2020 IEEE/ACM 28th International Conference on Program Comprehension (ICPC)

How Graduate Computing Students Search When Using an
Unfamiliar Programming Language

Gina R. Bai
North Carolina State University
Raleigh, NC, USA
rbai2@ncsu.edu

ABSTRACT

Developers and computing students are usually expected to master
multiple programming languages. To learn a new language, de-
velopers often turn to online search to find information and code
examples. However, insights on how learners perform code search
when working with an unfamiliar language are lacking. Under-
standing how learners search and the challenges they encounter
when using an unfamiliar language can motivate future tools and
techniques to better support subsequent language learners.

Research on code search behavior typically involves monitoring
developers during search activities through logs or in situ surveys.
We conducted a study on how computing students search for code
in an unfamiliar programming language with 18 graduate students
working on VBA tasks in a lab environment. Our surveys explic-
itly asked about search success and query reformulation to gather
reliable data on those metrics. By analyzing the combination of
search logs and survey responses, we found that students typically
search to explore APIs or find example code. Approximately 50% of
queries that precede clicks on documentation or tutorials success-
fully solved the problem. Students frequently borrowed terms from
languages with which they are familiar when searching for exam-
ples in an unfamiliar language, but term borrowing did not impede
search success. Edit distances between reformulated queries and
non-reformulated queries were nearly the same. These results have
implications for code search research, especially on reformulation,
and for research on supporting programmers when learning a new
language.

CCS CONCEPTS

« Social and professional topics — Computer science edu-
cation; « Software and its engineering — General program-
ming languages; - Information systems — Information ex-
traction.

KEYWORDS

Code search, Learning new programming languages, VBA

*“This author performed the work while a student at North Carolina State University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC °20, October 5-6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7958-8/20/05. .. $15.00
https://doi.org/10.1145/3387904.3389274

Joshua Kayani*

North Carolina State University
Raleigh, NC, USA
jkayani@ncsu.edu

160

Kathryn T. Stolee
North Carolina State University
Raleigh, NC, USA
ktstolee@ncsu.edu

ACM Reference Format:

Gina R. Bai, Joshua Kayani, and Kathryn T. Stolee. 2020. How Graduate
Computing Students Search When Using an Unfamiliar Programming Lan-
guage. In 28th International Conference on Program Comprehension (ICPC
"20), October 5-6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3387904.3389274

1 INTRODUCTION

Software is often written using multiple programming languages [29,
51], which expects the developers to master multiple programming
languages. Recent research has shown that knowledge of one lan-
guage can interfere with learning a new language [41, 43]. When
learning a new language, developers use an opportunistic learning
strategy, relating concepts in a new language to their previous lan-
guages [43]. As the terminology between languages often differs
drastically, this makes code search especially difficult.

Yet, developers frequently turning to code search to find code
examples to learn from [39] and improve their productivity during
development activities [5, 39, 53]. Studies on code search in software
engineering (7, 8, 34, 45, 46, 48] seek to understand how and why
developers search when performing their daily work [21, 27, 39, 54],
introduce new code search tools or propose potential improvement
of existing code search tools [3, 7, 28, 56], and suggest effective
code search strategies [11, 18]. The code search studies are most
often performed in the wild, so to observe developers during their
normal activity.

As prior work has observed difficulties when developers search
for concepts in a new language [43], we have reason to believe
that code search for subsequent language learners is different than
code search during normal development activities. Consider the
following scenario:

A Computer Science student gets an internship at a bank.
Their team manager is happy that they have several years
of programming experience, and expects them to program
with Visual Basic for Applications (VBA) and create macros in
spreadsheets. However, the student has never been taught VBA at
school, and now they have to learn this new language on their own.

The intern gets their first task, and decides to search online for
how to perform it in VBA, but the keywords are specific to the
language they know, such as “dictionary” from Java paired with
their new context, VBA. This leads to results that are either in VBA
but with information not relevant to the task at hand, or results
in Java that are relevant, but in the wrong language. The intern
wonders, “is there any way to improve the search success? What
online sources should be consulted?”

In this scenario, the intern cannot find the resources they want
due to mismatched terminology between the language they know,
Java, and the language they need, VBA. This common situation is
observed in prior research [42]; in this exploratory work on code
search, we target students learning a new language.

Understanding and addressing the challenges learners encounter
during search could lead to better search experiences for learners,
especially students, who have less experience than the professional
developers with learning a subsequent language. Therefore, we
design a study that involves tasks in a language unfamiliar to the
participants and recruit graduate students in Computer Science as
participants.

Our methodology involves logging search and browser activities
and periodically surveying participants about their current tasks,
similar to prior work [39]. However, unlike prior work, we specifi-
cally explore the factors that lead to search success (RQ3), which
is determined by explicitly asking participants if a search was suc-
cessful. Prior human studies with code search do not indicate what
factors lead to successful searches, in large part because obtaining
evidence of search success is tricky. Relying on result clicks [14] is
incomplete as often the answer appears in the preview accompany-
ing a search result. Relying on evidence of query reformulation can
reliably find failed searches [20, 24], but not successful ones. We
address this shortcoming using in situ surveys that specifically ask
about search success.

Given the similarity in methodology, where appropriate, paral-
lels are drawn between the learners in our study and professional
developers from a similar study at Google [39]. While the contexts
of the studies varied widely (i.e., normal developer workflow [39]
with Google Developers vs. a lab study with students working with
an unfamiliar language), similarities and differences shed light on
how we may be able to train subsequent language learners to use
search better in their workflow, or build a better search tool to fa-
cilitate more successful searches. We summarize our contributions
as follows:

e insights on the factors that make a query successful,

e better understanding of the code search behaviors of subse-
quent language learners, and the similarities and differences
of search behaviors between learners and professionals, and

e suggestions on improving the success of searches when learn-
ers are working with an unfamiliar language.

To our knowledge, we are the first to study how subsequent lan-
guage learners [6, 19, 32, 41] perform code search, and our results
have implications for how to better support them. Our main find-
ings and suggestions include:

o Successful searches use natural language phrases, such as
“if statement,” instead of coding shortcuts, such as “if”.
Successful searches more often consult official documenta-
tion and tutorials with example code rather than Q&A sites.
Reformulations occur much more quickly after a previous
query than searching for a new topic. The Levenshtein dis-
tance between successive queries alone may not indicate a
reformulation.

As term borrowing was commonly observed in search queries,
an “API translator” that can map APIs across languages
would assist subsequent programming language learners.

161

o Since learners often search to explore language syntax, APIs/li-
braries, and example code, we encourage CS educators to
include short sample code when presenting or requiring use
of new APIs/libraries.

This paper describes the context and methods we used to collect
the surveys and logs for this study in Section 2. Section 3 presents
the detailed study results. Implications of the findings are suggested
in Section 4.2 and the potential threats to validity are discussed in
section 4.4. Finally, Section 6 presents some concluding remarks
and suggests modifications on future work.

2 STUDY

We frame this study around the following three research questions:

RQ1: Why do subsequent language learners search?

RQ2: What does a typical search session entail for a subsequent
language learner?

RQ3: What are the factors that impact the success of search
queries for subsequent language learners?

