
How Graduate Computing Students Search When Using an
Unfamiliar Programming Language

Gina R. Bai
North Carolina State University

Raleigh, NC, USA

rbai2@ncsu.edu

Joshua Kayani∗

North Carolina State University

Raleigh, NC, USA

jkayani@ncsu.edu

Kathryn T. Stolee
North Carolina State University

Raleigh, NC, USA

ktstolee@ncsu.edu

ABSTRACT

Developers and computing students are usually expected to master

multiple programming languages. To learn a new language, de-

velopers often turn to online search to find information and code

examples. However, insights on how learners perform code search

when working with an unfamiliar language are lacking. Under-

standing how learners search and the challenges they encounter

when using an unfamiliar language can motivate future tools and

techniques to better support subsequent language learners.

Research on code search behavior typically involves monitoring

developers during search activities through logs or in situ surveys.

We conducted a study on how computing students search for code

in an unfamiliar programming language with 18 graduate students

working on VBA tasks in a lab environment. Our surveys explic-

itly asked about search success and query reformulation to gather

reliable data on those metrics. By analyzing the combination of

search logs and survey responses, we found that students typically

search to explore APIs or find example code. Approximately 50% of

queries that precede clicks on documentation or tutorials success-

fully solved the problem. Students frequently borrowed terms from

languages with which they are familiar when searching for exam-

ples in an unfamiliar language, but term borrowing did not impede

search success. Edit distances between reformulated queries and

non-reformulated queries were nearly the same. These results have

implications for code search research, especially on reformulation,

and for research on supporting programmers when learning a new

language.

CCS CONCEPTS

• Social and professional topics → Computer science edu-

cation; • Software and its engineering → General program-

ming languages; • Information systems → Information ex-

traction.

KEYWORDS

Code search, Learning new programming languages, VBA

∗This author performed the work while a student at North Carolina State University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7958-8/20/05. . . $15.00
https://doi.org/10.1145/3387904.3389274

ACM Reference Format:

Gina R. Bai, Joshua Kayani, and Kathryn T. Stolee. 2020. How Graduate

Computing Students Search When Using an Unfamiliar Programming Lan-

guage. In 28th International Conference on Program Comprehension (ICPC

’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3387904.3389274

1 INTRODUCTION

Software is oftenwritten usingmultiple programming languages [29,

51], which expects the developers to master multiple programming

languages. Recent research has shown that knowledge of one lan-

guage can interfere with learning a new language [41, 43]. When

learning a new language, developers use an opportunistic learning

strategy, relating concepts in a new language to their previous lan-

guages [43]. As the terminology between languages often differs

drastically, this makes code search especially difficult.

Yet, developers frequently turning to code search to find code

examples to learn from [39] and improve their productivity during

development activities [5, 39, 53]. Studies on code search in software

engineering [7, 8, 34, 45, 46, 48] seek to understand how and why

developers search when performing their daily work [21, 27, 39, 54],

introduce new code search tools or propose potential improvement

of existing code search tools [3, 7, 28, 56], and suggest effective

code search strategies [11, 18]. The code search studies are most

often performed in the wild, so to observe developers during their

normal activity.

As prior work has observed difficulties when developers search

for concepts in a new language [43], we have reason to believe

that code search for subsequent language learners is different than

code search during normal development activities. Consider the

following scenario:

A Computer Science student gets an internship at a bank.

Their team manager is happy that they have several years

of programming experience, and expects them to program

with Visual Basic for Applications (VBA) and create macros in

spreadsheets. However, the student has never been taught VBA at

school, and now they have to learn this new language on their own.

The intern gets their first task, and decides to search online for

how to perform it in VBA, but the keywords are specific to the

language they know, such as “dictionary” from Java paired with

their new context, VBA. This leads to results that are either in VBA

but with information not relevant to the task at hand, or results

in Java that are relevant, but in the wrong language. The intern

wonders, “is there any way to improve the search success? What

online sources should be consulted?”

160

2020 IEEE/ACM 28th International Conference on Program Comprehension (ICPC)

In this scenario, the intern cannot find the resources they want

due to mismatched terminology between the language they know,

Java, and the language they need, VBA. This common situation is

observed in prior research [42]; in this exploratory work on code

search, we target students learning a new language.

Understanding and addressing the challenges learners encounter

during search could lead to better search experiences for learners,

especially students, who have less experience than the professional

developers with learning a subsequent language. Therefore, we

design a study that involves tasks in a language unfamiliar to the

participants and recruit graduate students in Computer Science as

participants.

Our methodology involves logging search and browser activities

and periodically surveying participants about their current tasks,

similar to prior work [39]. However, unlike prior work, we specifi-

cally explore the factors that lead to search success (RQ3), which

is determined by explicitly asking participants if a search was suc-

cessful. Prior human studies with code search do not indicate what

factors lead to successful searches, in large part because obtaining

evidence of search success is tricky. Relying on result clicks [14] is

incomplete as often the answer appears in the preview accompany-

ing a search result. Relying on evidence of query reformulation can

reliably find failed searches [20, 24], but not successful ones. We

address this shortcoming using in situ surveys that specifically ask

about search success.

Given the similarity in methodology, where appropriate, paral-

lels are drawn between the learners in our study and professional

developers from a similar study at Google [39]. While the contexts

of the studies varied widely (i.e., normal developer workflow [39]

with Google Developers vs. a lab study with students working with

an unfamiliar language), similarities and differences shed light on

how we may be able to train subsequent language learners to use

search better in their workflow, or build a better search tool to fa-

cilitate more successful searches. We summarize our contributions

as follows:

• insights on the factors that make a query successful,

• better understanding of the code search behaviors of subse-

quent language learners, and the similarities and differences

of search behaviors between learners and professionals, and

• suggestions on improving the success of searcheswhen learn-

ers are working with an unfamiliar language.

To our knowledge, we are the first to study how subsequent lan-

guage learners [6, 19, 32, 41] perform code search, and our results

have implications for how to better support them. Our main find-

ings and suggestions include:

• Successful searches use natural language phrases, such as

“if statement,” instead of coding shortcuts, such as “if”.

• Successful searches more often consult official documenta-

tion and tutorials with example code rather than Q&A sites.

• Reformulations occur much more quickly after a previous

query than searching for a new topic. The Levenshtein dis-

tance between successive queries alone may not indicate a

reformulation.

• As term borrowingwas commonly observed in search queries,

an “API translator” that can map APIs across languages

would assist subsequent programming language learners.

• Since learners often search to explore language syntax, APIs/li-

braries, and example code, we encourage CS educators to

include short sample code when presenting or requiring use

of new APIs/libraries.

This paper describes the context and methods we used to collect

the surveys and logs for this study in Section 2. Section 3 presents

the detailed study results. Implications of the findings are suggested

in Section 4.2 and the potential threats to validity are discussed in

section 4.4. Finally, Section 6 presents some concluding remarks

and suggests modifications on future work.

2 STUDY

We frame this study around the following three research questions:

RQ1: Why do subsequent language learners search?

RQ2: What does a typical search session entail for a subsequent

language learner?

RQ3: What are the factors that impact the success of search

queries for subsequent language learners?

2.1 Study Design

Using a combination of surveys and logs, Sadowski, et al. [39] ex-

plored the search behavior of Google developers; it is from this

study that we derive our methodology. Table 1 summarizes the sim-

ilarities and differences of the context and collected data between

the previous study and this study. To target subsequent language

learners, we run our study in a lab environment with graduate

students. Participants were given tasks in the unfamiliar languages.

