. Thus, the difference in initial slack val-

ues between views is less than or equal to 200 ps The timing infor-

mation in Table 8 is reported by TMP. For hold slack, we report the

worst slack and the sum of total negative slack for the four target

views.

6 The 35 timing views are the combinations of three functional modes and

three voltages, three process corners (SS, TT and FF) associated with three

temperature corners (−40◦C, 25◦C and 150◦C) with complementary views

(#modes × #voltages × #corners + #complementary views = 3 × 3 × 3 + 8 = 35).

11



H. Fatemi et al. Integration, the VLSI Journal xxx (xxxx) xxx

Table 8
Summary of testcases. The designs are optimized with high-effort optimization options for leakage and dynamic power using C1. The values are reported by

TMP.

Lib. Design #Cells Clock Period (ns) Worst Setup Slack (ns) Hold Slack (ns) Power (mW)

V1 V2 V3 V4 V1 V2 V3 V4 WNS TNS Leakage Total

140 nm NXPIC 140 K NA NA NA NA 0.033 0.104 0.264 0.574 NA NA 4.17e-5 NA

65 nm m0 13139 1.60 1.10 0.80 0.80 −0.003 0.066 0.02 0.046 −0.294 −39 0.40 20.14

aes 20583 0.90 0.60 0.40 0.40 −0.014 0.032 −0.005 0.013 −0.144 −82 0.78 112.50

m0x3 35473 1.85 1.15 0.85 0.85 0.001 0.003 0.003 0.035 −0.347 −54 0.86 50.09

m0x5 55160 1.90 1.20 0.90 0.90 −0.012 −0.017 −0.005 0.03 −0.185 −54 1.23 74.87

mmult 123283 2.10 1.40 1.00 1.00 0.002 0.05 0.011 0.043 −0.008 0 3.47 191.98

28 nm m0 9964 1.40 1.60 1.00 1.00 0.016 −0.010 0.036 0.013 −0.276 −44 0.16 15.27

aes 13154 0.90 1.10 0.60 0.60 0.010 0.023 0.011 −0.005 −0.113 −57 0.25 56.76

m0x3 30155 1.40 1.70 1.00 1.00 −0.273 −0.313 −0.139 −0.183 −0.417 −165 0.79 80.13

m0x5 50231 1.50 1.85 1.25 1.25 −0.013 −0.017 0.184 0.153 −0.303 −100 0.47 58.77

mmult 107619 1.80 2.10 1.30 1.30 −0.011 −0.017 0.037 0.003 0 0 1.66 186.18

Table 9
Design of experiments.

Tech. Tool Signoff Objective MCMM SF

Expt 1 65 nm Tri-R PT Leakage No SF3

C2

Expt 2 28 nm C1 TMP Leakage Yes MSF1

65 nm Total power

Expt 3 65 nm – TMP Leakage No SF1-6

Expt 4 140 nm C1 TMP Leakage Yes MSF1-2

Design of Experiment. We have conducted four experiments to

demonstrate the performance of Sizer.

• Expt 1 shows the comparison between Sizer, a reproduced version
of [3] and a commercial leakage optimization tool, namely, C2.

• Expt 2 shows our optimization results with MCMM on the optimized

designs with high effort option using C1.

• Expt 3 studies the impact of six SFs on the solutions.
• Expt 4 shows the optimization results of a commercial product

design in 140 nm.

Table 9 summarizes the libraries, tools, signoff tools, the objectives

of optimization, whether MCMM is considered, and the sensitivity func-

tions used for each experiment.

6.2. Expt 1: Comparison between Sizer [3], and a commercial tool (C2)

In Expt 1, we compare the performance of our Sizer against our

reproduced version of Trident [3] (Tri-R) and C2 on contest benchmarks

and five testcases implemented at 65 nm foundry technology.

Tri-R, reproduced Trident. As Trident [3] is designed to perform
for contest testcases, it does not support inputs with standard formats.

Table 10
Reproduction of ISPD Trident (Tri) results with Tri-R, and comparison with Sizer (Szr). The values are reported by PT.

