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Originally defined for the optimal allocation of resources, optimal transport (OT) has found
many theoretical and practical applications in multiple domains of science and physics. In this
paper we develop a new method for solving the discrete version of this problem using techniques
derived from statistical physics. We derive a strongly concave free energy function that captures the
constraints of the OT problem at a finite temperature. Its maximum defines an optimal transport
plan, or registration between the two discrete probability measures that are compared, as well as a
pseudodistance between those measures that satisfies the triangular inequalities. The computation of
this pseudodistance is fast and numerically stable. The temperature dependent OT pseudodistance
is shown to decrease monotonically with respect to the inverse of the temperature and to converge
to the standard OT distance at zero temperature, providing a robust framework for temperature
annealing. We illustrate applications of this framework to the problem of image comparison.

Imagine that there are N1 flour milling plants around
Paris, France that serve N2 bakeries within Paris, and let
us assume balance, namely that there is as much flour
produced by the plants as needed by the bakeries. A
company in charge of the distribution of the flour will
take into account the individual cost of transporting some
amount of flour from one plant to one bakery to find an
“optimal transport plan”, namely an assignment of how
much flour needs to be transported between each plant
and each bakery that leads to a minimal overall cost for
the transport. Finding a solution to this seemingly sim-
ple practical problem has led to the development of a
small gem in the mathematics and statistics communi-
ties, namely the optimal transport (OT) problem. What
makes the OT problem so interesting is that its solution
includes two essential components. First, it defines a
distance between the distributions considered, with such
distance being referred to as the Monge-Kantorovich dis-
tance, the Wasserstein distance, or the earth mover’s
distance, depending on the field of applications. These
distances have enabled statisticians and mathematicians
to derive a geometric structure on the space of proba-
bility distributions [1, 2]. Second, it also provides the
optimal transportation plan between the distributions;
this optimal plan defines a registration, thereby enabling
alignment between the distributions. Applications of OT
have exploded in the recent years, in domains such as ma-
chine learning, computer vision, and linguistics. Multiple
fields of physics are also impacted, from applications of
OT to density functional theory [3], quantum mechanics
[4], stochastic thermodynamics [5], and general relativity
[6], among others. For extensive reviews of OT and its
applications, see [1, 2].
Our focus in this paper is on the discrete version of

the OT problem. We consider two sets of points S1 of

size N1 and S2 of size N2. Each point k in S1 (resp S2)
is assigned a “mass” m1(k) (resp m2(k)). The balance
condition implies that

∑

k m1(k) =
∑

l m2(l). We as-
sume that these two sums are equal to 1. We encode the
cost of transport between S1 and S2 as a positive matrix
Ckl with k ∈ {1 . . . , N1} and l ∈ {1 . . . , N2}. The OT
problem can then be formulated as finding a matrix G
of correspondence between points in S1 and points in S2

that minimizes the transport cost U defined as

U(G) =
∑

k,l

GklCkl (1)

where the summations extend over all k in S1 and l in
S2. The minimum of U is to be found for the values of
Gkl that satisfy the following constraints

∀(k, l), Gk,l ≥ 0 (2a)

∀k,
∑

l

Gkl = m1(k) (2b)

∀l,
∑

k

Gkl = m2(l) (2c)

The solution to the OT problem provides an optimal
transport plan Gopt and the corresponding minimum
transport cost Umin = U(Gopt). The minimum cost de-
fines a “distance” between the two sets of points. It has
all the properties of a metric when the cost matrix C is
a metric matrix, see [1]. This metric is often referred to
as the Wasserstein distance W (S1, S2) between the two
sets of points. In this paper we will make the same as-
sumption that C is a metric matrix.
Note that the first condition on G, (2a), extends to

