Journal of Dynamics and Differential Equations
https://doi.org/10.1007/510884-019-09794-7

l‘)

Check for
updates

On the Determining Wavenumber for the Nonautonomous
Subcritical SQG Equation

Alexey Cheskidov' - Mimi Dai'

Received: 22 June 2018 / Revised: 28 August 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

A time-dependent determining wavenumber was introduced in Cheskidov and Dai (Phys D
Nonlinear Phenom 376-377:204-215, 2018) to estimate the number of determining modes for
the surface quasi-geostrophic equation. In this paper we continue this investigation focusing
on the subcritical case and study trajectories inside an absorbing set bounded in L*°. Utilizing
this bound we find a time-independent determining wavenumber that improves the estimate
obtained in Cheskidov and Dai (Phys D Nonlinear Phenom 376-377:204-215, 2018). This
classical approach is more direct, but it is contingent on the existence of the L® absorbing
set.
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1 Introduction

In this paper we estimate the number of determining modes for the forced subcritical surface
quasi-geostrophic (SQG) equation (see [12])

00 +u-VO+vA%0 = f
J— u - v — s
ot (1.1)
u=R"'0,
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wherex € T2 =1[0,L]>, 1 <@ <2,v > 0, A = +/—A is the Zygmund operator, and
R0 = A1 (=320, 3,6).

The initial data 6 (0) € L%(T?2) and the force f € L®(0, co; L?(T?)) for some p > 2/« are
assumed to have zero average.

A time-dependent determining wavenumber A (¢) was introduced in [5] in the case where
a € (0,2) and the force could be potentially rough. The determining wavenumber was
defined based only on the structure of the equation and without any requirements on the
regularity of solutions. It was shown that if two solutions coincide below A(t), the difference
between them decay exponentially, even when they are far away from the attractor. Moreover,
A(t) was shown to be uniformly bounded for all the solutions on the global attractor when
a €[1,2)and f € LP, p > 2/«, in which case the attractor is bounded in L*°. In this
paper we investigate this situation further and present a different, more direct approach in the
subcritical case o € (1, 2). Here we consider solutions that already entered an L°° absorbing
set and take advantage of the L° bound (which is proportional to the L”-norm of the force)
to define a time-independent determining wavenumber A and improve the final estimate for
the number of determining modes that we had in [5]. The drawback of this method is that
it is less general and works only for regular solutions in the L> absorbing set. For a more
complete background on the topic of finite dimensionality of flows, we refer the readers to
[5,7,10,11,15-21] and references therein.

For the critical SQG equation (¢ = 1), due to the balance of the nonlinear term and the
dissipative term, the global regularity problem was challenging. However it was solved by
different authors using different sophiscated methods in [2,9,13,23,24]. For the subcritical
SQG equation with 1 < « < 2, the dissipative term dominates. In this case the global
regularity was obtained in [25].

In this paper, we will consider forces f € L*°(I; LP(T?), p > 2/a, where I = (0, 00)
or (—o0, 00), such that

sup | f(Dlp < F,
tel

for some fixed F > 0. Then {# € L? : ||f||oco < Roo} is an absorbing set in L? (see Sect. 3),

where B
2 _aF
Roo ~ Aé’ —. (1.2)
v

Here Ao = 1/L. We prove the following.

Theorem 1.1 Leta € (1,2),1 > %4, and Q € N be such that

1

CI2Roo \ ™!

