
Learning-Based Prediction of Package Power Delivery Network
Quality

Yi Cao+, Andrew B. Kahng†‡, Joseph Li+, Abinash Roy+, Vaishnav Srinivas+ and Bangqi Xu‡

†CSE and ‡ECE Departments, UC San Diego, La Jolla, CA, USA
+Qualcomm Technologies, Inc., San Diego, CA, USA

{abk, bangqixu}@ucsd.edu, {yicao, lij, abinashr, vaishnav}@qti.qualcomm.com

ABSTRACT

Power Delivery Network (PDN) is a critical component in mod-

ern System-on-Chip (SoC) designs. With the rapid development in

applications, the quality of PDN, especially Package (PKG) PDN, de-

termines whether a sufficient amount of power can be delivered to

critical computing blocks. In conventional PKG design, PDN design

typically takes multiple weeks including many manual iterations

for optimization. Also, there is a large discrepancy between (i) quick

simulation tools used for quick PDN quality assessment during the

design phase, and (ii) the golden extraction tool used for signoff.

This discrepancy may introduce more iterations. In this work, we

propose a learning-based methodology to perform PKG PDN qual-

ity assessment both before layout (when only bump/ball maps, but

no package routing, are available) and after layout (when routing is

completed but no signoff analysis has been launched). Our contribu-

tions include (i) identification of important parameters to estimate

the achievable PKG PDN quality in terms of bump inductance; (ii)

the avoidance of unnecessary manual trial and error overheads in

PKG PDN design; and (iii) more accurate design-phase PKG PDN

quality assessment. We validate accuracy of our predictive models

on PKG designs from industry. Experimental results show that,

across a testbed of 17 industry PKG designs, we can predict bump

inductance with an average absolute percentage error of 21.2% or

less, given only pinmap and technology information. We improve

prediction accuracy to achieve an average absolute percentage error

of 17.5% or less when layout information is considered.
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1 INTRODUCTION

Due to lack of design automation and complex trial and error design

iterations, Package (PKG) Power Delivery Network (PDN) design
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in a modern SoC is challenging and time-consuming. Multiple PKG

PDN modeling tools exist today and different companies have dif-

ferent methodologies and flows to handle the tradeoff between

accuracy and runtime. Often a 3D full-wave electromagnetic (EM)

solver is used as the golden signoff tool (Golden tool), providing

accurate PDN modeling at the cost of long runtime. A quick as-

sessment tool (Quick tool) that is used for quick PDN inductance

modeling during the design phase offers fast runtime at the cost of

accuracy.1 The discrepancy between Golden tool and Quick tool

may introduce more iterations during the overall design cycle.

PKG PDN quality is usually assessed by measuring the induc-

tance of each die bump. To the best of our knowledge, there is no

existing tool that can predict achievable bump inductance in the

early design stage before an actual design layout implementation.

As a result, an unpromising pinmap, including micro bump and

solder ball assignment, can only be identified after trial design.

The primary input of a PKG PDN design problem is the pinmap,

which includes locations and supplyrail assignments for both die

bumps and solder balls. Even a small change in pinmap and layout

can cause large variations in bump inductance. Figure 1(a) shows

a partial initial layout and a map of bump inductance. Figure 1(b)

shows a variant of initial layout where a few BGA balls, metal traces

and vias are removed and the corresponding percentage change

(increase) in bump inductance, relative to inductance in the original

layout, is shown.

Predicting bump inductance without routing is challenging be-

cause bump inductance depends not only on the pinmap, but also

on the routing resource allocation including metal utilization, via

availability, reference plane completeness, etc. Figure 2(a) shows

die bump locations of a pre-layout PKG design. Figure 2(b) shows

the corresponding part of post-layout design. Other examples that

convey the nature of PKG substrate routing, showing both bump

and ball locations, are given in Figure 4 below.

To close the gap between Quick tool and Golden tool, a more

accurate bump inductance predictor is desired. Such a predictor

is difficult to build because (i) the predictor needs to abstract and

understand complex interactions between various metal shapes

(e.g., solid metal fill and thin metal trace), vias and metal stackup,

and (ii) traditional EM simulation tools are not applicable due to

their long runtimes.