Due to the experimental context, we were able to collect more

survey responses per query as compared to the previous study,

providing a higher density of auxiliary information per query.

One of the shortcomings of the original study is that there was

no notion of search success in the logs or the queries. That is, it

was not clear from the data when a search session was successful

or unsuccessful. To address that shortcoming, in this study, we ask

explicitly about search success in two surveys, one deployed when a

tab is closed (Figure 4) and another deployed when it is suspected a

query is reformulated (Figure 3). Another shortcoming is the use of

edit distance to detect reformulation, which may not represent ac-

tual reformulation; we address this by asking participants whether

their current query is intended to solve the same problem as the

previous query in a reformulation survey (Figure 3).

2.2 VBA Programming Tasks

We chose Visual Basic for Applications (VBA) because it is a popular

programming language with many online resources [4, 13], but it is

not commonly used by the graduate students in Computer Science

at North Carolina State University (NCSU, our participant popula-

tion). Each task includes a general learning goal (e.g., conditions

and loops, string manipulation), a task description with require-

ments, and a sample output/result for the task. The five tasks1 are

summarized as follows:

Task 1 provides participants a list of numbers in a column,

and asks participants to record a macro and create a button

that returns the average value of the numbers in this column

1Artifacts are available at: https://github.com/ginaBai/CodeSearch_VBA

161

Table 1: Summary on Study Designs of the Original Study [39] and this Study

The Original Study This Study

Duration 15 consecutive days (4 weekends and 11 weekdays) 90-minute lab session

Participants 27 Google developers 18 NCSU graduate students

Compensation None Drawing to win a $30 Amazon gift card

Context Daily work 5 VBA tasks

Survey Types 1 survey, 4 questions 4 surveys, 2-6 questions each (Section 2.3.3)

Survey Setting 10 surveys per day, 10-minute time interval 10 surveys per hour, 1-minute time interval

Survey Responses 394 responses 216 responses

Survey Collection Browser extension, surveys triggered when developers Browser extension, survey triggered under

accessed the internal code search site four conditions (Section 2.3.3)

Total Log Entries 77,632 entries 3,508 entries

Total Queries 3,870 queries 229 queries

when the button is clicked. This task can be completed with

or without VBA code.

Task 2 requires participants to create a button that creates a

message box with "Hello World!" on it once clicked.

Task 3 provides participants a list of scores in a column called

Grade, ranging from 43 to 100, and ask participants to create

a button that populates a column called P/F with P or F for

Pass or Fail, respectively, depending onGrade: P is for a score

that is greater than or equal to 60 in column Grade, and F

otherwise.
Task 4 provides participants an unsorted inventory list of unique

labels in a column called Item with their prices listed in a

column called Price. Their goal is, given a separate target list

of labels, to create a button that populates a column Price for

the items in the target list based on the inventory list. The

Excel built-in function VLOOKUP is not allowed in this task.

Task 5 provides participants a list of phone numbers in the

format of (XXX)XXX-XXXX, and asks participants to create a

button that populates a column called Area Code with unique

area codes and their associated counts in a column called

Count.

Participants were instructed to complete the tasks in order.

2.3 Data Collection

We developed a Google Chrome extension2 that records search

events and browsing history and deploys surveys. To capture the

questions the participants are trying to solve, we prompt users with

short surveys periodically. In this way, we are able to combine the

survey responses with logs analysis.

2.3.1 Tool Implementation. The implementation consists of two

parts: a client-side Google Chrome browser extension for logging

data and a Flask web server for storing data. On the client side,

the browser extension does the following: 1) initialize browser

local storage that holds the log information, including issuing a

unique 10-digit ID number to each participant, 2) track Google

searches, 3) track link clicks on all pages, 4) detect possible query

reformulations via word-level Levenshtein distance (if distance ≥

2Chrome web store: https://chrome.google.com/webstore/detail/chrome-code-search/
ljdehfmdnkelbnpogdeobpaldeibecek

two words [23]), 5) format and deploy the surveys, and 6) send all

collected logs to our server for storage. All collected data are stored

in a password-secured SQLite database on an encrypted server.

2.3.2 Procedure. The study was conducted in a lab setting over two

sessions, 90 minutes each. Participants attended one lab session

only. Participants were instructed to install the Google Chrome

extension on their personal laptops and keep the extension enabled

during the lab session.

2.3.3 Surveys. To avoid over-taxing the participants, a maximum

of 10 surveys per hour were deployed with a one-minute minimal

interval between surveys. A survey is triggered when a participant

performs one of the following four actions:

(1) Finishes installing the extension

Preliminary Survey (Figure 1). We collect participants’ tech-

nical background such as programming experience, their

intentions of code search, and demographic information.

(2) Makes a search

Context Survey (Figure 2). We ask participants about the

activities they are doing, and the specific question they are

solving. Questions Q2, Q3, and Q5 are from prior work [39].

In addition, we ask what approach(es) they’ve adopted to

solve the tasks.

(3) Reformulates a query

Query Reformulation Survey (Figure 3). A query is identified

as a potential reformulation if its word-level Levenshtein

distance from the prior query is greater than or equal to

two. This survey verifies the reformulation by asking in the

current query is related to the previous one. It also asks if

the prior query solved the problem. If so, how did it help; if

not, what information is missing.

(4) Closes the search tab

Search Tab Closed Survey (Figure 4). This survey asks if the

prior query solved the problem. If so, how did it help; if not,

what information is missing.

A survey will not be triggered by any event if the prior survey is

deployed within a minute or the number of deployed surveys has

reached the hourly limit.

We asked participants to complete the survey every time it is

deployed, although completion is not forced.

162

Q1: Howwould you rate your overall programming experience?

A. Novice B. Intermediate C. Expert

Q2: What languages do you work with most frequently?

� Java � C � C++ � Python � C# � PHP � JavaScript

� Visual Basic .Net � Perl � Assembly � Ruby � Delphi

� Object Pascal � Swift � Objective C �MatLab � R

� PL/SQL � COBOL � Groovy � Other: ____________

Q3: In what contexts or for what purpose(s) do you search for

codes via websites during software development activities?

Short Answer: ________________________

Q4: When solving a programming/development/technical

problem, how often do you: (rank the following from most

often to least often with number 1, 2, and 3)

Ask a colleague/friend A. 1 B. 2 C. 3

Web or online search A. 1 B. 2 C. 3

IDE search/exploration A. 1 B. 2 C. 3

Other: ____________

Q5: What’s your occupation?

A. Undergraduate Student B. Graduate Student

C. Student with working experience in the industry

F. Other: ____________

Q6: How would you identify your gender?

A. Female B. Male C. Non-binary D. Prefer not to disclose

Figure 1: Preliminary Survey

Q1. What languages is your search related to? (separate each

language with a newline [hitting the enter key]) ______________

Q2: What are you doing?

A. Exploring (Looking into a certain programming language, etc.)

B. Debugging code (Why does ABC return null?, How to use XYZ

debugger?, etc.)

C. Designing/Developing a feature D. Maintaining old code

E. Other: ____________

Q3: How familiar are you with the code you’re looking for?

A. Very Familiar (e.g., I’ve written something similar in the past)

B. Somewhat Familiar (e.g., I’ve seen something like it before)

C. Not familiar (e.g., this is entirely new to me)

Q4: What else have you tried to answer this question?