A= }»()ZQ > ( oo) s
14

where C is some absolute constant. Let 01(t) be a solution of (1.1) with f = f and 6,(t)
be a solution to (1.1) with f = fr. If

161 <0 = 02(D<0llgy — 0, and |l fi = fzIIB,a(l,% -0, as t— oo,
' 11

then
1) =621 -0 as 1 — oo
1,1
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Moreover, if 01(t) and 65(t) are two complete (ancient) solutions of (1.1) with f €
L% ((—00, o0); LP), p > 2/a, such that 0, 6, € L*°((—0o0, 00); L2) and

01(t)<g = 02(t)<p, VYVt <O, (1.3)
then
01(t) = 62(¢), vVt € R.
The second part of the theorem concerns solutions on the pullback attractor
A(t) = {8(t) : 0(-) is a complete bounded solution, i.e., € L*((—00, 00); Lz)},

that describes the long time behavior of solutions as the initial time goes to minus infinity. The
fact that A(¢) is indeed a pullback attractor follows, for example, from the general framework
[8].

In the particular case of a time independent force f € L7, all the time slices of A(t)
coincide, and

A= A1), vVt € R,

is the global attractor. Again, in the subcritical case o > 1, it is easy to show that A is a
global attractor by virtue of classical methods, or applying the evolutionary system framework
[4] that requires the existence of an absorbing ball, energy inequality, and continuity of
trajectories. This method does not require proving the existence of a compact absorbing set,
and was used in [6] to show that A is the global attractor in the critical case « = 1 (see
also [9] for the existence of the global attractor in H 1. In addition, in the autonomous case
f € LP, the number of determining modes was estimated in [5] using a much more general
method applicable to subcritical, critical, and supercritical regimes. Theorem 1.1 provides
an improvement to the upper bound on A in the subcritical case « > 1.

2 Preliminaries
2.1 Notations

We denote by A < B an estimate of the form A < C B with some absolute constant C, and
by A ~ B an estimate of the form C;B < A < C, B with some absolute constants C1, C.
We write || - ||, = || - lIz», and (-, -) stands for the L2-inner product.

2.2 Littlewood-Paley Decomposition

We recall briefly the Littlewood—Paley decomposition theory, which is one of the main
techniques used in the paper. For a more detailed description on this theory we refer readers
to the books [1,22].

Denote 1, = % for integers g. A nonnegative radial function x € Cy°(R") is chosen

such that
1, for|&| <3
_ 2.1
x(®) {07 for 6] = 1 2.1)

Let
p@&) = x(&/2) — x(§)
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and
p(279E) forg > 0,

X&) forg = —1.

For a tempered distribution vector field u, its Littlewood—Paley projection u, is defined as
follows.

Wq(s) = :

- 2mkex
hy = Z @q(k)e' L
kezZ"
~ i271k»x 1
ug = Agu = Z irpg(k)e' "1 = 2 /1.1‘2 hg(Y)u(x — y)dy, q > -1,

kezZ"
where 11y, is the kth Fourier coefficient of u. Then we have
o¢]
i=3u,
g=-1

in the distributional sense. We also denote

Y R
U<g = Z Ugs UQ,R = Z Up, g = Z Up.

q=—1 p=0+1 Ip—ql=<1

The Besov Bf ;,-norm is defined as

I

o
K 1
lellgg, = D2 24 lug

g=-1

The following inequalities will be frequently used:

Lemma 2.1 (Bernstein’s inequality) Let n be the space dimension and r > s > 1. Then for
all tempered distributions u,

n(t-1)
”uq”r = }\q s ””q”s

Lemma2.2 Assume?2 <[ <ooand 0 < a < 2. Then
lfqu“uq|uq|l—2dx 2 28 lug ;-
For a proof of Lemma 2.2, see [3,14].

2.3 Bony's Paraproduct and Commutator

Bony’s paraproduct formula will be used to decompose the nonlinear terms. We will use the
same version as in [6]:

Agu-Vo)y= Y Agluzpa-Vop)+ Y Aglup-Vvzp o)
lg—pl=2 lg—pl=<2
+ Y Agliip - Vup).
p=q-2
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Some terms in this decomposition will be estimated using commutators. Let
[Ag, tu<p2- Vv, = Ay(u<p2-Vv,) —u<p 2 - VA v,. 2.2)
By definition of A, and Young’s inequality,
I[Ag, u<p—2 - VIvpllr S IVu<p-2llscllvpllyr, (2.3)

for any r > 1 (see [5] for details).

