
SLACC: Simion-based Language Agnostic Code Clones

George Mathew, Chris Parnin, Kathryn T Stolee
North Carolina State University

{george2,cjparnin,ktstolee}@ncsu.edu

ABSTRACT

Successful cross-language clone detection could enable researchers

and developers to create robust language migration tools, facilitate

learning additional programming languages once one is mastered,

and promote reuse of code snippets over a broader codebase. How-

ever, identifying cross-language clones presents special challenges

to the clone detection problem. A lack of common underlying rep-

resentation between arbitrary languages means detecting clones

requires one of the following solutions: 1) a static analysis frame-

work replicated across each targeted language with annotations

matching language features across all languages, or 2) a dynamic

analysis framework that detects clones based on runtime behavior.

In thiswork, we demonstrate the feasibility of the latter solution,

a dynamic analysis approach called SLACC for cross-language clone

detection. Like prior clone detection techniques, we use input/out-

put behavior to match clones, though we overcome limitations of

prior work by amplifying the number of inputs and covering more

data types; and as a result, achieve better clusters than prior at-

tempts. Since clusters are generated based on input/output behav-

ior, SLACC supports cross-language clone detection. As an added

challenge, we target a static typed language, Java, and a dynamic

typed language, Python. Compared to HitoshiIO, a recent clone de-

tection tool for Java, SLACC retrieves 6 times as many clusters and

has higher precision (86.7% vs. 30.7%).

This is the �rst work to perform clone detection for dynamic

typed languages (precision = 87.3%) and the �rst to perform clone

detection across languages that lack a common underlying repre-

sentation (precision = 94.1%). It provides a �rst step towards the

larger goal of scalable language migration tools.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;

Object oriented languages; Functional languages; • Information

systems→ Clustering.

KEYWORDS

semantic code clone detection; cross-language analysis

ACM Reference Format:

George Mathew, Chris Parnin, Kathryn T Stolee. 2020. SLACC: Simion-

based Language Agnostic Code Clones. In 42nd International Conference on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380407

Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea.

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3377811.3380407

1 INTRODUCTION

Modern programmers typically work on systems built with a cock-

tail ofmultiple programming languages [12]. A recent survey found

that professional software developers have a mean of seven di�er-

ent programming languages in their industrial software projects [30]

and open-source software projects frequently have between 2–5

programming languages [29, 43]. Programmers are also expected

to continue learning multiple programming languages on a daily

basis. To learn a new programming language, studies have shown

that programmers attempt to use a cross-language learning strat-

egy by reusing knowledge from a previously known language [37,

38, 49]. This means programmers often need the ability to relate

code snippets across multiple programming languages.

Traditional clone detection often works with only a single pro-

gramming language, meaning that typical applications and tools

are not applicable to modern programming systems and contexts.

These applications include bug detection in ported software [35],

maintaining quality through refactoring [52], and protecting the

security of products [45]. For example, security teams at Microsoft

use clone detection to scan for other instances of vulnerable code

that might be present in any production software [8]. In short,

there is a need to extend clone detection to work in cross-language

contexts, but limited support exists for them.

This paper presents Simion-based Language-Agnostic Code

Clone detection technique (SLACC), a cross-language semantic

clone detection technique based on code behavior. Our technique

can match whole and partial methods or functions. It works in

both static and dynamic languages. It does not require annotations

or manual e�ort such as seeding test inputs. Critically, unlike any

other clone detection technique, we are able to detect semantically

similar code across multiple programming languages and type sys-

tems (e.g., Python and Java).

SLACC �nds semantic clones by comparing the input/output

(IO) relationship of snippets, called simions (short for similar input

output functions), in line with prior work [20, 40]. SLACC seg-

ments a target code repository into smaller executable functions.

Arguments for the functions are generated using a custom input

generator inspired by grey-box testing and multi-modal distribu-

tion. Functions are executed on the generated arguments and sub-

sequently clustered based on the generated arguments and corre-

sponding return values. The similarity measure for clustering is

based on the IO behavior of code snippets and is independent of

their syntactic features. Hence, SLACC generates cross-language

clusters with code snippets from di�erent programming languages.

To validate our technique, using a single, static typed language,

we perform an empirical study with 19,188 Java functions derived

from Google Code Jam (GCJ) [15] submissions and demonstrate

210

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

https://doi.org/10.1145/3377811.3380407
https://doi.org/10.1145/3377811.3380407

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Mathew et al.

that SLACC identi�es 6x more clones and with higher precision

(86.7% vs. 30.7%) compared to HitoshiIO [40], a state-of-the-art

code semantic clone detection technique. Using a single, dynamic

typed language, we perform a study with 17,215 Python functions

derived fromGCJ and �nd that SLACC can identify true behavioral

cloneswith 87.3% precision. For cross-language clones, SLACC�nds

32 clusters with both Python and Java functions, demonstrating

that detection of code clones does not depend on a common type

system.

In summary, this paper makes the following contributions:

• For single-language static typed clone detection, an empiri-

cal validation demonstrating SLACC can be used to identify

6x more and better code clones clusters than the state-of-

the-art code-clone detection technique HitoshiIO.

• The �rst exploration of clone detection for a dynamic-typed

language and demonstrated feasibility in Python with pre-

cision of 87.3%.

• The �rst exploration of cross-language clone detectionwhen

the languages lack an underlying representation; SLACC is

successful in identifying cross-language clone clusters be-

tween Python and Java with 94.1% precision.

• An open-source tool for detection of semantic code clones

between di�erent programming languages.

2 MOTIVATION

Avery is preparing for a technical interview and was given a few

practice coding challenges [50] to work on. Avery is more comfort-

able writing code in Java during an interview setting but is worried

because the company exclusively codes in Python. As practice for

the interview, Avery wants to code with Python. First, Avery de-

cides to write the code in Java to understand the solution, and then

translate those solutions into Python code.

One of the practice questions asks the coder to interleave the

results of two arrays. Avery quickly writes this solution in Java:

1 public String interleave(int[] a, int[] b) {

2 String result = "";

3 int i = 0;

4 for(i = 0; i < a.length && i < b.length; i++) {

5 result += a[i];

6 result += b[i];

7 }

8 int[] remaining = a.length < b.length ? b : a;

9 for(int j = i; j < remaining.length; j++) {

10 result += remaining[j];

11 }

12 return result;

13 }

While one approach is to directly translate the code into Python,

Avery wonders if there are other ways to take advantage of idioms

and capabilities in Python. After spending a few hours searching

Stack Over�ow [42] and GitHub Gists [41], Avery �nds a few code

snippets that seem to do the same thing.

The �rst one seems a bit too complex and relies on another de-

pendency.

1 def fancy_interleave(l1, l2):

2 from itertools import chain

3 return "".join([str(x)

4 for x in chain.from_iterable(zip(l1, l2))])

This other solution is similar to the Java solution, but is using

something new, a zip function. Avery is excited to learn some new

Python tricks!

1 def problem2(l1, l2):

2 result = ""

3 for (e1, e2) in zip(l1, l2):

4 result += str(e1)

5 result += str(e2)

6 return result

Avery found the strategy of writing code in Java and translating

that code into Python helpful. However, the process of manually

searching and translating the code between languages was time-

consuming. Avery’s unfamiliarity with Python made it di�cult to

verify whether these snippets were truly the same.

At the interview, Avery was relieved to be asked to solve the

same interleave problem from the practice set! However, while cod-

ing up a solution in Python, the interviewer asked, does this handle

interleaving uneven lists? The original Java-based solution handled

this case, but the Python translation did not. Because searching for

code took so long, Avery never had the chance to fully verify that

the Python solution worked the same as the Java solution. Avery’s

assumption that the new zip function would work on uneven lists

was wrong! Had there been a better way for Avery to �nd semanti-

cally related snippets in other programming languages, this issue

may have been avoided.

