2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

SLACC: Simion-based Language Agnostic Code Clones

George Mathew, Chris Parnin, Kathryn T Stolee
North Carolina State University
{george2,cjparnin,ktstolee}@ncsu.edu

ABSTRACT

Successful cross-language clone detection could enable researchers
and developers to create robust language migration tools, facilitate
learning additional programming languages once one is mastered,
and promote reuse of code snippets over a broader codebase. How-
ever, identifying cross-language clones presents special challenges
to the clone detection problem. A lack of common underlying rep-
resentation between arbitrary languages means detecting clones
requires one of the following solutions: 1) a static analysis frame-
work replicated across each targeted language with annotations
matching language features across all languages, or 2) a dynamic
analysis framework that detects clones based on runtime behavior.

In this work, we demonstrate the feasibility of the latter solution,
a dynamic analysis approach called SLACC for cross-language clone
detection. Like prior clone detection techniques, we use input/out-
put behavior to match clones, though we overcome limitations of
prior work by amplifying the number of inputs and covering more
data types; and as a result, achieve better clusters than prior at-
tempts. Since clusters are generated based on input/output behav-
ior, SLACC supports cross-language clone detection. As an added
challenge, we target a static typed language, Java, and a dynamic
typed language, Python. Compared to HitoshilO, a recent clone de-
tection tool for Java, SLACC retrieves 6 times as many clusters and
has higher precision (86.7% vs. 30.7%).

This is the first work to perform clone detection for dynamic
typed languages (precision = 87.3%) and the first to perform clone
detection across languages that lack a common underlying repre-
sentation (precision = 94.1%). It provides a first step towards the
larger goal of scalable language migration tools.

CCS CONCEPTS

« Software and its engineering — Software maintenance tools;
Object oriented languages; Functional languages; + Information
systems — Clustering.

KEYWORDS
semantic code clone detection; cross-language analysis
ACM Reference Format:

George Mathew, Chris Parnin, Kathryn T Stolee. 2020. SLACC: Simion-
based Language Agnostic Code Clones. In 42nd International Conference on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7121-6/20/05...$15.00

https://doi.org/10.1145/3377811.3380407

210

Software Engineering (ICSE 20), May 23-29, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3377811.3380407

1 INTRODUCTION

Modern programmers typically work on systems built with a cock-
tail of multiple programming languages [12]. A recent survey found
that professional software developers have a mean of seven differ-
ent programming languages in their industrial software projects [30]
and open-source software projects frequently have between 2-5
programming languages [29, 43]. Programmers are also expected
to continue learning multiple programming languages on a daily
basis. To learn a new programming language, studies have shown
that programmers attempt to use a cross-language learning strat-
egy by reusing knowledge from a previously known language [37,
38, 49]. This means programmers often need the ability to relate
code snippets across multiple programming languages.

Traditional clone detection often works with only a single pro-
gramming language, meaning that typical applications and tools
are not applicable to modern programming systems and contexts.
These applications include bug detection in ported software [35],
maintaining quality through refactoring [52], and protecting the
security of products [45]. For example, security teams at Microsoft
use clone detection to scan for other instances of vulnerable code
that might be present in any production software [8]. In short,
there is a need to extend clone detection to work in cross-language
contexts, but limited support exists for them.

This paper presents Simion-based Language-Agnostic Code
Clone detection technique (SLACC), a cross-language semantic
clone detection technique based on code behavior. Our technique
can match whole and partial methods or functions. It works in
both static and dynamic languages. It does not require annotations
or manual effort such as seeding test inputs. Critically, unlike any
other clone detection technique, we are able to detect semantically
similar code across multiple programming languages and type sys-
tems (e.g., Python and Java).

SLACC finds semantic clones by comparing the input/output
(IO) relationship of snippets, called simions (short for similar input
output functions), in line with prior work [20, 40]. SLACC seg-
ments a target code repository into smaller executable functions.
Arguments for the functions are generated using a custom input
generator inspired by grey-box testing and multi-modal distribu-
tion. Functions are executed on the generated arguments and sub-
sequently clustered based on the generated arguments and corre-
sponding return values. The similarity measure for clustering is
based on the IO behavior of code snippets and is independent of
their syntactic features. Hence, SLACC generates cross-language
clusters with code snippets from different programming languages.
To validate our technique, using a single, static typed language,
we perform an empirical study with 19,188 Java functions derived
from Google Code Jam (GCJ) [15] submissions and demonstrate

https://doi.org/10.1145/3377811.3380407
https://doi.org/10.1145/3377811.3380407

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

that SLACC identifies 6x more clones and with higher precision
(86.7% vs. 30.7%) compared to HitoshilO [40], a state-of-the-art
code semantic clone detection technique. Using a single, dynamic
typed language, we perform a study with 17,215 Python functions
derived from GCJ and find that SLACC can identify true behavioral
clones with 87.3% precision. For cross-language clones, SLACC finds
32 clusters with both Python and Java functions, demonstrating
that detection of code clones does not depend on a common type
system.
In summary, this paper makes the following contributions:

e For single-language static typed clone detection, an empiri-
cal validation demonstrating SLACC can be used to identify
6x more and better code clones clusters than the state-of-
the-art code-clone detection technique HitoshilO.

o The first exploration of clone detection for a dynamic-typed
language and demonstrated feasibility in Python with pre-
cision of 87.3%.

o The first exploration of cross-language clone detection when
the languages lack an underlying representation; SLACC is
successful in identifying cross-language clone clusters be-
tween Python and Java with 94.1% precision.

e An open-source tool for detection of semantic code clones
between different programming languages.

2 MOTIVATION

Avery is preparing for a technical interview and was given a few
practice coding challenges [50] to work on. Avery is more comfort-
able writing code in Java during an interview setting but is worried
because the company exclusively codes in Python. As practice for
the interview, Avery wants to code with Python. First, Avery de-
cides to write the code in Java to understand the solution, and then
translate those solutions into Python code.

One of the practice questions asks the coder to interleave the
results of two arrays. Avery quickly writes this solution in Java:

1 public String interleave(int[] a, int[] b) {

2 String result = "";

3 int i = 0;

4 for(i = 0; i < a.length & i < b.length; i++) {
5 result += a[il;

6 result += b[i];

7 ¥

8 int[] remaining = a.length < b.length ? b : a;
9 for(int j = i; j < remaining.length; j++) {
10 result += remainingl[jl;

1 }

12 return result;

13 }

While one approach is to directly translate the code into Python,
Avery wonders if there are other ways to take advantage of idioms
and capabilities in Python. After spending a few hours searching
Stack Overflow [42] and GitHub Gists [41], Avery finds a few code
snippets that seem to do the same thing.

The first one seems a bit too complex and relies on another de-
pendency.

1 def fancy_interleave(l1l, 12):
2 from itertools import chain

211

Mathew et al.

3 return .join([str(x)
4 for x in chain.from_iterable(zip(11, 12))1)

This other solution is similar to the Java solution, but is using
something new, a zip function. Avery is excited to learn some new
Python tricks!

1 def problem2(11, 12):

2 result = ""

3 for (el, e2) in zip(1l1, 12):
4 result += str(el)

5 result += str(e2)

6 return result

Avery found the strategy of writing code in Java and translating
that code into Python helpful. However, the process of manually
searching and translating the code between languages was time-
consuming. Avery’s unfamiliarity with Python made it difficult to
verify whether these snippets were truly the same.

At the interview, Avery was relieved to be asked to solve the
same interleave problem from the practice set! However, while cod-
ing up a solution in Python, the interviewer asked, does this handle
interleaving uneven lists? The original Java-based solution handled
this case, but the Python translation did not. Because searching for
code took so long, Avery never had the chance to fully verify that
the Python solution worked the same as the Java solution. Avery’s
assumption that the new zip function would work on uneven lists
was wrong! Had there been a better way for Avery to find semanti-
cally related snippets in other programming languages, this issue
may have been avoided.