Design #Cells Leakage (mW) Runtime (min)

Init Tri Tri-R Szr Tri Tri-R Szr

usb_phy_fast 608 1.73 1.59 1.60 1.59 0.21 0.99 2.7

usb_phy_slow 608 1.1 1.07 1.07 1.05 0.17 0.64 1.8

pci_bridge32_fast 30603 145.6 101.90 99.82 113.24 12 23.62 68

pci_bridge32_slow 30603 65.3 58.83 59.04 59.26 5.39 11.95 65

fft_fast 32766 583.04 305.29 305.38 357.01 32.58 116.58 116

fft_slow 32766 128.62 93.10 92.94 99.82 17.4 42.03 69

edit_dist_fast 126665 1040 619.30 613.01 1040 170.6 649.19 1321

edit_dist_slow 126665 63 465.60 464.82 544.09 107.2 337.56 1211

Table 11
Leakage optimization result comparison between Tri-R, Sizer (Szr) and a commercial tool (C2). The results are reported by PT.

Design CP(ns) WNS(ns) Leak(mW) WNS (ns) ΔLeak Runtime (min)

Tri-R Szr Szr-I C2 Tri-R Szr Szr-I C2 Tri-R Szr Szr-I C2

m0 1.64 0.031 0.40 0.031 0 0.000 0 0% 23% 16% 4% 52 263 44 0

aes 1.0 0.001 0.78 0.001 0 0.000 0 27% 46% 32% 22% 42 200 44 0

m0x3 2.11 0.032 0.87 0.006 0 −0.001 0 32% 54% 47% 30% 99 541 106 0

m0x5 2.16 0.003 1.23 0.003 0 −0.002 0 24% 50% 41% 25% 115 942 126 0

mmult 2.15 0.034 3.49 0.034 0 0.000 0 0% 6% 6% 2% 414 1410 391 0

12



H. Fatemi et al. Integration, the VLSI Journal xxx (xxxx) xxx

Ta
bl
e
12

L
e
a
k
a
g
e
a
n
d
to
ta
l
p
o
w
e
r
o
p
ti
m
iz
a
ti
o
n
re
su
lt
.

P
ro
ce
ss

O
p
ti
m
iz
a
ti
o
n

D
e
si
g
n

S
e
tu
p
S
la
ck
(n
s)

H
o
ld
S
la
ck
(n
s)

F
in
a
l
P
o
w
e
r
(m
W
)

Δ
P
o
w
e
r

M
e
m
o
ry
(M
B
)

R
u
n
ti
m
e
(m
in
)