1The two commercial PKG PDN analysis tools, “Golden” and “Quick”, are among
various commercial tools that are listed under Power Analysis and Optimization by
the industry analyst firm Gary Smith EDA [9]. The universe for these tools includes
Cadence Sigrity XtractIM [15], Ansys Sentinel PSI [13], Applied Simulation Technology
ApsimSPE [14] and Mentor HyperLynx Power Integrity [17]. We are unable to identify
the tools more specifically due to license restrictions and sensitivity of EDA vendors.



Figure 1: (a) Original layout fragment and map of bump in-

ductance (a.u.). (b) Perturbed (degraded) layout with several

balls, metal traces and vias removed, and map of percentage

change in per-bump inductance relative to original layout.

Figure 2: An example of package PDN design: (a) pre-layout

and (b) post-layout. Colors indicate distinct rails. Figure

courtesy of ASE Group.

In this work, we use machine learning techniques to achieve

accurate modeling and prediction of bump inductance. Given the

pinmap and PKG technology information, but without any PKG

layout (i.e., routing) information, we make a prediction of bump

inductance in a well-optimized post-layout design. In what follows,

we call this estimation at pre-layout stage an estimate of achievable

bump inductance. Moreover, given pinmap and PKG layout infor-

mation, we also make a prediction of post-layout bump inductance.

In what follows, we call this estimation at post-layout stage an

estimate of actual bump inductance. Our models of achievable and

actual bump inductance are aimed at helping to prevent expen-

sive iterations of PKG PDN designs. Our main contributions are

summarized as follows.

• To the best of our knowledge, we are the first to propose a

predictive modeling methodology which addresses the need

for early-stage achievable bump inductance assessment.

• We identify appropriatemodeling parameters, and separately

apply predictive modeling methodology, to shrink the gap

between Golden tool and Quick tool for design-phase bump

inductance evaluation.

• We validate our bump loop inductance predictive modeling

methodology and predictive model across various industry

PKG designs used inmodern product SoCs, and show that our

model achieves an accurate prediction of bump inductance

(and, further, is more accurate than the Quick tool).

The remainder of this paper is organized as follows. Section 2

overviews the main approaches to bump inductance modeling. Sec-

tion 3 describes our predictive modeling methodology. We describe

our experimental setup and results in Section 4, and give conclu-

sions in Section 5.

2 APPROACHES TO BUMP INDUCTANCE
MODELING

An extensive literature on bump inductance modeling mostly fo-

cuses on modeling bump inductance by solving EM equations. For

excellent overviews, the reader is referred to [8] and [11]. Shi et

al. [8] summarizes the three categories of bump inductance models:

lumped models, distributed models and S-parameter models.

A lumped element model lumps components in the system (e.g.,

bumps and BGA balls) together to reduce computational complex-

ity [6] [10]. Therefore, PDN in a lumped model consists of a small

number of RLC components. As a result, a lumped model usually

has poor accuracy as it does not accurately capture the distributed

nature of package routing.

A distributed model improves model accuracy from lumped mod-

els by introducing more RLC components. The partial element

equivalent circuit (PEEC) method [1] is applied to achieve more

accurate inductance values. However, with the increased number

of RLC components, runtime becomes the limitation in applying

distributed models.

An S-parameter model, which treats the PDN as a black box,

is a high-bandwidth model [7]. An incident wave with varying

frequencies is applied to the input port, and reflected wave and

transmitted wave are measured at the input and output ports; an

S-parameter matrix is then constructed. This S-parameter matrix

can be post-processed to a Z-matrix, i.e., may separate out the

imaginary part and then calculate the loop inductance. S-parameter

models are widely used for PKG PDN signoff.

As mentioned in Section 1, PKG PDN modeling tools from differ-

ent companies handle the tradeoff between accuracy and runtime

differently. Figure 3(a) shows the comparison of extracted bump

inductance from Golden tool and Quick tool. Figure 3(b) shows the

percentage difference distribution between Quick tool and Golden

tool. We observe that the percentage difference between Quick tool

and Golden tool can exceed 500%, which may mislead the PKG PDN

optimization during the design phase.

Generally speaking, lumped model-based approaches suffer from

accuracy challenges, while distributed and S-parameter model-

based approaches require significant bandwidth of EM and circuit



Figure 3: Comparison between Quick tool and Golden tool.