3 Absorbing Sets

First, we recall the L°° estimates from [5].
Lemma 3.1 Let a € (0, 2) and 0 be a solution of (1.1) on [0, 00) with 8(0) € L* and

sup [[f(Dllp < F,

t>0

Jor some F > 0and p € (2/a, o0]. Then, for every t > 0,

9 0 2_ F 2 _1 1_1
ool 5 2O L i ), G.1)
(vr)e v
Proof 1dentical to the proof of Lemma 4.2 in [5] provided || | , is replaced with F. O

Due to the energy equality
t

10113 = 10t0) 113 +/

fo

(—vIAT0@I2 + (f(0).0(0) dr. 0= =1,

and the fact that
p Z_1-¢ Z_1-¢
IAT2 fll2 S Ag Ifllp < Ag F,
we have
L,

2 2 2 )% )“6, F? 2mA0)“
10013 S 16O)3e™" 30 4 X (1= 70 ) s

which implies the existence of an absorbing ball in L2. Indeed, for any bounded set U C L2
there exists time #; 2, such that

G(t)EBLz, thtLQ,

for any solution 6 (¢) with 6(0) € U. Here

2 1—aF
Bpo={0eLl?:0l,< R}, Ri~x  —.
V
No consider the following ball in L*°:
2 oF
Broe =1{0 € B2 : 0lloo < Roo} . Roo ~ A{ —

Lemma 3.1 implies that B~ is an absorbing set as well, i.e., for any bounded set U C L?
there exists time 7., such that

0(t) € Bpe, Vt > tpo,

for any solution 6(r) with 6(0) € U. O
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4 Proof of the Main Result

First we recall a generalization of Gronwall’s lemma from [18].

Lemma4.1 Let a(t) be a locally integrable real valued function on (0, 00), satisfying for
some 0 < T < oo the following conditions:

T+t T+t
litminf/ ¢(t)dt > 0, lim sup/ ¢ (t)dt < 00,
— 00 t t

1—00

where ¢~ = max{—¢, 0}. Let ¥ (t) be a measurable real valued function on (0, co) such
that

Y(t) — 0, as t— o0.

Suppose &(t) is an absolutely continuous non-negative function on (0, 00) such that

d
ZE +¢& <y, a.e on(0,00).
Then

E) -0 as t— oo.
Now we are ready to prove the main result.

Proof of Theorem 1.1 Consider two solution 61, 6, of (1.1) with forces fi and f;. Let #o be a
time after which the solutions stay in the absorbing set By oo:

181 () lloc < Reo, 162 lloc < Reo, r = 1.

In what follows we assume that > 7y. Denote u; = R16; and us = R16,. Let f=hH—-1f
and w = 01 — 6, which satisfies the equation

w, +up - Vw +vA%w + RMw - Vo, = f. 4.1)

Projecting Eq. (4.1) onto the g-th shell, multiplying by lw, |w, =2, integrating, adding

up for all ¢ > —1, applying Lemma 2.2, Holder and Young inequalities, yield

d } 2\ (1)
2Ol +Colawllyy — (= || Fllg,

< -1 Z/ Ay (RYw - Vo) w,ywy |2 dx
g=—17T (4.2)

-1y /TZAq(ul-Vw) wylwy |2 dx

q=—1
=14+J,

@ Springer



Journal of Dynamics and Differential Equations

for some absolute constant C. Using Bony’s paraproduct formula, / is decomposed as

I=-1%" % /w Ag(RMwops - V(02) ) wy|wy|' 2 dx

g=—1l|g—pl|=2

-1 Z Z /IFZ Aq(RJ_wP : V(92)§p—2)wq|wq|l_2 dx

q=—1lq—p|=2

-1y Y /W Ay(RHD, - V(02) pwylwy |2 dx

g=—1p=q-2
=L+ L+ 15

Recall that A = 22 /L. To estimate I; we use Holder’s inequality and split it as follows:

LIETD DD S IR TT S O A [

q=—1|q—p|=2

SEY Mgl 3l @ple Y IR wyll
>0 la—pl=2 0<p'<p-2

F1Y gl Y Al @) pllscll R wgll
q>0 lg—pl<2

F13 w0 Al @) pllscl R wepoalls
q=0 lg—pl<2

=1+ Lo+ 6.