V
1

V
2

V
3

V
4

W
N
S

T
N
S

L
e
a
k

T
o
ta
l

L
e
a
k

T
o
ta
l

T
o
ta
l

T
im
e
r

6
5
n
m

le
a
k
a
g
e

m
0

0
.0
0
0

0
.0
5
2

0
.0
1
9

0
.0
4
4

−0
.2
9
4

3
9

0
.3
7

2
0
.0
0

6
%

1
%

1
6
8
0

3
4
5

2
7
9

a
e
s

−0
.0
0
4

0
.0
3
4

0
.0
0
0

0
.0
1
1

−0
.1
4
4

8
1

0
.7
0

1
1
1
.3
3

1
0
%

−3
%

2
1
4
8

1
0
6
8

9
4
4

m
0
x
3

0
.0
0
0

−0
.0
0
1

0
.0
0
3

0
.0
3
3

−0
.3
4
7

5
3

0
.7
7

4
9
.7
5

1
0
%

1
%

3
9
8
1

2
1
6
1

1
8
3
6

m
0
x
5

−0
.0
1
2

−0
.0
1
7

−0
.0
0
6

0
.0
3
0

−0
.1
8
5

5
4

1
.2
3

7
4
.8
7

0
%

0
%

6
5
1
8

1
9
8
3

1
7
2
4

m
m
u
lt

0
.0
0
0

0
.0
5
0

0
.0
1
1

0
.0
4
3

−0
.0
0
8

0
3
.4
4

1
9
1
.8
3

1
%

0
%

1
0
6
7
3

4
9
8

3
9
7

to
ta
l

m
0

0
.0
0
0

0
.0
6
2

0
.0
2
1

0
.0
5
1

−0
.2
9
4

3
9

0
.3
9

1
9
.6
6

3
%

2
%

1
6
8
0

5
5
9

4
6
6

a
e
s

0
.0
0
0

0
.0
3
2

0
.0
0
0

0
.0
0
0

−0
.1
4
4

8
1

0
.7
8

1
0
8
.0
2

0
%

4
%

2
1
4
8

1
1
0
7

9
7
2

m
0
x
3

0
.0
0
0

0
.0
0
0

0
.0
0
4

0
.0
3
7

−0
.3
4
7

5
3

0
.8
0

4
8
.2
8

7
%

4
%

3
9
8
1

2
2
9
3

1
9
5
6

m
0
x
5

−0
.0
1
2

−0
.0
1
7

−0
.0
0
6

0
.0
3
0

−0
.1
8
5

5
4

1
.2
3

7
4
.8
7

0
%

0
%

6
5
1
8

2
4
0
6

2
0
7
5

m
m
u
lt

0
.0
0
0

0
.0
4
6

0
.0
0
6

0
.0
3
8

−0
.0
0
9

0
3
.5
2

1
9
0
.6
6

−1
%

1
%

1
0
6
7
3

3
9
6
0

3
3
3
9

2
8
n
m

le
a
k
a
g
e

m
0

0
.0
1
1

−0
.0
1
2

0
.0
3
3

0
.0
0
8

−0
.2
7
6

4
3

0
.1
6

1
5
.2
4

2
%

0
%

1
3
1
0

7
5

4
8

a
e
s

0
.0
0
8

0
.0
2

0
.0
1

−0
.0
0
6

−0
.1
1
3

5
7

0
.2
5

5
6
.7
6

0
%

0
%

1
7
7
5

2
2
4

1
7
5

m
0
x
3

−0
.2
7
4

−0
.3
1
7

−0
.1
4

−0
.1
8
5

−0
.4
1
7

1
6
5

0
.4
7

5
8
.7
7

0
%

0
%

3
9
2
8

2
3
7

1
7
4

m
0
x
5

−0
.0
3

−0
.0
2
9

0
.1
6
8

0
.1
3
5

−0
.3
0
5

1
1
2

0
.7
8

8
0
.1
4

2
%

0
%

6
3
5
5

5
2
1

3
4
7

m
m
u
lt

−0
.0
1
1

−0
.0
1
7

0
.0
3
7

0
.0
0
3

0
0

1
.6
6

1
8
6
.1
8

0
%

0
%

1
0
6
5
8

2
2
2
6

1
1
4
4

to
ta
l

m
0

0
.0
0
5

−0
.0
1
1

0
.0
3

0
.0
0
5

−0
.2
7

3
6

0
.1
7

1
4
.7
7

−3
%

3
%

1
3
1
0

1
0
7

6
8

a
e
s

0
.0
0
7

0
.0
2
6

0
.0
0
1

−0
.0
2
2

−0
.1
1
3

4
3

0
.2
6

5
6
.5
3

−6
%

0
%

1
7
7
4

3
8
3

3
1
6

m
0
x
3

−0
.2
6
1

−0
.3
6
4

−0
.1
3
6

−0
.1
7
8

−0
.4
1
7

9
1

0
.5
0

5
7
.4
1

−8
%

2
%

3
9
4
1

4
0
6

2
3
4

m
0
x
5

−0
.0
1
8

−0
.0
2
7

0
.1
8
4

0
.1
5
3

−0
.3
0
5

8
2

0
.8
1

7
6
.6
1

−2
%

4
%

6
3
5
5

5
9
8

3
4
9

m
m
u
lt

−0
.0
1
4

−0
.0
2
1

0
.0
3
5

0
0

0
1
.6
6

1
8
6
.2
5

0
%

0
%

1
0
6
5
8

2
5
5
1

1
2
7
6

Thus, we extend Trident to enable support for the standard.spef/.v/.lib

formats. We refer to this extended version of [3] as Tri-R. We confirm

that Tri-R reproduces similar results to that in Ref. [3] (Table 10). The

golden signoff timer is PT to be consistent with the golden timer used

in the ISPD contest. The slight difference in the reported leakage results

is due to sensitivity to the order of calculation as well as randomness

seen in multi-threaded operation. The longer runtime in Tri-R is due

to (i) more complex data structures and extra input processing steps

(e.g., reading input.spef/.v into OA database); and (ii) avoidance of

certain hard-wiring of codes used by Ref. [3] for speedup. One caveat

of academic sizers is that in many cases, hard-wired codes are used to

achieve high quality of solutions with minimum runtime for a particular

set of inputs (i.e., contest testcases). Un-hardwiring leads to runtime