(a) Golden versus Quick bump inductance (a.u.). (b) His-

togram of percentage difference between Quick tool and

Golden tool.

simulation tools. All of these approaches cause many iterations of

design cycles, as well as intensive manual interactions.

3 OUR METHODOLOGY

In this section, we describe our predictive modeling methodology.

Our modeling methodology includes (i) the selection of model pa-

rameters that impact bump inductance, and (ii) the application of

machine learning techniques to capture the complex interactions

between model parameters for accurate bump inductance predic-

tion.

3.1 Selection of Model Parameters

Bump loop inductance is composed of self inductance and mutual

inductance. Various components of bump inductance are deter-

mined by different factors including return path length, die bump

grouping, solder ball group, etc. [12]. Therefore, in order to model

achievable and actual bump inductance, it is necessary to find a

set of parameters that abstracts and describes the characteristics

of a die bump. We validate our selection of model parameters by

studying the impact of each model parameter in Section 4. Figure 4

illustrates some notations we use in our parameters.

• VDD: Power rail that the bump of interest belongs to.

• GND: Ground rail.

• Other: Power rails other than the power rail that the bump

of interest belongs to.

Figure 4: Illustration of notations in the model parameters.

For achievable bump inductance prediction during the early pre-

layout stage of PKG PDN design, only pinmap and package technol-

ogy information are available. However, actual bump inductance

prediction can further leverage detailed layout information to make

more accurate predictions. Thus, it is necessary to define different

sets of parameters to distinguish between achievable bump induc-

tance prediction and actual bump inductance prediction. We study

the impact of each set of model parameters in Section 4.

Table 1 lists the parameters that we use in modeling. We use

model parameters that comprehend various aspects of die bump

inductance.2 P1, P2 and P3 give an estimate of the primary return

path length that is critical to loop inductance of a micro bump.

P4 and P5 give an estimate of likelihood of bump grouping using

metal fill. Bumps that are connected with metal fill tend to have

lower inductance values. P4, P5 and P6 give an estimate of routing

congestion. P7 gives information on partial and mutual inductance

contributed by vias, bumps and BGA balls. P8 gives the current

information on each bump.3 P9 indicates the availability of rout-

ing resource. P10, P11 and P12 indicate routing congestion in the

surrounding area of each bump.

We divide our model parameters into three categories: pinmap-

dependent (PiM), design-dependent (Des) and layout-dependent

(Lay). We use PiM and Des parameters to build a model for early-

stage achievable bump inductance prediction. We use PiM, Des and

Lay parameters to make an actual bump inductance prediction for

design-phase evaluation.

Table 1: Parameters used in our modeling.

Idx Parameter Description Type

P1 dGNDBall Distance to closest GND ball PiM

P2 dVDDBall Distance to closest VDD ball PiM

P3 dGNDBump Distance to closest GND bump PiM

P4 #VDDBump[]
Array of #bump from same

PiMsupply rail within radius of
{1,2,3,4} bump pitches

P5 #supplyrail []
Array of #supplyrail within

PiMradius of {1,2,3,4} bump
pitches

P6 #OtherBump[]
Array of #bump in different

PiMsupplyrail within radius of
{1,2,3,4} bump pitches

P7 thickness Thickness of the PKG design Des

P8 current Derived per-bump current Des

P9 #layer Number of metal layers used Des

P10 U til []
Array of metal utilization

Laywithin radius of {1, 2, 3, 4}
bump pitches

P11 V iaCnt []
Array of via count within

Layradius of {1, 2, 3, 4} bump
pitches

P12 T raceCnt []
Array of trace count within

Layradius of {1, 2, 3, 4} bump
pitches

2A property of the set of parameters which we choose is that the number of model
parameters per bump does not depend on the package size.
3Current information is usually only available at a per-block level rather than a
per-bump level [12]. We derive reasonable per-bump current by smoothing a given
per-block current map with a smoothing radius of four (4) bump pitches.



3.2 Modeling Techniques

We use both linear and nonlinear learning-based algorithms such

as Artificial Neural Network (ANN) [4], Support Vector Machine

(SVM) [4] regression, and Multivariate Adaptive Regression Spline

(MARS) [2]. For each technique, we use three-fold cross-validation

to ensure the generality of the model (i.e., comparable mean-square

errors (MSEs) between training and testing datasets). We use grid

search to determine the length of each array parameter in the

model. For each model parameter that we use, we normalize it to

[0,1] before it is applied to learning-based algorithms. Nonlinear

algorithms are more effective in capturing complex interactions

between model parameters.