2.1 Study Design

Using a combination of surveys and logs, Sadowski, et al. [39] ex-
plored the search behavior of Google developers; it is from this
study that we derive our methodology. Table 1 summarizes the sim-
ilarities and differences of the context and collected data between
the previous study and this study. To target subsequent language
learners, we run our study in a lab environment with graduate
students. Participants were given tasks in the unfamiliar languages.
Due to the experimental context, we were able to collect more
survey responses per query as compared to the previous study,
providing a higher density of auxiliary information per query.

One of the shortcomings of the original study is that there was
no notion of search success in the logs or the queries. That is, it
was not clear from the data when a search session was successful
or unsuccessful. To address that shortcoming, in this study, we ask
explicitly about search success in two surveys, one deployed when a
tab is closed (Figure 4) and another deployed when it is suspected a
query is reformulated (Figure 3). Another shortcoming is the use of
edit distance to detect reformulation, which may not represent ac-
tual reformulation; we address this by asking participants whether
their current query is intended to solve the same problem as the
previous query in a reformulation survey (Figure 3).

2.2 VBA Programming Tasks

We chose Visual Basic for Applications (VBA) because it is a popular
programming language with many online resources [4, 13], but it is
not commonly used by the graduate students in Computer Science
at North Carolina State University (NCSU, our participant popula-
tion). Each task includes a general learning goal (e.g., conditions
and loops, string manipulation), a task description with require-
ments, and a sample output/result for the task. The five tasks! are
summarized as follows:

Task 1 provides participants a list of numbers in a column,
and asks participants to record a macro and create a button
that returns the average value of the numbers in this column

! Artifacts are available at: https://github.com/ginaBai/CodeSearch_VBA

Table 1: Summary on Study Designs of the Original Study [39] and this Study

The Original Study

|

[This Study ‘

l Duration

15 consecutive days (4 weekends and 11 weekdays)

90-minute lab session ‘

Participants 27 Google developers

18 NCSU graduate students

Survey Setting
Survey Responses
Survey Collection

394 responses

accessed the internal code search site

Compensation None Drawing to win a $30 Amazon gift card
l Context [Daily work [5 VBA tasks ‘
Survey Types 1 survey, 4 questions 4 surveys, 2-6 questions each (Section 2.3.3)

10 surveys per day, 10-minute time interval

Browser extension, surveys triggered when developers

10 surveys per hour, 1-minute time interval
216 responses

Browser extension, survey triggered under
four conditions (Section 2.3.3)

Total Log Entries
Total Queries

77,632 entries
3,870 queries

3,508 entries
229 queries

when the button is clicked. This task can be completed with
or without VBA code.

Task 2 requires participants to create a button that creates a
message box with "Hello World!" on it once clicked.

Task 3 provides participants a list of scores in a column called
Grade, ranging from 43 to 100, and ask participants to create
a button that populates a column called P/F with P or F for
Pass or Fail, respectively, depending on Grade: P is for a score
that is greater than or equal to 60 in column Grade, and F
otherwise.

Task 4 provides participants an unsorted inventory list of unique
labels in a column called Item with their prices listed in a
column called Price. Their goal is, given a separate target list
of labels, to create a button that populates a column Price for
the items in the target list based on the inventory list. The
Excel built-in function VLOOKUP is not allowed in this task.

Task 5 provides participants a list of phone numbers in the
format of (XXX)XXX-XXXX, and asks participants to create a
button that populates a column called Area Code with unique
area codes and their associated counts in a column called
Count.

Participants were instructed to complete the tasks in order.

2.3 Data Collection

We developed a Google Chrome extension? that records search
events and browsing history and deploys surveys. To capture the
questions the participants are trying to solve, we prompt users with
short surveys periodically. In this way, we are able to combine the
survey responses with logs analysis.

2.3.1 Tool Implementation. The implementation consists of two
parts: a client-side Google Chrome browser extension for logging
data and a Flask web server for storing data. On the client side,
the browser extension does the following: 1) initialize browser
local storage that holds the log information, including issuing a
unique 10-digit ID number to each participant, 2) track Google
searches, 3) track link clicks on all pages, 4) detect possible query
reformulations via word-level Levenshtein distance (if distance >

2Chrome web store: https://chrome.google.com/webstore/detail/chrome- code- search/
ljdehfmdnkelbnpogdeobpaldeibecek

162

two words [23]), 5) format and deploy the surveys, and 6) send all
collected logs to our server for storage. All collected data are stored
in a password-secured SQLite database on an encrypted server.

2.3.2 Procedure. The study was conducted in a lab setting over two
sessions, 90 minutes each. Participants attended one lab session
only. Participants were instructed to install the Google Chrome
extension on their personal laptops and keep the extension enabled
during the lab session.

2.3.3 Surveys. To avoid over-taxing the participants, a maximum
of 10 surveys per hour were deployed with a one-minute minimal
interval between surveys. A survey is triggered when a participant
performs one of the following four actions:

(1) Finishes installing the extension
Preliminary Survey (Figure 1). We collect participants’ tech-
nical background such as programming experience, their
intentions of code search, and demographic information.
(2) Makes a search
Context Survey (Figure 2). We ask participants about the
activities they are doing, and the specific question they are
solving. Questions Q2, Q3, and Q5 are from prior work [39].
In addition, we ask what approach(es) they’ve adopted to
solve the tasks.
Reformulates a query
Query Reformulation Survey (Figure 3). A query is identified
as a potential reformulation if its word-level Levenshtein
distance from the prior query is greater than or equal to
two. This survey verifies the reformulation by asking in the
current query is related to the previous one. It also asks if
the prior query solved the problem. If so, how did it help; if
not, what information is missing.
Closes the search tab
Search Tab Closed Survey (Figure 4). This survey asks if the
prior query solved the problem. If so, how did it help; if not,
what information is missing.

“

=

A survey will not be triggered by any event if the prior survey is
deployed within a minute or the number of deployed surveys has
reached the hourly limit.

We asked participants to complete the survey every time it is
deployed, although completion is not forced.

Q1: How would you rate your overall programming experience?
A. Novice B. Intermediate C. Expert

Q2: What languages do you work with most frequently?
OJava O0C OC++ OPython O0C# oOPHP 0O JavaScript
O Visual Basic .Net 0O Perl O Assembly 0 Ruby 0O Delphi

O Object Pascal O Swift O Objective C 0 MatLab OR
0PL/SQL 0 COBOL 0O Groovy 0O Other:

Q3: In what contexts or for what purpose(s) do you search for
codes via websites during software development activities?
Short Answer:

Q4: When solving a programming/development/technical
problem, how often do you: (rank the following from most
often to least often with number 1, 2, and 3)

Ask a colleague/friend Al B.2 C.3
Web or online search Al B.2 C.3
IDE search/exploration Al B.2 C.3
Other:

Q5: What’s your occupation?

A. Undergraduate Student B. Graduate Student
C. Student with working experience in the industry
F. Other:

Q6: How would you identify your gender?
A. Female B. Male C. Non-binary D. Prefer not to disclose

Q1: When you searched, [Previous Query], did you solve the
problem?
A. Yes (jump to Q2_y) B. No (jump to Q2_n)

Q2_y: What solved it?