increases. Based on the results, below with the assumption that Trident

and Tri-R are equivalent, we compare Tri-R and Sizer with designs at

65 nm technology.

We further compare Trident, Tri-R with Sizer. As Sizer is designed

to maintain initial timing slack, Sizer cannot handle the contest bench-

marks as is, in which every gate is sized to the largest size/lowest V t

and WNS is a huge negative value. Thus, we use intermediate, timing

feasible solutions from Trident as the inputs for this experiment. We

observe that Sizer produces similar solution qualities for usb_phy_fast,

usb_phy_slow and pci_bridge32_slow, but does not perform well for

the other contest benchmarks with longer runtimes. This may reveal

the gap between academic sizers that are optimized toward academic

benchmarks and commercial sizers, which was also noted in the studies

of [6].

Comparison of Sizer, Tri-R and C2 with 65 nm designs. Table 11
shows leakage results comparison between Sizer (Szr, Szr-I), Tri-R,

and C2. Clock period (CP), worst negative setup slack (WNS), leakage

results (Leak) and runtime are reported. The initial/optimized results

do not have any hold time violation. Sizer achieves leakage reductions

of up to 26% (19% on average) as compared to Tri-R. Sizer’s runtime

is longer than that of Tri-R, due to more iterations of optimization.

Thus, we also report the intermediate results of Sizer (Szr-I) so as to

enable an iso-runtime comparison. For the iso-runtime comparison, our

intermediate results also outperform Tri-R by up to 17% (12% on aver-

age).

We further compare our results with the results from C2. Sizer

achieves further leakage reduction beyond C2 results by up to 24%

(19% on average). Although the runtime of C2 is much better (the run-

time is less than a minute) than Sizer, these data show that C2 leaves

significant room for further leakage optimization. We further observe

that we can pay additional runtime for significant additional power

optimization using Sizer.

6.3. Expt 2: Sizer optimization results with MCMM on the solutions of C1

In Expt 2, we show experimental results with MCMM-aware opti-

mization using Sizer, on designs that have been optimized by C1. To

ensure a fair comparison between C1 versus Sizer, we perform an iso-

TNS and iso-WNS comparison (with respect to setup time constraints),

such that our optimization honors the initial total negative slack and

worst negative slack of the design, and does not permit further tim-

ing slack degradation. We perform the experiments at both 65 nm

and 28 nm technologies, with two objectives – leakage power reduc-

tion and total power optimizations. The leakage and total power val-

ues at V1 view are reported by TMP in Table 12. For all designs,

there was no extra hold violation after optimization. The initial tim-

ing and power information is reported in Table 8. Sizer is able to

achieve up to 10% leakage reduction and 4% total power reduction

on initial solutions implemented with high-effort optimization for both

leakage and total power reduction using C1, for 65 nm designs. For

28 nm designs, Sizer achieves up to 2% leakage reduction and 4% total

power reduction, respectively. Our Sizer could not optimize power fur-

ther for some designs (e.g., no leakage reduction for 65 nm m0x5,

13



H. Fatemi et al. Integration, the VLSI Journal xxx (xxxx) xxx

Table 13
Leakage optimization results of 65 nm designs with various SF.