� Searched local codebase

� Consulting a friend/colleague in person

� Consulting a friend/colleague via email, IM, etc.

� Consulted a book/textbook

Q5: What question are you trying to answer? _____________

Q6: What type of code are you working on?

A. Backend (database, cloud storage, etc.) B. Front-end GUI

C. Middleware D. Other: ____________

Figure 2: Context Survey

2.3.4 Log Data. A log entry is created when a participant performs

one of the following trigger events: searches, closes a tab, clicks a

Q1: When you searched, [Previous Query], did you solve the

problem?

A. Yes (jump to Q2_y) B. No (jump to Q2_n)

Q2_y: What solved it?

� Found a needed API (how to modify CSS with jQuery)

� Found a needed implementation (bubble sort implementation in Java)

� Asked a colleague in person � Asked a colleague online/email

� Other method: ____________

Q2_n: Is your search, [Current Query], related to the problem?

A. Yes (jump to Q3) B. No

Q3: What do you need to solve the earlier query?___________

Figure 3: Query Reformulation Survey

Q1: When you searched, [Current Query], did you solve the

problem?

A. Yes (jump to Q2_y) B. No (jump to Q2_n)

Q2_y: What solved it?

� Found a needed API (how to modify CSS with jQuery)

� Found a needed implementation (bubble sort implementation in Java)

� Asked a colleague in person � Asked a colleague online/email

� Other method: ____________

Q2_n: Why?

A. Need more related information B. Need to reformulate the query

C. Other: ____________

Figure 4: Search Tab Closed Survey

link, switches tabs, or switches to another application. The logged

information includes:

• UserID: A unique number that distinguishes participants.

• Time: Time of this activity.

• Type: Types of browser activities, including: closed the tab,

clicked a link, deployed survey, received survey responses.

• URL: The url of the website the participant clicked.

• TabID: Browser-assigned ID for each tab to track the tab

activities.

• Query: String from an online search query.

2.4 Participants

We invited students enrolled in a graduate software engineering

course at North Carolina State University via email to participate

in the study (response rate: 42.6%). A short introduction to this

study, including the purpose thereof, and the tool (Google Chrome

extension) used in the study, was made available to all potential

participants. As compensation, participants who have the exten-

sion enabled and recording for at least 45 minutes were eligible

to enter into a drawing to win a $30 Amazon gift card. In total 23

students completed the initial surveys. After discarding data from

five participants whose interactions were recorded for less than ten

minutes, we were left with data from the remaining 18 participants

for analysis (average: 78.5 minutes, median: 84 minutes), which

includes four female students and fourteen male students.

The 18 participants self-reported their expertise in general pro-

gramming skills: one as a novice developer, five as experts, and

twelve as intermediates. Two participants claimed to have prior

163

working experience in the industry. All participants often search

on websites for code, and the majority of participants sometimes

or often ask friends for help (16/18) or search on IDEs (16/18). Par-

ticipants came from a diverse programming language background,

including object-oriented programming languages and scripting

languages, but not VBA. The top five frequent programming lan-

guages used by the participants were: Java, JavaScript, C++, C, and

Python.

2.5 Analysis

We grouped the logs by participants’ IDs and sorted them by log

time. Surveys were tabulated and associated with browser events

for analysis. Logs were analyzed to collect 1) search queries, 2)

ordered list of clicked website URLs associated to each query, and

3) time spent by a participant on a clicked result page.

The logs were split into search sessions. Due to our study con-

text, adopting the definition of a search session from the study

on Google developers [39] was problematic. When considering a

search session as a series of developer activities separated by 6-

minutes of inactivity, each participant in our study had exactly one

search session. Thus, we treat each search query and its associating

result clicks as one search session (referred to as “micro-session” in

prior work [39]).

Our reformulation surveys were deployed when the Levenshtein

distance was two or greater, in line with prior work [23, 34]. If

participants answer yes to Q1 (Figure 3), this indicates that the

current query is not a reformulation and begins a new topic. If the

participant answers no to Q1 and yes to Q2_n, this means that the

previous query did not solve the question and the current query

is related to the same problem, and thus the current query is a

reformulation. If a participant answers no to Q1 and no to Q2_n,
we assume that the problem is the same but the participant is

trying a new approach, and thus the query is not a reformulation.

While prior work makes assumptions about reformulation based

on topic analysis or query distances, these survey responses serve

as a ground truth for reformulation analysis. While we do not have

enough data to build a classifier to predict reformulation, we can

analyze the context around known reformulations versus known

non-reformulations.

2.6 Data Summary

The 18 participants generated 3,508 log entries, including 216 survey

responses and 229 queries during the lab sessions. Each participant

made an average of 12.7 queries (median: 13 queries), each query

led to an average of three search result clicks (median: two clicks),

and the average time interval between each query was 5.8 minutes

(median: 4.3 minutes).

As to the surveys, 216 of 389 deployed surveys were completed

and collected, including 18 Preliminary Surveys (response rate:

100.0%), 35 Context Surveys (response rate: 39.3%), 138 Query Refor-

mulation Surveys (response rate: 54.5%) and 25 Search Tab Closed

Surveys (response rate: 86.2%).

3 RESULTS

In this section, we present the results for each research question in

turn.

Table 2: Answers to 18 Preliminary Survey Question "In
what contexts or for what purpose(s) do you search for codes
via website during software development activities" (Cate-

gory - Multiple Answers are Allowed)

Category #par (%)

Look for Example Code (How)

Library / Class / API 9 (50.0%)

Method / Function / Operation 7 (38.9%)

Syntax 9 (50.0%)

Solution 4 (22.2%)

Explore Code (What)

Concept 3 (16.7%)

Determine Reasons (Why)

Debug 7 (38.9%)

Table 3: Answers to 35 Context Survey Question “What are
you doing?” (Goal - Multiple Choice) and Question “What are
you trying to answer?” (Example - Short Answer)

Goal Example Num

“How to enable developer tools in Excel”

Exploring “How to do lookup in excel” 19

“How to print in VBA”

“Basic steps to record an excel macro”

Designing “Using and iterating hashtable in VBA” 8

“Find unique values in a column”

“Loop over a column excel vba”

Debugging “Create dictionary in excel vba” 6

“Found an implementation but was getting error”

Other “enabling a feature in Microsoft Excel” 2

3.1 RQ1: Why do subsequent language learners
search?

Learners most frequently searched for example code and poten-

tial ways to resolve bugs or errors in their programs.

We analyzed the self-reported purposes of why participants

search during programming. In 18 Preliminary Surveys, the most

frequently reported goals were to find specific syntax, libraries/-

classes/APIs, implementations or sample usage of methods/func-

tions/operations during development. Table 2 shows three main

reasons why participants search (Category), where the categories

were adopted from the prior work of Sadowski, et al [39], and the

number of participants who stated these reasons and its percentage

out of 18 (#par (%)). For example, nine participants claimed that they

usually search for correct syntax during software development; an

example query made by a participant is, “vba if statement”.

We then explored the questions participants were trying to solve

as collected in 35 Context Surveys (See Table 3). Participants were

asked to categorize their motivation into exploring, designing or

debugging (Goal), and then answer the open-ended question, “What

question are you trying to answer?” with a brief description of

current search activity; example queries can be found in column

Example. For example, 19 queries were made to explore how to

perform an action in Excel or with VBA with queries such as “How

to enable developer tools in Excel”.