In this work, we introduce SLACC,which could detect that these

functions are not equivalent. From a corpus of code, it could in-

stead �nd this semantically identical snippet—just one of many ap-

plications enabled by cross-language clone detection:

1 def valid_interleave1(l1, l2):

2 result = ""

3 a1, a2 = len(l1), len(l2)

4 for i in range(max(a1, a2)):

5 if i < a1:

6 result += str(list1[i])

7 if i < a2:

8 result += str(list2[i])

9 return result

3 SIMION-BASED LANGUAGE-AGNOSTIC
CODE-CLONE DETECTION

Code clones can be broadly classi�ed into four types [36] as de-

scribed in Table 1. Types I, II and III represent syntactic code clones

where similarity between code is estimated with respect to the

structure of the code. On the other hand, type-IV indicates func-

tional similarity. Syntactic code clone detection techniques are im-

practical for cross-language code clone detection as it would re-

quire an explicit mapping between the syntax of the languages.

This is feasible for syntactically similar languages like Java and

C# [11] butmuch harder for di�erent languages like Java and Python.

On the other hand semantic approaches for cross-language code

detection [33] rely on large number of training examples between

the languages and was yet again tested on similar programming

languages.

211

SLACC: Simion-based Language Agnostic Code Clones ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 1: High level work�ow for SLACC.

We propose Simion-based Language-Agnostic Code-Clone de-

tection (SLACC), a semantic approach to code similarity that is

predicated on the availability of large repositories of redundant

code [2]. Instead of mapping API translations using prede�ned

rules [5, 11], or using embedded API translations [4, 33], SLACC

uses IO examples to cluster code based on its behavior. Further,

it relaxes the bounds of the datatypes across programming lan-

guages, which helps dynamic typed code snippets (e.g., Python)

to be clustered alongside static typed code snippets (e.g., Java).

In SLACC, we build on the ideas pioneered by EQMiner [20]

for using segmentation and random testing for clone detection.

SLACC starts by identifying snippets from a large code base and in-

volves a multi-step process depicted in Figure 1, which starts with

a) Segmentation of the code base into smaller fragments of code

called snippets, b) Function creation from the snippets, c) Input gen-

eration for the functions, d) Execution of the functions, and e) Clone

detection based on clustering functions arguments and execution

results.

3.1 Segmentation

In the �rst stage, code from all the source �les in a project is broken

into smaller code fragments called snippets. Consecutive statement

blocks of threshold MIN_STMT or more are grouped into a snippet.

A statement block can be

(1) Declaration Statement. e.g., int x;

(2) Assignment Statement e.g., x = 5;

(3) Block Statement e.g., static {x = 10;}

(4) Loop statements. e.g., for, while, do-while

(5) Conditional statements. e.g., if, if-else-if, switch,

(6) Try Statement. e.g., try, try-catch

Algorithm 1 illustrates the segmentation phase. For an AST AF of

a function, the algorithm performs a pre-order traversal of all the

nodes in the AST (line 5) and then uses a sliding window to extract

Table 1: Types of code clones. Types I, II and III are syntactic

while type IV are semantic or behavioral clones [36]

Type Description

I Identical sans whitespace and comments

II Identical AST but uses di�erent variable names, types

or function calls

III Similar AST but uses di�erent expressions/statements.

For example, a) using while in place of for loops or

b) using if else if in place of switch statements.

IV Di�erent syntax but behaviorally same. For example,

an iterative stack approach or a recursive approach

can be used for breadth �rst search of a graph.

Algorithm 1 Segmentation

1: Input: AF - AST Node

2: Output: S - List of Segment

3: procedure Segment(AF)

4: S← ϕ

5: stmts ← PreorderTraverse(AF)

6: for all i ∈ range(0, len(stmts) − 1) do

7: Si ← {}

8: stmti ← stmts[i]

9: for all j ∈ range(i, len(stmts)) do

10: stmtj ←stmts[j]

11: Si .append(stmtj)

12: if len(Si) ≥ MIN_STMTS then

13: S← S ∪ Si

14: if stmtj .hasChildren() then

15: S ← S∪ SEGMENT(stmtj)

16: return S

segments of size greater than a minimum segment size MIN_STMT

(lines 12-13). Further, for statements like Block, Loop, Conditional

and Try which have statements in its nested scope, the algorithm

is called recursively on them (lines 14-15).

3.2 Function Creation

Next, snippets are converted into executable functions. This sec-

tion describes how arguments, return variables, and types are in-

ferred.

Inferring arguments and return variables. We adapt a data�ow

analysis similar to that used by Su et al. [40]. For each method, po-

tential return variables are identi�ed as variables that are de�ned

or modi�ed within the scope of the snippet. If the last de�nition

of a variable is a constant value, that variable is removed from the

set of potential return variables. Arguments are variables that are

1) used but not de�ned within the scope of the snippet, and 2) not

declared as public static variables for the class. For each potential

return variable in a snippet, a function is created.

Inferring types. In the case of static typed languages, argument

types and return values can be inferred via static code analysis.

For dynamic typed languages, the parameters can take multiple

types of input arguments. This increases the possible values of the

arguments generated (see Section 3.3) to identify its behavior. In

many cases, the possible types for the arguments can be inferred

by parsing the code and looking for constant variables [7] in its

context. This technique has been used in inferring types in other

dynamic languages like JavaScript [18]. For example, in the follow-

ing Python function, the type of n can be assumed to be an integer

since it is compared against an integer.

1 def fib(n):

2 if n <= 1: return n

3 return fib(n-1) + fib(n-2)

In cases where the types of the parameters could not be inferred

at compile time, such as:

1 def main(a):

2 print a

212

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Mathew et al.

1 class Shape {

2 public int length;

3 int width;

4 private int height;

5 public Shape(int l, int w, int h) {

6 length=l; width=w; height=h;

7 }

8 }

9 public Shape func_s (int l, int w, int x) {

10 return new Shape(l + x, w * 2, x);

11 }

12 public int func_l (int l, int w, int x) {

13 return func_s(l, w, x).length;

14 }

15 public int func_w (int l, int w, int x) {

16 return func_s(l, w, x).width;

17 }

Figure 2: An example depicting conversion of a function

with object as a return type to multiple functions with non-

primitive members of the object’s class.

a generic type is assigned (i.e., for a) allowing the argument to

assume any of the primitive types used in argument generation

(Section 3.3).

Converting object return types into functions. If a snippet returns

an object, the object is simpli�ed into multiple functions returning

each of its non-private members independently. For example, in

Figure 2, func_s has a return type of Shape. Shape has two mem-

bers, length and width. Hence, func_s is broken down into two

functions, func_l and func_w, which return the length and width

of the shape object independently. Note that a third function for

height is not created since it is a private member.

Permuting argument order. For each of the snippets, we generate

di�erent permutations based on the input of arguments since order

matters for capturing function behavior. Consider the two func-

tions in Figure 3; the �rst function divides a with b using the divi-

sion (/) operator while the second divides dividendwith divisor

using the subtract (-) operator recursively. For the inputs (5, 2) the

two functions would produce the values 2 and 0 respectively. But

if the arguments for the second function was reversed, it would

produce the same output 2. Thus, for every function, we create du-

plicates in di�erent permutations of the arguments, ARGS, resulting

in |ARGS|! di�erent functions. To limit the creation of this explod-

ing space, we set an upper limit on the number of arguments per

function that is included in the analysis (ARGS_MAX).

3.3 Input Generation

A set of inputs are required to execute the created functions. Fol-

lowing this, clustering is performed.

Input creation. Inputs are generated based on argument type

and using a custom input generator inspired by grey-box testing [23]

and multi-modal distribution [20]. First, the source code is parsed

1 public int divide_simple (int a, int b) {

2 if (b == 0) return 0

3 return a / b;

4 }

5 public int divide_complex (int divisor, int dividend) {

6 // Same as dividend/divisor

7 if (b == 0) return 0

8 int quotient = 0;

9 while (dividend >= divisor) {

10 dividend = dividend - divisor;

11 quotient++;

12 }

13 return quotient;

14 }

Figure 3: An example illustrating the need for reordering ar-

guments. The two functions perform integer division but do

not return the same return value for the same set of inputs

due to the order of arguments in the function de�nition.

and constants of each type are identi�ed. Next, a multi-modal dis-

tribution is declared for each of the types with peaks at the con-

stants. Finally, values for each type are sampled from this multi-

modal distribution. Our experiments create 256 inputs per func-

tion, as justi�ed in Section 6.1.