Design ΔLeakage Runtime (min)

SF1 SF2 SF3 SF4 SF5 SF6 SF1 SF2 SF3 SF4 SF5 SF6

m0 14% 16% 23% 1% 0% 3% 256 143 263 143 99 305

aes 26% 31% 46% 8% 8% 13% 242 149 200 163 103 271

m0x3 45% 51% 54% 4% 10% 16% 404 359 541 124 200 873

m0x5 41% 47% 50% 6% 10% 12% 680 1001 942 387 359 1036

mmult 4% 4% 6% 0% 0% 0% 1838 1470 1410 1568 1171 1330

Table 14
Leakage optimization result of 65 nm designs with various MSF.

Design ΔLeakage Runtime (min)

MSF1 MSF2 MSF3 MSF1 MSF2 MSF3

m0 7% 6% 0% 62 345 48

aes 6% 10% 0% 216 1068 125

m0x3 4% 10% 0% 360 2161 508

m0x5 0% 0% 0% 313 1983 536

mmult 3% 1% 0% 477 498 384

etc.). Of course, the initial designs are already optimized by C1, and

hence, there is not much timing slack for power optimization to exploit.

Indeed, some designs even have negative initial slack; this implies that

C1 used up all the slacks, and ended up with timing-infeasible solu-

tions.

However, we believe that any improvement that Sizer achieves indi-

cates that there is still room for further optimization of existing leading

commercial sizers. And, although numbers might seem to be small, even

1 or 2% of power reduction could be helpful for designs that have tight

power constraints [55]. Even if Sizer’s performance is “only” very sim-

ilar to that of leading-edge industry tools, Sizer provides an important

new research platform for academic research, as it gives an industry-

strength implementation accompanied by an open, full description. We

feel that this is a strong contrast to industry tools, details of which are

often kept highly confidential by EDA companies. Sizer source codes

and scripts are available in Ref. [43].

The larger runtime of multi-corner optimization is mainly due to

the timing updates and interface with golden signoff timer (as shown in

Column 14, in Table 12).

6.4. Expt 3: Impact of various SFs on the solutions

Expt 3 studies power reductions and runtime of various sensitivity

functions. Table 13 shows that sensitivity function SF3 leads to the best

solution quality, and that sensitivity function is a key determinant of

solution quality and runtime. In general, we observe that the #paths

parameter does not help to achieve better results for the testcases in

our experiments. For Example, SF2 and SF4 show the impact of #paths;

SF2 (without #paths) leads to better results than SF4 (with #paths).

SFs without the parameter #paths (i.e., SF1, SF2 and SF3) offer better

results than those with the parameter #paths (i.e., SF4, SF5 and SF6).

Table 14 shows the leakage and runtime results for the three MSFs.

MSF3 does not give any power reduction since MSF3 is also used for

timing recovery. Indeed, if the same SF is used for power reduction and

timing recovery, it is likely that the same set of gates will be selected for

both power reduction and timing recovery. Between MSF1 and MSF2,

we see that MSF2 has better performance in terms of power reduc-

tion.

6.5. Expt 4: Results of commercial industrial design in 140 nm

In Expt 4, we apply Sizer to an industrial design in 140 nm technol-

ogy. Our results in Table 15 show that Sizer can achieve 7.1% leakage

power reduction beyond an input solution that is well-optimized by

commercial P&R tools and ECO optimizations. In this experiment, the

integrated use of the signoff timer has large runtime overhead due to

the following reasons. First, the signoff is signal integrity (SI)-aware; to

perform SI-aware timing analysis, large databases of timing noise infor-

mation are loaded and the full timing analysis takes several minutes.

Second, in our experiments, accurate incremental timing analysis is not

available due to a tool limitation. For these reasons, 90% of the total

runtime on average is consumed by the signoff timer. Due to the run-

Table 15
Leakage optimization result for NXPIC.