0 ≤ Gkl ≤ 1 for all k and l, based on our assumption
that the sum of the discrete probability measures are 1
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on both sets of points. Optimizing (1) under the con-
straints (2) is a linear programming (LP) problem. While
much progress has been achieved for solving those prob-
lems [7], current practical implementations are roughly of
order O(n3) (where n = max(N1, N2)), with a quadratic
complexity in the number of variables considered. Such
complexity levels are considered problematic when n is
larger than a few thousands.
Interestingly, the current successes of OT have been

triggered by the idea of minimizing a regularized version
of equation 1 :

Uǫ(G) =
∑

kl

GklCkl − ǫ
∑

k,l

Gkl log(Gkl) (3)

where ǫ is the regularization parameter, and the second
term is an entropic barrier that enforces the positivity
of the Gkl terms [8]. This regularized version of optimal
transport is often called the Schrödinger problem [9]. It
maps to the traditional OT problem as ǫ → 0; in addi-
tion, the optimal solution U(Gopt) where Gopt has been
computed at a given ǫ is a pseudodistance, referred to
as the Sinkhorn distance [8]. Note that it is labeled as
a pseudodistance as it only satisfies the symmetry and
triangular inequality properties of a metric [10]. The en-
tropic penalization has the advantage that it defines a
strongly convex problem with a unique solution [8]. An-
other advantage of the regularized OT problem is that
its solution can be found efficiently using the Sinkhorn’s
algorithm [11, 12], with a time complexity of O(n2). This
algorithm finds solutions for a given value of the relax-
ation parameter ǫ. For small values of this parameter,
numerical issues may arise and a stabilization is neces-
sary [13]. Convergence of a stabilized Sinkhorn algorithm
can nevertheless be very slow when ǫ is small. Such small
values are, however, desirable for finding good approxi-
mations to the solution of the non-regularized OT prob-
lem. A popular heuristic solution to this problem is the
so-called ǫ-scaling, where one solves the regularized prob-
lem with gradually decreasing values for ǫ [14]. To our
knowledge, no quantitative analyses of the convergence
of such an ǫ-scaling method are available.
In this paper, we develop an alternate framework for

solving the OT problem that is derived from a statistical
physics point of view and report on its applications to
computing the similarities between images. A more de-
tailed theoretical and numerical analysis is presented in a
companion paper [15]. In this framework, we exploit the
formal analogy of the cost function in Eq. 3 to a free en-
ergy (ǫ is then the analogue of a temperature, T ). It can
be seen as a generalization of the so-called invisible hand
algorithm, which used a similar approach for solving the
assignment problem [16].
In statistical physics, a system that is in thermal equi-

librium at finite temperature will sample many states.
The corresponding Gibbs distribution represents the
probability of this system to exist in any specific state.

The most probable state is then the one with lowest en-
ergy. Hence, minimizing an energy function can be re-
formulated as the problem of finding the most probable
state of the system it defines. Let us consider two sets
of weighted points, a source set S1 and a target set S2

equipped with masses m1 and m2, respectively. To solve
the OT problem between those two sets, the “system” is
identified with the different transport plans between S1

and S2 that satisfy the constraints of mass balance and
positivity. Those plans belong to a convex polytope de-
noted as G(S1, S2). Each state in this system is identified
with a transport plan G ∈ G(S1, S2), and its correspond-
ing energy U(G) is defined in equation 1. The probability
P (G) associated with a transport plan G is derived as:

P (G) =
1

Zβ(S1, S2)
e−βU(G) (4)

In this equation, β = 1/(kBT ) where kB is the Boltz-
mann constant and T the temperature, and Zβ(S1, S2)
is the partition function computed over all states of the
system. This partition function is given by