Memoization. For every function with the same argument types,

a common set of inputs have to be used to compare them. This is

ensured using a database and the input generator. The generator

is used to create sample inputs for the given argument types and

stored in the database. For subsequent functions with the same

signature for the arguments, the stored input values are reused.

Supported argument types. SLACC currently supports four types

of arguments.

(1) Primitive. The multi-modal distribution for the argument

type is sampled to generate the inputs. This includes in-

tegers (and longs, shorts), �oats (and double), characters,

booleans, and strings.

(2) Objects. Objects are recursively expanded to their construc-

tor with primitive types; inputs are generated for the types.

(3) Arrays. A random array size is generated using the input

generator for integers1. For each element in the array, a

value is generated based on the array type (Primitive or Ob-

ject).

(4) Files: Files are stored as a shared resource pool of strings in

the database. If a seed �le(s) is provided, it is randomly mu-

tated and stored as a string in the database. In the absence of

a seed, constants from the multi-modal distribution are sam-

pled and stored as strings. For an argument with a File type

(or its extensions), a temporary (deleted on termination) �le

object is created using the stored strings.

Type size restrictions. Comparing code snippets requires com-

patible sizes of types across programming languages. For example,

Java has 4 integer datatypes byte, short, int and long which oc-

cupy sizes of 1, 2, 4 and 8 bytes, respectively. On the other hand,

1If a negative integer is sampled, the distribution is re-sampled.

213

SLACC: Simion-based Language Agnostic Code Clones ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Python has two integer datatypes: int which is equivalent to the

long datatype in Java and long which has an unlimited length.

Thus, we make a restriction when generating inputs for functions

across di�erent languages: inputs are generated from the smaller

bound of the two programming languages. For example, in the case

of Java and Python function that has an int, inputs are generated

within the bounds of Java.

3.4 Execution

In the next stage, the created functions are executed over the gener-

ated input sets and the subsequent return values are stored. Each

function is assigned an execution time limit of TL seconds, after

which a Timeout Exception is raised. This occurs most frequently

when there is an in�nite loop, such as while(true)when the loop

invariant is an argument. Each execution of the function is run

on an independent thread. Subsequently, the return value, runtime

and exception for the executed function over the input set is stored.

3.5 Clone Detection

The last stage of SLACC is identifying the clones, where the exe-

cuted functions are clustered on their inputs and outputs. SLACC

uses a representative based partitioning strategy [36, 40] to cluster

the executed functions.

Similarity Measure. In this work, a pair of functions have the

highest semantically similarity if for any given input, the functions

return the same output. The similarity measure between two func-

tions is computed as the number of inputs for which the meth-

ods return the same output value divided by the number of inputs,

same as the Jaccard index. This creates a similarity value between

two functions with a range of [0.0, 1.0] with 1.0 being the highest.

Consider the functions from Section 2, interleave,

fancy_interleave, and valid_interleave. For values a = [2,3]

and b = [4], we see that interleave(a,b) = [2,4,3],

fancy_interleave(a,b) = [2,4] and valid_interleave(a,b)

= [2,4,3]. Functions interleave and valid_interleave are

similar since they have the same output for the same input but

interleave and fancy_interleave are not similar. In contrast,

for a = [2,3] and b = [4,5], all three functionswould return the

same output [2,4,3,5]. Based on these two inputs, interleave

and fancy_interleave have a similarity of 0.5, interleave and

valid_interleave have a similarity of 1.0, and fancy_interleave

and valid_interleave have a similarity of 0.5. This process is re-

peated for many such inputs a and b to compute similarity scores

between each pair of functions.

Functions are only compared if they have the same number of

arguments and cast-able argument types. For example, consider

the four functions f1(int a, String b), f2(long a, File b),

f3(File a, String b) and f4(String a). Functions f1 and f2

can be compared since int can be cast to a long value. But they

cannot be compared to f3 since primitive types cannot be cast to

File. Similarly, f1, f2 and f3 cannot be compared f4 due to the

di�erence in number of arguments.

Clustering. A function is compared to a cluster by measuring

its similarity with the �rst function added to the cluster (called

Algorithm 2 Clustering

1: Input: F - List of Functions with Input and Output

2: Output: C - List of clusters

3: procedure Cluster(F)

4: C← ϕ

5: for all F ∈ F do

6: for all C ∈ C do

7: O ← GetRepresentive(C)

8: if Similarity(O, F) ≥ SIM_T then

9: C ← C ∪ F

10: break

11: if ∀C ∈ C, F < C then

12: C |C |+1 ← F

13: SetRepresentative(C |C |+1, F)

14: C← C ∪C |C |+1

15: return C

representative). The clustering algorithm is brie�y described in Al-

gorithm 2. An empty set of clusters is �rst initialized (line 4). Each

function (line 5) is compared against each cluster (line 6). If the

similarity between the representative (line 7) and the function is

greater than a prede�ned similarity threshold, SIM_T (line 8), the

function is added to the cluster (line 9). If the function does not

belong in any cluster (line 11), a singleton cluster is created for the

function (line 12) and the function is set as the cluster’s represen-

tative (line 13). The singleton cluster is added to the set of clusters

(line 14)

4 EVALUATION

Our goal is to evaluate the e�ectiveness of SLACC. There is a three-

phase evaluation, �rst to compare SLACC to a comparable tech-

nique in a single, static typed language. Next, we apply SLACC to

a single, dynamic typed language (Python) and then to a multi-

language context; in both cases SLACC is compared to type-III

clones.

4.1 Research Questions

SLACC is benchmarked against HitoshiIO [40] with respect to cov-

erage and precision of code-clone detection. This leads us to our

�rst research question:

Research Question 1

How e�ective is SLACC on semantic clone detection in static

typed languages?

Prior research has already shown that semantic clones can be found

in static typed languages [10, 20, 40] like C and Java. In our liter-

ature search, we failed to �nd techniques that identi�ed semantic

code clones in dynamic typed languages. Therefore, we use an AST

based comparison approach as an alternative baseline to bench-

mark SLACC. This leads us to the next research question:

214

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Mathew et al.

Table 2: Projects used in this study with the number of valid

submissions in both Java and Python.

Year Problem ID Java Python

2011 Irregular Cake Y11R5P1 48 16

2012 Perfect Game Y12R5P1 47 24

2013 Cheaters Y13R5P1 29 19

2014 Magical Tour Y14R5P1 46 18

Total 170 77

Research Question 2

How e�ective is SLACC on semantic clone detection in dy-

namic typed languages?

Prior work identi�ed code clones between languages by mapping

APIs between similar languages (e.g., Java and C#) using prede-

�ned rules [11] or using an embedded API translations [4, 33]. As a

result, these code clones are syntactic rather than semantic. There-

fore:

Research Question 3

How e�ective is SLACC at cross-language semantic clone

detection?

4.2 Data

We validate this study on four problems from Google Code Jam

(GCJ) repository and their valid submissions in Java and Python.

GCJ is an annual online coding competition hosted byGooglewhere

participants solve the programming problems provided and sub-

mit their solutions for Google to test. The submissions that pass

Google’s tests are considered valid and are published online. We

use the �rst problem from the �fth round of GCJ from 2011 to

20142. The details about the problem and submissions are in Ta-

ble 2. Overall in this study, we consider 247 projects; 170 from Java

and 77 from Python. The 170 Java GCJ submissions contain 885

methods and generated 19,188 Java functions. The 77 Python sub-

mission contains 301 methods and generated 17,215 Python func-

tions.