We also explore metamodeling techniques such as piecewise-

linear (PWL) hybrid surrogate modeling (HSM) [5]. Data points

are divided into four bins according to ANN prediction and all

predictions from the three modeling techniques are combined to

make the final prediction. Figure 5 shows the HSM modeling flow

we use in this work, wherewi, j indicates the weight of predicted

response for ith bin from jth modeling technique. We implement

our ANN in JMP Pro 13 [16]. We divide data points into four equally

sized bins using predicted bump inductance threshold t1, t2, t3 and
t4. We implement SVM regression and MARS in Python3 [19] using

scikit-learn [20] and py-earth [18] packages, respectively.

Figure 5: Illustration of piecewise-linear hybrid surrogate

modeling based on ANN prediction.

3.3 Reporting Metrics

In addition to the R2 value that is typically used to assess regression
model quality, we also consider different accuracy aspects of the

predictive bump inductance model when reporting results. Table 2

shows the various reporting metrics we use in this work. For each

experiment in Section 4, we plot the normalized actual die bump

inductance versus the predicted die bump inductance.4 Also, we

plot the percentage error histogram for each experiment.

4 EXPERIMENTS

In this section, we describe our design of experiment and show

our experimental results. First, we describe our experiments for

model parameter validation. Second, we perform four experiments

to assess and measure bump inductance model quality and accuracy.

Then we study the correlation between Golden tool and Quick

tool. Finally, we check for the generality of our model in direct

comparison with Golden tool results. Recall from Section 1 above

that achievable refers to a prediction made without any routing

layout information, while actual refers to a prediction made with

routing layout information.

4We are not able to provide absolute errors due to product confidentiality constraints.

Table 2: Description of reporting metrics.

Notation Meaning

R2 Coefficient of determination
AAPE (%) Average absolute percentage error

90th -pct Worst Overestimate (%)
90% percentile value of sorted

overestimating percentage errors

90th -pct Worst Underestimate (%)
90% percentile value of sorted

underestimating percentage errors

95th -pct Worst Overestimate (%)
95% percentile value of sorted

overestimating percentage errors

95th -pct Worst Underestimate (%)
95% percentile value of sorted

underestimating percentage errors

• Experiment 1. Parameter set sensitivity.

• Experiment 2. Individual parameter sensitivity.

• Experiment 3. Achievable bump inductance modeling.

• Experiment 4. Actual bump inductance modeling.

• Experiment 5. Golden tool and Quick tool correlation.

• Experiment 6. Model generality.

4.1 Design of Experiment

We use 17 industry PKG designs across various PKG technologies

to build and validate our learning-based predictive model. All 8.5K

data points are extracted from 2-layer, 3-layer and 4-layer designs

with a variety of core thicknesses. The training time of our model

is 7.5 hours on a 2.6GHz Intel Xeon dual-CPU server. This is a one-

time overhead. After training, the inference time is approximately

270 seconds for every 1K data points.

We use 67% of the data points for training and the remaining 33%

of the data points for testing. We apply 3-fold cross validation in the

modeling process. We perform 10 runs with different random seeds

to denoise the impact of random initial weights in the modeling

process.

Experiment 1. We study the sensitivity of the parameter set

(i.e., PiM, Lay and Des). We remove one parameter set from the

parameter list at a time and show the degradation in model accuracy

after each parameter set removal.

Experiment 2. We study the sensitivity of each parameter (i.e.,

P1, P2, etc.). We remove one individual parameter from the param-

eter list at a time and show the degradation in model accuracy after

each individual parameter removal.

Experiment 3. We build a model based on PiM and Des param-

eter sets. We validate our achievable bump inductance model by

comparing the bump inductance prediction against the Golden tool

result.

Experiment 4. We build a model based on PiM, Lay and Des

parameter sets. We validate our actual bump inductance model by

comparing the bump inductance prediction against Golden tool,

and showing the discrepancy between Golden tool and Quick tool.

Experiment 5. We correlate Golden tool and Quick tool. We

build a model based on PiM, Lay, Des and Quick tool results to

predict the Golden tool result. We validate our correlation model

by comparing the bump inductance prediction against the Golden

tool result.