Iter #Swaps SF Final WNS (ns) ΔLeakage Runtime (min)

V1 V2 V3 V4

1 181 MSF2 0.033 0.104 0.264 0.574 1.44% 417

2 889 MSF2 0.033 0.104 0.264 0.574 4.02% 1045

3 117 MSF2 0.033 0.104 0.032 0.034 4.31% 437

4 120 MSF2 0.033 0.104 0.032 0.034 4.57% 420

5 36 MSF2 0.033 0.104 0.032 0.034 4.67% 330

6 12 MSF2 0.033 0.104 0.032 0.034 4.70% 362

7 155 MSF2 0.033 0.104 0.032 0.034 4.85% 507

8 40 MSF2 0.033 0.104 0.032 0.034 4.96% 395

9 222 MSF2 0.033 0.104 0.032 0.034 5.29% 856

10 201 MSF1 0.033 0.104 0.032 0.034 6.99% 874

11 28 MSF1 0.033 0.104 0.101 0.060 7.10% 480

14



H. Fatemi et al. Integration, the VLSI Journal xxx (xxxx) xxx

time issue of the signoff timer, we run Sizer several times with a limited

number of cell swaps (i.e., 1000) and a limited number of optimiza-

tions (i.e., one). We report the number of cell swaps (second column)

and leakage power (eighth column) for each iteration. One iteration

consists of both the power reduction and timing recovery steps. After

the ninth iteration, we observe that the leakage does not reduce further

with MSF2.7 Changing from MSF2 to MSF1 offers an additional 1.3%

reduction.

7. Conclusion

Gate sizing optimization has been well studied, and academic

sizers have shown significant power reduction on contest testcases

[1,2]. However, in the real world, design complications (hierarchi-

cal design, existence of hard macros, multiple clocks), modeling com-

plications (state-dependence, complex slew dependence), timing con-

straints (MCMM, false paths), and electrical constraints (MaxTran, Max-

Cap) block the application of academic sizers to industrial designs.

More crucially, the real world can reveal that techniques and “best

practices” identified by academic research (driven by popular con-

test benchmarks) may not be usable on industrial designs. Our new

academic sizer, Sizer, reflects a multi-year evolution from a suc-

cessful “contest” sizing tool to a tool that can outperform high-

effort commercial results for a real industrial IC. This evolution has

entailed a near-complete change of techniques as compared to our

starting point, Trident [3]. We describe techniques that are useful

in the academic contest setting but not in the real-world context –

as well as new techniques specifically developed for Sizer. We also

describe the successful application of Sizer to industrial designs. On

a design (i.e., NXPIC) that is well-optimized by a leading-edge com-

mercial P&R tool as well as ECO steps, Sizer achieves 7% further

leakage reduction without any violation of the given setup/hold and

maximum transition constraints in a multi-corner multi-mode con-

text.

Our future works include (i) runtime improvement with better tim-

ing recovery; (ii) improved, stochastic optimization by introducing dif-

ferent SFs in KickMove function and a random parameter; (iii) consider-

ations of other important constraints in industry designs such as noise.

Acknowledgments

We deeply thank Dr. Jin Hu, Dr. Myung-Chul Kim, Prof. Seokhyeong

Kang, Prof. Igor L. Markov and Mr. Pankit Thapar for their respective

works with us during 2012–2013 ICCAD Contest collaborations. We

also thank design and R&D teams at NXP Semiconductors for their help

in enabling the reported studies.

References

[1] M.M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke, C. Zhuo, ISPD-2012 discrete

cell sizing contest and benchmark suite, in: Proc. ISPD, 2012, pp. 161–164. http://

archive.sigda.org/ispd/contests/12/ispd2012_contest.html.

[2] M.M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke, C. Zhuo, An improved

benchmark suite for the ISPD-2013 discrete cell sizing contest, in: Proc. ISPD,

2013, pp. 168–170. http://archive.sigda.org/ispd/contests/13/ispd2013_contest.

html.

[3] A.B. Kahng, S. Kang, H. Lee, I.L. Markov, P. Thapar, High-performance gate sizing

with a signoff timer, in: Proc. ICCAD, 2013, pp. 450–457.

[4] Cadence Encounter Timing System User’s Manual, http://www.cadence.com.

[5] Synopsys PrimeTime User’s Manual, http://www.synopsys.com.

[6] A.B. Kahng, H. Lee, J. Li, Horizontal benchmark extension for improved

assessment of physical CAD research, in: Proc. GLSVLSI, 2014, pp. 27–32.

[7] Yosys Open Synthesis Suite, http://www.clifford.at/yosys/.