164

Table 4: Search Sessions and Corresponding Purpose of Search Reported in Context Surveys

Search Session Description #Session Purpose of Search #Purpose

S 1 Search Query + 0 Result Click 34 (14.8%)

Exploring 4 (11.4%)

Designing 3 (8.6%)

Debugging 2 (5.7%)

SC 1 Search Query + 1 Result Click 68 (29.7%)

Exploring 6 (17.1%)

Designing 1 (2.9%)

Debugging 1 (2.9%)

SCC+ 1 Search Query + 2 or more Result Clicks 127 (55.5%)

Exploring 11 (31.4%)

Designing 4 (11.4%)

Debugging 3 (8.6%)

Total 229 (100.0%) 35 (100.0%)

Participants explored code (Table 3) and searched for example

code (Table 2) frequently. They also searched for assisting debug-

ging, whichmatches their self-reported purposes for searchingwere

example codes, including APIs, syntax and existing solutions, and

determine reasons why code did not work correctly (Table 2). This

observation also matches the search goals of professional develop-

ers reported in the prior work [39]. While only 10% of professionals’

queries tried to determine why something is failing, 17% of students’

queries recorded in Context Surveys focused on debugging.

3.2 RQ2: What does a typical search session
entail?

Each query was followed by three result clicks on average. An

average participant spent about five minutes before reformu-

lating a query. Learners generated more verbose queries than

professionals did (5.6 words vs. 1.9 words) and required longer

time to scan the search results.

We identified three typical search sessions (Search Sessions), as

shown in Table 4. The column Description introduces the session

formats, and the column #Session introduces the frequency and their

percentage among all search sessions.We adopted a truncated regex-

like syntax for the sessions: where S is a search query and C is a

result click. For example, SCC+means one search query followed by

two or more result clicks. We also investigated the Context Surveys

within each session. Themajority of SCC+ patterned search sessions

were exploring new content/topics (11 in #Purpose). Even when a

search is not followed by a click, as in the S pattern, exploring is

the dominant purpose of the search, representing 44.4% (4/9) of the

S sessions with surveys. This could happen when the previews on

the search results contain enough information for participants to

find what they need.

As for search query length considering all 229 queries, an av-

erage query contains 5.6 words, with a median of five words and

a maximum of 17. These numbers are higher than the numbers

reported in prior work, which were 4.2 words per query [44] and

1.9 words per query [39]. The increment in words may be caused by

participants’ unfamiliarity with the programming language used in

the study, or from the fact that they were using general web search

like [4] and [34], which also report long code-related query lengths.

Focusing in on reformulations, we examine the queries that

trigger a reformulation survey. The query that triggers the survey

is the current query and the one before it is the previous query. Of the

138 queries that triggered a reformulation survey, 48 (34.8%) were

reformulations (answering no to Q1 and yes to Q2_n in Figure 3)

while 90 (65.2%) were not (answering either yes to Q1 (86 surveys)

or no to Q1 and no to Q2_n (4 surveys) in Figure 3).

When the current query is a reformulation, this occurs after an

average of 3.0 (median = 2.0) result clicks; current queries that are

not reformulations occur after 3.0 result clicks (median = 1.5). Based

on the medians, this shows a slight uptick in clicks preceding a

reformulation. The average time between a previous and current

query is 4.7 minutes (median = 3.2) for a reformulation and 8.3

minutes (median = 6.0) for a non-reformulation. This indicates that

reformulations occur much more quickly after a previous query

and that less time is spent on each result click. However, a typical

professional developers needed only eight seconds to reformulate

a query [39]. This difference is possibly due to our participants’

unfamiliarity with VBA, with the professionals’ strong familiarity

with their context, or with differences in how reformulations were

computed in this analysis.3

Considering query length, when a query is reformulated, the

length of the query is sometimes modified substantially (e.g., remov-

ing 12 words or adding seven words), and sometimes modified very

little (e.g., changing one word, adding a word). The Levenshtein dis-

tance between a reformulated query and the previous query is 5.3

(median = 4.5) and the average distance between non-reformulated

queries is similar, 5.3 (median = 5.0). These data provide preliminary

evidence that basing reformulation on query distance metrics alone

may not yield accurate results.

3.3 RQ3: What are the factors that impact the
success of search queries?

When looking for APIs or implementations, 71 of 107 (66.4%)

searches were successful. In addition, consulting documenta-

tion and tutorials led to more successful searches than Q&A

sites (e.g., StackOverflow). Learners frequently borrowed terms

from languages with which they are familiar when composing

queries, these queries were more successful on average than the

typical query.

3Prior work [39] used a word-level Levenshtein distance of at most one to identify
reformulation.

165

Table 5: 107 Successful Queries and Corresponding Reasons

for Success (86 from Reformulation Survey & 25 from Search

Tab Closed Survey)

Problem were solved by... #Queries

Finding relevant API 47 (43.9%)

Finding relevant implementation 53 (49.5%)

Consulting others in person 4 (3.7%)

Other 3 (2.8%)

Total 107 (100.0%)

Table 6: Online Sources & Success

Online Sources #Succ #Fail Total

Q&A sites only 19 (11.7%) 9 (5.5%) 28 (17.2%)

D&T sites only 54 (33.1%) 14 (8.6%) 68 (41.7%)

Both Q&A and D&T 25 (15.3%) 20 (12.3%) 45 (27.6%)

None 9 (5.5%) 13 (8.0%) 22 (13.5%)

Total 107 (65.6%) 56 (34.4%) 163 (100.0%)

We consider a search query to be successful when a participant

selects option Yes to the question “When you searched, [Previous/Cur-

rent Query], did you solve the problem?” in either the Query Reformu-

lation Survey or the Search Tab Closed Survey. In total, we collected

138 Query Reformulation Surveys (86 successful & 52 unsuccessful)

and 25 Search Tab Closed Surveys (21 successful & 4 unsuccessful).

Among 107 surveys associated with the successful searches

(Table 5), 47 surveys reported that problems were solved by a

search result that contained a relevant API, 53 surveys reported that

problems were solved by finding relevant implementations, four

searches were concluded when the participant consulted others in

person, and two problems were resolved by the participants them-

selves, while one did not provide detailed information as to why the

search was successful. Among 56 surveys associated with unsuc-

cessful searches, only six responses on the reasons of unsuccessful

queries were submitted; the other 50 did not provide a reason for

failure. Of the six, three stated that more information is needed,

two stated that the query reformulation is needed, and one stated

that specific functions or API is missing from the search results,

which prevented this search from solving the problem.

We looked into online information sources consulted by partici-

pants and manually classified the sources into two categories: 1)

Q&A sites (e.g., Stack Overflow, forums), 2) official documentation

and official/third-party tutorials sites (D&T sites), similar to prior

work [2, 8]. Table 6 shows the type and the number of clicked search

results from each query. Table 6 lists the categories (Online Sources),

their associated successful or unsuccessful queries (#Succ, #Fail).

We observed that among successful queries, 50.5% (54/107) were

followed by only documentation and tutorials sites, making that the

most common resource leading to search success. Similarly, of the

queries that consulted only D&T sites, 79% (54/68) were successful.

This finding matches the prior work of Bai, et al. that consulting

documentation and tutorials only are most likely to succeed during

the search [2].