The code, projects and execution scripts for the project can be

found in our GitHub Repository [28].

4.3 Experimental Setup

The experiments were run on a 16 node cluster with each node

having a 4-core AMDopteron processor and 32GBDDR3 1333 ECC

DRAM. Our experiments have four hyper-parameters

• Minimum size of snippet (MIN_STMT - Section 3.1): We set

this to 2 to capture snippets with interesting behavior.

• Maximumnumber of arguments (ARG_MAX - Section 3.2): This

value is set to 5. Hence if a snippet has more than 5 argu-

ments, it is omitted from the experiments.

2Early rounds have many submissions to create a reasonably scoped experiment.
Thus, we chose submissions from the quarter�nals in round �ve.

• Number of executions (Section 3.4): We execute each snip-

pet with 256 generated inputs (Section 3.3); see Section 6.1

for details on this choice.

• Similarity Threshold (SIM_T - Section 3.5): We set this to 1.0

for our experiment. This implies that two functions are only

considered to be clones if for all inputs they generate the

same outputs.

Sensitivity to the number of executions and ARG_MAX is explored

and discussed in Sections 6.1 and 6.2 respectively.

4.4 Metrics

Our study uses three metrics primarily to address the research

questions we pose.

• Number of Clusters: A cluster is a collection of functions

with a common property (i.e., type I-IV similarity). This met-

ric is the number of clusters generated by a clone detection

algorithm. This is represented as |Clusters|, # Clusters or #C.

• Number of Clones: A function that belongs to a cluster is

called a clone. This metric is the total number of functions

in all the clusters generated by a clone detection algorithm.

This is represented as |Clones|, # Clones or #M.

• Number of False Positives: A false positive is a cluster

which contains one or more functions which does not ad-

here to the similarity measure of the cluster. This is repre-

sented as |False Positive|, # False Positives or #FP.

4.5 Baselines

To answer RQ1, RQ2, and RQ3, we use baseline techniques to illus-

trate the capabilities of SLACC.

4.5.1 RQ1: HitoshiIO. As a baseline, we use the closest technique

to ours, HitoshiIO [40]. This tool identi�es functional clones for

Java VirtualMachine (JVM) based languages such as Java and Scala.

It uses in-vivo clone detection and inserts instrumentation code in

the form of control instructions [47] in the application’s bytecode

to record input and output values at runtime. Inputs and outputs

are observed using the existing workloads, which allows it to ob-

serve behavior and identify clones in code for which input gener-

ators cannot generate inputs. The methods with similar values of

inputs and outputs during executions are identi�ed as functional

clones. HitoshiIO considers every method in a project as a poten-

tial functional clone of every other method and returns pairs of

clones. For comparison against SLACC, we group the pairs into

clusters as follows: two pairs of clones are grouped into a cluster

if both the pairs have a common function between them (i.e., for

pairs (A,B) and (B,C), a clone cluster is created with (A,B,C)).

Like the similarity threshold SIM_T in SLACC, HitoshiIO has

a similar parameter that provides a lower bound on how similar

two methods must be to be considered a functional clone. As with

SLACC, HitoshiIO also has a parameter for an upper bound on the

number of IO pro�les considered for each method.

We used an existing and public implementation of HitoshiIO.3

The workload used to benchmark HitoshiIO with GCJ are the sam-

ple test input �les. GCJ provides only two sample input �les for

3github.com/Programming-Systems-Lab/ioclones;
Commit hash: aa5b5b3; Dated: 05/06/2018

215

https://github.com/Programming-Systems-Lab/ioclones
https://github.com/Programming-Systems-Lab/ioclones/tree/aa5b5b3ed7fe311564ba1508b1b22fb47ccc2979

SLACC: Simion-based Language Agnostic Code Clones ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

a validating a submission. However, in SLACC each method was

executed 256 times. To create a balanced benchmark, we randomly

fuzzed the test input �les 32 times before sending it to HitoshiIO.

Note thatwe tried fuzzing the �les 256 times but the clone-detection

phase of HitoshiIO crashed for large numbers of inputs.

4.5.2 RQ2: Automated AST Comparison. To the best of our knowl-

edge we could not �nd a prior work to detect semantic code clones

in dynamic languages. Hencewe benchmarked SLACC for dynamic

and cross-language clones by matching the Abstract Syntax Trees

(ASTs) as a proxy for similarity. This technique has been adopted

by many graph-based (an example of type-III clone) code clone de-

tection techniques in C [3, 19, 51] and Java [19, 25].

Like SLACC, the �rst phase of the AST comparison segments

the code into snippets. Next an AST is generated for the snippets.

We use the JavaParser [44] tool and Python AST [34] module to

construct the ASTs in the respective languages. We measure simi-

larity by matching the ASTs. For clones in the same programming

language (RQ1, RQ2), we match the ASTs and consider them to be

type-III clones if the ASTs are equivalent or have a di�erence of at

most one node.

4.5.3 RQ3: Manual Cross-language AST Comparison. The

automated AST comparison approach cannot be adopted for cross-

language clones (RQ3) due to the di�erence in format of the ASTs

for both the languages. In this case, conservatively, we sampled

cross-language snippets with extremely similar outputs and man-

ually veri�ed the ASTs for similarity. To do this, we randomly sam-

ple 1 million pairs of a Java function and a Python function. If the

input and output types are compatible, and the outputs are the

same for the same inputs or o� by a consistent value, then we man-

ually evaluate the ASTs for similarity. Consistency is determined

based on the output type. Values of primitive types are consistent

if they have a constant di�erence (for Boolean or Numeric values),

constant ratio (for Boolean or Numeric values) or constant Leven-

shtein distance [48] (for Strings) between the outputs. Objects are

consistent if each member of the object is consistent. Finally, two

arrays are consistent, if all the correspondingmembers of the array

are consistent.

For example, given two methods, int A(int x) and def B(y),

if A(1) = 1, B(1) = 9, A(2) = 2, and B(2) = 18, then A() and

B() are similar since their outputs have a constant ratio (9). Of the

616 similar pairs, all had identical ASTs or had a di�erence of at

most one node, making them type-III clones.

4.6 Precision Analysis

SLACC and HitoshiIO are both clustered using IO relationships

of the functions. However, given a di�erent set of inputs, some

functions in a cluster might produce a di�erent set of outputs such

that they are not clones; such clusters are marked as false positives

and considered invalid. We identify false positives at the cluster-

level in keeping with prior work [20].

To detect false positives, SLACC clusters are re-executed on a

new set of 256 inputs generated using random fuzzing [20] based

on a triangular distribution, and clustered. If any method in a clus-

ter is not grouped into the same cluster using the new input set,

the whole cluster is marked as a false positive. We observe that

Table 3: Number of whole method clones identi�ed by

HitoshiIO(H), SLACC(S) and both the approaches, after ac-

counting for false positives.

Problem HitoshiIO(|H|) SLACC(|S|) |H∩S|

Irregular Cake 3 44 3

Perfect Game 4 35 4

Cheaters 4 21 4

Magical Tour 9 35 9

Total 20 135 20

the number of clusters and false positives is relatively stable above

64 inputs (Section 6.1).

To detect false positives in HitoshiIO, we randomly fuzz the test

input �les 32 times (Section 4.5) to generate a new test �le that is

32x the size of the original, and then re-execute HitoshiIO. Clone

pairs are clustered and false-positives are detected when a new

cluster does not match an original cluster, as done for SLACC.

False positives in clusters generated by AST comparisons are

identi�ed in a similar manner to SLACC. ASTs in the clusters are

�rst converted to functions (as described in Section 3.2). The func-

tions are re-executed on 256 inputs like SLACC clusters and checked

for false positives. Any cluster that contains a di�erent method af-

ter execution is marked as a false positive.

5 RESULTS

The results show that SLACC identi�es more method level clones

compared to prior work and with higher precision (RQ1), success-

fully identi�es clones in dynamic typed languages (RQ2), and suc-

cessfully detects clones between Java and Python (RQ3).