[8] LEF/DEF reference, https://projects.si2.org/openeda.si2.org/projects/lefdef/.

[9] Si2 OpenAccess, http://www.si2.org/?page=69.

[10] Gary Smith EDA, http://www.garysmitheda.com/.

7 Several additional iterations were attempted with MSF2, but no improve-

ment was observed.

[11] Cadence Encounter Digital Implementation/Innovus User’s Manual, http://www.

cadence.com.

[12] Tela Innovations, http://www.tela-inc.com/.

[13] http://www.nxp.com.

[14] M.R.C.M. Berkelaar, J.A.G. Jess, Gate sizing in MOS digital circuits with linear

programming, in: Proc. EURO-DAC, 1990, pp. 217–221.

[15] D.G. Connery, K. Keutzer, Linear programming for sizing, Vth and Vdd assignment,

in: Proc. ISLPED, 2005, pp. 149–154.

[16] K. Jeong, A.B. Kahng, H. Yao, Revisiting the linear programming framework

for leakage power vs. Performance optimization, in: Proc. ISQED, 2009, pp.

127–134.

[17] C.-P. Chen, C. Chi, D.F. Wong, Fast and exact simultaneous gate and wire sizing by

Lagrangian relaxation, IEEE Trans. CAD 18 (7) (1999) 1014–1025.

[18] H. Chou, Y.-H. Wang, C.C.-P. Chen, Fast and effective gate sizing with multiple-Vt
assignment using generalized Lagrangian relaxation, in: Proc. ASP-DAC, 2005, pp.

381–386.

[19] Y.L. Huang, J. Hu, W. Shi, Lagrangian relaxation for gate implementation

selection, in: Proc. ISPD, 2011, pp. 167–174.

[20] G. Flach, T. Reimann, G. Posser, M. Johann, R. Reis, Effective method for

simultaneous gate sizing and Vth assignment using Lagrangian relaxation, IEEE

Trans. CAD 33 (4) (2014) 546–557.

[21] L. Li, P. Kang, Y. Lu, H. Zhou, An efficient algorithm for library-based cell-type

selection in high-performance low-power designs, in: Proc. ICCAD, 2012, pp.

226–232.

[22] V.S. Livramento, C. Guth, J.L. Güntzel, M.O. Johann, A hybrid technique for

discrete gate sizing based on Lagrangian relaxation, ACM TODAES 19 (4) (2014)

40.

[23] M.M. Ozdal, S. Burns, J. Hu, Gate sizing and device technology selection

algorithms for high-performance industrial designs, in: Proc. ICCAD, 2011, pp.

724–731.

[24] M.M. Ozdal, S. Burns, J. Hu, Algorithm for gate sizing and device parameter

selection for high-performance designs, IEEE Trans. CAD 31 (10) (2012)

1558–1571.

[25] M. Rahman, H. Tennakoon, C. Sechen, Library-based cell-size selection using

extended logical effort, IEEE Trans. CAD 32 (7) (2013) 1086–1099.

[26] T. Reimann, C.C.N. Sze, R. Reis, Gate sizing and threshold voltage assignment for

high performance microprocessor designs, in: Proc. ASP-DAC, 2015, pp. 214–219.

[27] S. Roy, D. Liu, J. Um, D.Z. Pan, OSFA: a new paradigm of gate-sizing for

power/performance optimizations under multiple operating conditions, in: Proc.

DAC, 2015, pp. 1–6.

[28] H. Tennakoon, C. Sechen, Gate sizing using Lagrangian relaxation combined with

a fast gradient-based pre-processing step, in: Proc. ICCAD, 2002, pp. 395–402.

[29] J. Xie, C.Y.R. Chen, Lookup table based discrete gate sizing for delay minimization

with modified elmore delay model, in: Proc. GLSVLSI, 2015, pp. 361–366.

[30] S. Hu, M. Ketkar, J. Hu, Gate sizing for cell-library-based designs, IEEE Trans. CAD

28 (6) (2009) 818–825.

[31] Y. Liu, J. Hu, A new algorithm for simultaneous gate sizing and threshold voltage

assignment, IEEE Trans. CAD 29 (2) (2010) 223–234.