We also identified that 16/18 participants borrowed the terms

from languages with which they are familiar. Similar borrowing be-

havior was also reported in prior work [1, 43], and developers claim

that previous knowledge supports retrieval of new information;

our results concur. We found 65 queries used terms such as “dictio-

nary”, “hashtable”, “hashmap”, “regex” from languages like Java and

C++. However, this term borrowing sometimes introduced termmis-

match, that is the cases when vocabulary mismatch between queries

and documents (e.g., [10, 15, 55, 58]). For example, borrowing the

term “dictionary” from Java. When five participants intended to

search for functions in VBA that behave like java.util.Dictionary,

which should be the VLOOKUP function, they searched for, “dictionary

in excel”, “add or edit words in a spell check dictionary” or, “creating

a dictionary with Microsoft Excel”.

The impact of term mismatch in terms of query success and

reformulation is fairly neutral. Queries with borrowed terms were

more successful, on average; this observation is further supported

by a result in general information search [57] that finds engineering

and science students who had higher levels of domain knowledge

retrieved more relevant documents for the search question. How-

ever, these queries were no more associated with reformulation

than any other query. For the 65 queries demonstrating term mis-

match, 34 (52%, 26 from Reformulation Survey, 8 from Search Tab

Closed Survey) were associated with a success survey, and only

15 (23%, 13 from Reformulation Survey, 2 from Search Tab Closed

Survey) were reported unsuccessful. Despite the term mismatch,

these queries were more successful on average than the typical

query (77% success vs. 66% success, per Table 6). We conjecture that

this is because VBA is so well documented that the current search

algorithms are able to handle the term mismatch; this may not be

the case with newer or less common programming languages.

There were subsequent query reformulations for 33% (13/39)

of the term borrowing queries, where 39 of the term borrowing

queries were followed by a reformulation survey, and 13 of the

responses explicitly indicated reformulation occurred. This is the

same proportion we saw from all reformulation surveys (34.8% are

reformulations, 48/138).

Anecdotally, we observed there was a higher occurrence of the

phrase, “how to” in successful queries than unsuccessful queries

(12.1% vs. 5.4%). Over 80% (13/16) of “How to” queries successfully

supplied participants with the needed information. As an exam-

ple, the query, “how to create a button and assign a macro in excel”

succeeded in finding the desired information, whereas the query,

“assignmacro to a cell vba” failed. The completeness of phrases in the

queries may also influence the search result. For example, while four

queries contained the complete terminology “if statement” instead

of “if ” in successful queries, there was no “if statement” observed

in any of the unsuccessful queries. We also found a case where

an unsuccessful query used “==” instead of spelling out “equal to”

like a successful query did. More exploration with a larger set of

successful and unsuccessful queries may shed more light on which

phrases lead to higher success in the searches.

Also noteworthy is that participants were allowed to consult

others in person during the study. We observed that the four prob-

lems involving consultation with other people were successfully

solved. Future work should look at the interplay between search

and discussion.

166

Table 7: Summary on Findings of The Original Study [39] and This Study

Professionals [39] Subsequent Language Learners

Why do they search?

RQ1: Developers use code search to answer questions a wide range

of topics, including how to do something, learning what code does,

and determining why code is behaving as it is.

RQ1: Most searches are associated to goals of exploring for example

code and designing a new feature. Subsequent language learners

also search for debugging.

What are they looking for?

RQ2: Developers search for examples more than anything else.

Developers navigate code search tools even through code they

know well.

RQ1: Subsequent language learners search for example code more

than anything else. All participants search for exploring regardless

of the familiarity to the code.

Query properties

RQ3: The average length of the queries was 1.85 words. Most queries

were scoped to a subset of the code repository.

RQ2: The average length of the queries is 5.6 words. Most queries

contain keywords “VBA” and “excel” to restrict the search.

RQ3: Nearly a third of searches are incrementally performed

through query reformulation.

RQ2: Only 35% (48/138) of the suspected reformulations were actual

reformulations. Adopting the reformulation definition from the

original study, we found only 5.2% (12/229) of the queries had an

edit distance of one.

Time between queries

RQ3: A typical professional developer requires eight seconds (av-

erage of 23 seconds) to scan the search results, determine if they

meet their needs, and reformulate an initial query.

RQ2: A typical subsequent language learner requires three minutes

(average of five minutes) to scan the search results, determine if

they meet their needs, and reformulate an initial query.

Search frequency

RQ4: An average professional developer composes 12 search queries

per weekday.

RQ2: An average subsequent language learners compose 12.7

queries in a 90-minute lab session.

Clicks per query

RQ4: Each query lead to 1.3 clicks on average. Most micro-sessions

contain one search without any clicks.

RQ2: Each query lead to three clicks on average. Most search ses-

sions contain one search followed by at least two clicks.

Clicks vs. Search goal

RQ5: Most searches on code reviews (determine why) lead to multi-

ple clicks. Developers also make multiple searches and clicks when

exploring for example code and designing.

RQ2: Most searches on exploring new content/topics and all de-

bugging search activities led to one search followed by multiple

clicks

Clicks vs. Code familiarity

RQ5: Code familiarity does not mean less clicks. RQ2: Code familiarity does not mean less clicks.

Search success

N/A RQ3: Learners frequently borrow terms from familiar languages,

and hence be more successful than the typical query. The most suc-

cessful searches occur when looking for APIs or implementations.

4 DISCUSSION

In this section, we compare the student search behavior to profes-

sionals, provide the suggestions to improve search success, and

discuss the potential threats to validity.

4.1 Comparison of search behaviors between
professional developers and subsequent
language learners

Our study can be viewed as a partial replication of the original

study methodology [39] with a drastically different context. In our

study, we investigated how subsequent language learners search

for code in an unfamiliar programming language, rather than us-

ing professional developers conducting their daily work. Like the

original study, we explored the reasons why participants search,

the properties of search queries, and search sessions in micro level.

To extend the original study [39], we analyzed the properties of

successful queries with the survey responses collected right after

either a search activity or a search tab being closed. We also ex-

plicitly ask about query reformulation instead of speculating based

on query edit distance. Table 7 summarized the similarities and

differences of the main findings of the original study and this study.

For example, search sessions observed in this study were more

likely to have at least two clicks after one search activity (55%), while

the professionals click no result in the most search sessions (38.8%).

While it only took professionals 23 seconds to reformulate or make a

new query, learners usually spent five minutes before reformulating

or starting a new query. Learners searched more frequently than

the professionals did (13 queries/hr vs. 12 queries/day).

167

4.2 Successful Search Behaviors for Subsequent
Language Learners

Search success in this study was associated with consulting offi-

cial documentation and tutorials rather than on Q&A sites (e.g.,

Stack Overflow). Additionally, mapping the context in an unfa-

miliar languages to previous knowledge in a familiar language,

and borrowing the corresponding terms, also led to search success.

Lastly, natural language phrases were more associated with success

than coding shortcuts. For example, spelling out “equals” instead of

“==”, and search with “if statement” instead of “if”. These behaviors

may increase the likelihood of finding relevant results, at least in

contexts similar to the one studied here.

4.3 Implications

Our results have implcations for future work in the following re-

search areas:

4.3.1 Debugging with Spreadsheets and Search. Search has become

an important process during debugging tasks [39]. Prior work on

debugging spreadsheets has shown that end-user programmers

use eight strategies when debugging in spreadsheets [50]. These

are: dataflow, testing, code inspection, specification checking, color

following, to-do listing, fixing formulas, and spatial. However, code

search was not part of the equation. In our study, all debugging-

related search queries aimed to fix the formulas. This is likely due to

the design of the study, which aimed to explore how participants use

search for learning a new language, and is not reflective of general

debugging strategies used in spreadsheets. However, future work

should explore the interplay between search and the spreadsheet

debugging strategies, especially in the context of larger tasks.