In this work, we introduce SLACC, which could detect that these
functions are not equivalent. From a corpus of code, it could in-
stead find this semantically identical snippet—just one of many ap-
plications enabled by cross-language clone detection:

1 def valid_interleavel(l1, 12):

2 result = ""

3 al, a2 = len(11), len(12)

4 for i in range(max(al, a2)):

5 if i < al:

6 result += str(list1[i])

7 if i < a2:

8 result += str(list2[i])

9 return result

3 SIMION-BASED LANGUAGE-AGNOSTIC

CODE-CLONE DETECTION

Code clones can be broadly classified into four types [36] as de-
scribed in Table 1. Types I, I and IIl represent syntactic code clones
where similarity between code is estimated with respect to the
structure of the code. On the other hand, type-IV indicates func-
tional similarity. Syntactic code clone detection techniques are im-
practical for cross-language code clone detection as it would re-
quire an explicit mapping between the syntax of the languages.
This is feasible for syntactically similar languages like Java and
C# [11] but much harder for different languages like Java and Python.
On the other hand semantic approaches for cross-language code
detection [33] rely on large number of training examples between
the languages and was yet again tested on similar programming
languages.

SLACC: Simion-based Language Agnostic Code Clones

Input
Generation

Clone
Detection

Q

Source Code

Execution

Function
Creation

Segmentation

Figure 1: High level workflow for SLACC.

We propose Simion-based Language-Agnostic Code-Clone de-
tection (SLACC), a semantic approach to code similarity that is
predicated on the availability of large repositories of redundant
code [2]. Instead of mapping API translations using predefined
rules [5, 11], or using embedded API translations [4, 33], SLACC
uses IO examples to cluster code based on its behavior. Further,
it relaxes the bounds of the datatypes across programming lan-
guages, which helps dynamic typed code snippets (e.g., Python)
to be clustered alongside static typed code snippets (e.g., Java).

In SLACC, we build on the ideas pioneered by EQMiner [20]
for using segmentation and random testing for clone detection.
SLACC starts by identifying snippets from a large code base and in-
volves a multi-step process depicted in Figure 1, which starts with
a) Segmentation of the code base into smaller fragments of code
called snippets, b) Function creation from the snippets, c) Input gen-
eration for the functions, d) Execution of the functions, and e) Clone
detection based on clustering functions arguments and execution
results.

3.1 Segmentation

In the first stage, code from all the source files in a project is broken
into smaller code fragments called snippets. Consecutive statement
blocks of threshold MIN_STMT or more are grouped into a snippet.
A statement block can be

(1) Declaration Statement. e.g., int x;

(2) Assignment Statement e.g.,, X = 5;

(3) Block Statement e.g., static {x = 10;3}

(4) Loop statements. e.g., for, while, do-while

(5) Conditional statements. e.g., if, if-else-if, switch,

(6) Try Statement. e.g., try, try-catch
Algorithm 1 illustrates the segmentation phase. For an AST Af of
a function, the algorithm performs a pre-order traversal of all the
nodes in the AST (line 5) and then uses a sliding window to extract

Table 1: Types of code clones. Types I, II and III are syntactic
while type IV are semantic or behavioral clones [36]

Type Description

I Identical sans whitespace and comments
I Identical AST but uses different variable names, types
or function calls

I Similar AST but uses different expressions/statements.
For example, a) using while in place of for loops or
b) using if else if in place of switch statements.

IV Different syntax but behaviorally same. For example,

an iterative stack approach or a recursive approach
can be used for breadth first search of a graph.

212

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Algorithm 1 Segmentation

1: Input: Ap - AST Node

2. Output: S - List of Segment
3. procedure SEGMENT(AF)

4: S « ¢

5 stmts «— PreorderTraverse(Afr)

6 for all i €range(0,len(stmts) — 1) do
7 Si —{}
8
9

stmt; < stmts[i]
for all j €range(i,len(stmts)) do

stmt;j «stmts[j]
1 S;.append(stmt;)
12: if len(S;) > MIN_STMTS then
13: Se<Sus;
14: if stmtj.hasChildren() then
15: S < SUSEGMENT(stmt;)
16: return S

segments of size greater than a minimum segment size MIN_STMT
(lines 12-13). Further, for statements like Block, Loop, Conditional
and Try which have statements in its nested scope, the algorithm
is called recursively on them (lines 14-15).

3.2 Function Creation

Next, snippets are converted into executable functions. This sec-
tion describes how arguments, return variables, and types are in-
ferred.

Inferring arguments and return variables. We adapt a dataflow
analysis similar to that used by Su et al. [40]. For each method, po-
tential return variables are identified as variables that are defined
or modified within the scope of the snippet. If the last definition
of a variable is a constant value, that variable is removed from the
set of potential return variables. Arguments are variables that are
1) used but not defined within the scope of the snippet, and 2) not
declared as public static variables for the class. For each potential
return variable in a snippet, a function is created.

Inferring types. In the case of static typed languages, argument
types and return values can be inferred via static code analysis.
For dynamic typed languages, the parameters can take multiple
types of input arguments. This increases the possible values of the
arguments generated (see Section 3.3) to identify its behavior. In
many cases, the possible types for the arguments can be inferred
by parsing the code and looking for constant variables [7] in its
context. This technique has been used in inferring types in other
dynamic languages like JavaScript [18]. For example, in the follow-
ing Python function, the type of n can be assumed to be an integer
since it is compared against an integer.

1 def fib(n):

2 if n <= 1: return n

3 return fib(n-1) + fib(n-2)
In cases where the types of the parameters could not be inferred
at compile time, such as:

1 def main(a):

2 print a

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

1 class Shape {

2 public int length;

3 int width;

4 private int height;

5 public Shape(int 1, int w, int h) {

6 length=1; width=w; height=h;

7 3

s 7

9 public Shape func_s (int 1, int w, int x) {
10 return new Shape(l + x, w * 2, X);

11 }

12 public int func_l (int 1, int w, int x) {
13 return func_s(1l, w, x).length;

14 }

15 public int func_w (int 1, int w, int x) {
16 return func_s(1l, w, x).width;

17}

Figure 2: An example depicting conversion of a function
with object as a return type to multiple functions with non-
primitive members of the object’s class.

a generic type is assigned (i.e., for a) allowing the argument to
assume any of the primitive types used in argument generation
(Section 3.3).

Converting object return types into functions. If a snippet returns
an object, the object is simplified into multiple functions returning
each of its non-private members independently. For example, in
Figure 2, func_s has a return type of Shape. Shape has two mem-
bers, length and width. Hence, func_s is broken down into two
functions, func_1 and func_w, which return the length and width
of the shape object independently. Note that a third function for
height is not created since it is a private member.

Permuting argument order. For each of the snippets, we generate
different permutations based on the input of arguments since order
matters for capturing function behavior. Consider the two func-
tions in Figure 3; the first function divides a with b using the divi-
sion (/) operator while the second divides dividend with divisor
using the subtract (=) operator recursively. For the inputs (5, 2) the
two functions would produce the values 2 and 0 respectively. But
if the arguments for the second function was reversed, it would
produce the same output 2. Thus, for every function, we create du-
plicates in different permutations of the arguments, ARGS, resulting
in |ARGS|! different functions. To limit the creation of this explod-
ing space, we set an upper limit on the number of arguments per
function that is included in the analysis (ARGS_MAX).

3.3 Input Generation

A set of inputs are required to execute the created functions. Fol-
lowing this, clustering is performed.

Input creation. Inputs are generated based on argument type
and using a custom input generator inspired by grey-box testing [23]
and multi-modal distribution [20]. First, the source code is parsed

Mathew et al.