5.1 RQ1: Static Typed Languages

The 885 Java methods generated 19,188 Java functions for analy-

sis. SLACC was able to support 691 of the 885 Java methods. From

the 691 whole methods, 18,497 functions are derived into partial

method snippets. Of the total generated functions, 4,180 (22%) are

clones resulting in 632 clusters. These 4,180 clones derive from

4,038 partial-method snippets and 142wholemethods.We call them

statement level clones and method level clones, respectively.

5.1.1 Method level clones. Webenchmark SLACC against HitoshiIO

by comparing clones detected by SLACC at a method level granu-

larity. We provide all 885 Java methods to HitoshiIO, which groups

43 of the methods into 13 clusters. False positives were identi�ed

for 9 of the 13 clusters (precision=30.7%).4 The remaining valid

clusters from HitoshiIO contain 20 methods. From the 691 Java

methods, SLACC detected 142 methods, grouped into 15 clusters.

False positives were identi�ed for 2 of the 15 clusters (precision =

86.7%). The remaining valid clusters for SLACC contain 135 meth-

ods.

Table 3 shows the numbers of valid clusters for each approach,

as well as their intersection. All valid clusters from HitoshiIO are

4False positive rates in the original HitoshiIO paper [40] are computed at the pair-
level rather than cluster level and used student opinions rather than code behavior,
which may account for the relatively low precision reported here.

216

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Mathew et al.

SLACCstmt

1 import Y14R5P1.stolis.MMT3 // Parent Class MMT3

2 public static int func_a(BufferedReader br){

3 // Snipped from Y14R5P1.stolis.MMT3.main()

4 if (!MMT3.in.hasMoreTokens())

5 MMT3.in = new StringTokenizer(br.readLine());

6 int a = Integer.parseInt(MMT3.in.nextToken());

7 return a;

8 }

SLACCmethod
1 import Y12R5P1.xiaowuc.A // Parent Class A

2 public static int func_b(Scanner in) {

3 // Y12R5P1.xiaowuc.A.next()

4 while (A.tok == null || !A.tok.hasMoreTokens()) {

5 A.tok = new StringTokenizer(in.readLine());

6 }

7 return Integer.parseInt(A.tok.nextToken());

8 }

HitoshiIO
1 public static int func_c(StreamTokenizer in) {

2 // Y11R5P1.burdakovd.A.nextInt()

3 in.nextToken();

4 return (int) in.nval;

5 }

1 public static int func_d(StreamTokenizer in) {

2 // Y11R5P1.Sammarize.Main.next()

3 in.nextToken();

4 return Integer.parseInt(in.nval);

5 }

1 import Y14R5P1.eatMore.A // Parent Class A

2 public static int func_e(Scanner in) {

3 // Y14R5P1.eatMore.A.next()

4 A.in = in;

5 return Integer.parseInt(A.nextToken());

6 }

1 public static int func_f(Scanner sc) {

2 // Snipped from Y11R5P1.dooglius.A.go()

3 int next = sc.nextInt();

4 return next;

5 }

Figure 4: Semantic clusters detected byHitoshiIO, SLACC on

method level (SLACCmethod) and SLACC on statement level

(SLACCstmt). The cluster contains functions that take an ob-

ject that reads a �le and returns the next Integer token.

contained within the valid clusters for SLACC, (H ≡ H∩S), demon-

strating that among the valid clones, SLACC subsumes HitoshiIO

for this experiment. However, the low precision for HitoshiIO may

be due to the use of limited inputs or the execution context, so fur-

ther investigation is needed for generalization of this result.

An example of a cluster that containsmethods fromboth SLACC

and HitoshiIO is shown in Figure 4. The cluster contains functions

that take an object that reads a �le and returns the next Integer

Table 4: # of Java, Python and Cross language clusters de-

tected by SLACC compared against AST (Type-III) clusters.

Java Python Java + Python

SLACC AST SLACC AST SLACC AST

Clusters 632 6122 482 3971 34 616

Valid 584 226 421 181 32 25

Precision 92.4 3.7 87.3 4.6 94.1 4.1

token. Functions func_c and func_d are clones detected by Hi-

toshiIO. Within the same cluster, SLACCmethod additionally iden-

ti�es two more method level clones that were not detected by Hi-

toshiIO: func_b and func_e.

5.1.2 Statement level clones. Additionally, SLACC identi�es 624

clusters with 4,038 statement level code clones. Of these, 48 clus-

ters are false positives (precision=92.3%). The large number of code

clones is intuitive because each method can contain multiple mod-

ular functionalities. That said, it should be noted that the higher

precision for statement level clusters would lead us to believe that

detecting clones for succinct behavior is more accurate.

Statement level clones can be clusteredwithwholemethod clones.

For example, in Figure 4, SLACCstmt represents a SLACC cluster

based on partial methods: func_a and func_f are functions seg-

mented from the mainmethod in class Y14R5P1.stolis.MMT3 and

the go method in Y11R5P1.dooglius.A, respectively.

RQ1: Method level clones: SLACC identi�es more method

level clones compared to HitoshiIO at higher precision.

Statement level clones: Segmentation of code increases the

precision of SLACC and yields a higher number of seman-

tic clones.

5.2 RQ2: Dynamic Typed Languages

SLACC identi�ed that 3,135 (18.2%) of the 17,215 extracted Python

functions had clones which resulted in 482 clone clusters. Of these

482 clusters, 421 are valid, resulting in precision of 87.3%. As a base-

line, using the same Python functions, we systematically looked for

type-III clones. There exists 3,971 clusters, of which 181 are valid

(4.6% precision); these results are shown in the Python column of

Table 4, where AST shows the type-III clones. For sake of compar-

ison, the experiment was repeated for Java clones; a similar di�er-

ential between SLACC and AST precision was observed (92.4% vs.

3.7%).

When these clusters are validated, 61 of the 482 SLACC clusters

(12.8%) were deemed to be false positive. This is more than the

percentage of false positives in Java (7.3%), but we suspect that by

executing the functions over a larger set generated arguments, the

subsequent clustering could yield more robust results.

An example of Python clones identi�ed by SLACC can be seen

in Figure 5. Both the functions in this example compute the sum of

an array. func_db8e uses a loop that maintains the running sum

where each index in the array contains the array sum until that

index. The last index of the array would contain the array sum and

217

SLACC: Simion-based Language Agnostic Code Clones ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

1 def func_db8e(a):

2 n = len(a)

3 sum0 = [0] * (n + 1)

4 for i in xrange(n):

5 sum0[i + 1] = sum0[i] + a[i]

6 allv = sum0[-1]

7 return allv

1 def func_43df(items):

2 _sum = sum(items)

3 j = len(items) - 1

4 return _sum

Figure 5: Semantic cluster of Python functions detected by

SLACC. The cluster contains functions that returns the sum

of an input array.

1 static long func_3b0e (Long[] x2) {

2 Long res = null;

3 Long[] arr = x2;

4 int len = arr.length;

5 for (int i = 0; i < len; ++i) {

6 long xx = arr[i];

7 if (xx >= res)

8 continue;

9 res = xx;

10 }

11 return res;

12 }

1 def func_6437 (y):

2 ymin = min (y)

3 count = 0

4 return ymin

Figure 6: Semantic cluster of a Java function and a Python

function detected by SLACC. The cluster contains functions

that returns the minimum value in an input integer array.

is eventually returned. In contrast, func_43df uses the sum library

function to perform the same task.

RQ2: SLACC can successfully identify code clones for dy-

namic typed languages with high precision (87.3%).

5.3 RQ3: Across Programming Languages

We execute SLACC on the Java and Python projects from GCJ.

From 36,403 extracted snippets, SLACC identi�ed 131 Java and 48

Python functions clustered into 34 cross-language clusters (single-

language clusters are omitted from the RQ3 analysis). On valida-

tion, we �nd that 2 of these 34 (5.8%) clusters are false positives

which is better than the percentage of false positives found in Java

and Python independently. That said, SLACCwould produce more

clusters when support for the languages is broadened.