Zβ(S1, S2) = e−βFβ(S1,S2) =

∫

G∈G(S1,S2)

e−βU(G)dµ12

(5)
where dµ12 can be seen as the Lebesgue measure for the
space of transport plans G(S1, S2) and Fβ(S1, S2) is the
free energy of the system. We note first two important
properties of this free energy, namely that Fβ(S1, S2) is
symmetric and satisfies all triangle inequalities if the cost
matrix C is metric, and that it is a monotonically de-
creasing function of β that converges to the traditional
OT distance W (S1, S2) (see the companion paper [15]
for proofs). From those two properties, it is clear that
this formulation of the optimal transport problem is ap-
pealing. It defines a temperature dependent free energy
that satisfies metric properties when the cost function is
metric, with a monotonic dependence on the tempera-
ture, and convergence to the actual OT distance at zero
temperature. It is, unfortunately, of limited practical in-
terest as the free energy cannot be computed explicitly.
We propose a scheme for approximating the free energy
using the saddle point approximation.
Taking into account the constraints defined in equation

2, the partition function can be written as

Z =

∫ 1

0

∏

kl

dGkle
−β

∑

kl

CklGkl

∏

k

δ

(

∑

l

Gkl −m1(k)

)

∏

l

δ

(

∑

k

Gkl −m2(l)

)

(6)

We use the Fourier representation of the delta func-
tions, thereby introducing new auxiliary variables λk and
µl, with k ∈ {1 . . . , N1} and l ∈ {1 . . . , N2}, respectively.
The partition function can then be written as (up to a
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multiplicative constant),

Z =

∫

∏

k

dλk

∫

∏

l

dµl

∫ 1

0

∏

k,l

dGkl

e
−β

∑

k,l

Gkl(Ckl+iλk+iµl)+β

(

∑

k

iλkm1(k)+
∑

l

iµlm2(l)

)

(7)

Performing the integration over the variables Gkl, we get,

Z =

∫

∏

k

dλk

∫

∏

l

dµle
−βFeff (β,iλk,iµl) (8)

where Feff is a functional, or effective free energy defined
by:

Feff (β, λ, µ)= −

(

∑

k

λkm1(k) +
∑

l

µlm2(l)

)

−
1

β

∑

kl

ln

[

1− e−β(Ckl+λk+µl)

β (Ckl + λk + µl)

]

. (9)

Let Ḡkl be the expected value of Gkl with respect to
the Gibbs distribution given in equation 4. As mentioned
above, it is unfortunately not possible to compute these
expected values directly as the partition function defined
in (8) is not known analytically. Instead, we derive a
saddle point approximation (SPA) by looking for extrema
of the effective free energy with respect to the variables
λ and µ:

∂Feff (β, iλ, iµ)

∂λk

= 0 and
∂Feff (β, iλ, iµ)

∂µl

= 0(10)

After some rearrangements, those two equations can be
written as

∀k,
∑

l

Ḡkl = m1(k) (11a)

∀l,
∑

k

Ḡkl = m2(l) (11b)

where,

Ḡkl = φ [β (Ckl + iλk + iµl)] (12)

and

φ(x) =
e−x

e−x − 1
+

1

x
. (13)

As is often the case, the saddle-point may be purely
imaginary. In the present case, one can easily see from
eq.(11) that the variables iλk and iµl must be real and
in the following, we will replace {iλk, iµl} by {λk, µl}.
We observe also that equations (9), (11), and (12) are
invariant under the translation {λk +K,µl −K} where
K is an arbitrary constant. This translational degree of
freedom leaves the free energy Feff unchanged.

To analyze the SPA, we need to check the existence
and assess the unicity of the critical points of the free en-
ergy. In the companion paper [15], we have shown that
the Hessian of Feff (β, λ, µ) is negative semi-definite with
(N1 +N2 − 1) strictly negative eigenvalues and one zero
eigenvalue. Furthermore, the eigenvector corresponding
to the zero eigenvalue is (1,...,1, -1, ....-1) (with N1 1s,
and N2 -1s), and thus corresponds to the constant trans-
lation invariance of this free energy. Setting one of the
parameters λk or µk to zero, the free energy function on
this restricted parameter space is strictly concave.