1 public int divide_simple (int a, int b) {

2 if (b == @) return 0

3 return a / b;

4+ 3

5 public int divide_complex (int divisor, int dividend) {
6 // Same as dividend/divisor

7 if (b == @) return 0

8 int quotient = 0;

9 while (dividend >= divisor) {

10 dividend = dividend - divisor;
11 quotient++;

12 }

13 return quotient;

14 }

Figure 3: An example illustrating the need for reordering ar-
guments. The two functions perform integer division but do
not return the same return value for the same set of inputs
due to the order of arguments in the function definition.

and constants of each type are identified. Next, a multi-modal dis-
tribution is declared for each of the types with peaks at the con-
stants. Finally, values for each type are sampled from this multi-
modal distribution. Our experiments create 256 inputs per func-
tion, as justified in Section 6.1.

Memoization. For every function with the same argument types,
a common set of inputs have to be used to compare them. This is
ensured using a database and the input generator. The generator
is used to create sample inputs for the given argument types and
stored in the database. For subsequent functions with the same
signature for the arguments, the stored input values are reused.

Supported argument types. SLACC currently supports four types

of arguments.

(1) Primitive. The multi-modal distribution for the argument
type is sampled to generate the inputs. This includes in-
tegers (and longs, shorts), floats (and double), characters,
booleans, and strings.

(2) Objects. Objects are recursively expanded to their construc-
tor with primitive types; inputs are generated for the types.

(3) Arrays. A random array size is generated using the input
generator for integers!. For each element in the array, a
value is generated based on the array type (Primitive or Ob-
ject).

(4) Files: Files are stored as a shared resource pool of strings in
the database. If a seed file(s) is provided, it is randomly mu-
tated and stored as a string in the database. In the absence of
a seed, constants from the multi-modal distribution are sam-
pled and stored as strings. For an argument with a File type
(or its extensions), a temporary (deleted on termination) file
object is created using the stored strings.

Type size restrictions. Comparing code snippets requires com-
patible sizes of types across programming languages. For example,
Java has 4 integer datatypes byte, short, int and long which oc-
cupy sizes of 1, 2, 4 and 8 bytes, respectively. On the other hand,

!If a negative integer is sampled, the distribution is re-sampled.

SLACC: Simion-based Language Agnostic Code Clones

Python has two integer datatypes: int which is equivalent to the
long datatype in Java and long which has an unlimited length.
Thus, we make a restriction when generating inputs for functions
across different languages: inputs are generated from the smaller
bound of the two programming languages. For example, in the case
of Java and Python function that has an int, inputs are generated
within the bounds of Java.

3.4 Execution

In the next stage, the created functions are executed over the gener-
ated input sets and the subsequent return values are stored. Each
function is assigned an execution time limit of T; seconds, after
which a Timeout Exception is raised. This occurs most frequently
when there is an infinite loop, such as while(true) when the loop
invariant is an argument. Each execution of the function is run
on an independent thread. Subsequently, the return value, runtime
and exception for the executed function over the input set is stored.

3.5 Clone Detection

The last stage of SLACC is identifying the clones, where the exe-
cuted functions are clustered on their inputs and outputs. SLACC
uses a representative based partitioning strategy [36, 40] to cluster
the executed functions.

Similarity Measure. In this work, a pair of functions have the
highest semantically similarity if for any given input, the functions
return the same output. The similarity measure between two func-
tions is computed as the number of inputs for which the meth-
ods return the same output value divided by the number of inputs,
same as the Jaccard index. This creates a similarity value between
two functions with a range of [0.0, 1.0] with 1.0 being the highest.

Consider the functions from Section 2, interleave,
fancy_interleave,andvalid_interleave.Forvaluesa = [2,3]
and b = [4], we see that interleave(a,b) = [2,4,3],
fancy_interleave(a,b) = [2,4]andvalid_interleave(a,b)

= [2,4,3]. Functions interleave and valid_interleave are
similar since they have the same output for the same input but
interleave and fancy_interleave are not similar. In contrast,
fora = [2,3]andb = [4,5], all three functions would return the
same output [2,4,3,5]. Based on these two inputs, interleave
and fancy_interleave have a similarity of 0.5, interleave and
valid_interleave have a similarity of 1.0, and fancy_interleave
and valid_interleave have a similarity of 0.5. This process is re-
peated for many such inputs a and b to compute similarity scores
between each pair of functions.

Functions are only compared if they have the same number of
arguments and cast-able argument types. For example, consider
the four functions f1(int a, String b), f2(long a, File b),
f3(File a, String b) and f4(String a). Functions f1 and f2
can be compared since int can be cast to a long value. But they
cannot be compared to 3 since primitive types cannot be cast to
File. Similarly, f1, f2 and f3 cannot be compared f4 due to the
difference in number of arguments.

Clustering. A function is compared to a cluster by measuring
its similarity with the first function added to the cluster (called

214

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Algorithm 2 Clustering

1: Input: F - List of Functions with Input and Output
2. Output: C - List of clusters
3: procedure CLUSTER(F)
4: C « ¢
5 forall F € Fdo
6 for all C € Cdo
7: O < GetRepresentive(C)
8 if Similarity(O, F) > SIM_T then
9 C—CUF
break
if VC € C,F ¢ C then
Ciclpr < F
SetRepresentative(C|c|11, F)
C—CUCicj41

11:

15: return C

representative). The clustering algorithm is briefly described in Al-
gorithm 2. An empty set of clusters is first initialized (line 4). Each
function (line 5) is compared against each cluster (line 6). If the
similarity between the representative (line 7) and the function is
greater than a predefined similarity threshold, SIM_T (line 8), the
function is added to the cluster (line 9). If the function does not
belong in any cluster (line 11), a singleton cluster is created for the
function (line 12) and the function is set as the cluster’s represen-
tative (line 13). The singleton cluster is added to the set of clusters
(line 14)

4 EVALUATION

Our goal is to evaluate the effectiveness of SLACC. There is a three-
phase evaluation, first to compare SLACC to a comparable tech-
nique in a single, static typed language. Next, we apply SLACC to
a single, dynamic typed language (Python) and then to a multi-
language context; in both cases SLACC is compared to type-III
clones.

4.1 Research Questions

SLACC is benchmarked against HitoshilO [40] with respect to cov-
erage and precision of code-clone detection. This leads us to our
first research question:

Research Question 1

How effective is SLACC on semantic clone detection in static
typed languages?

Prior research has already shown that semantic clones can be found
in static typed languages [10, 20, 40] like C and Java. In our liter-
ature search, we failed to find techniques that identified semantic
code clones in dynamic typed languages. Therefore, we use an AST
based comparison approach as an alternative baseline to bench-
mark SLACC. This leads us to the next research question:

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 2: Projects used in this study with the number of valid
submissions in both Java and Python.

Year Problem ID Java Python
2011 TIrregular Cake Y11R5P1 48 16
2012 Perfect Game Y12R5P1 47 24
2013 Cheaters Y13R5P1 29 19
2014 Magical Tour Y14R5P1 46 18
Total 170 77

Research Question 2

How effective is SLACC on semantic clone detection in dy-
namic typed languages?

Prior work identified code clones between languages by mapping
APIs between similar languages (e.g., Java and C#) using prede-
fined rules [11] or using an embedded API translations [4, 33]. As a
result, these code clones are syntactic rather than semantic. There-
fore:

Research Question 3

How effective is SLACC at cross-language semantic clone
detection?

4.2 Data

We validate this study on four problems from Google Code Jam
(GCJ) repository and their valid submissions in Java and Python.
GC]J is an annual online coding competition hosted by Google where
participants solve the programming problems provided and sub-
mit their solutions for Google to test. The submissions that pass
Google’s tests are considered valid and are published online. We
use the first problem from the fifth round of GCJ from 2011 to
2014%. The details about the problem and submissions are in Ta-
ble 2. Overall in this study, we consider 247 projects; 170 from Java
and 77 from Python. The 170 Java GCJ submissions contain 885
methods and generated 19,188 Java functions. The 77 Python sub-
mission contains 301 methods and generated 17,215 Python func-
tions.