0 Found a needed API (how to modify CSS with jQuery)

0 Found a needed implementation (bubble sort implementation in Java)
0O Asked a colleague in person 0 Asked a colleague online/email

O Other method:

Q2_n: Is your search, [Current Query], related to the problem?

A. Yes (jump to Q3) B. No

Q3: What do you need to solve the earlier query?

Figure 3: Query Reformulation Survey

Q1: When you searched, [Current Query], did you solve the
problem?
A. Yes (jump to Q2_y) B. No (jump to Q2_n)

Q2_y: What solved it?

O Found a needed API (how to modify CSS with jQuery)

O Found a needed implementation (bubble sort implementation in Java)
O Asked a colleague in person O Asked a colleague online/email
0O Other method:

Q2_n: Why?

A. Need more related information B. Need to reformulate the query
C. Other:

Figure 1: Preliminary Survey

Q1. What languages is your search related to? (separate each
language with a newline [hitting the enterkey])
Q2: What are you doing?

A. Exploring (Looking into a certain programming language, etc.)

B. Debugging code (Why does ABC return null?, How to use XYZ
debugger?, etc.)

C. Designing/Developing a feature D. Maintaining old code

E. Other:

Q3: How familiar are you with the code you’re looking for?
A. Very Familiar (e.g., 've written something similar in the past)
B. Somewhat Familiar (e.g., 've seen something like it before)

C. Not familiar (e.g., this is entirely new to me)

Q4: What else have you tried to answer this question?
O Searched local codebase

O Consulting a friend/colleague in person

O Consulting a friend/colleague via email, IM, etc.

O Consulted a book/textbook

Q5: What question are you trying to answer?
Q6: What type of code are you working on?

A. Backend (database, cloud storage, etc.) B. Front-end GUI
C. Middleware D. Other:

Figure 2: Context Survey

2.34 Log Data. Alog entry is created when a participant performs
one of the following trigger events: searches, closes a tab, clicks a

Figure 4: Search Tab Closed Survey

link, switches tabs, or switches to another application. The logged
information includes:

e UserID: A unique number that distinguishes participants.

o Time: Time of this activity.

e Type: Types of browser activities, including: closed the tab,
clicked a link, deployed survey, received survey responses.

o URL: The url of the website the participant clicked.

o TabID: Browser-assigned ID for each tab to track the tab

activities.

Query: String from an online search query.

2.4 Participants

We invited students enrolled in a graduate software engineering
course at North Carolina State University via email to participate
in the study (response rate: 42.6%). A short introduction to this
study, including the purpose thereof, and the tool (Google Chrome
extension) used in the study, was made available to all potential
participants. As compensation, participants who have the exten-
sion enabled and recording for at least 45 minutes were eligible
to enter into a drawing to win a $30 Amazon gift card. In total 23
students completed the initial surveys. After discarding data from
five participants whose interactions were recorded for less than ten
minutes, we were left with data from the remaining 18 participants
for analysis (average: 78.5 minutes, median: 84 minutes), which
includes four female students and fourteen male students.

The 18 participants self-reported their expertise in general pro-
gramming skills: one as a novice developer, five as experts, and
twelve as intermediates. Two participants claimed to have prior

working experience in the industry. All participants often search
on websites for code, and the majority of participants sometimes
or often ask friends for help (16/18) or search on IDEs (16/18). Par-
ticipants came from a diverse programming language background,
including object-oriented programming languages and scripting
languages, but not VBA. The top five frequent programming lan-
guages used by the participants were: Java, JavaScript, C++, C, and
Python.

2.5 Analysis

We grouped the logs by participants’ IDs and sorted them by log
time. Surveys were tabulated and associated with browser events
for analysis. Logs were analyzed to collect 1) search queries, 2)
ordered list of clicked website URLs associated to each query, and
3) time spent by a participant on a clicked result page.

The logs were split into search sessions. Due to our study con-
text, adopting the definition of a search session from the study
on Google developers [39] was problematic. When considering a
search session as a series of developer activities separated by 6-
minutes of inactivity, each participant in our study had exactly one
search session. Thus, we treat each search query and its associating
result clicks as one search session (referred to as “micro-session” in
prior work [39]).

Our reformulation surveys were deployed when the Levenshtein
distance was two or greater, in line with prior work [23, 34]. If
participants answer yes to Q1 (Figure 3), this indicates that the
current query is not a reformulation and begins a new topic. If the
participant answers no to Q1 and yes to Q2_n, this means that the
previous query did not solve the question and the current query
is related to the same problem, and thus the current query is a
reformulation. If a participant answers no to Q1 and no to Q2_n,
we assume that the problem is the same but the participant is
trying a new approach, and thus the query is not a reformulation.
While prior work makes assumptions about reformulation based
on topic analysis or query distances, these survey responses serve
as a ground truth for reformulation analysis. While we do not have
enough data to build a classifier to predict reformulation, we can
analyze the context around known reformulations versus known
non-reformulations.

2.6 Data Summary

The 18 participants generated 3,508 log entries, including 216 survey
responses and 229 queries during the lab sessions. Each participant
made an average of 12.7 queries (median: 13 queries), each query
led to an average of three search result clicks (median: two clicks),
and the average time interval between each query was 5.8 minutes
(median: 4.3 minutes).

As to the surveys, 216 of 389 deployed surveys were completed
and collected, including 18 Preliminary Surveys (response rate:
100.0%), 35 Context Surveys (response rate: 39.3%), 138 Query Refor-
mulation Surveys (response rate: 54.5%) and 25 Search Tab Closed
Surveys (response rate: 86.2%).

3 RESULTS

In this section, we present the results for each research question in
turn.

164

Table 2: Answers to 18 Preliminary Survey Question "In
what contexts or for what purpose(s) do you search for codes
via website during software development activities" (Cate-
gory - Multiple Answers are Allowed)

Category #par (%)
Look for Example Code (How)

Library / Class / API 9 (50.0%)
Method / Function / Operation 7 (38.9%)
Syntax 9 (50.0%)
Solution 4 (22.2%)
Explore Code (What)

Concept 3(16.7%)
Determine Reasons (Why)

Debug 7 (38.9%)

Table 3: Answers to 35 Context Survey Question “What are
you doing?” (Goal - Multiple Choice) and Question “What are
you trying to answer?” (Example - Short Answer)

Goal Example Num
“How to enable developer tools in Excel”

Exploring “How to do lookup in excel” 19
“How to print in VBA”
“Basic steps to record an excel macro”

Designing “Using and iterating hashtable in VBA” 8
“Find unique values in a column”
“Loop over a column excel vba”

Debugging “Create dictionary in excel vba” 6
“Found an implementation but was getting error”

Other “enabling a feature in Microsoft Excel” 2

3.1 RQ1: Why do subsequent language learners
search?

Learners most frequently searched for example code and poten-
tial ways to resolve bugs or errors in their programs.

We analyzed the self-reported purposes of why participants
search during programming. In 18 Preliminary Surveys, the most
frequently reported goals were to find specific syntax, libraries/-
classes/APIs, implementations or sample usage of methods/func-
tions/operations during development. Table 2 shows three main
reasons why participants search (Category), where the categories
were adopted from the prior work of Sadowski, et al [39], and the
number of participants who stated these reasons and its percentage
out of 18 (#par (%)). For example, nine participants claimed that they
usually search for correct syntax during software development; an
example query made by a participant is, “vba if statement”.