Then using Young’s inequality, Jensen’s inequality and the fact that || leq 7 < llwgllz, we

obtain l
-1 1
LS Rl Y ap Y lwgly™ Y IR wyl
p>0-2  |g—p|=2 Q<p'=p-2
-1 1
SRool Y aplwpli™ D0 IR wy
p>0 O<p'<p-2
()]
l—atd £ -1 1
SATIRGY ap T llwpli Y IR wp
r>0Q Q<p'=p-2
1 oD -1 fipl -7
e _
SAT Rl Y ap T wpliTh YT AL IR wlli
p>0Q Q<p'=p-2
S A TRl Y 2wy ]
q9>0Q

where we needed 1 — o + % < 0,1ie., ! > o/(a¢ — 1). Now we take small enough € > O,
such that 1 — o + % + € < 0, and use Holder’s inequality, Young’s inequality, and Jensen’s
inequality to infer

Lo S Reol Y lwgli™ Y 2R gl

q>0Q lg—pl=<2
-1 1
S Rool Y gllwglli IR w=os
q>0-2
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l—a+%4e, . 2D 1
=Rool ) kg AN T wglyT IR wsoll
qg>0-2
l—at@y e, R -1y plL
S ARG Y ag g T lwgl T IR w<glls
qg>0-2
e
ad—1) =
- —eq T -1 1 1
SAT R DT AR T gl + ARG R wepll}
q9>0-2
l—a— 1
S AT TRl Y A llwgl + AT Rl wglly:
qg>0-2

and similarly,

-1 1
Iy S Reol D llwgli™ Y apllR wepall

q=<0 lg—pl=2
S Rool Y agllwg ;™ IR w<olly
q<Q

l—a+94e, _ ad=1) 1—1 1
=Rool Y 2g A% T llwgll T IR w0l
q=0
a(—1)

SA TRl Y AN T lwgllyT AT IR weo s

q=0
1
al—1) =T
S AT Rl | Y aghg T llwgl ']+ ATV RG R wool);
9=0
S AT Rl Y A lwyllf + ATV R w<g]
90

For I, splitting the summation and using Holder’s inequality, we obtain

ST [ 180 R g V622w o d

q=—1|q—p|=2

SEST YT T @)y el R wyll w11y

q>0-2|p—q|=2 p'<p-2

HLYT DT YT apll O plleol RFwp s flwg Iy

q<0-2|p—q|=2p'<p-2
=D + In.
The first term is estimated as
!
D1 S Rl Y llwplli D Ay

p>0—4 p'<p-2

1 1—
S Reol ) Kpllwplll Do Apephy
p>0—4 p=p-2

S ARG Y 2wyl
p>0—4
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For the second term we have

Iy SRl Y >0 D aplR wplillwg !

q=0-2|p—q|=2 p'<p-2

S Rool D Nlwgllp D Ay

q=0 p'<Q
S ARl Y llwg -
q=0Q

To estimate /3, we first integrate by parts and then use Holder’s inequality obtaining

U Y X [ 1R 6,0,V )

g=—1p=q-2

S X /2IAq<lep<92>p>qu||wq|l—2dx
q=—1p>q-2 T

S aglwgl™ ST IR B0l
q>0 pzq-2

+123 " Agllwgl ™" Y IR B, 101162l
q<0 p=q—2
= 31 + I3;.