The code, projects and execution scripts for the project can be
found in our GitHub Repository [28].

4.3 Experimental Setup

The experiments were run on a 16 node cluster with each node
having a 4-core AMD opteron processor and 32GB DDR3 1333 ECC
DRAM. Our experiments have four hyper-parameters

e Minimum size of snippet (MIN_STMT - Section 3.1): We set
this to 2 to capture snippets with interesting behavior.

e Maximum number of arguments (ARG_MAX - Section 3.2): This
value is set to 5. Hence if a snippet has more than 5 argu-
ments, it is omitted from the experiments.

2Early rounds have many submissions to create a reasonably scoped experiment.
Thus, we chose submissions from the quarterfinals in round five.

215

Mathew et al.

e Number of executions (Section 3.4): We execute each snip-
pet with 256 generated inputs (Section 3.3); see Section 6.1
for details on this choice.

o Similarity Threshold (SIM_T - Section 3.5): We set this to 1.0
for our experiment. This implies that two functions are only
considered to be clones if for all inputs they generate the
same outputs.

Sensitivity to the number of executions and ARG_MAX is explored
and discussed in Sections 6.1 and 6.2 respectively.

4.4 Metrics

Our study uses three metrics primarily to address the research
questions we pose.

e Number of Clusters: A cluster is a collection of functions
with a common property (i.e., type I-IV similarity). This met-
ric is the number of clusters generated by a clone detection
algorithm. This is represented as [Clusters|, # Clusters or #C.

e Number of Clones: A function that belongs to a cluster is
called a clone. This metric is the total number of functions
in all the clusters generated by a clone detection algorithm.
This is represented as |Clones|, # Clones or #M.

e Number of False Positives: A false positive is a cluster
which contains one or more functions which does not ad-
here to the similarity measure of the cluster. This is repre-
sented as [False Positive|, # False Positives or #FP.

4.5 Baselines

To answer RQ1, RQ2, and RQ3, we use baseline techniques to illus-
trate the capabilities of SLACC.

4.5.1 RQI: HitoshilO. As a baseline, we use the closest technique
to ours, HitoshilO [40]. This tool identifies functional clones for
Java Virtual Machine (JVM) based languages such as Java and Scala.
It uses in-vivo clone detection and inserts instrumentation code in
the form of control instructions [47] in the application’s bytecode
to record input and output values at runtime. Inputs and outputs
are observed using the existing workloads, which allows it to ob-
serve behavior and identify clones in code for which input gener-
ators cannot generate inputs. The methods with similar values of
inputs and outputs during executions are identified as functional
clones. HitoshilO considers every method in a project as a poten-
tial functional clone of every other method and returns pairs of
clones. For comparison against SLACC, we group the pairs into
clusters as follows: two pairs of clones are grouped into a cluster
if both the pairs have a common function between them (i.e., for
pairs (A,B) and (B,C), a clone cluster is created with (A,B,C)).

Like the similarity threshold SIM_T in SLACC, HitoshilO has
a similar parameter that provides a lower bound on how similar
two methods must be to be considered a functional clone. As with
SLACC, HitoshilO also has a parameter for an upper bound on the
number of IO profiles considered for each method.

We used an existing and public implementation of HitoshilO.3
The workload used to benchmark HitoshilO with GC]J are the sam-
ple test input files. GCJ provides only two sample input files for

3 github.com/Programming-Systems-Lab/ioclones;
Commit hash: aa5b5b3; Dated: 05/06/2018

https://github.com/Programming-Systems-Lab/ioclones
https://github.com/Programming-Systems-Lab/ioclones/tree/aa5b5b3ed7fe311564ba1508b1b22fb47ccc2979

SLACC: Simion-based Language Agnostic Code Clones

a validating a submission. However, in SLACC each method was
executed 256 times. To create a balanced benchmark, we randomly
fuzzed the test input files 32 times before sending it to HitoshilO.
Note that we tried fuzzing the files 256 times but the clone-detection
phase of HitoshilO crashed for large numbers of inputs.

4.5.2 RQ2: Automated AST Comparison. To the best of our knowl-
edge we could not find a prior work to detect semantic code clones
in dynamic languages. Hence we benchmarked SLACC for dynamic
and cross-language clones by matching the Abstract Syntax Trees
(ASTs) as a proxy for similarity. This technique has been adopted
by many graph-based (an example of type-III clone) code clone de-
tection techniques in C [3, 19, 51] and Java [19, 25].

Like SLACC, the first phase of the AST comparison segments
the code into snippets. Next an AST is generated for the snippets.
We use the JavaParser [44] tool and Python AST [34] module to
construct the ASTs in the respective languages. We measure simi-
larity by matching the ASTs. For clones in the same programming
language (RQ1, RQ2), we match the ASTs and consider them to be
type-III clones if the ASTs are equivalent or have a difference of at
most one node.

4.5.3 RQ3: Manual Cross-language AST Comparison. The
automated AST comparison approach cannot be adopted for cross-
language clones (RQ3) due to the difference in format of the ASTs
for both the languages. In this case, conservatively, we sampled
cross-language snippets with extremely similar outputs and man-
ually verified the ASTs for similarity. To do this, we randomly sam-
ple 1 million pairs of a Java function and a Python function. If the
input and output types are compatible, and the outputs are the
same for the same inputs or off by a consistent value, then we man-
ually evaluate the ASTs for similarity. Consistency is determined
based on the output type. Values of primitive types are consistent
if they have a constant difference (for Boolean or Numeric values),
constant ratio (for Boolean or Numeric values) or constant Leven-
shtein distance [48] (for Strings) between the outputs. Objects are
consistent if each member of the object is consistent. Finally, two
arrays are consistent, if all the corresponding members of the array
are consistent.

For example, given two methods, int A(int x) and def B(y),
if A1) = 1,B(1) = 9,A(2) = 2, and B(2) = 18, then A() and
B() are similar since their outputs have a constant ratio (9). Of the
616 similar pairs, all had identical ASTs or had a difference of at
most one node, making them type-III clones.

4.6 Precision Analysis

SLACC and HitoshilO are both clustered using IO relationships
of the functions. However, given a different set of inputs, some
functions in a cluster might produce a different set of outputs such
that they are not clones; such clusters are marked as false positives
and considered invalid. We identify false positives at the cluster-
level in keeping with prior work [20].

To detect false positives, SLACC clusters are re-executed on a
new set of 256 inputs generated using random fuzzing [20] based
on a triangular distribution, and clustered. If any method in a clus-
ter is not grouped into the same cluster using the new input set,
the whole cluster is marked as a false positive. We observe that

216

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 3: Number of whole method clones identified by
HitoshilO(H), SLACC(S) and both the approaches, after ac-
counting for false positives.

Problem HitoshilO(|H|) SLACC(|S|) [HNS]
Irregular Cake 3 44 3
Perfect Game 4 35 4
Cheaters 4 21 4
Magical Tour 9 35 9
Total 20 135 20

the number of clusters and false positives is relatively stable above
64 inputs (Section 6.1).

To detect false positives in HitoshilO, we randomly fuzz the test
input files 32 times (Section 4.5) to generate a new test file that is
32x the size of the original, and then re-execute HitoshilO. Clone
pairs are clustered and false-positives are detected when a new
cluster does not match an original cluster, as done for SLACC.

False positives in clusters generated by AST comparisons are
identified in a similar manner to SLACC. ASTs in the clusters are
first converted to functions (as described in Section 3.2). The func-
tions are re-executed on 256 inputs like SLACC clusters and checked
for false positives. Any cluster that contains a different method af-
ter execution is marked as a false positive.

5 RESULTS

The results show that SLACC identifies more method level clones
compared to prior work and with higher precision (RQ1), success-
fully identifies clones in dynamic typed languages (RQ2), and suc-
cessfully detects clones between Java and Python (RQ3).