We then explored the questions participants were trying to solve
as collected in 35 Context Surveys (See Table 3). Participants were
asked to categorize their motivation into exploring, designing or
debugging (Goal), and then answer the open-ended question, “What
question are you trying to answer?” with a brief description of
current search activity; example queries can be found in column
Example. For example, 19 queries were made to explore how to
perform an action in Excel or with VBA with queries such as “How
to enable developer tools in Excel’.

Table 4: Search Sessions and Corresponding Purpose of Search Reported in Context Surveys

Search Session Description #Session Purpose of Search #Purpose
Exploring 4 (11.4%)
S 1 Search Query + 0 Result Click 34 (14.8%) Designing 3(8.6%)
Debugging 2(5.7%)
Exploring 6(17.1%)
SC 1 Search Query + 1 Result Click 68 (29.7%) Designing 1(2.9%)
Debugging 1(2.9%)
Exploring 11 (31.4%)
SCC+ 1 Search Query + 2 or more Result Clicks 127 (55.5%) Designing 4(11.4%)
Debugging 3 (8.6%)
Total 229 (100.0%) 35 (100.0%)

Participants explored code (Table 3) and searched for example
code (Table 2) frequently. They also searched for assisting debug-
ging, which matches their self-reported purposes for searching were
example codes, including APIs, syntax and existing solutions, and
determine reasons why code did not work correctly (Table 2). This
observation also matches the search goals of professional develop-
ers reported in the prior work [39]. While only 10% of professionals’
queries tried to determine why something is failing, 17% of students’
queries recorded in Context Surveys focused on debugging.

3.2 RQ2: What does a typical search session
entail?

Each query was followed by three result clicks on average. An
average participant spent about five minutes before reformu-
lating a query. Learners generated more verbose queries than
professionals did (5.6 words vs. 1.9 words) and required longer
time to scan the search results.

We identified three typical search sessions (Search Sessions), as
shown in Table 4. The column Description introduces the session
formats, and the column #Session introduces the frequency and their
percentage among all search sessions. We adopted a truncated regex-
like syntax for the sessions: where S is a search query and Cis a
result click. For example, SCC+ means one search query followed by
two or more result clicks. We also investigated the Context Surveys
within each session. The majority of SCC+ patterned search sessions
were exploring new content/topics (11 in #Purpose). Even when a
search is not followed by a click, as in the S pattern, exploring is
the dominant purpose of the search, representing 44.4% (4/9) of the
S sessions with surveys. This could happen when the previews on
the search results contain enough information for participants to
find what they need.

As for search query length considering all 229 queries, an av-
erage query contains 5.6 words, with a median of five words and
a maximum of 17. These numbers are higher than the numbers
reported in prior work, which were 4.2 words per query [44] and
1.9 words per query [39]. The increment in words may be caused by
participants’ unfamiliarity with the programming language used in
the study, or from the fact that they were using general web search
like [4] and [34], which also report long code-related query lengths.

Focusing in on reformulations, we examine the queries that
trigger a reformulation survey. The query that triggers the survey

165

is the current query and the one before it is the previous query. Of the
138 queries that triggered a reformulation survey, 48 (34.8%) were
reformulations (answering no to Q1 and yes to Q2_n in Figure 3)
while 90 (65.2%) were not (answering either yes to Q1 (86 surveys)
or no to Q1 and no to Q2_n (4 surveys) in Figure 3).

When the current query is a reformulation, this occurs after an
average of 3.0 (median = 2.0) result clicks; current queries that are
not reformulations occur after 3.0 result clicks (median = 1.5). Based
on the medians, this shows a slight uptick in clicks preceding a
reformulation. The average time between a previous and current
query is 4.7 minutes (median = 3.2) for a reformulation and 8.3
minutes (median = 6.0) for a non-reformulation. This indicates that
reformulations occur much more quickly after a previous query
and that less time is spent on each result click. However, a typical
professional developers needed only eight seconds to reformulate
a query [39]. This difference is possibly due to our participants’
unfamiliarity with VBA, with the professionals’ strong familiarity
with their context, or with differences in how reformulations were
computed in this analysis.?

Considering query length, when a query is reformulated, the
length of the query is sometimes modified substantially (e.g., remov-
ing 12 words or adding seven words), and sometimes modified very
little (e.g., changing one word, adding a word). The Levenshtein dis-
tance between a reformulated query and the previous query is 5.3
(median = 4.5) and the average distance between non-reformulated
queries is similar, 5.3 (median = 5.0). These data provide preliminary
evidence that basing reformulation on query distance metrics alone
may not yield accurate results.

3.3 RQ3: What are the factors that impact the
success of search queries?

When looking for APIs or implementations, 71 of 107 (66.4%)
searches were successful. In addition, consulting documenta-
tion and tutorials led to more successful searches than Q&A
sites (e.g., StackOverflow). Learners frequently borrowed terms
from languages with which they are familiar when composing
queries, these queries were more successful on average than the
typical query.

3Prior work [39] used a word-level Levenshtein distance of at most one to identify
reformulation.

Table 5: 107 Successful Queries and Corresponding Reasons
for Success (86 from Reformulation Survey & 25 from Search
Tab Closed Survey)

Problem were solved by... #Queries
Finding relevant API 47 (43.9%)
Finding relevant implementation 53 (49.5%)
Consulting others in person 4 (3.7%)
Other 3(2.8%)
Total 107 (100.0%)

Table 6: Online Sources & Success

Online Sources #Succ #Fail Total

Q&A sites only 19 (11.7%) 9 (5.5%) 28 (17.2%)
D&T sites only 54 (33.1%) 14 (8.6%) 68 (41.7%)
Both Q&A and D&T 25 (15.3%) 20 (12.3%) 45 (27.6%)
None 9 (5.5%) 13 (8.0%) 22 (13.5%)
Total 107 (65.6%) 56 (34.4%) 163 (100.0%)

We consider a search query to be successful when a participant
selects option Yes to the question “When you searched, [Previous/Cur-
rent Query], did you solve the problem?” in either the Query Reformu-
lation Survey or the Search Tab Closed Survey. In total, we collected
138 Query Reformulation Surveys (86 successful & 52 unsuccessful)
and 25 Search Tab Closed Surveys (21 successful & 4 unsuccessful).

Among 107 surveys associated with the successful searches
(Table 5), 47 surveys reported that problems were solved by a
search result that contained a relevant API, 53 surveys reported that
problems were solved by finding relevant implementations, four
searches were concluded when the participant consulted others in
person, and two problems were resolved by the participants them-
selves, while one did not provide detailed information as to why the
search was successful. Among 56 surveys associated with unsuc-
cessful searches, only six responses on the reasons of unsuccessful
queries were submitted; the other 50 did not provide a reason for
failure. Of the six, three stated that more information is needed,
two stated that the query reformulation is needed, and one stated
that specific functions or API is missing from the search results,
which prevented this search from solving the problem.