4.3.2 Query Reformulation with Domain Knowledge. Various strate-

gies for reformulation have been adopted by researchers, such as a

small edit distance [39] or a potentially large edit distance [23, 34].

In this work, we trigger a reformulation survey when the distance

between a current query and the previous query is at least two,

measured using Levenshtein distance. The survey responses pro-

vide a ground truth from participants about whether or not they

are performing a reformulation. What we find is that of the 138

reformulation survey responses, 90 explicitly state that they were

not reformulating, showing a 65.2% false positive rate for this ap-

proach to reformulation detection. In prior work [39], a Levenshtein

distance of at most one was used to identify reformulation. In their

dataset, nearly one third of the searches were flagged as reformula-

tion, whereas in our study only 5.2% were flagged as reformulation

using that same approach (Table 7). When we looked at distances

between non-reformulated and reformulated queries (Section 3.2),

we find that the average edit distances are similar, making it difficult

to use edit distance alone to indicate reformulation.

Reformulation detection based on edit distance alone seems

suspect. Still, we find that approximately 1/3 of the queries that

triggered the reformulation survey were actual reformulations. This

frequency of manual reformulation motivates other efforts by soft-

ware engineering researchers to automatically reformulate queries

based on query properties, hence reducing developer efforts [15].

4.3.3 API Translation. Shrestha, et al. [43] point out that devel-

opers usually face a selection barrier [26] when moving to a new

programming language, and searching for the right terminology

and code example is difficult. They also concluded that learning a

language is difficult when there is little to no mapping of features

to previous languages [43]. While in this study term mismatch was

not an issue for developers in that reformulation was not more

likely and search success was actually higher, we conjecture that

this was due to the study context. VBA was chosen because it

is well-documented, and the participants seemed to benefit from

this. For languages or APIs that are less well documented, we en-

vision “API translators” that can map an API in one language to

a destination language and provide short sample code would as-

sist developers to work and learn more efficiently, especially when

migrating languages, or working with new, unfamiliar languages.

Some of these features are present in tools like Mica [49], which

can assist developers in finding the right API classes and methods

given a description of the desired functionality. Chen, et al. [9]

also present an approach that can recommend analogical libraries

for different programming languages or different mobile platforms

given a library.

4.4 Threats to Validity

Participants knew their searching and browsing activities were

being recorded, and were periodically surveyed, which may have

influenced their behavior.

Some metrics used in this study may not be consistent across par-

ticipants, such as #avgClick/Query and #avgQuery, since the search

results and available documents may vary due to the personalized

search results. In addition, the Chrome extension did not record

if a search query was a result of using an auto-complete query

suggestion. Future studies should enforce non-personal results and

detect auto-complete.

Participants were required to work on these tasks in a lab en-

vironment in a limited time, which could potentially impact their

search behaviors. Response bias may be introduced in the partici-

pant self-reported surveys, and impacted the validity of surveys.

All participants were graduate students and the majority claimed

that their overall programming skills ranged from intermediate to

expert (17/18). Therefore, the results may not generalize to other

populations. A replication with a more diverse and larger set of

students is needed.

We use survey responses on the reformulation survey as ground

truth for reformulations. However, participants may have different

notions about what is and is not reformulation, which may impact

the validity of the ground truth.

The conclusions were drawn based on our participants’ search

behaviors when using VBA, an event-driven programming lan-

guage used by Excel, which may not generalize to learning other

languages.

5 RELATEDWORK

We focus on related work that investigates code search behaviors,

explores end-users’ engagement with spreadsheets, and discusses

the learning barriers in programming systems.

168

5.1 Code Search

As with our study, research on general information search has also

involved student subjects (e.g., [52, 57]). Of particular relevance,

one study found that university students perceived study-oriented

topics as harder to search for than daily life information [52]. Prior

work on code search has yielded similar results, finding that code

search tasks take more effort than information search tasks [34].

Various studies focusing specifically on code search have been

performed by surveying participants about the reasons why they

searched [21, 39, 45, 54], the tools they searched with [46], the pop-

ular search sites [48], as well as their selection criteria for code [27].

Different data analysis strategies are also adopted, for example,

some studies focused on directly observing participants’ behav-

iors [47], while some other studies focused on collecting and ana-

lyzing the logs, such as works done by Brandt, et al. [7, 8], with par-

ticipant solving the pre-selected tasks. Sadowski and colleagues [39]

also combined surveys and logs to analyze developers’ code search

behavior when working on daily tasks.

Automatic API recommendation and query reformulations are

also being studied. Rahman, et al. proposed a novel query refor-

mulation technique, which can translate a natural language code

search query into a ranked list of relevant Java APIs [35, 36]. Vari-

ous strategies for reformulation have been adopted by researchers,

such as a small edit distance [39] or a potentially large edit dis-

tance [23, 34]. In this work, we explicitly ask participants about

whether or not their query is a reformulation in an effort to avoid

issues around automated detection of query reformulation.

Researchers [4, 34] specifically explored search sessions to learn

the usage of the web search by software engineers. They concluded

that the major intentions of web search are finding information

to 1) debug an error or an issue, 2) accomplish a specific task,

3) learn about a topic and 4) learn about a specific API element.

The researchers also suggested that code related queries are more

verbose [34]. Code related queries also lead to higher rates of refor-

mulation, longer dwell time, and fewer clicks [4, 34].

Various code search tools have been developed to facilitate devel-

opers with searching for the desired code, such as Koders, Krugle,

and Sourcegraph. Despite these efforts, Google remains the most

popular general-purpose search engine with developers [46, 48],

which is why we target it in our study.

5.2 Learning Barriers & Code Examples

Learning barriers in programming systems can arise from the en-

vironment and accompanying libraries [26]. Ko, et al. observed

that learners sometimes knew what set of interfaces could achieve

a behavior, but did not know how to use and coordinating them.

The use and coordination barriers are hard to overcome without

well-written documentation and code examples [26].

Prior studies point out that it is essential for API documentation

to provide developers, especially those who are trying to learn a

particular API, with sufficient and adequate code examples [33, 37,

43]. Parnin and Treude [33] observe that 90% of code-related blog

posts contain code examples and snippets, with a media of three

code snippets per post. McLellan, et al. [30] also summarize that

the code examples supported several different learning activities,

such as understanding the libraries, protocols, and usage context.

These studies echo our findings that 93.4% of the problems that

learners encountered were successfully solved by finding relevant

API and code implementations (43.9% & 49.5% respectively, Sec-

tion 3.3), and the most successful searches are those that consult

resources with examples, such as documentation and official/third-

party tutorials.

5.3 End-User Programming and Spreadsheets

End-user programming is defined as “programming to achieve the

result of a program primarily for personal, rather public use” [25].

Unlike professional developers who are employed to build, maintain

and test software over time, end-user developers write programs

to support goals in their own domains of expertise [12, 25, 31].

According to Scaffidi, et al., over 45 million end users reported that

they “used spreadsheets or databases” in workplaces in 2001 [40];

however, only 20% of these workers indicated that they also “do

programming.” However, 44% of spreadsheets contained formulas,

providing evidence of programming in spreadsheets [13].