5.1 RQ1: Static Typed Languages

The 885 Java methods generated 19,188 Java functions for analy-
sis. SLACC was able to support 691 of the 885 Java methods. From
the 691 whole methods, 18,497 functions are derived into partial
method snippets. Of the total generated functions, 4,180 (22%) are
clones resulting in 632 clusters. These 4,180 clones derive from
4,038 partial-method snippets and 142 whole methods. We call them
statement level clones and method level clones, respectively.

5.1.1 Method level clones. We benchmark SLACC against HitoshilO
by comparing clones detected by SLACC at a method level granu-
larity. We provide all 885 Java methods to HitoshilO, which groups
43 of the methods into 13 clusters. False positives were identified
for 9 of the 13 clusters (precision=30.7%).* The remaining valid
clusters from HitoshilO contain 20 methods. From the 691 Java
methods, SLACC detected 142 methods, grouped into 15 clusters.
False positives were identified for 2 of the 15 clusters (precision =
86.7%). The remaining valid clusters for SLACC contain 135 meth-
ods.

Table 3 shows the numbers of valid clusters for each approach,
as well as their intersection. All valid clusters from HitoshilO are

“False positive rates in the original HitoshilO paper [40] are computed at the pair-
level rather than cluster level and used student opinions rather than code behavior,
which may account for the relatively low precision reported here.

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

— SLACCstmy
1 import Y14R5P1.stolis.MMT3 // Parent Class MMT3

2 public static int func_a(BufferedReader br){

3 // Snipped from Y14R5P1.stolis.MMT3.main()

4 if (IMMT3.in.hasMoreTokens())

5 MMT3.in = new StringTokenizer(br.readLine());
6

7

8

int a = Integer.parseInt(MMT3.in.nextToken());
return a;

3
— SLAccmethod
1 import Y12R5P1.xiaowuc.A // Parent Class A
2 public static int func_b(Scanner in) {
3 // Y12R5P1.xiaowuc.A.next()
4
5

while (A.tok == null || !'A.tok.hasMoreTokens()) {
A.tok = new StringTokenizer(in.readLine());

6 }
7 return Integer.parseInt(A.tok.nextToken());
s

__HitoshilO

1 public static int func_c(StreamTokenizer in) {
2 // YT11R5P1.burdakovd.A.nextInt()
3 in.nextToken();
4 return (int) in.nval;
5%
public static int func_d(StreamTokenizer in) {
// Y11R5P1.Sammarize.Main.next()
in.nextToken();
return Integer.parselnt(in.nval);

}

[R S

1 import Y14R5P1.eatMore.A // Parent Class A
2 public static int func_e(Scanner in) {

3 // Y14R5P1.eatMore.A.next()

4 A.in = in;

5 return Integer.parseInt(A.nextToken());
6

}

public static int func_f(Scanner sc) {
// Snipped from Y11R5P1.dooglius.A.go()
int next = sc.nextInt();
return next;

}

e W oo =

Figure 4: Semantic clusters detected by HitoshilO, SLACC on
method level (SLACCethod) and SLACC on statement level
(SLACCjtmt)- The cluster contains functions that take an ob-
ject that reads a file and returns the next Integer token.

contained within the valid clusters for SLACC, (H = HNS), demon-
strating that among the valid clones, SLACC subsumes HitoshilO
for this experiment. However, the low precision for HitoshilO may
be due to the use of limited inputs or the execution context, so fur-
ther investigation is needed for generalization of this result.

An example of a cluster that contains methods from both SLACC
and HitoshilO is shown in Figure 4. The cluster contains functions
that take an object that reads a file and returns the next Integer

217

Mathew et al.

Table 4: # of Java, Python and Cross language clusters de-
tected by SLACC compared against AST (Type-III) clusters.

Java Python Java + Python

SLACC AST SLACC AST SLACC AST

Clusters 632 6122 482 3971 34 616
Valid 584 226 421 181 32 25
Precision 92.4 3.7 87.3 4.6 94.1 4.1

token. Functions func_c and func_d are clones detected by Hi-
toshilO. Within the same cluster, SLACC ethoq additionally iden-
tifies two more method level clones that were not detected by Hi-
toshilO: func_b and func_e.

5.1.2 Statement level clones. Additionally, SLACC identifies 624
clusters with 4,038 statement level code clones. Of these, 48 clus-
ters are false positives (precision=92.3%). The large number of code
clones is intuitive because each method can contain multiple mod-
ular functionalities. That said, it should be noted that the higher
precision for statement level clusters would lead us to believe that
detecting clones for succinct behavior is more accurate.
Statement level clones can be clustered with whole method clones.

For example, in Figure 4, SLACCgtm; represents a SLACC cluster
based on partial methods: func_a and func_f are functions seg-
mented from the main method in class Y14R5P1.stolis.MMT3 and
the go method in Y11R5P1.dooglius. A, respectively.

RQ1: Method level clones: SLACC identifies more method
level clones compared to HitoshilO at higher precision.
Statement level clones: Segmentation of code increases the
precision of SLACC and yields a higher number of seman-
tic clones.

5.2 RQ2: Dynamic Typed Languages

SLACC identified that 3,135 (18.2%) of the 17,215 extracted Python
functions had clones which resulted in 482 clone clusters. Of these
482 clusters, 421 are valid, resulting in precision of 87.3%. As a base-
line, using the same Python functions, we systematically looked for
type-III clones. There exists 3,971 clusters, of which 181 are valid
(4.6% precision); these results are shown in the Python column of
Table 4, where AST shows the type-III clones. For sake of compar-
ison, the experiment was repeated for Java clones; a similar differ-
ential between SLACC and AST precision was observed (92.4% vs.
3.7%).

When these clusters are validated, 61 of the 482 SLACC clusters
(12.8%) were deemed to be false positive. This is more than the
percentage of false positives in Java (7.3%), but we suspect that by
executing the functions over a larger set generated arguments, the
subsequent clustering could yield more robust results.

An example of Python clones identified by SLACC can be seen
in Figure 5. Both the functions in this example compute the sum of
an array. func_db8e uses a loop that maintains the running sum
where each index in the array contains the array sum until that
index. The last index of the array would contain the array sum and

SLACC: Simion-based Language Agnostic Code Clones

def func_db8e(a):

n = len(a)

sum@ = [0] * (n + 1)

for i in xrange(n):
sum@[i + 1] = sumo[i] + al[i]

allv = sum@[-1]

return allv

func_43df (items):

_sum = sum(items)

j = len(items) - 1

return _sum

T SR C R

def

T S

Figure 5: Semantic cluster of Python functions detected by
SLACC. The cluster contains functions that returns the sum
of an input array.

1 static long func_3boe (Long[] x2) {
2 Long res = null;

3 Long[] arr = x2;

4 int len = arr.length;

5 for (int i = 0; i < len; ++i) {
6 long xx = arr[il;

7 if (xx >= res)

8 continue;

9 res = xx;

10 }

11 return res;

def func_6437 (y):
ymin = min (y)
count = 0

return ymin

s W oo e

Figure 6: Semantic cluster of a Java function and a Python
function detected by SLACC. The cluster contains functions
that returns the minimum value in an input integer array.

is eventually returned. In contrast, func_43df uses the sum library
function to perform the same task.

RQ2: SLACC can successfully identify code clones for dy-
namic typed languages with high precision (87.3%).

5.3 RQ3: Across Programming Languages

We execute SLACC on the Java and Python projects from GCJ.
From 36,403 extracted snippets, SLACC identified 131 Java and 48
Python functions clustered into 34 cross-language clusters (single-
language clusters are omitted from the RQ3 analysis). On valida-
tion, we find that 2 of these 34 (5.8%) clusters are false positives
which is better than the percentage of false positives found in Java
and Python independently. That said, SLACC would produce more
clusters when support for the languages is broadened.