We looked into online information sources consulted by partici-
pants and manually classified the sources into two categories: 1)
Q&A sites (e.g., Stack Overflow, forums), 2) official documentation
and official/third-party tutorials sites (D&T sites), similar to prior
work [2, 8]. Table 6 shows the type and the number of clicked search
results from each query. Table 6 lists the categories (Online Sources),
their associated successful or unsuccessful queries (#Succ, #Fail).
We observed that among successful queries, 50.5% (54/107) were
followed by only documentation and tutorials sites, making that the
most common resource leading to search success. Similarly, of the
queries that consulted only D&T sites, 79% (54/68) were successful.
This finding matches the prior work of Bai, et al. that consulting
documentation and tutorials only are most likely to succeed during
the search [2].

We also identified that 16/18 participants borrowed the terms
from languages with which they are familiar. Similar borrowing be-
havior was also reported in prior work [1, 43], and developers claim

166

that previous knowledge supports retrieval of new information;
our results concur. We found 65 queries used terms such as “dictio-
nary”, “hashtable”, “hashmap”, “regex” from languages like Java and
C++. However, this term borrowing sometimes introduced term mis-
match, that is the cases when vocabulary mismatch between queries
and documents (e.g., [10, 15, 55, 58]). For example, borrowing the
term “dictionary” from Java. When five participants intended to
search for functions in VBA that behave like java.util.Dictionary,
which should be the VLOOKUP function, they searched for, “dictionary
in excel”, “add or edit words in a spell check dictionary” or, “creating
a dictionary with Microsoft Excel”.

The impact of term mismatch in terms of query success and
reformulation is fairly neutral. Queries with borrowed terms were
more successful, on average; this observation is further supported
by a result in general information search [57] that finds engineering
and science students who had higher levels of domain knowledge
retrieved more relevant documents for the search question. How-
ever, these queries were no more associated with reformulation
than any other query. For the 65 queries demonstrating term mis-
match, 34 (52%, 26 from Reformulation Survey, 8 from Search Tab
Closed Survey) were associated with a success survey, and only
15 (23%, 13 from Reformulation Survey, 2 from Search Tab Closed
Survey) were reported unsuccessful. Despite the term mismatch,
these queries were more successful on average than the typical
query (77% success vs. 66% success, per Table 6). We conjecture that
this is because VBA is so well documented that the current search
algorithms are able to handle the term mismatch; this may not be
the case with newer or less common programming languages.

There were subsequent query reformulations for 33% (13/39)
of the term borrowing queries, where 39 of the term borrowing
queries were followed by a reformulation survey, and 13 of the
responses explicitly indicated reformulation occurred. This is the
same proportion we saw from all reformulation surveys (34.8% are
reformulations, 48/138).

Anecdotally, we observed there was a higher occurrence of the
phrase, “how to” in successful queries than unsuccessful queries
(12.1% vs. 5.4%). Over 80% (13/16) of “How to” queries successfully
supplied participants with the needed information. As an exam-
ple, the query, “how to create a button and assign a macro in excel”
succeeded in finding the desired information, whereas the query,
“assign macro to a cell vba” failed. The completeness of phrases in the
queries may also influence the search result. For example, while four
queries contained the complete terminology “if statement” instead
of “if” in successful queries, there was no “if statement” observed
in any of the unsuccessful queries. We also found a case where
an unsuccessful query used “==" instead of spelling out “equal to”
like a successful query did. More exploration with a larger set of
successful and unsuccessful queries may shed more light on which
phrases lead to higher success in the searches.

Also noteworthy is that participants were allowed to consult
others in person during the study. We observed that the four prob-
lems involving consultation with other people were successfully
solved. Future work should look at the interplay between search
and discussion.

Table 7: Summary on Findings of The Original Study [39] and This Study

Professionals [39]

[Subsequent Language Learners

Why do they search?

RQ1: Developers use code search to answer questions a wide range
of topics, including how to do something, learning what code does,
and determining why code is behaving as it is.

RQ1: Most searches are associated to goals of exploring for example
code and designing a new feature. Subsequent language learners
also search for debugging.

What are they looking for?

RQ2: Developers search for examples more than anything else.
Developers navigate code search tools even through code they
know well.

RQ1: Subsequent language learners search for example code more
than anything else. All participants search for exploring regardless
of the familiarity to the code.

Query properties

RQ3: The average length of the queries was 1.85 words. Most queries
were scoped to a subset of the code repository.

RQ2: The average length of the queries is 5.6 words. Most queries
contain keywords “VBA” and “excel” to restrict the search.

RQ3: Nearly a third of searches are incrementally performed
through query reformulation.

RQ2: Only 35% (48/138) of the suspected reformulations were actual
reformulations. Adopting the reformulation definition from the
original study, we found only 5.2% (12/229) of the queries had an
edit distance of one.

Time between queries

RQ3: A typical professional developer requires eight seconds (av-
erage of 23 seconds) to scan the search results, determine if they
meet their needs, and reformulate an initial query.

RQ2: A typical subsequent language learner requires three minutes
(average of five minutes) to scan the search results, determine if
they meet their needs, and reformulate an initial query.

Search frequency

RQ4: An average professional developer composes 12 search queries
per weekday.

RQ2: An average subsequent language learners compose 12.7
queries in a 90-minute lab session.

Clicks per query

RQ4: Each query lead to 1.3 clicks on average. Most micro-sessions
contain one search without any clicks.

RQ2: Each query lead to three clicks on average. Most search ses-
sions contain one search followed by at least two clicks.

Clicks vs. Search goal

RQ5: Most searches on code reviews (determine why) lead to multi-
ple clicks. Developers also make multiple searches and clicks when
exploring for example code and designing.

RQ2: Most searches on exploring new content/topics and all de-
bugging search activities led to one search followed by multiple
clicks

Clicks vs. Code familiarity

RQ5: Code familiarity does not mean less clicks.

RQ2: Code familiarity does not mean less clicks.

Search success

N/A

RQ3: Learners frequently borrow terms from familiar languages,
and hence be more successful than the typical query. The most suc-
cessful searches occur when looking for APIs or implementations.

4 DISCUSSION

In this section, we compare the student search behavior to profes-
sionals, provide the suggestions to improve search success, and
discuss the potential threats to validity.

4.1 Comparison of search behaviors between
professional developers and subsequent
language learners

Our study can be viewed as a partial replication of the original
study methodology [39] with a drastically different context. In our
study, we investigated how subsequent language learners search
for code in an unfamiliar programming language, rather than us-
ing professional developers conducting their daily work. Like the
original study, we explored the reasons why participants search,

167

the properties of search queries, and search sessions in micro level.
To extend the original study [39], we analyzed the properties of
successful queries with the survey responses collected right after
either a search activity or a search tab being closed. We also ex-
plicitly ask about query reformulation instead of speculating based
on query edit distance. Table 7 summarized the similarities and
differences of the main findings of the original study and this study.

For example, search sessions observed in this study were more
likely to have at least two clicks after one search activity (55%), while
the professionals click no result in the most search sessions (38.8%).
While it only took professionals 23 seconds to reformulate or make a
new query, learners usually spent five minutes before reformulating
or starting a new query. Learners searched more frequently than
the professionals did (13 queries/hr vs. 12 queries/day).