Experiment 6.We study the generality of our bump inductance

model. We build a model based on an initial design and apply the

model to a variant of the same design. We demonstrate the general-

ity of our model by comparing the bump inductance prediction for

the design variant against the Golden tool result.

4.2 Results for Experiments

We study model parameter sensitivity, demonstrate bump induc-

tance quality and correlate between Golden tool and Quick tool

with the six experiments described in Section 4-4.1.

Results for Experiment 1. We study the sensitivity of each

parameter set on bump inductance model accuracy. Figure 6 shows

the normalized root-mean-square error (RMSE) values, for both

training and testing datasets, of model based on PiM, Des and Lay

parameter sets and models based on every pair of parameter sets.

We observe that RMSE degrades up to 170% and 133% for training

and testing datasets respectively with the removal of PiM, which

implies that PiM is the dominant parameter set among all parameter

sets.

Figure 6: Sensitivity of RMSE (a.u.) to parameter set removal.

Results for Experiment 2. We study the sensitivity of each

individual parameter on bump inductance model accuracy. Figure 7

shows the normalized RMSE values, for both training and testing

datasets, of model based on all parameters and models with one

parameter removed. We observe that RMSE degrades up to 135%

and 102% for training and testing datasets, respectively, when just

a single parameter is removed.5

Results for Experiment 3. We build a model based on PiM

and Des parameter sets and compare the accuracy of our achiev-

able bump inductance prediction against the Golden tool result.

Figure 8(a) shows the predicted achievable and Golden bump induc-

tance values and Figure 8(b) shows the distribution of percentage

error. Our model can predict achievable bump inductance within

5Readers may notice that removal of individual parameter (P10, P11 or P12) causes
more degradation in model accuracy compared to removal of Lay parameter set. The
study of interaction among model parameters is one of our ongoing work.

an absolute percentage error of 57.0% for more than 95% of all data

points.

Table 3 shows the accuracy metrics of the model. We observe that

our model can predict achievable bump inductance with average

absolute percentage errors of 21.2% and 18.7% for training and

testing datasets respectively. We achieve R2 values of 0.89 and 0.90

for training and testing datasets respectively.

Table 3: Accuracy metrics for achievable bump inductance

model.

Metric Training Testing

R2 0.89 0.90
AAPE (%) 21.2 18.7

90th -pct Worst Overestimate (%) 54.7 46.7

90th -pct Worst Underestimate (%) -34.6 -32.4

95th -pct Worst Overestimate (%) 70.6 59.1

95th -pct Worst Underestimate (%) -43.3 -37.6

Results for Experiment 4. We build a model based on PiM,

Des and Lay parameter sets and compare the accuracy of our actual

bump inductance model against the Golden tool result. We also

compare the extracted bump inductance value from both Golden

tool and Quick tool. Figure 9(a) shows the Golden versus predicted

bump inductance and Figure 9(b) shows the percentage error dis-

tribution of our predictive model. Our model can predict actual

bump inductance within an absolute percentage error of 44.0% for

more than 95% of all data points. Table 4 shows the model accuracy

for actual bump inductance prediction. We achieve average abso-

lute percentage errors of 13.5% and 19.3% for training and testing

datasets respectively.

Table 4: Accuracy metrics for actual bump inductance

model.

Metric Training Testing

R2 0.97 0.92
AAPE (%) 13.5 19.3

90th -pct Worst Overestimate (%) 32.2 48.0

90th -pct Worst Underestimate (%) -24.9 -32.5

95th -pct Worst Overestimate (%) 41.2 62.9

95th -pct Worst Underestimate (%) -33.7 -40.6

Figure 3(a) shows the bump inductance values from Golden and

Quick and Figure 3(b) shows the percentage difference distribution

of Quick tool compared to Golden tool. Table 5 shows the accuracy

of Quick tool. Compared to our actual bump inductance model,

Quick tool is 82.6% less accurate for 95th -pct percentage error.

Results for Experiment 5. Similar in spirit to [3], we build a

model based on PiM, Des and Lay parameter sets and Quick tool

results to correlate Quick tool results and Golden tool results. Fig-

ure 10(a) shows the Golden versus predicted bump inductance

values and Figure 10(b) shows the percentage error distribution

of our actual inductance model when Quick tool result is consid-

ered as an input parameter. Our model can predict actual bump

inductance within an absolute percentage error of 32.9% for more

than 95% of all data points. Table 6 shows the corresponding model

accuracy for actual bump inductance prediction. Compared to the



Figure 7: Sensitivity of RMSE to individual parameter removal.