We discover 616 type-III clusters by comparing the ASTs of Java

and Python snippets (Table 4), of which 25 clusters are valid (4.1%

precision). It should be noted that this is a conservative precision

estimate; the baselinewas created by startingwith close behavioral

Table 5: Mean and variance (in parenthesis) of # clones,

clusters and # false positives for 20 repeats when # in-

puts varying between 8-256. The mean (and variance) are

reported.

Inputs # Clones # Clusters # False Positives

8 4461(85) 218(16) 184(19)

16 4297(49) 355(17) 142(19)

32 4221(23) 412(13) 101(5)

64 4194(4) 623(6) 71(3)

128 4180(0) 630(1) 52(0)

256 4180(0) 632(0) 50(0)

matches, hence giving the AST analysis a slight edge on precision

(Section 4.5.2).

An example of a pair of Java-Python clones can be seen in Fig-

ure 6. f unc_3b0e is a Java function that uses a loop to �nd the

minimum in an array while f unc_6437 is a Python function uses

the inbuiltmin function in Python.

RQ3: SLACC succeeds in identifying clones between pro-

gramming languages irrespective of their typing.

6 DISCUSSION

Wehave demonstrated how SLACC can successfully identify clones

in single-language, multi-language, static typed language, and dy-

namic typed language environments. Compared to prior art (Hi-

toshiIO), SLACC identi�es a superset of the clusters andwith higher

precision. Compared to type-III clone detection, SLACC achieves

a much higher precision in Python and in cross-language situa-

tions. This would lead us to believe that traditional methods that

detect syntactic type-III clones cannot be used for cross-language

clone detection, despite successful applications in single languages

for identifying libraries with reusable code [6], detecting malicious

code [45], catching plagiarism [1] and identifying opportunities for

refactoring [31].

Next, we explore the sensitivity of code clones to the number of

inputs, the number of arguments, and the size of the snippets.

6.1 Impact of input sizes

Prior studies have shown that varying the number of inputs can

alter the accuracy of clone detection techniques [20, 24, 46]. This

was particularly evident in the earliest clone detection techniques

by Jiang and Su [20] where the authors limited the number of in-

puts to 10 with a maximum of 120 permutations of the input due to

the need for large computational resources and the corresponding

runtime.

We test the impact on clones, clusters, and false positives by

varying the number of inputs from 8 to 256 in powers of 2 and

repeating SLACC using the generated Java functions. Each exper-

iment is repeated 20 times on a set of randomly generated inputs.

For each set of input, we record themean and variance for the num-

ber of clones, clusters and false positives, as shown in Table 5. For

218

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Mathew et al.

Figure 7: Cumulative # clones with # arguments varying be-

tween 1-5.

Figure 8: # clones for lines of code between ranging from

1-29. Clones with 30 or more lines are grouped into 30+

a given number of inputs, each row represents the mean and vari-

ance (in parenthesis) of the number of clones, clusters and false

positives. For low numbers of inputs, we see more functions being

marked as clones and fewer clusters. As the number of inputs in-

creases, the number of clones reduces and the number of clusters

increases, demonstrating that the additional inputs are critical at

di�erentiating behavior between functions. The counts of clones,

clusters, and false positives appear to plateau after 64 inputs. This

highlights that 10 inputs used by Jiang and Su would not be su�-

cient for optimally identifying true functional clones and will lead

to a large number of false positives, as suggested in prior work [9].

6.2 In�uence of arguments in clones

We use our engineering judgment to set ARGS_MAX = 5 (Maximum

number of Arguments) to limit the number of functions gener-

ated from snippets. Figure 7 represents the cumulative number of

clones with arguments varying from 1 to 5 and can be used to jus-

tify our choice of ARGS_MAX. Most clones detected by SLACC have

two arguments or less. In Java functions, 3252 of 4180 clones de-

tected have less than three arguments. Cross-language functions

are fewer in number and typically contain functions with 2 argu-

ments or less (125 out of 131). This would seem intuitive as modu-

lar functions are more frequent compared to complex functionali-

ties. As ARGS_MAX increases, it begins to plateau around 3. Hence,

a larger value of ARGS_MAXmay not yield signi�cantly larger num-

ber of code clones but would incur more computational resources

(ARGS_MAX! function executions).

6.3 Clones vs Lines Of Code

Prior work suggests there is more code redundancy at smaller lev-

els of granularity [40]. Aggregating all the cloned functions iden-

ti�ed by SLACC in RQ1, RQ2, and RQ3, we have 6,536 total, valid

cloned functions in Java and Python (duplicates removed, as the

same function could be included in an RQ1 and an RQ3 cluster, for

example).

Figure 8 represents the number of clones with lines of code vary-

ing from 1 to 29. Clones with 30 or more lines are denoted as “30+".

More than 50% of the valid Java clones have 6 lines of code or less

(2037/3845), while themedian of valid Python clones have 5 lines or

less (1372/2691). This implies that snippets with more lines of code

are more unique and harder to clone functionally. On the contrary,

smaller snippets are more likely to contain clones in a code base.

The greater median for Java clones compared to Python clones can

be attributed to the verbosity in Java compared to the succinct na-

ture of Python [17].

7 RELATED WORK

In keeping with the survey on code clones by Roy et al. [36], re-

search on code clones can broadly be classi�ed as syntactic [3, 14,

19, 21, 26, 27], which represent structural similarities, and seman-

tic [10, 20, 39, 40], which represent behavioral similarities.

EQMiner [20] is the closest related work with respect to our

methodology. They examined the Linux Kernel v2.6.24 by using a

similar segmentation procedure, used 10 randomly generated in-

puts to execute them, and cluster based on IO behavior. Compared

with SLACC, EQMiner crucially ignores cross-language clone de-

tection. Furthermore, the implementation of EQMiner contains sev-

eral limitations, noted byDeissenboeck [9], thatmake cross-language

detection infeasible and even replication itself impractical. As a re-

sult, we build on the ideas pioneered by EQMiner, while overcom-

ing limitations in its original design. We introduce novel contribu-

tions, such as using grey-box analysis to overcome the limitations

of simple random random testing, scale the input generation phase

from 10 to 256 inputs, which drastically reduces false positives,

introduce several steps and components to support complex lan-

guage features, such as lambda functions, and handle di�erences

arising from cross-language types. Finally, SLACC introduces �ex-

ibility in clustering as it permits a tolerance on similarity due to

the SIM_T hyper-parameter.

HitoshiIO [40] by Su et al. also performs simion-based compar-

isons to identify clones. It uses existingworkloads like test-cases or

‘main’ function calls to collect values for the behavior rather than

the random testing approach proposed in EQMiner or the grey-

box analysis approach used in SLACC. Research shows that exist-

ing unit tests do not attain complete code coverage [16] and as a

result, the application of such a technique to open source reposi-

tories might not be produce a comprehensive set of clones. This

conjecture can be observed in RQ1 where SLACC identi�es more

clones to HitoshiIO by an order of magnitude. Further, HitoshiIO

operates at a method level granularity while SLACC can operate

at method or statement level granularity. Naturally, this ensures a

greater number of code clones since SLACC can identify succinct

behavior in complex code snippets.

219

SLACC: Simion-based Language Agnostic Code Clones ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

LASSO [22] by Kessel and Atkinson, like HitoshiIO, is another

clone detection technique for method level clones from large repos-

itories using test cases. But unlike HitoshiIO, it does not use pre-

de�ned test cases; LASSO generates test cases using random gen-

eration via Evosuite [13]. That said, LASSO has many deviations

compared to HitoshiIO and SLACC. Firstly, LASSO identi�es only

clones that have the same signature and method name (exclud-

ing case). Secondly, it detects clones only in methods where the

arguments are primitive datatypes, boxed wrappers of primitives,

strings, and one dimensional arrays of these datatypes. It fails to

support objects; SLACC supports objects that can be initialized re-

cursively using constructors of its members(Section 3.3). Finally,

LASSO supports only strongly typed languages as it does not have

a type inference engine like SLACC does.