4.2 Successful Search Behaviors for Subsequent
Language Learners

Search success in this study was associated with consulting offi-
cial documentation and tutorials rather than on Q&A sites (e.g.,
Stack Overflow). Additionally, mapping the context in an unfa-
miliar languages to previous knowledge in a familiar language,
and borrowing the corresponding terms, also led to search success.
Lastly, natural language phrases were more associated with success
than coding shortcuts. For example, spelling out “equals” instead of
“==" and search with “if statement” instead of “if”. These behaviors
may increase the likelihood of finding relevant results, at least in
contexts similar to the one studied here.

4.3 Implications

Our results have implcations for future work in the following re-
search areas:

4.3.1 Debugging with Spreadsheets and Search. Search has become
an important process during debugging tasks [39]. Prior work on
debugging spreadsheets has shown that end-user programmers
use eight strategies when debugging in spreadsheets [50]. These
are: dataflow, testing, code inspection, specification checking, color
following, to-do listing, fixing formulas, and spatial. However, code
search was not part of the equation. In our study, all debugging-
related search queries aimed to fix the formulas. This is likely due to
the design of the study, which aimed to explore how participants use
search for learning a new language, and is not reflective of general
debugging strategies used in spreadsheets. However, future work
should explore the interplay between search and the spreadsheet
debugging strategies, especially in the context of larger tasks.

4.3.2 Query Reformulation with Domain Knowledge. Various strate-
gies for reformulation have been adopted by researchers, such as a
small edit distance [39] or a potentially large edit distance [23, 34].
In this work, we trigger a reformulation survey when the distance
between a current query and the previous query is at least two,
measured using Levenshtein distance. The survey responses pro-
vide a ground truth from participants about whether or not they
are performing a reformulation. What we find is that of the 138
reformulation survey responses, 90 explicitly state that they were
not reformulating, showing a 65.2% false positive rate for this ap-
proach to reformulation detection. In prior work [39], a Levenshtein
distance of at most one was used to identify reformulation. In their
dataset, nearly one third of the searches were flagged as reformula-
tion, whereas in our study only 5.2% were flagged as reformulation
using that same approach (Table 7). When we looked at distances
between non-reformulated and reformulated queries (Section 3.2),
we find that the average edit distances are similar, making it difficult
to use edit distance alone to indicate reformulation.
Reformulation detection based on edit distance alone seems
suspect. Still, we find that approximately 1/3 of the queries that
triggered the reformulation survey were actual reformulations. This
frequency of manual reformulation motivates other efforts by soft-
ware engineering researchers to automatically reformulate queries
based on query properties, hence reducing developer efforts [15].

168

4.3.3 API Translation. Shrestha, et al. [43] point out that devel-
opers usually face a selection barrier [26] when moving to a new
programming language, and searching for the right terminology
and code example is difficult. They also concluded that learning a
language is difficult when there is little to no mapping of features
to previous languages [43]. While in this study term mismatch was
not an issue for developers in that reformulation was not more
likely and search success was actually higher, we conjecture that
this was due to the study context. VBA was chosen because it
is well-documented, and the participants seemed to benefit from
this. For languages or APIs that are less well documented, we en-
vision “API translators” that can map an API in one language to
a destination language and provide short sample code would as-
sist developers to work and learn more efficiently, especially when
migrating languages, or working with new, unfamiliar languages.
Some of these features are present in tools like Mica [49], which
can assist developers in finding the right API classes and methods
given a description of the desired functionality. Chen, et al. [9]
also present an approach that can recommend analogical libraries
for different programming languages or different mobile platforms
given a library.

4.4 Threats to Validity

Participants knew their searching and browsing activities were
being recorded, and were periodically surveyed, which may have
influenced their behavior.

Some metrics used in this study may not be consistent across par-
ticipants, such as #avgClick/Query and #avgQuery, since the search
results and available documents may vary due to the personalized
search results. In addition, the Chrome extension did not record
if a search query was a result of using an auto-complete query
suggestion. Future studies should enforce non-personal results and
detect auto-complete.

Participants were required to work on these tasks in a lab en-
vironment in a limited time, which could potentially impact their
search behaviors. Response bias may be introduced in the partici-
pant self-reported surveys, and impacted the validity of surveys.

All participants were graduate students and the majority claimed
that their overall programming skills ranged from intermediate to
expert (17/18). Therefore, the results may not generalize to other
populations. A replication with a more diverse and larger set of
students is needed.

We use survey responses on the reformulation survey as ground
truth for reformulations. However, participants may have different
notions about what is and is not reformulation, which may impact
the validity of the ground truth.

The conclusions were drawn based on our participants’ search
behaviors when using VBA, an event-driven programming lan-
guage used by Excel, which may not generalize to learning other
languages.

5 RELATED WORK

We focus on related work that investigates code search behaviors,
explores end-users’ engagement with spreadsheets, and discusses
the learning barriers in programming systems.

5.1 Code Search

As with our study, research on general information search has also
involved student subjects (e.g., [52, 57]). Of particular relevance,
one study found that university students perceived study-oriented
topics as harder to search for than daily life information [52]. Prior
work on code search has yielded similar results, finding that code
search tasks take more effort than information search tasks [34].

Various studies focusing specifically on code search have been
performed by surveying participants about the reasons why they
searched [21, 39, 45, 54], the tools they searched with [46], the pop-
ular search sites [48], as well as their selection criteria for code [27].
Different data analysis strategies are also adopted, for example,
some studies focused on directly observing participants’ behav-
iors [47], while some other studies focused on collecting and ana-
lyzing the logs, such as works done by Brandt, et al. [7, 8], with par-
ticipant solving the pre-selected tasks. Sadowski and colleagues [39]
also combined surveys and logs to analyze developers’ code search
behavior when working on daily tasks.

Automatic API recommendation and query reformulations are
also being studied. Rahman, et al. proposed a novel query refor-
mulation technique, which can translate a natural language code
search query into a ranked list of relevant Java APIs [35, 36]. Vari-
ous strategies for reformulation have been adopted by researchers,
such as a small edit distance [39] or a potentially large edit dis-
tance [23, 34]. In this work, we explicitly ask participants about
whether or not their query is a reformulation in an effort to avoid
issues around automated detection of query reformulation.

Researchers [4, 34] specifically explored search sessions to learn
the usage of the web search by software engineers. They concluded
that the major intentions of web search are finding information
to 1) debug an error or an issue, 2) accomplish a specific task,
3) learn about a topic and 4) learn about a specific API element.
The researchers also suggested that code related queries are more
verbose [34]. Code related queries also lead to higher rates of refor-
mulation, longer dwell time, and fewer clicks [4, 34].

Various code search tools have been developed to facilitate devel-
opers with searching for the desired code, such as Koders, Krugle,
and Sourcegraph. Despite these efforts, Google remains the most
popular general-purpose search engine with developers [46, 48],
which is why we target it in our study.

5.2 Learning Barriers & Code Examples

Learning barriers in programming systems can arise from the en-
vironment and accompanying libraries [26]. Ko, et al. observed
that learners sometimes knew what set of interfaces could achieve
a behavior, but did not know how to use and coordinating them.
The use and coordination barriers are hard to overcome without
well-written documentation and code examples [26].