For the first term we use Jensen’s inequality:

B S Rool® D0 IR wyll Y agliwglly™

p>0-3 0<q=<p+2
@ al=1) o
SRl® Y pllwple Y g T lwgly T AR,
p>0-3 0<q=<p+2
S ARG Y AL wyllf-
q>0-3

For the second term, Holder’s inequality, Young’s inequality, and Jensen’s inequality yield

Iy S Rool® Y aglwgli™ D IR D, s

= p=q—2
o [*3 o
2 -1 Tipls =7 =7
S Rl Y wgly ™ Y A IR wpliA, Thg
= p=q-2
1-¢ 2 -1 el -7
S AT RGP Y Nwglly™ Y ApIR D, 10,1,
=Y p=q—2

2 I - Fipl~ -7
S ARG Y | Hlwglly+ A7 | > aj IR D, 12,7,
90 p=q—2
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I
S AR Y lwglly + A Raol? Y | Y0 ApIR D, 10,7,

9=0 g=Q \p=q-2
S ARG D AL wgllp + ARl Y llwgly-
q=—1 q=0

Therefore, for [ such that 1 — o + % < 0 we have

1] < ARl Z 2% I+ (A(lfl)(afl) +Al+el) Rl Z w1

g>—1 q=Q (4.3)
S ARG Y 2wl + ACVED RS g I,
g=-1 9=

where € is chosen small enough so that 1 —« + % +€ <0Oandhence (| —1)(x¢—1) > 1+e€l.
We now estimate J, where we first apply Bony’s paraproduct formula:

J==1) ) /TzAq((“l)sp—Z'pr)wq|wl1|l_2dx

g=—1lq—p|=2

-1y > /Tqu((ul),,-sz,,,z)wq|wq|1*2dx

q=—1|q—p|=2

I T [ st Vg ax

q=—1p=q-2
=1+ L+ 5.

Observing that ) Ip—ql<2 DqWp = wg, we then decompose J; using the commutator notation
(2.2):

Bh=-1) Y /szq,(m)s,,fz-V]w,,wq|wq|"2dx

gz—=1lg—p|=2

-1y /Tz(ul)gq—z-quwq|wq|’*2dx

g=—=1

_IZ Z /Tz((ul)fp—Z_(”l)fq—2)'VAquwq|wq|l_2dx

q=—1|q—p|=2
= Ju+ Jiz+ Jiz.

The term Jy> vanishes because div (u1)<4—2 = 0. To estimate J;; we will use (2.3),

I[Ag, ) <p—2 - Viwplli S IV @) <p-2llsollwplli.
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Then splitting the summation we get

Wl <Y >0 A @) <p—2 - Viwylillwgll) ™

g=—1lg—p|=2

<UD V@) <p-allsoliwpllilwg )™

g>0-2|q—p|=2
H1Y T DT V@) <p-2lieolwplillwg ;™"
q=0-21lq—p|=2
= Jin + J12.

Now note that || (1) g llco S [1(01)gllcc < Roo. Sousing Holder’s and Bernstein’s inequalities,
we obtain

TS YT Y Yl plleollwp lillwglly ™!

q>0-2|q—p|=2 p'<q

SReol Y >0 Y apllwpliliwg ™

q>0-2|9—p|=<2 p'<q

SRool Y Y hyliwgly

q>0-4p'<q
1—
SRl Y Mllwglly D hyghy ™
q>0—4 P'<q
S ARl D A wgl
g>0—4

Similarly,

TS Y D0 D Al llellwpllrllwg I

g<0-2lq—p|<2 p'<p-2

SRl Y D0 D apllwplliliwg ;™!