Figure 8: Results for achievable bump inductance model. (a)

Golden versus predicted achievable bump inductance. (b)

Percentage error histogram.

Figure 9: Results for actual bump inductance model. (a)

Golden versus predicted actual bump inductance and (b)

Percentage error histogram.

actual bump inductance model in Experiment 4, we observe that

the model that considers the Quick tool result as an input achieves

better accuracy metrics.

Results for Experiment 6. We study the generality of our

bump inductance model by applying the model from Experiment 4

to a variant design. The variant design is created from a real design

by strictly degrading PDN quality through removal of a number

of balls and vias. Figure 11(a) shows the Golden versus predicted

bump inductance values for the variant design and Figure 11(b)

shows the percentage error distribution. We observe that more

Table 5: Accuracy metrics comparison between Quick tool

and our model.

Metric Quick Our Model

R2 0.77 0.95
AAPE (%) 33.2 15.4

90th -pct Worst Overestimate (%) 97.6 48.6

90th -pct Worst Underestimate (%) -56.9 -37.1

95th -pct Worst Overestimate (%) 125.1 37.5

95th -pct Worst Underestimate (%) -61.5 -28.3

Figure 10: Results for Quick tool andGolden tool correlation

model. (a) Golden versus predicted bump inductance. (b) Per-

centage error histogram.

Table 6: Accuracymetrics for correlation betweenQuick tool

and Golden tool.

Metric Training Testing

R2 0.99 0.94
AAPE (%) 6.2 17.5

90th -pct Worst Overestimate (%) 15.7 45.5

90th -pct Worst Underestimate (%) -12.7 -31.8

95th -pct Worst Overestimate (%) 20.9 60.5

95th -pct Worst Underestimate (%) -17.5 -39.9

than 95 percent of the data points from the variant design have

absolute percentage errors within 55.0%. As the variant design is in

some sense “intentionally worse than the original PDN design”, we

believe that this result supports that our bump inductance model is

generalized.



Figure 11: Results formodel generality study. (a) Golden ver-

sus predicted bump inductance of variant design. (b) Per-

centage error histogram.

5 CONCLUSIONS

Prediction of PKG PDN quality, especially PKG bump inductance,

is crucial to reduce design cost and turnaround time. We propose a

learning-based methodology to predict achievable bump inductance

and help make an assessment of achievable PKG PDN quality, given

pinmap information and design information. We observe that the

sets of pre-layout parameters designated as PiM andDes in Section 3-

3.1 have the strongest impact on the PKG PDN quality. Hence, we

propose a pre-layout achievable inductancemodel using the PiM and

Des parameters as inputs. PKG PDN designers can use the model to

avoid the need to iterate layout to evaluate multiple pinmap options

during the early stages of the design. That is, a closer to optimal

pinmap allows engineers to focus on a smaller subset of viable

pinmaps in the layout phase. The average absolute percentage error

is 21.2% or less for the achievable inductance model.

We then use the same learning-based methodology to build a

post-layout actual inductance model that predicts bump inductance

when layout information is available. The average absolute per-

centage error is 19.3% or less for actual bump inductance model.

We extend the actual inductance model by feeding the results of

the Quick tool as an additional input. This further reduces the av-

erage absolute percentage error to 17.5%. Our post-layout model

provides more accurate layout-phase bump inductance prediction

compared to the Quick tool. PKG PDN designers can use our post-

layout model to provide accurate feedback without using Golden

tool. We also demonstrate that our model is generalized against

a variant design. Our models enable quicker pre- and post-layout

optimizations for PKG PDN, reducing weeks of pinmap and layout

optimizations in a typical SoC design cycle.

Our ongoing and future works include developing Lay parame-

ter predictors, as well as model-based PKG pinmap optimization

techniques. PKG PDN designers can use Lay parameter predictors

for PKG PDN layout guidance, which enables more efficient explo-

ration of the PKG PDN design space. Model-based PKG pinmap

optimization can be used to identify promising PKG PDN design

instances that can be passed on to the layout phase.
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