Prior studies point out that it is essential for API documentation
to provide developers, especially those who are trying to learn a
particular API, with sufficient and adequate code examples [33, 37,
43]. Parnin and Treude [33] observe that 90% of code-related blog
posts contain code examples and snippets, with a media of three
code snippets per post. McLellan, et al. [30] also summarize that
the code examples supported several different learning activities,
such as understanding the libraries, protocols, and usage context.

169

These studies echo our findings that 93.4% of the problems that
learners encountered were successfully solved by finding relevant
API and code implementations (43.9% & 49.5% respectively, Sec-
tion 3.3), and the most successful searches are those that consult
resources with examples, such as documentation and official/third-
party tutorials.

5.3 End-User Programming and Spreadsheets

End-user programming is defined as “programming to achieve the
result of a program primarily for personal, rather public use” [25].
Unlike professional developers who are employed to build, maintain
and test software over time, end-user developers write programs
to support goals in their own domains of expertise [12, 25, 31].
According to Scaffidi, et al., over 45 million end users reported that
they “used spreadsheets or databases” in workplaces in 2001 [40];
however, only 20% of these workers indicated that they also “do
programming” However, 44% of spreadsheets contained formulas,
providing evidence of programming in spreadsheets [13].

Various studies have been done on spreadsheets, such as test-
ing [38], code smells in formulas [12, 17, 22] and tools for spread-
sheet formula transformation [16]. However, none study how end-
users learn to program in spreadsheets, what challenges they en-
counter during programming, and how they approach solutions.
Our work, while not specifically targeting end-users, provides some
insights challenges encountered when learning VBA automation.

6 CONCLUSION AND FUTURE WORK

We studied how graduate students search when solving program-
ming tasks in a new language. We find that subsequent program-
ming language learners search with the purposes of exploring for
example code, designing new features and understanding why code
performs as it does. Learners composed more verbose queries, and
required longer time to scan through the search result than profes-
sional developers did [39]. Consulting colleagues/friends in person
could improve the chance to solve a problem. Consulting documen-
tation and tutorials is more indicative of success in a search than
consulting Q&A sites. Queries that focus on how something works
are more likely to succeed when being composed with the structure,
“How to do...”. Learns frequently borrowed terms from languages
with which they are familiar when searching for examples in an
unfamiliar language. The term borrowing queries were more likely
to success than the typical query on average.

For future work, a replication study with a more diverse and
larger set of subsequent programming language learners is sug-
gested to better generalize how learners search. Techniques that
can determine the relative APIs/libraries based on the context in
the queries, provide query reformulation suggestions according
to the search goals, map APIs between programming languages
and present sample code are suggested to support more program-
ming languages. Another suggestion for future work is to explore
how to detect and correct the term mismatch in queries during the
language migration.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1645136 and Grant No. 1749936.

REFERENCES

(1]

[10

[11

(12]

[13

[14

(15

=
Rt

[18

[19]

[20]

[21]

[22]

William R. Aue, Amy Criss, and Matthew D. Novak. 2017. Evaluating mechanisms
of proactive facilitation in cued recall. Journal of Memory and Language 94 (1 6
2017), 103-118.

Gina R. Bai, Brian Clee, Nischal Shrestha, Carl Chapman, Cimone Wright, and
Kathryn T. Stolee. 2019. Exploring Tools and Strategies Used During Regular
Expression Composition Tasks. In IEEE/ACM International Conference on Program
Comprehension (ICPC 2019).

Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre
Baldi, and Cristina Lopes. 2006. Sourcerer: A Search Engine for Open Source
Code Supporting Structure-based Search. In Symposium on Object-oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA ’06). 681-682.
Chetan Bansal, Thomas Zimmermann, Ahmed Hassan Awadallah, and Nachiap-
pan Nagappan. 2019. The Usage of Web Search for Software Engineering. (2019).
arXiv:cs.SE/1912.09519

Veronika Bauer, Jonas Eckhardt, Benedikt Hauptmann, and Manuel Klimek. 2014.
An Exploratory Study on Reuse at Google. In International Workshop on Software
Engineering Research and Industrial Practices (SER&IPs 2014). 14-23.

Matt Bower and Annabelle Mclver. 2011. Continual and Explicit Comparison to
Promote Proactive Facilitation During Second Computer Language Learning. In
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’11). 218-222.

Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. 2010.
Example-centric Programming: Integrating Web Search into the Development
Environment. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI ’10). 513-522.

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.
2009. Two Studies of Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI °09). 1589-1598.

Chunyang Chen, Zhenchang Xing, and Yang Liu. 2019. What’s Spain’s Paris?
Mining Analogical Libraries from Q&A Discussions. Empirical Softw. Engg. 24, 3
(June 2019), 1155-1194.

Tonya Custis and Khalid Al-Kofahi. 2007. A New Approach for Evaluating Query
Expansion: Query-document Term Mismatch. In Proceedings of the International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR *07). 575-582.

Frederico A. Durfo, Taciana A. Vanderlei, Eduardo S. Almeida, and Silvio R. de
L. Meira. 2008. Applying a Semantic Layer in a Source Code Search Tool. In
Symposium on Applied Computing (SAC "08). 1151-1157.

F. Hermans and B. Jansen and S. Roy and E. Aivaloglou and A. Swidan and D.
Hoepelman. 2016. Spreadsheets are Code: An Overview of Software Engineering
Approaches Applied to Spreadsheets. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), Vol. 5. 56-65.

Marc Fisher and Gregg Rothermel. 2005. The EUSES Spreadsheet Corpus: A
Shared Resource for Supporting Experimentation with Spreadsheet Dependability
Mechanisms. In Workshop on End-user Software Engineering (WEUSE I). 1-5.
Steve Fox, Kuldeep Karnawat, Mark Mydland, Susan Dumais, and Thomas White
. 2005. Evaluating Implicit Measures to Improve Web Search. In ACM:TOIS
(acm:tois ed.), Vol. 23. 147-168.

Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia,
and Tim Menzies. 2013. Automatic query reformulations for text retrieval in soft-
ware engineering. In 2013 35th International Conference on Software Engineering
(ICSE). IEEE, 842-851.

Felienne Hermans and Danny Dig. 2014. BumbleBee: A Refactoring Environment
for Spreadsheet Formulas. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2014). 747-750.

F. Hermans, M. Pinzger, and A. van Deursen. 2012. Detecting code smells in
spreadsheet formulas. In 2012 28th IEEE International Conference on Software
Maintenance (ICSM). 409-418.

Reid Holmes and Gail C. Murphy. 2005. Using Structural Context to Recommend
Source Code Examples. In Proceedings of the International Conference on Software
Engineering (ICSE °05). 117-125.

J. Holvitie, T. Rajala, R. Haavisto, E. Kaila, M. Laakso, and T. Salakoski. 2012.
Breaking the Programming Language Barrier: Using Program Visualizations to
Transfer Programming Knowledge in One Programming Language to Another.
In 2012 IEEE 12th International Conference on Advanced Learning Technologies.
116-120.