We discover 616 type-III clusters by comparing the ASTs of Java
and Python snippets (Table 4), of which 25 clusters are valid (4.1%
precision). It should be noted that this is a conservative precision
estimate; the baseline was created by starting with close behavioral

218

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 5: Mean and variance (in parenthesis) of # clones,
clusters and # false positives for 20 repeats when # in-
puts varying between 8-256. The mean (and variance) are
reported.

Inputs # Clones # Clusters # False Positives
8 4461(85) 218(16) 184(19)
16 4297(49) 355(17) 142(19)
32 4221(23) 412(13) 101(5)
64 4194(4) 623(6) 71(3)
128 4180(0) 630(1) 52(0)
256 4180(0) 632(0) 50(0)

matches, hence giving the AST analysis a slight edge on precision
(Section 4.5.2).

An example of a pair of Java-Python clones can be seen in Fig-
ure 6. func_3b0e is a Java function that uses a loop to find the
minimum in an array while func_6437 is a Python function uses
the inbuilt min function in Python.

RQ3: SLACC succeeds in identifying clones between pro-
gramming languages irrespective of their typing.

6 DISCUSSION

We have demonstrated how SLACC can successfully identify clones
in single-language, multi-language, static typed language, and dy-
namic typed language environments. Compared to prior art (Hi-
toshilO), SLACC identifies a superset of the clusters and with higher
precision. Compared to type-III clone detection, SLACC achieves
a much higher precision in Python and in cross-language situa-
tions. This would lead us to believe that traditional methods that
detect syntactic type-III clones cannot be used for cross-language
clone detection, despite successful applications in single languages
for identifying libraries with reusable code [6], detecting malicious
code [45], catching plagiarism [1] and identifying opportunities for
refactoring [31].

Next, we explore the sensitivity of code clones to the number of
inputs, the number of arguments, and the size of the snippets.

6.1 Impact of input sizes

Prior studies have shown that varying the number of inputs can
alter the accuracy of clone detection techniques [20, 24, 46]. This
was particularly evident in the earliest clone detection techniques
by Jiang and Su [20] where the authors limited the number of in-
puts to 10 with a maximum of 120 permutations of the input due to
the need for large computational resources and the corresponding
runtime.

We test the impact on clones, clusters, and false positives by
varying the number of inputs from 8 to 256 in powers of 2 and
repeating SLACC using the generated Java functions. Each exper-
iment is repeated 20 times on a set of randomly generated inputs.
For each set of input, we record the mean and variance for the num-
ber of clones, clusters and false positives, as shown in Table 5. For

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

? //
N 103

- 10 —— Java

= —— Python

H —— Java + Python
5

o

* 102

3
Arguments

Figure 7: Cumulative # clones with # arguments varying be-
tween 1-5.

— Java
200 —— Python

Clones

12 3 4 56 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2930+
Lines of Code

Figure 8: # clones for lines of code between ranging from
1-29. Clones with 30 or more lines are grouped into 30+

a given number of inputs, each row represents the mean and vari-
ance (in parenthesis) of the number of clones, clusters and false
positives. For low numbers of inputs, we see more functions being
marked as clones and fewer clusters. As the number of inputs in-
creases, the number of clones reduces and the number of clusters
increases, demonstrating that the additional inputs are critical at
differentiating behavior between functions. The counts of clones,
clusters, and false positives appear to plateau after 64 inputs. This
highlights that 10 inputs used by Jiang and Su would not be suffi-
cient for optimally identifying true functional clones and will lead
to a large number of false positives, as suggested in prior work [9].

6.2 Influence of arguments in clones

We use our engineering judgment to set ARGS_MAX = 5 (Maximum
number of Arguments) to limit the number of functions gener-
ated from snippets. Figure 7 represents the cumulative number of
clones with arguments varying from 1 to 5 and can be used to jus-
tify our choice of ARGS_MAX. Most clones detected by SLACC have
two arguments or less. In Java functions, 3252 of 4180 clones de-
tected have less than three arguments. Cross-language functions
are fewer in number and typically contain functions with 2 argu-
ments or less (125 out of 131). This would seem intuitive as modu-
lar functions are more frequent compared to complex functionali-
ties. As ARGS_MAX increases, it begins to plateau around 3. Hence,
a larger value of ARGS_MAX may not yield significantly larger num-
ber of code clones but would incur more computational resources
(ARGS_MAX! function executions).

219

Mathew et al.

6.3 Clones vs Lines Of Code

Prior work suggests there is more code redundancy at smaller lev-
els of granularity [40]. Aggregating all the cloned functions iden-
tified by SLACC in RQ1, RQ2, and RQ3, we have 6,536 total, valid
cloned functions in Java and Python (duplicates removed, as the
same function could be included in an RQ1 and an RQ3 cluster, for
example).

Figure 8 represents the number of clones with lines of code vary-
ing from 1 to 29. Clones with 30 or more lines are denoted as “30+".
More than 50% of the valid Java clones have 6 lines of code or less
(2037/3845), while the median of valid Python clones have 5 lines or
less (1372/2691). This implies that snippets with more lines of code
are more unique and harder to clone functionally. On the contrary,
smaller snippets are more likely to contain clones in a code base.
The greater median for Java clones compared to Python clones can
be attributed to the verbosity in Java compared to the succinct na-
ture of Python [17].

7 RELATED WORK

In keeping with the survey on code clones by Roy et al. [36], re-
search on code clones can broadly be classified as syntactic [3, 14,
19, 21, 26, 27], which represent structural similarities, and seman-
tic [10, 20, 39, 40], which represent behavioral similarities.

EQMiner [20] is the closest related work with respect to our
methodology. They examined the Linux Kernel v2.6.24 by using a
similar segmentation procedure, used 10 randomly generated in-
puts to execute them, and cluster based on IO behavior. Compared
with SLACC, EQMiner crucially ignores cross-language clone de-
tection. Furthermore, the implementation of EQMiner contains sev-
eral limitations, noted by Deissenboeck [9], that make cross-language
detection infeasible and even replication itself impractical. As a re-
sult, we build on the ideas pioneered by EQMiner, while overcom-
ing limitations in its original design. We introduce novel contribu-
tions, such as using grey-box analysis to overcome the limitations
of simple random random testing, scale the input generation phase
from 10 to 256 inputs, which drastically reduces false positives,
introduce several steps and components to support complex lan-
guage features, such as lambda functions, and handle differences
arising from cross-language types. Finally, SLACC introduces flex-
ibility in clustering as it permits a tolerance on similarity due to
the SIM_T hyper-parameter.

HitoshilO [40] by Su et al. also performs simion-based compar-
isons to identify clones. It uses existing workloads like test-cases or
‘main’ function calls to collect values for the behavior rather than
the random testing approach proposed in EQMiner or the grey-
box analysis approach used in SLACC. Research shows that exist-
ing unit tests do not attain complete code coverage [16] and as a
result, the application of such a technique to open source reposi-
tories might not be produce a comprehensive set of clones. This
conjecture can be observed in RQ1 where SLACC identifies more
clones to HitoshilO by an order of magnitude. Further, HitoshilO
operates at a method level granularity while SLACC can operate
at method or statement level granularity. Naturally, this ensures a
greater number of code clones since SLACC can identify succinct
behavior in complex code snippets.

SLACC: Simion-based Language Agnostic Code Clones

LASSO [22] by Kessel and Atkinson, like HitoshilO, is another
clone detection technique for method level clones from large repos-
itories using test cases. But unlike HitoshilO, it does not use pre-
defined test cases; LASSO generates test cases using random gen-
eration via Evosuite [13]. That said, LASSO has many deviations
compared to HitoshilO and SLACC. Firstly, LASSO identifies only
clones that have the same signature and method name (exclud-
ing case). Secondly, it detects clones only in methods where the
arguments are primitive datatypes, boxed wrappers of primitives,
strings, and one dimensional arrays of these datatypes. It fails to
support objects; SLACC supports objects that can be initialized re-
cursively using constructors of its members(Section 3.3). Finally,
LASSO supports only strongly typed languages as it does not have
a type inference engine like SLACC does.