[32] M. Rahman, H. Tennakoon, C. Sechen, Power reduction via near-optimal

library-based cell-size selection, in: Proc. DATE, 2011, pp. 867–870.

[33] T. Reimann, G. Posser, G. Flach, M. Johann, R. Reis, Simultaneous gate sizing and

Vt assignment using fanin/fanout ratio and simulated annealing, in: Proc. ISCAS,

2013, pp. 2549–2552.

[34] T.-H. Wu, A. Davoodi, PaRS: parallel and near-optimal grid-based cell sizing for

library-based design, IEEE Trans. CAD 28 (11) (2009) 1666–1678.

[35] P. Gupta, A.B. Kahng, P. Sharma, D. Sylvester, Gate-length biasing for runtime

leakage control, IEEE Trans. CAD 25 (8) (2006) 1475–1485.

[36] J. Hu, A.B. Kahng, S. Kang, M.-C. Kim, I.L. Markov, Sensitivity-guided

metaheuristics for accurate discrete gate sizing, in: Proc. ICCAD, 2012, pp.

233–239.

[37] M. Rahman, C. Sechen, Post-synthesis leakage power minimization, in: Proc.

DATE, 2012, pp. 99–104.

[38] A. Srivastava, D. Sylvester, D. Blaauw, Power minimization using simultaneous

gate sizing, dual-Vdd and dual-Vth assignment, in: Proc. DAC, 2004, pp. 783–787.

[39] L. Wei, K. Roy, C. Koh, Power minimization by simultaneous dual-Vth assignment

and gate-sizing, in: Proc. CICC, 2000, pp. 413–416.

[40] J.P. Fishburn, A.E. Dunlop, Tilos: a posynomial programming approach to

transistor sizing, in: Proc. ICCAD, 1985, pp. 326–328.

[41] C. Moon, P. Gupta, P. J. Donehue and A. B. Kahng, “Designing a Digital Circuit

by Correlating Different Static Timing Analyzers”, U.S. Patent No. 7,823,098,

2010.

[42] A.B. Kahng, S. Kang, H. Lee, S. Nath, J. Wadhwani, Learning-based approximation

of interconnect delay and slew in signoff timing tools, in: Proc. SLIP, 2013, pp.

1–8.

[43] UCSD Sizer homepage, https://github.com/abk-openroad/TritonSizer.

[44] A.B. Kahng, New game, new goal posts: a recent history of timing closure, in: Proc.

DAC, 2015, pp. 1–6.

[45] P. Grassberger, “Go with the Winners: A General Monte Carlo Strategy”,

http://arxiv.org/pdf/cond-mat/0201313v1.pdf.

[46] O. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the traveling

salesman problem, Complex Syst. 5 (3) (1991) 299–326.

[47] http://vlsicad.ucsd.edu/SIZING/optimizer.html, UCSD SensOpt Leakage Optimizer

(A. B. Kahng, S. Kang, 2010-2011).

[48] Physical Synthesis Optimization Senior Staff Engineer, Personal Communication,

Qualcomm Technologies Inc., November 2018.

[49] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, 1999.

15



H. Fatemi et al. Integration, the VLSI Journal xxx (xxxx) xxx

[50] T.C. Hu, A.B. Kahng, C.W. Tsao, Old bachelor acceptance: a new class of

non-monotone threshold accepting methods, ORSA J. Comput. 7 (4) (1995)

417–425.

[51] N.D. MacDonald, Timing Closure in Deep Submicron Designs, DAC.com

Knowledge Center Article. March 2010, http://vlsicad.ucsd.edu/DAC15/

MACDONALD_TIMINGCLOSURE.pdf.

[52] Tcl/Tk Built-in Socket Commands Manual, http://www.tcl.tk/man/tcl8.4/TclCmd.

[53] OpenCores: Open Source IP-Cores, http://www.opencores.org.

[54] Synopsys Design Compiler User Guide, http://www.synopsys.com.

[55] IBM, Physical Synthesis Optimization Research Staff Member, Personal

Communication, October 2015.

16