For a given value of β, the expected values Ḡkl form
a transport plan Gopt between S1 and S2 that is opti-
mal with respect to the effective free energy. We can
associate to this transport plan an optimum mean field
energy UMF

β (Gopt). This energy satisfies some important
properties. Namely, for all β > 0 and cost metric matrix
C, dβ(S1, S2) = UMF

β (Gopt) is a temperature dependent
pseudodistance between S1 and S2 that satisfies the sym-
metry and triangular inequality properties of a metric (it
is not a true distance as dβ(S1, S1) > 0 for β finite). Fur-
thermore, dβ(S1, S2) is a monotonic decreasing function
of the parameter β that converges to the transport dis-
tance W (S1, S2). The validity of those two assertions is
proved in the companion paper [15].

The properties of the free energy functional and of the
optimized mean field energy of the system highlight a
number of advantages of the proposed framework. First,
at each temperature the OT problem is turned into a
strongly concave problem with a unique solution. This
problem has a linear complexity in the number of vari-
ables. The concavity allows for the use of simple algo-
rithms for finding a maximum of the free energy func-
tional (equation 9). We have used an iterative New-
ton method to solve those equations. In the companion
paper [15], we have shown that these equations can be
solved with a time complexity of O(n2), thereby making
this approach competitive with the entropy regularized
OT method. We note also that equation 12 has better
numerical stability than the operations involved in the
Sinkhorn algorithm, even at low temperatures, because
of the ratio of exponentials in the definition of the func-
tion φ. Second, the modified problem defines an optimal
pseudodistance at each temperature, that converges to
the traditional OT distance when T → 0. Finally, the
convergence as a function of temperature is monotonic.

We present some computational examples that illus-
trates the use of our framework. We used the publicly
available Japanese Female Facial Expression (JAFFE)
database [17, 18]. This database comprises 213 images
of facial expressions posed by 10 Japanese female mod-
els. We refer to the images of one of the model as a
class. Each class contains several different poses, namely
6 basic facial expressions + 1 neutral. We character-
ized each image by selecting a set of “keypoints” using
the SURF procedure. SURF is an image feature detector
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FIG. 1. Optimal transport distance matrix between

all images in the JAFFE facial expression database.
The distance D(∞)(k, l) is the converged transport energy
between the SURF keypoints of the two images k and l (see
text for details). The different images for the same model
appear closer to each other than to images of other models.
Interestingly D(∞) shows similarity between models 3, 8, and
10; those are the only 3 models whose hairs cover their ears.

and descriptor used for object recognition and image reg-
istration [19]. Within SURF, a keypoint is a pixel within
the image that is expected to be significant, i.e. a sig-
nature feature of the image. The significance is defined
from a local neighborhood of the pixel of interest, char-
acterized by a vector of 64 features. A pair of images
is represented with their sets of keypoints, S1 and S2,
the cost matrix C between those keypoints, such that
Ckl between a keypoint k on image 1 and a keypoint
l on image 2 is equal to the Euclidean distance between
their feature vectors. The masses of the keypoints are set
uniform. We computed a set of matrices D(β) for beta
ranging between 1000 and 1010, such that D(β)(k, l) is
the optimized transport energy dβ(Sk, Sl) = UMF

β (Gopt),
i.e. the temperature-based pseudodistance between the
sets of keypoints Sk and Sl of the images k and l. We also
computed D(∞), the matrix of distances at convergence.
See figure 1 for a graphical representation of D(∞).

In order to assess the discriminative power contained
in the different matrices D(β), we considered a set of
classification task as follows: we randomly selected half
the images from each class to form a training set and use
it for performing 1-nearest neighbor classification (where
nearest is with respect to the pseudodistance dβ to the
remaining images. By simple comparison between the
class predicted by the classifier and the actual class to
which the image belongs we obtain an estimate for the
probability of correct classification P (β) using dβ . We
then repeat this procedure for 10000 random choices of
the training set. In figure 2, we plot P (β) as a function of

10
4

10
6

10
8

10
10

20

30

40

50

60

70

80

90

100

C
la

ss
if

ic
a

ti
o

n
 s

u
cc

es
s 

(%
)

FIG. 2. Discriminative power of the temperature-

based OT pseudodistances for images in the JAFFE

database. The probability of correct classification using the
pseudodistance measure dβ (see text for details) is plotted
against β = 1/T . The solid line corresponds to the arith-
metic means computed over 10000 classification experiments
(see text for details). Shaded areas represent standard devia-
tions.