Most clone detection techniques [3, 14, 19, 21, 26, 27] have been
proposed for single language clone detection. With respect to cross
language clone detection, we failed to find any techniques based
on semantic behavior of code. A small number of techniques have
been proposed on syntactic code features [32, 33]. API2Vec [33]
detects clones between two syntactically similar languages by em-
bedding source code into a vector representation and subsequently
comparing the similarity between vectors to identify code clones.
CLCDSA [32], identifies nine features from the source code AST
and uses a deep neural network based model to learn the features
and detect cross language clones.

Segmentation used in SLACC is inspired by methods that parse
ASTs of the source code [3, 19]. These methods encode the ASTs
into intermediate representations and do not account for the se-
mantic relationships. For example, DECKARD [19] characterizes
sub-trees of the AST into numerical vectors and clusters them based
on the Euclidean distance which fails to capture the behavior of
code in the clusters [20]. This limitation has been observed in other
syntactic methods as well and is a reason for adoption of semantic
techniques to detect code clones [20].

8 LIMITATIONS AND THREATS

Threats to external validity include the focus on two languages as
instances of static and dynamic typing, so results may not gener-
alize beyond Java and Python. The use of GCJ code may not gen-
eralize to more complex code bases. Threats to internal validity
include that for RQ3, where we “help” the AST matching by start-
ing with behavioral clusters and then determining if the ASTs are
similar; which overestimates the precision of cross-language AST
matching.

Our implementation of SLACC has the following limitations:

Dynamic Typing. SLACC does not support two primitive types
long and complex for Python. That being said, we verified that the
GC]J projects used in this study, do not explicitly use these values
in the source code and they are not present in the input file used
by the baseline HitoshilO. Further, in case of a failure to identify
the type of a function argument, the function was fuzzed with ar-
guments of all supported types. In this study, we supported prim-
itive types and the simple data-structures tuple, set, list and

220

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

dict. Support for other sophisticated data-structures can be incor-
porated by extending the existing SLACC API with instructions in
the wiki [28].

Unsupported Features. Although SLACC supports Object Ori-
ented features such as inheritance and encapsulation, it is limited
to objects derived from primitive types. Hence, the current version
of SLACC cannot scale to more sophisticated objects like Threads
and Database Connections. Similarly, for Python we do not support
modules like generators and decorators. Nevertheless, it would be
possible to support these features with more engineering effort.
Dead Code Elimination: In the code-clone examples of Figure 5
and Figure 6, we see the presence of lines of code that do not influ-
ence the return value i.e., Dead Code. At the moment, the functions
do not fail due to dead code but eliminating them would make the
functions more succinct and comprehensible. This will be an av-
enue for future work for specific applications of SLACC.

9 CONCLUSION

In this paper, we present SLACC, a technique for language-agnostic
code clone detection that precisely yields semantic code clones
across programming languages. This is the first research to iden-
tify semantic code clones in a dynamic typed language and also
across differently-typed programming languages. SLACC identi-
fies clones by comparing the IO relationship of segmented snippets
of code from a target repository. Input values for the segmented
code are generated using multi-modal grey-box fuzzing. This re-
sults in fewer false positives compared to current state of the art
semantic code clone detection tool, HitoshilO. In our study, we
identify code clones between Java and Python from Google Code
Jam submissions. Compared to HitoshilO, SLACC identifies sig-
nificantly (6x) more code clones, with greater precision (86.7% vs.
30.7%). SLACC also detects code clones in a multi-language code
corpora. The number of clones detected was fewer and the number
of false positives was slightly more compared to code clones within
the same language. However, future work that broadens language
support is likely to improve these metrics. These results have im-
plications for future applications of behavioral code clones, such
as enabling robust language migration tools or mastery of a new
programming language once one is known.

SLACC is open-source and the data used in this study is publicly
available [28].

ACKNOWLEDGMENTS

Special thanks to Fang-Hsiang Su, Jonathan Bell, Gail Kaiser and
Simha Sethumadhavan for making HitoshilO publicly available. We
would also like to thank the anonymous reviewers for their valu-
able feedback. This material is based upon work supported by the
National Science Foundation under Grant No. 1645136 and Grant
No. 1749936.

REFERENCES

[1] Brenda S Baker. 1995. On finding duplication and near-duplication in large soft-
ware systems. In Proceedings of 2nd Working Conference on Reverse Engineering.
IEEE, 86-95.

[2] Earl T Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro.
2014. The plastic surgery hypothesis. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 306-317.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1645136
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1749936

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

(3]

[10

[11

[12

[13

[14

[15

[16]

[17

[18]

[19

[20

[21]

[22

[23]

[24]

[25]

[26]

[27]

[28]

Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. 1998. Clone detection using abstract syntax trees. In Software Maintenance,
1998. Proceedings., International Conference on. IEEE, 368-377.

Jonathan Beit-Aharon. 2002. Source code translation. US Patent App. 15/894,096.
Stephen W Bowles and George E Bethke Jr. 1983. Multi-pass system and method
for source to source code translation. US Patent 4,374,408.

Elizabeth Burd and John Bailey. 2002. Evaluating clone detection tools for
use during preventative maintenance. In Proceedings. Second IEEE International
Workshop on Source Code Analysis and Manipulation. IEEE, 36-43.

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Princi-
ples of programming languages. ACM, 238-252.

Yingnong Dang, Dongmei Zhang, Song Ge, Ray Huang, Chengyun Chu, and
Tao Xie. 2017. Transferring Code-clone Detection and Analysis to Practice. In
Proceedings of the 39th International Conference on Software Engineering: Software
Engineering in Practice Track (Buenos Aires, Argentina) (ICSE-SEIP ’17). IEEE
Press, Piscataway, NJ, USA, 53-62. https://doi.org/10.1109/ICSE-SEIP.2017.6
Florian Deissenboeck, Lars Heinemann, Benjamin Hummel, and Stefan Wagner.
2012. Challenges of the dynamic detection of functionally similar code frag-
ments. In Software Maintenance and Reengineering (CSMR), 2012 16th European
Conference on. IEEE, 299-308.

Rochelle Elva and Gary T Leavens. 2012. Jsctracker: A semantic clone detection
tool for java code. Technical Report. University of Central Florida, Dept. of EECS,
CS division.

Alexandre Fau and Reinhold Bihler. [n.d.]. Java2CSharp.
http://sourceforge.net/projects/j2cstranslator/. Accessed: 2018-09-25.
Hans-Christian Fjeldberg. 2008. Polyglot programming. Ph.D. Dissertation. Mas-
ter thesis, Norwegian University of Science and Technology, Trondheim/Nor-
way.

Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite genera-
tion for object-oriented software. In Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software engineering.
ACM, 416-419.

Mark Gabel, Lingxiao Jiang, and Zhendong Su. 2008. Scalable detection of se-
mantic clones. In Proceedings of the 30th international conference on Software en-
gineering. ACM, 321-330.

Google. [n.d.]. Google Code Jam. code.google.com/codejam. Accessed: 2018-09-
25.

Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code coverage for suite
evaluation by developers. In Proceedings of the 36th International Conference on
Software Engineering. ACM, 72-82.

Diwaker Gupta. 2004. What is a good first programming language? Crossroads
10, 4 (2004), 7-7.

Simon Holm Jensen, Anders Mgller, and Peter Thiemann. 2009. Type analysis
for JavaScript. In International Static Analysis Symposium. Springer, 238-255.
Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In Proceed-
ings of the 29th international conference on Software Engineering. IEEE Computer
Society, 96-105.

Lingxiao Jiang and Zhendong Su. 2009. Automatic mining of functionally equiv-
alent code fragments via random testing. In Proceedings of the eighteenth inter-
national symposium on Software testing and analysis. ACM, 81-92.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a mul-
tilinguistic token-based code clone detection system for large scale source code.
IEEE Transactions on Software Engineering 28, 7 (2002), 654-670.