Various studies have been done on spreadsheets, such as test-

ing [38], code smells in formulas [12, 17, 22] and tools for spread-

sheet formula transformation [16]. However, none study how end-

users learn to program in spreadsheets, what challenges they en-

counter during programming, and how they approach solutions.

Our work, while not specifically targeting end-users, provides some

insights challenges encountered when learning VBA automation.

6 CONCLUSION AND FUTUREWORK

We studied how graduate students search when solving program-

ming tasks in a new language. We find that subsequent program-

ming language learners search with the purposes of exploring for

example code, designing new features and understanding why code

performs as it does. Learners composed more verbose queries, and

required longer time to scan through the search result than profes-

sional developers did [39]. Consulting colleagues/friends in person

could improve the chance to solve a problem. Consulting documen-

tation and tutorials is more indicative of success in a search than

consulting Q&A sites. Queries that focus on how something works

are more likely to succeed when being composed with the structure,

“How to do... ”. Learns frequently borrowed terms from languages

with which they are familiar when searching for examples in an

unfamiliar language. The term borrowing queries were more likely

to success than the typical query on average.

For future work, a replication study with a more diverse and

larger set of subsequent programming language learners is sug-

gested to better generalize how learners search. Techniques that

can determine the relative APIs/libraries based on the context in

the queries, provide query reformulation suggestions according

to the search goals, map APIs between programming languages

and present sample code are suggested to support more program-

ming languages. Another suggestion for future work is to explore

how to detect and correct the term mismatch in queries during the

language migration.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science

Foundation under Grant No. 1645136 and Grant No. 1749936.

169

REFERENCES
[1] William R. Aue, Amy Criss, andMatthew D. Novak. 2017. Evaluating mechanisms

of proactive facilitation in cued recall. Journal of Memory and Language 94 (1 6
2017), 103–118.

[2] Gina R. Bai, Brian Clee, Nischal Shrestha, Carl Chapman, Cimone Wright, and
Kathryn T. Stolee. 2019. Exploring Tools and Strategies Used During Regular
Expression Composition Tasks. In IEEE/ACM International Conference on Program
Comprehension (ICPC 2019).

[3] Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre
Baldi, and Cristina Lopes. 2006. Sourcerer: A Search Engine for Open Source
Code Supporting Structure-based Search. In Symposium on Object-oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA ’06). 681–682.

[4] Chetan Bansal, Thomas Zimmermann, Ahmed Hassan Awadallah, and Nachiap-
pan Nagappan. 2019. The Usage of Web Search for Software Engineering. (2019).
arXiv:cs.SE/1912.09519

[5] Veronika Bauer, Jonas Eckhardt, Benedikt Hauptmann, and Manuel Klimek. 2014.
An Exploratory Study on Reuse at Google. In International Workshop on Software
Engineering Research and Industrial Practices (SER&IPs 2014). 14–23.

[6] Matt Bower and Annabelle McIver. 2011. Continual and Explicit Comparison to
Promote Proactive Facilitation During Second Computer Language Learning. In
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’11). 218–222.

[7] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. 2010.
Example-centric Programming: Integrating Web Search into the Development
Environment. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI ’10). 513–522.

[8] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.
2009. Two Studies of Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’09). 1589–1598.

[9] Chunyang Chen, Zhenchang Xing, and Yang Liu. 2019. What’s Spain’s Paris?
Mining Analogical Libraries from Q&A Discussions. Empirical Softw. Engg. 24, 3
(June 2019), 1155–1194.

[10] Tonya Custis and Khalid Al-Kofahi. 2007. A New Approach for Evaluating Query
Expansion: Query-document Term Mismatch. In Proceedings of the International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’07). 575–582.

[11] Frederico A. Durão, Taciana A. Vanderlei, Eduardo S. Almeida, and Silvio R. de
L. Meira. 2008. Applying a Semantic Layer in a Source Code Search Tool. In
Symposium on Applied Computing (SAC ’08). 1151–1157.

[12] F. Hermans and B. Jansen and S. Roy and E. Aivaloglou and A. Swidan and D.
Hoepelman. 2016. Spreadsheets are Code: An Overview of Software Engineering
Approaches Applied to Spreadsheets. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), Vol. 5. 56–65.

[13] Marc Fisher and Gregg Rothermel. 2005. The EUSES Spreadsheet Corpus: A
Shared Resource for Supporting Experimentationwith Spreadsheet Dependability
Mechanisms. InWorkshop on End-user Software Engineering (WEUSE I). 1–5.

[14] Steve Fox, Kuldeep Karnawat, Mark Mydland, Susan Dumais, and Thomas White
. 2005. Evaluating Implicit Measures to Improve Web Search. In ACM:TOIS
(acm:tois ed.), Vol. 23. 147–168.

[15] Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia,
and Tim Menzies. 2013. Automatic query reformulations for text retrieval in soft-
ware engineering. In 2013 35th International Conference on Software Engineering
(ICSE). IEEE, 842–851.

[16] Felienne Hermans and Danny Dig. 2014. BumbleBee: A Refactoring Environment
for Spreadsheet Formulas. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2014). 747–750.

[17] F. Hermans, M. Pinzger, and A. van Deursen. 2012. Detecting code smells in
spreadsheet formulas. In 2012 28th IEEE International Conference on Software
Maintenance (ICSM). 409–418.

[18] Reid Holmes and Gail C. Murphy. 2005. Using Structural Context to Recommend
Source Code Examples. In Proceedings of the International Conference on Software
Engineering (ICSE ’05). 117–125.

[19] J. Holvitie, T. Rajala, R. Haavisto, E. Kaila, M. Laakso, and T. Salakoski. 2012.
Breaking the Programming Language Barrier: Using Program Visualizations to
Transfer Programming Knowledge in One Programming Language to Another.
In 2012 IEEE 12th International Conference on Advanced Learning Technologies.
116–120.

[20] Jeff Huang and Efthimis N. Efthimiadis. 2009. Analyzing and Evaluating Query
Reformulation Strategies in Web Search Logs. In Proceedings of the ACM Confer-
ence on Information and Knowledge Management (CIKM ’09). 77–86.

[21] M. Hucka and M.J. Graham. 2018. Software search is not a science, even among
scientists: A survey of how scientists and engineers find software. Journal of
Systems and Software 141 (2018), 171 – 191.

[22] B. Jansen and F. Hermans. 2015. Code smells in spreadsheet formulas revis-
ited on an industrial dataset. In 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 372–380.

[23] Bernard J. Jansen, Amanda Spink, Chris Blakely, and Sherry Koshman. 2007.
Defining a Session on Web Search Engines: Research Articles. J. Am. Soc. Inf. Sci.
Technol. 58, 6 (April 2007), 862–871.

[24] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, Filip Radlinski,
and Geri Gay. 2007. Evaluating the Accuracy of Implicit Feedback from Clicks
and Query Reformulations in Web Search. ACM Trans. Inf. Syst. 25, 2, Article 7
(April 2007).

[25] Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck. 2011.
The State of the Art in End-user Software Engineering. ACM Comput. Surv. 43, 3,
Article 21 (April 2011), 44 pages.

[26] Amy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six Learning Barriers
in End-User Programming Systems. In Proceedings of the 2004 IEEE Symposium
on Visual Languages - Human Centric Computing (VLHCC ’04). IEEE Computer
Society, Washington, DC, USA, 199–206.