Most clone detection techniques [3, 14, 19, 21, 26, 27] have been

proposed for single language clone detection.With respect to cross

language clone detection, we failed to �nd any techniques based

on semantic behavior of code. A small number of techniques have

been proposed on syntactic code features [32, 33]. API2Vec [33]

detects clones between two syntactically similar languages by em-

bedding source code into a vector representation and subsequently

comparing the similarity between vectors to identify code clones.

CLCDSA [32], identi�es nine features from the source code AST

and uses a deep neural network based model to learn the features

and detect cross language clones.

Segmentation used in SLACC is inspired by methods that parse

ASTs of the source code [3, 19]. These methods encode the ASTs

into intermediate representations and do not account for the se-

mantic relationships. For example, DECKARD [19] characterizes

sub-trees of theAST into numerical vectors and clusters thembased

on the Euclidean distance which fails to capture the behavior of

code in the clusters [20]. This limitation has been observed in other

syntactic methods as well and is a reason for adoption of semantic

techniques to detect code clones [20].

8 LIMITATIONS AND THREATS

Threats to external validity include the focus on two languages as

instances of static and dynamic typing, so results may not gener-

alize beyond Java and Python. The use of GCJ code may not gen-

eralize to more complex code bases. Threats to internal validity

include that for RQ3, where we “help" the AST matching by start-

ing with behavioral clusters and then determining if the ASTs are

similar; which overestimates the precision of cross-language AST

matching.

Our implementation of SLACC has the following limitations:

Dynamic Typing. SLACC does not support two primitive types

long and complex for Python. That being said, we veri�ed that the

GCJ projects used in this study, do not explicitly use these values

in the source code and they are not present in the input �le used

by the baseline HitoshiIO. Further, in case of a failure to identify

the type of a function argument, the function was fuzzed with ar-

guments of all supported types. In this study, we supported prim-

itive types and the simple data-structures tuple, set, list and

dict. Support for other sophisticated data-structures can be incor-

porated by extending the existing SLACC API with instructions in

the wiki [28].

Unsupported Features. Although SLACC supports Object Ori-

ented features such as inheritance and encapsulation, it is limited

to objects derived from primitive types. Hence, the current version

of SLACC cannot scale to more sophisticated objects like Threads

andDatabase Connections. Similarly, for Pythonwe do not support

modules like generators and decorators. Nevertheless, it would be

possible to support these features with more engineering e�ort.

Dead Code Elimination: In the code-clone examples of Figure 5

and Figure 6, we see the presence of lines of code that do not in�u-

ence the return value i.e., Dead Code. At themoment, the functions

do not fail due to dead code but eliminating them would make the

functions more succinct and comprehensible. This will be an av-

enue for future work for speci�c applications of SLACC.

9 CONCLUSION

In this paper, we present SLACC, a technique for language-agnostic

code clone detection that precisely yields semantic code clones

across programming languages. This is the �rst research to iden-

tify semantic code clones in a dynamic typed language and also

across di�erently-typed programming languages. SLACC identi-

�es clones by comparing the IO relationship of segmented snippets

of code from a target repository. Input values for the segmented

code are generated using multi-modal grey-box fuzzing. This re-

sults in fewer false positives compared to current state of the art

semantic code clone detection tool, HitoshiIO. In our study, we

identify code clones between Java and Python from Google Code

Jam submissions. Compared to HitoshiIO, SLACC identi�es sig-

ni�cantly (6x) more code clones, with greater precision (86.7% vs.

30.7%). SLACC also detects code clones in a multi-language code

corpora. The number of clones detected was fewer and the number

of false positives was slightlymore compared to code cloneswithin

the same language. However, future work that broadens language

support is likely to improve these metrics. These results have im-

plications for future applications of behavioral code clones, such

as enabling robust language migration tools or mastery of a new

programming language once one is known.

SLACC is open-source and the data used in this study is publicly

available [28].

ACKNOWLEDGMENTS

Special thanks to Fang-Hsiang Su, Jonathan Bell, Gail Kaiser and

Simha Sethumadhavan formakingHitoshiIO publicly available.We

would also like to thank the anonymous reviewers for their valu-

able feedback. This material is based upon work supported by the

National Science Foundation under Grant No. 1645136 and Grant

No. 1749936.

REFERENCES
[1] Brenda S Baker. 1995. On �nding duplication and near-duplication in large soft-

ware systems. In Proceedings of 2nd Working Conference on Reverse Engineering.
IEEE, 86–95.

[2] Earl T Barr, Yuriy Brun, Premkumar Devanbu,MarkHarman, and Federica Sarro.
2014. The plastic surgery hypothesis. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 306–317.

220

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1645136
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1749936

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Mathew et al.

[3] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. 1998. Clone detection using abstract syntax trees. In Software Maintenance,
1998. Proceedings., International Conference on. IEEE, 368–377.

[4] Jonathan Beit-Aharon. 2002. Source code translation. US Patent App. 15/894,096.
[5] StephenW Bowles and George E Bethke Jr. 1983. Multi-pass system and method

for source to source code translation. US Patent 4,374,408.
[6] Elizabeth Burd and John Bailey. 2002. Evaluating clone detection tools for

use during preventative maintenance. In Proceedings. Second IEEE International
Workshop on Source Code Analysis and Manipulation. IEEE, 36–43.

[7] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a uni�ed lat-
tice model for static analysis of programs by construction or approximation of
�xpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Princi-
ples of programming languages. ACM, 238–252.

[8] Yingnong Dang, Dongmei Zhang, Song Ge, Ray Huang, Chengyun Chu, and
Tao Xie. 2017. Transferring Code-clone Detection and Analysis to Practice. In
Proceedings of the 39th International Conference on Software Engineering: Software
Engineering in Practice Track (Buenos Aires, Argentina) (ICSE-SEIP ’17). IEEE
Press, Piscataway, NJ, USA, 53–62. https://doi.org/10.1109/ICSE-SEIP.2017.6

[9] Florian Deissenboeck, Lars Heinemann, Benjamin Hummel, and Stefan Wagner.
2012. Challenges of the dynamic detection of functionally similar code frag-
ments. In Software Maintenance and Reengineering (CSMR), 2012 16th European
Conference on. IEEE, 299–308.

[10] Rochelle Elva and Gary T Leavens. 2012. Jsctracker: A semantic clone detection
tool for java code. Technical Report. University of Central Florida, Dept. of EECS,
CS division.

[11] Alexandre Fau and Reinhold Bihler. [n.d.]. Java2CSharp.
http://sourceforge.net/projects/j2cstranslator/. Accessed: 2018-09-25.

[12] Hans-Christian Fjeldberg. 2008. Polyglot programming. Ph.D. Dissertation. Mas-
ter thesis, Norwegian University of Science and Technology, Trondheim/Nor-
way.

[13] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite genera-
tion for object-oriented software. In Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software engineering.
ACM, 416–419.

[14] Mark Gabel, Lingxiao Jiang, and Zhendong Su. 2008. Scalable detection of se-
mantic clones. In Proceedings of the 30th international conference on Software en-
gineering. ACM, 321–330.

[15] Google. [n.d.]. Google Code Jam. code.google.com/codejam. Accessed: 2018-09-
25.

[16] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code coverage for suite
evaluation by developers. In Proceedings of the 36th International Conference on
Software Engineering. ACM, 72–82.

[17] Diwaker Gupta. 2004. What is a good �rst programming language? Crossroads
10, 4 (2004), 7–7.

[18] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type analysis
for JavaScript. In International Static Analysis Symposium. Springer, 238–255.

[19] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In Proceed-
ings of the 29th international conference on Software Engineering. IEEE Computer
Society, 96–105.