β. Note that the lower the temperature (or alternatively
the higher the parameter β), the more discriminative the
pseudodistance dβ . Optimal classification (99.9 %)how-
ever is already obtained for β = 106, i.e. much before
convergence to the optimal transport distance, usually
reached for β > 109. This high success rate should be
compared to a success rate of 37% when the Hausdorff
distance [20] is used to compare two images (using the
same keypoint representation of the image, with the same
Euclidean-based distance between keypoints).
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FIG. 3. The average running times for FreeOT, without
(black circles) and with reset (red circles) and for EntropyOT
used for comparing two imagess is plotted against the number
of keypoints in the images (see text for details).

We have claimed above that the temperature-based
OT method enables a fast and robust solution to the OT
problem. To check that it is indeed the case, we have
compared our implementation of this method, FreeOT,
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with our own implementation, EntropyOT, of the en-
tropy regularized approach to the OT problem to com-
pare images, as described above. EntropyOT is based
on a log-domain stabilization and eta-scaling heuristic
[14] and an overrelaxation scheme [21]; both modifica-
tions to the original algorithm of Cuturi [8] are expected
to improve convergence and robustness. We have com-
pared each image in the JAFFE dataset against five other
images that have similar numbers of keypoints. Each
comparison is performed until convergence, i.e. until the
relative change in the energy falls below a tolerance of
10−6. Such convergence is usually reached for β = 1011

(or equivalently for ǫ = 10−11 for EntropyOT). The com-
puting times for FreeOT and EntropyOT, averaged over
the 5 comparisons, are plotted against the number of
keypoints in the images in Figure 3. With only a few
exceptions, FreeOT is always found to be faster than En-
tropyOT, as the latter is found to slow down significantly
for very small ǫ values. While convergence with high
precision may not be needed, we observe that FreeOT
is free of those convergence problems. Both FreeOT and
EntropyOT include a scaling of the regularization param-
eter. For FreeOT, the values of the converged parameters
λ and µ at one value of β are used as input to the next
value of β considered. This is expected to improve con-
vergence. To check if this is true, we repeated the calcu-
lations with FreeOT by resetting λ and µ to zero for each
β value. The results are shown in Figure 3, as FreeOT
(reset). The reset does lead to less efficient convergence.
Of significance, however, the computations remain fea-
sible, even for very large β values. In contrast, similar
experiments with EntropyOT failed for most image com-
parisons, due to numerical instabilities for ǫ < 10−5.
In summary, we have used statistical physics to de-

rive an alternative representation of the discrete opti-
mal transport problem. We have constructed a strongly
concave effective free energy function that captures the
constraints of the OT problem. This effective free en-
ergy function is parameterized by temperature. Its max-
imum defines an optimal transport plan as well as a
pseudodistance between the two sets of points consid-
ered. In the companion paper [15], we have shown that
this formalism can be implemented in an algorithm with
the same time complexity as those of the implementa-
tions of the regularized OT algorithms in time complex-
ity, making it a competitive approach to solving the OT
problem and therefore amenable to applications in data
sciences. In addition, the temperature dependent OT
pseudodistance is shown to decrease monotonically with
respect to the parameter β to the standard optimal trans-
port or Wasserstein distance, thereby providing a robust
framework for temperature annealing, a process that is
still elusive for the entropy regularized optimal transport
problem. Addressing issues of partial transport, as well
as extensions to other transport problems such as the

computation of the Gromov-Wasserstein distance [22] are
promising directions for future work.

The work discussed here originated from a visit by
P.K. at the Institut de Physique Théorique, CEA Saclay,
France, during the fall of 2018. He thanks them for their
hospitality and financial support.
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