Marcus Kessel and Colin Atkinson. 2019. On the Efficacy of Dynamic Behav-
ior Comparison for Judging Functional Equivalence. In 2019 19th International
Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE,
193-203.

Mohd Ehmer Khan, Farmeena Khan, et al. 2012. A comparative study of white
box, black box and grey box testing techniques. Int. J. Adv. Comput. Sci. Appl 3,
6 (2012).

Heejung Kim, Yungbum Jung, Sunghun Kim, and Kwankeun Yi. 2011. MeCC:
memory comparison-based clone detector. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering. ACM, 301-310.

Rainer Koschke, Raimar Falke, and Pierre Frenzel. 2006. Clone detection using
abstract syntax suffix trees. In 2006 13th Working Conference on Reverse Engineer-
ing. IEEE, 253-262.

Jingyue Li and Michael D Ernst. 2012. CBCD: Cloned buggy code detector. In
Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, 310-320.

Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-Miner:
A Tool for Finding Copy-paste and Related Bugs in Operating System Code.. In
0OSdi, Vol. 4. 289-302.

George Mathew, Chris Parnin, and Kathryn T Stolee. [n.d.]. = SLACC.
github.com/DynamicCodeSearch/SLACC/tree/ICSE20. [Online; accessed 06-
February-2020].

221

[29

[30

[31

@
S

[33

(34

[35

&
2

[37

[38

[39

[41

[42

[43

[44]

[45

[46

[47

[48

[49

o
=

(51]

[52]

Mathew et al.

Philip Mayer and Alexander Bauer. 2015. An Empirical Analysis of the Utiliza-
tion of Multiple Programming Languages in Open Source Projects. In Proceed-
ings of the 19th International Conference on Evaluation and Assessment in Software
Engineering (Nanjing, China) (EASE °15). ACM, New York, NY, USA, Article 4,
10 pages. https://doi.org/10.1145/2745802.2745805

Philip Mayer, Michael Kirsch, and Minh Anh Le. 2017. On multi-language soft-
ware development, cross-language links and accompanying tools: a survey of
professional software developers. Journal of Software Engineering Research and
Development 5,1 (19 Apr 2017), 1. https://doi.org/10.1186/s40411-017-0035-z
Narcisa Andreea Milea, Lingxiao Jiang, and Siau-Cheng Khoo. 2014. Scalable
detection of missed cross-function refactorings. In Proceedings of the 2014 Inter-
national Symposium on Software Testing and Analysis. ACM, 138-148.

Kawser Nafi, Tonny Sheka Kar, Banani Roy, Chanchal K. Roy, and Kevin Schnei-
der. [n.d.]. CLCDSA: Cross Language Code Clone Detection using Syntactical
Features and API Documentation. ([n.d.]).

Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen.
2017. Exploring API embedding for API usages and applications. In Software
Engineering (ICSE), 2017 IEEE/ACM 39th International Conference on. IEEE, 438—
449.

Python Community. [n.d.]. Python AST. docs.python.org/3/library/ast.html.
[Online; accessed 23-August-2019].

Baishakhi Ray, Miryung Kim, Suzette Person, and Neha Rungta. 2013. Detecting
and Characterizing Semantic Inconsistencies in Ported Code. In Proceedings of
the 28th IEEE/ACM International Conference on Automated Software Engineering
(Silicon Valley, CA, USA) (ASE’13). IEEE Press, Piscataway, NJ, USA, 367-377.
https://doi.org/10.1109/ASE.2013.6693095

Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and
evaluation of code clone detection techniques and tools: A qualitative approach.
Science of computer programming 74, 7 (2009), 470-495.

Jean Scholtz and Susan Wiedenbeck. 1990. Learning second and
subsequent programming languages: A problem of transfer. Inter-
national Journal of Human-Computer Interaction 2, 1 (1990), 51-72.
https://doi.org/10.1080/10447319009525970

N. Shrestha, T. Barik, and C. Parnin. 2018. It’s Like Python But: Towards Sup-
porting Transfer of Programming Language Knowledge. In 2018 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC). 177-185.
https://doi.org/10.1109/VLHCC.2018.8506508

Fang-Hsiang Su, Jonathan Bell, Kenneth Harvey, Simha Sethumadhavan, Gail
Kaiser, and Tony Jebara. 2016. Code relatives: detecting similarly behaving soft-
ware. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 702-714.

Fang-Hsiang Su, Jonathan Bell, Gail Kaiser, and Simha Sethumadhavan. 2016.
Identifying functionally similar code in complex codebases. In Program Compre-
hension (ICPC), 2016 IEEE 24th International Conference on. IEEE, 1-10.
Team GitHub. [n.d.]. GitHub Gist. https://gist.github.com/discover.
accessed 23-August-2019].

Team Stack Overflow. [n.d.]. Stack Overflow. https://stackoverflow.com. [On-
line; accessed 23-August-2019].

Federico Tomassetti and Marco Torchiano. 2014. An Empirical Assessment
of Polyglot-ism in GitHub. In Proceedings of the 18th International Confer-
ence on Evaluation and Assessment in Software Engineering (London, England,
United Kingdom) (EASE °14). ACM, New York, NY, USA, Article 17, 4 pages.
https://doi.org/10.1145/2601248.2601269

Danny van Bruggen. 2015. Javaparser - For processing Java code.
github.com/javaparser/javaparser. [Online; accessed 23-August-2019].

Andrew Walenstein and Arun Lakhotia. 2007. The software similarity problem
in malware analysis. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-
Zentrum fir Informatik.

Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering.
ACM, 87-98.

Wikipedia Contributors. [n.d.]. Java bytecode instruction listings.
en.wikipedia.org/wiki/Java_bytecode. [Online; accessed 23-August-2019].
Wikipedia contributors. 2019. Levenshtein distance — Wikipedia, The Free En-
cyclopedia. en.wikipedia.org/wiki/Levenshtein_distance. [Online; accessed 23-
August-2019].

Quanfeng Wu and John R. Anderson. 1990. Problem-solving transfer among pro-
gramming languages. Technical Report. Carnegie Mellon University.

Marvin Wyrich, Daniel Graziotin, and Stefan Wagner. 2019. A theory on indi-
vidual characteristics of successful coding challenge solvers. Peer} Computer
Science 5 (Feb. 2019), e173. https://doi.org/10.7717/peerj-cs.173

Wuu Yang. 1991. Identifying syntactic differences between two programs. Soft-
ware: Practice and Experience 21, 7 (1991), 739-755.

R. Yue, Z. Gao, N. Meng, Y. Xiong, X. Wang, and J. D. Morgenthaler. 2018. Au-
tomatic Clone Recommendation for Refactoring Based on the Present and the
Past. In 2018 IEEE International Conference on Software Maintenance and Evolu-
tion (ICSME). 115-126. https://doi.org/10.1109/ICSME.2018.00021

[Online;

https://doi.org/10.1109/ICSE-SEIP.2017.6
http://sourceforge.net/projects/j2cstranslator/
code.google.com/codejam
github.com/DynamicCodeSearch/SLACC/tree/ICSE20
https://doi.org/10.1145/2745802.2745805
https://doi.org/10.1186/s40411-017-0035-z
docs.python.org/3/library/ast.html
https://doi.org/10.1109/ASE.2013.6693095
https://doi.org/10.1080/10447319009525970
https://doi.org/10.1109/VLHCC.2018.8506508
https://gist.github.com/discover
https://stackoverflow.com
https://doi.org/10.1145/2601248.2601269
github.com/javaparser/javaparser
en.wikipedia.org/wiki/Java_bytecode
en.wikipedia.org/wiki/Levenshtein_distance
https://doi.org/10.7717/peerj-cs.173
https://doi.org/10.1109/ICSME.2018.00021