[20] Lingxiao Jiang and Zhendong Su. 2009. Automatic mining of functionally equiv-
alent code fragments via random testing. In Proceedings of the eighteenth inter-
national symposium on Software testing and analysis. ACM, 81–92.

[21] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a mul-
tilinguistic token-based code clone detection system for large scale source code.
IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[22] Marcus Kessel and Colin Atkinson. 2019. On the E�cacy of Dynamic Behav-
ior Comparison for Judging Functional Equivalence. In 2019 19th International
Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE,
193–203.

[23] Mohd Ehmer Khan, Farmeena Khan, et al. 2012. A comparative study of white
box, black box and grey box testing techniques. Int. J. Adv. Comput. Sci. Appl 3,
6 (2012).

[24] Heejung Kim, Yungbum Jung, Sunghun Kim, and Kwankeun Yi. 2011. MeCC:
memory comparison-based clone detector. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering. ACM, 301–310.

[25] Rainer Koschke, Raimar Falke, and Pierre Frenzel. 2006. Clone detection using
abstract syntax su�x trees. In 2006 13thWorking Conference on Reverse Engineer-
ing. IEEE, 253–262.

[26] Jingyue Li and Michael D Ernst. 2012. CBCD: Cloned buggy code detector. In
Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, 310–320.

[27] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-Miner:
A Tool for Finding Copy-paste and Related Bugs in Operating System Code.. In
OSdi, Vol. 4. 289–302.

[28] George Mathew, Chris Parnin, and Kathryn T Stolee. [n.d.]. SLACC.
github.com/DynamicCodeSearch/SLACC/tree/ICSE20. [Online; accessed 06-
February-2020].

[29] Philip Mayer and Alexander Bauer. 2015. An Empirical Analysis of the Utiliza-
tion of Multiple Programming Languages in Open Source Projects. In Proceed-
ings of the 19th International Conference on Evaluation andAssessment in Software
Engineering (Nanjing, China) (EASE ’15). ACM, New York, NY, USA, Article 4,
10 pages. https://doi.org/10.1145/2745802.2745805

[30] Philip Mayer, Michael Kirsch, and Minh Anh Le. 2017. On multi-language soft-
ware development, cross-language links and accompanying tools: a survey of
professional software developers. Journal of Software Engineering Research and
Development 5, 1 (19 Apr 2017), 1. https://doi.org/10.1186/s40411-017-0035-z

[31] Narcisa Andreea Milea, Lingxiao Jiang, and Siau-Cheng Khoo. 2014. Scalable
detection of missed cross-function refactorings. In Proceedings of the 2014 Inter-
national Symposium on Software Testing and Analysis. ACM, 138–148.

[32] Kawser Na�, Tonny Sheka Kar, Banani Roy, Chanchal K. Roy, and Kevin Schnei-
der. [n.d.]. CLCDSA: Cross Language Code Clone Detection using Syntactical
Features and API Documentation. ([n. d.]).

[33] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen.
2017. Exploring API embedding for API usages and applications. In Software
Engineering (ICSE), 2017 IEEE/ACM 39th International Conference on. IEEE, 438–
449.

[34] Python Community. [n.d.]. Python AST. docs.python.org/3/library/ast.html.
[Online; accessed 23-August-2019].

[35] Baishakhi Ray, Miryung Kim, Suzette Person, and Neha Rungta. 2013. Detecting
and Characterizing Semantic Inconsistencies in Ported Code. In Proceedings of
the 28th IEEE/ACM International Conference on Automated Software Engineering
(Silicon Valley, CA, USA) (ASE’13). IEEE Press, Piscataway, NJ, USA, 367–377.
https://doi.org/10.1109/ASE.2013.6693095

[36] Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and
evaluation of code clone detection techniques and tools: A qualitative approach.
Science of computer programming 74, 7 (2009), 470–495.

[37] Jean Scholtz and Susan Wiedenbeck. 1990. Learning second and
subsequent programming languages: A problem of transfer. Inter-
national Journal of Human-Computer Interaction 2, 1 (1990), 51–72.
https://doi.org/10.1080/10447319009525970

[38] N. Shrestha, T. Barik, and C. Parnin. 2018. It’s Like Python But: Towards Sup-
porting Transfer of Programming Language Knowledge. In 2018 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC). 177–185.
https://doi.org/10.1109/VLHCC.2018.8506508

[39] Fang-Hsiang Su, Jonathan Bell, Kenneth Harvey, Simha Sethumadhavan, Gail
Kaiser, and Tony Jebara. 2016. Code relatives: detecting similarly behaving soft-
ware. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 702–714.

[40] Fang-Hsiang Su, Jonathan Bell, Gail Kaiser, and Simha Sethumadhavan. 2016.
Identifying functionally similar code in complex codebases. In Program Compre-
hension (ICPC), 2016 IEEE 24th International Conference on. IEEE, 1–10.

[41] Team GitHub. [n.d.]. GitHub Gist. https://gist.github.com/discover. [Online;
accessed 23-August-2019].

[42] Team Stack Over�ow. [n.d.]. Stack Over�ow. https://stackover�ow.com. [On-
line; accessed 23-August-2019].

[43] Federico Tomassetti and Marco Torchiano. 2014. An Empirical Assessment
of Polyglot-ism in GitHub. In Proceedings of the 18th International Confer-
ence on Evaluation and Assessment in Software Engineering (London, England,
United Kingdom) (EASE ’14). ACM, New York, NY, USA, Article 17, 4 pages.
https://doi.org/10.1145/2601248.2601269

[44] Danny van Bruggen. 2015. Javaparser - For processing Java code.
github.com/javaparser/javaparser. [Online; accessed 23-August-2019].

[45] Andrew Walenstein and Arun Lakhotia. 2007. The software similarity problem
in malware analysis. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik.

[46] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering.
ACM, 87–98.

[47] Wikipedia Contributors. [n.d.]. Java bytecode instruction listings.
en.wikipedia.org/wiki/Java_bytecode. [Online; accessed 23-August-2019].

[48] Wikipedia contributors. 2019. Levenshtein distance — Wikipedia, The Free En-
cyclopedia. en.wikipedia.org/wiki/Levenshtein_distance. [Online; accessed 23-
August-2019].

[49] Quanfeng Wu and John R. Anderson. 1990. Problem-solving transfer among pro-
gramming languages. Technical Report. Carnegie Mellon University.

[50] Marvin Wyrich, Daniel Graziotin, and Stefan Wagner. 2019. A theory on indi-
vidual characteristics of successful coding challenge solvers. PeerJ Computer
Science 5 (Feb. 2019), e173. https://doi.org/10.7717/peerj-cs.173

[51] Wuu Yang. 1991. Identifying syntactic di�erences between two programs. Soft-
ware: Practice and Experience 21, 7 (1991), 739–755.

[52] R. Yue, Z. Gao, N. Meng, Y. Xiong, X. Wang, and J. D. Morgenthaler. 2018. Au-
tomatic Clone Recommendation for Refactoring Based on the Present and the
Past. In 2018 IEEE International Conference on Software Maintenance and Evolu-
tion (ICSME). 115–126. https://doi.org/10.1109/ICSME.2018.00021

221

https://doi.org/10.1109/ICSE-SEIP.2017.6
http://sourceforge.net/projects/j2cstranslator/
code.google.com/codejam
github.com/DynamicCodeSearch/SLACC/tree/ICSE20
https://doi.org/10.1145/2745802.2745805
https://doi.org/10.1186/s40411-017-0035-z
docs.python.org/3/library/ast.html
https://doi.org/10.1109/ASE.2013.6693095
https://doi.org/10.1080/10447319009525970
https://doi.org/10.1109/VLHCC.2018.8506508
https://gist.github.com/discover
https://stackoverflow.com
https://doi.org/10.1145/2601248.2601269
github.com/javaparser/javaparser
en.wikipedia.org/wiki/Java_bytecode
en.wikipedia.org/wiki/Levenshtein_distance
https://doi.org/10.7717/peerj-cs.173
https://doi.org/10.1109/ICSME.2018.00021