[27] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant Infor-
mation During Software Maintenance Tasks. IEEE Trans. Softw. Eng. 32, 12 (Dec.
2006), 971–987.

[28] Otávio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, and Joel Ossher.
2007. CodeGenie: A Tool for Test-driven Source Code Search. In Companion
to the ACM SIGPLAN Conference on Object-oriented Programming Systems and
Applications Companion (OOPSLA ’07). 917–918.

[29] Philip Mayer and Alexander Bauer. 2015. An Empirical Analysis of the Utilization
of Multiple Programming Languages in Open Source Projects. In Proceedings
of the 19th International Conference on Evaluation and Assessment in Software
Engineering (EASE ’15). ACM, New York, NY, USA, Article 4, 10 pages.

[30] S. G. McLellan, A. W. Roesler, J. T. Tempest, and C. I. Spinuzzi. 1998. Building
More Usable APIs. IEEE Software 15, 3 (May 1998), 78–86.

[31] Bonnie A. Nardi. 1993. A Small Matter of Programming: Perspectives on End User
Computing. MIT Press, Cambridge, MA, USA.

[32] H.James Nelson, Gretchen Irwin, and David E. Monarchi. 1997. Journeys up the
mountain: Different paths to learning object-oriented programming. Accounting,
Management and Information Technologies 7, 2 (1997), 53 – 85.

[33] Chris Parnin and Christoph Treude. 2011. Measuring API Documentation on the
Web. In Proceedings of the 2Nd International Workshop on Web 2.0 for Software
Engineering (Web2SE ’11). ACM, New York, NY, USA, 25–30.

[34] Md Masudur Rahman, Jed Barson, Sydney Paul, Joshua Kayan, Federico Andres
Lois, Sebastian Fernandez Quezada, Christopher Parnin, Kathryn T. Stolee, and
Baishakhi Ray. 2018. Evaluating how developers use general-purpose web-search
for code retrieval. In Proceedings of the 15th International Conference on Mining
Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018. 465–475.

[35] Mohammad M. Rahman, Chanchal K. Roy, and David Lo. 2016. RACK: Automatic
API Recommendation Using Crowdsourced Knowledge. In 2016 IEEE 23rd Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER),
Vol. 1. 349–359.

[36] Mohammad M. Rahman, Chanchal K. Roy, and David Lo. 2019. Automatic query
reformulation for code search using crowdsourced knowledge. Empirical Software
Engineering (21 Jan 2019).

[37] M. P. Robillard. 2009. What Makes APIs Hard to Learn? Answers fromDevelopers.
IEEE Software 26, 6 (Nov 2009), 27–34.

[38] S. Roy, F. Hermans, and A. van Deursen. 2017. Spreadsheet testing in practice.
In 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 338–348.

[39] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. HowDevelopers
Search for Code: A Case Study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015). 191–201.

[40] Christopher Scaffidi, Mary Shaw, and Brad Myers. 2005. Estimating the Numbers
of End Users and End User Programmers. In Symposium on Visual Languages and
Human-Centric Computing (VLHCC ’05). IEEE Computer Society, Washington,
DC, USA, 207–214.

[41] Jean Scholtz and Susan Wiedenbeck. 1990. Learning second and subsequent
programming languages: A problem of transfer. International Journal of Human-
Computer Interaction 2, 1 (1990), 51–72.

[42] Nischal Shrestha, Titus Barik, and Chris Parnin. 2018. It’s Like Python But:
Towards Supporting Transfer of Programming Language Knowledge. In 2018
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 177–185.

[43] Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. 2020. Here We Go
Again: Why Is It Difficult for Developers to Learn Another Programming Lan-
guage?. In 2020 IEEE/ACM 42nd International Conference on Software Engineering.
To appear.

[44] Susan Elliott Sim, Megha Agarwala, and Medha Umarji. 2013. A Controlled
Experiment on the Process Used by Developers During Internet-Scale Code Search.
New York, NY, 53–77.

[45] S. E. Sim, C. L. A. Clarke, and R. C. Holt. 1998. Archetypal source code searches: a
survey of software developers and maintainers. In Program Comprehension, 1998.

170

IWPC ’98. Proceedings., 6th International Workshop on. 180–187.
[46] Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V. Lopes.

2011. How Well Do Search Engines Support Code Retrieval on the Web? ACM
Trans. Softw. Eng. Methodol. 21, 1, Article 4 (Dec. 2011), 25 pages.

[47] Singer, Janice and Lethbridge, Timothy and Vinson, Norman and Anquetil, Nico-
las. 1997. An Examination of Software EngineeringWork Practices. In Proceedings
of the 1997 Conference of the Centre for Advanced Studies on Collaborative Research
(CASCON ’97). IBM Press, 21–36.

[48] Kathryn T. Stolee, Sebastian Elbaum, and Daniel Dobos. 2014. Solving the Search
for Source Code. ACM Trans. Softw. Eng. Methodol. 23, 3, Article 26 (June 2014),
45 pages.

[49] Jeffrey Stylos and Brad Myers. 2006. Mica: A Web-Search Tool for Finding API
Components and Examples. 195–202.

[50] Neeraja Subrahmaniyan, Laura Beckwith, Valentina Grigoreanu, Margaret Bur-
nett, Susan Wiedenbeck, Vaishnavi Narayanan, Karin Bucht, Russell Drummond,
and Xiaoli Fern. 2008. Testing vs. Code Inspection vs. What Else? Male and
Female End Users’ Debugging Strategies. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI’08). Association for Computing
Machinery, New York, NY, USA, 617–626.

[51] Federico Tomassetti and Marco Torchiano. 2014. An Empirical Assessment of
Polyglot-ism in GitHub. In Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering (EASE ’14). Article 17, 4 pages.

[52] Meng-Jung Tsai, Jyh-Chong Liang, Huei-Tse Hou, and Chin-Chung Tsai. 2012.
University students’ online information searching strategies in different search
contexts. Australasian Journal of Educational Technology 28, 5 (Jul. 2012).

[53] Medha Umarji, Susan Sim, and Crista Lopes. 2008. Archetypal Internet-Scale
Source Code Searching. International Federation for Information Processing Digital
Library; Open Source Development, Communities and Quality; 7, 257–263.

[54] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and
Zhenchang Xing. 2017. What Do Developers Search for on the Web? Empirical
Softw. Engg. 22, 6 (Dec. 2017), 3149–3185.

[55] Jun Xu, Wei Wu, Hang Li, and Gu Xu. 2011. A Kernel Approach to Addressing
Term Mismatch. In Proceedings of the International Conference Companion on
World Wide Web (WWW ’11). 153–154.

[56] Hongyu Zhang, Anuj Jain, Gaurav Khandelwal, Chandrashekhar Kaushik, Scott
Ge, and Wenxiang Hu. 2016. Bing Developer Assistant: Improving Developer
Productivity by Recommending Sample Code. In Proceedings of the International
Symposium on Foundations of Software Engineering (FSE 2016). 956–961.

[57] Xiangmin Zhang, H.G.B. Anghelescu, and Xiao-Jun Yuan. 2005. Domain knowl-
edge, search behaviour, and search effectiveness of engineering and science
students: An exploratory study. Information Research 10 (01 2005).

[58] Le Zhao and Jamie Callan. 2012. Automatic Term Mismatch Diagnosis for Selec-
tive Query Expansion. In Proceedings of the International Conference on Research
and Development in Information Retrieval (SIGIR ’12). 515–524.

171