q=<0-21lq—p|=2 p'<q

SRl Y llwglly Y 2y

Y p'<0-2
S ARl Y llwgllj-
q=0Q

To estimate J;3, we first use Holder’s inequality and split the summation as follows:

al<i . > /T [(Un)<p-2 = (U1)<g—2) - VAgwp| [wy|"~" dx

g=—1]g—p|=2

512 Z Z /Tz|(u1)pf||VAqu||wq|"1dx

q>0-21g—pl<2¢q-3<p'<q

! Z Z Z ./Tz|(u1)P'||VAqu||wq|l_ldx

q<0-2lq—pl<2q-3=<p'=q
= Jiz1 + Ji132.
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Now Jensen’s inequality yields

T SU Y wgll™ D7 aplwple Do M@yl

q9>0-2 lg—p|=<2 q—3=p'=q
-1
SRl Y Nwgll™ D2 pllwyls
q>0-2 lg—pl=2
a(l-1) o o
=T -1 T 1=7,1-
SRool D g T lwgli™ D Aplwpllin, ) ay
q>0-2 lg—pl=<2
1— l
S AT Rl D 2wyl
qg>0—4

And similarly, for the second term,

T S lwgll™ D0 apllwpll Do )yl

qg=0-2 lg—pl=2 q—=3<p'<q
-1
SRool Y lwgly™ D Apllwpll
g<Q-2 lg—pl=2
[
S Rool Y hgllwg
q=0Q
1
S ARl Y llwg -
q=0

For J, we use Holder’s inequality obtaining

DY fT |Ag (D) - Vwzp_)| [wy| " dx

g=—1lg—pl|=2
-1
SEY Mwgl™ Y0 @plee Y Aplwyls
q9>0 lg—pl=2 p'<p-2
-1
F1Y Mwgli™ D0 Nwplle Y Apllwyl
q<0 lg—pl=2 p'<p-2
= Jo1 + Jo.

Recall that [|(u1)gllco S 1(01)g o
that

< Rs. Hence we can use Jensen’s inequality to deduce

-1
Tt S Rool > wglly ™" Y- Aprllwll

>0 P'<q
o -1 7 -9 -«
SRl ) hg T lwglly™" D AL wpllin, Ly
q>Q r'=q
1— 1
S ARG Y A lwg
q>0Q
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where we needed / > «. While the second term is estimated as

—1
T2 S Reol Y Nlwg ;™ D7 aprllwylly

q=Q P'<q

S ARl Y Mwgli ™" Y lwyls

Y p'<0

S AQRL Y llwglly.

q=0Q

Since [[(w)gllr S 1(B1)g I for any r € (1, oc], the term J3 enjoys the same estimate as /3.
Hence we conclude that

IJI S AT Rool? Y 2wy ll; + AQRool® Y llwglly. (4.4)
g=—1 q=0
Thanks to (4.2)—(4.4), inequality (4.2) yields

d _
Tl < —Col A wlfy +CLA™Rocl® 37 35wy
' ' q>0

2 -1 B 11 B B
+(E> p-2pa 1)f||lBlol+C2A(l D@DRGI2 S gl

q<0
for some absolute constants C, C;, and C,. Thus we have
L@, +elwoll, <y
dt B, BR/ - ’
where
¢ = 5(2mr0)*Cv,
2\, ,a(l,%) I I-Da-Dp 72 /
vor=(5) 17IA Fligp + 24 Rool* Y llwgllj,
' q<0
provided
1
A 20,12 R a=T
Loy % '
Note that

Y()—0 as t— oo,

due to the assumption of the theorem. Since also « > 0, the first part of the theorem follows
from Lemma 4.1.
To prove the second part, where (1) = 0, we note that

[ ! —a(t—
lw)lye < llw(o)ly e 0, 19 <1 <0,
1,1 1,1

thanks to Gronwall’s inequality. Since 61 and 6, are ancient solutions,

01(t),02(t) € B2 N By, vt <0.
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Hence, we have

1-2 2

lw®lge < lTw®lloo " w®)l;
13 3
SR 'R,

for all 7. Taking the limit as f) — —oo gives w(t) = Oforall <0,and hence w =0. 0O
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