Jeff Huang and Efthimis N. Efthimiadis. 2009. Analyzing and Evaluating Query
Reformulation Strategies in Web Search Logs. In Proceedings of the ACM Confer-
ence on Information and Knowledge Management (CIKM °09). 77-86.

M. Hucka and M.J. Graham. 2018. Software search is not a science, even among
scientists: A survey of how scientists and engineers find software. Journal of
Systems and Software 141 (2018), 171 - 191.

B. Jansen and F. Hermans. 2015. Code smells in spreadsheet formulas revis-
ited on an industrial dataset. In 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 372-380.

170

[23

[24

[26]

[27]

[28

[29

[30

)
=

[32

[33

[34]

[35

[36]

[37

[38

%
20,

[40

[41

[42

[43

[44

[45]

Bernard J. Jansen, Amanda Spink, Chris Blakely, and Sherry Koshman. 2007.
Defining a Session on Web Search Engines: Research Articles. J. Am. Soc. Inf. Sci.
Technol. 58, 6 (April 2007), 862-871.

Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, Filip Radlinski,
and Geri Gay. 2007. Evaluating the Accuracy of Implicit Feedback from Clicks
and Query Reformulations in Web Search. ACM Trans. Inf. Syst. 25, 2, Article 7
(April 2007).

Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck. 2011.
The State of the Art in End-user Software Engineering. ACM Comput. Surv. 43, 3,
Article 21 (April 2011), 44 pages.

Amy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six Learning Barriers
in End-User Programming Systems. In Proceedings of the 2004 IEEE Symposium
on Visual Languages - Human Centric Computing (VLHCC °04). IEEE Computer
Society, Washington, DC, USA, 199-206.

Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant Infor-
mation During Software Maintenance Tasks. IEEE Trans. Softw. Eng. 32, 12 (Dec.
2006), 971-987.

Otavio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, and Joel Ossher.
2007. CodeGenie: A Tool for Test-driven Source Code Search. In Companion
to the ACM SIGPLAN Conference on Object-oriented Programming Systems and
Applications Companion (OOPSLA ’07). 917-918.

Philip Mayer and Alexander Bauer. 2015. An Empirical Analysis of the Utilization
of Multiple Programming Languages in Open Source Projects. In Proceedings
of the 19th International Conference on Evaluation and Assessment in Software
Engineering (EASE ’15). ACM, New York, NY, USA, Article 4, 10 pages.

S. G. McLellan, A. W. Roesler, J. T. Tempest, and C. L. Spinuzzi. 1998. Building
More Usable APIs. IEEE Software 15, 3 (May 1998), 78-86.

Bonnie A. Nardi. 1993. A Small Matter of Programming: Perspectives on End User
Computing. MIT Press, Cambridge, MA, USA.

H.James Nelson, Gretchen Irwin, and David E. Monarchi. 1997. Journeys up the
mountain: Different paths to learning object-oriented programming. Accounting,
Management and Information Technologies 7, 2 (1997), 53 - 85.

Chris Parnin and Christoph Treude. 2011. Measuring API Documentation on the
Web. In Proceedings of the 2Nd International Workshop on Web 2.0 for Software
Engineering (Web2SE °11). ACM, New York, NY, USA, 25-30.

Md Masudur Rahman, Jed Barson, Sydney Paul, Joshua Kayan, Federico Andres
Lois, Sebastian Fernandez Quezada, Christopher Parnin, Kathryn T. Stolee, and
Baishakhi Ray. 2018. Evaluating how developers use general-purpose web-search
for code retrieval. In Proceedings of the 15th International Conference on Mining
Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018. 465-475.
Mohammad M. Rahman, Chanchal K. Roy, and David Lo. 2016. RACK: Automatic
API Recommendation Using Crowdsourced Knowledge. In 2016 IEEE 23rd Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER),
Vol. 1. 349-359.

Mohammad M. Rahman, Chanchal K. Roy, and David Lo. 2019. Automatic query
reformulation for code search using crowdsourced knowledge. Empirical Software
Engineering (21 Jan 2019).

M. P. Robillard. 2009. What Makes APIs Hard to Learn? Answers from Developers.
IEEE Software 26, 6 (Nov 2009), 27-34.

S. Roy, F. Hermans, and A. van Deursen. 2017. Spreadsheet testing in practice.
In 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 338-348.

Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. How Developers
Search for Code: A Case Study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015). 191-201.

Christopher Scaffidi, Mary Shaw, and Brad Myers. 2005. Estimating the Numbers
of End Users and End User Programmers. In Symposium on Visual Languages and
Human-Centric Computing (VLHCC ’05). IEEE Computer Society, Washington,
DC, USA, 207-214.

Jean Scholtz and Susan Wiedenbeck. 1990. Learning second and subsequent
programming languages: A problem of transfer. International Journal of Human-
Computer Interaction 2, 1 (1990), 51-72.

Nischal Shrestha, Titus Barik, and Chris Parnin. 2018. It’s Like Python But:
Towards Supporting Transfer of Programming Language Knowledge. In 2018
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 177-185.

Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. 2020. Here We Go
Again: Why Is It Difficult for Developers to Learn Another Programming Lan-
guage?. In 2020 IEEE/ACM 42nd International Conference on Software Engineering.
To appear.

Susan Elliott Sim, Megha Agarwala, and Medha Umarji. 2013. A Controlled
Experiment on the Process Used by Developers During Internet-Scale Code Search.
New York, NY, 53-77.

S.E. Sim, C. L. A. Clarke, and R. C. Holt. 1998. Archetypal source code searches: a
survey of software developers and maintainers. In Program Comprehension, 1998.

[46

S
=

[48]

(49

(50]

[51

[52]

(53]

(54

(55]

(56

(57]

(58]

IWPC ’98. Proceedings., 6th International Workshop on. 180-187.

Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V. Lopes.
2011. How Well Do Search Engines Support Code Retrieval on the Web? ACM
Trans. Softw. Eng. Methodol. 21, 1, Article 4 (Dec. 2011), 25 pages.

Singer, Janice and Lethbridge, Timothy and Vinson, Norman and Anquetil, Nico-
las. 1997. An Examination of Software Engineering Work Practices. In Proceedings
of the 1997 Conference of the Centre for Advanced Studies on Collaborative Research
(CASCON °97). IBM Press, 21-36.

Kathryn T. Stolee, Sebastian Elbaum, and Daniel Dobos. 2014. Solving the Search
for Source Code. ACM Trans. Softw. Eng. Methodol. 23, 3, Article 26 (June 2014),
45 pages.

Jeffrey Stylos and Brad Myers. 2006. Mica: A Web-Search Tool for Finding API
Components and Examples. 195-202.

Neeraja Subrahmaniyan, Laura Beckwith, Valentina Grigoreanu, Margaret Bur-
nett, Susan Wiedenbeck, Vaishnavi Narayanan, Karin Bucht, Russell Drummond,
and Xiaoli Fern. 2008. Testing vs. Code Inspection vs. What Else? Male and
Female End Users’ Debugging Strategies. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI'08). Association for Computing
Machinery, New York, NY, USA, 617-626.

Federico Tomassetti and Marco Torchiano. 2014. An Empirical Assessment of
Polyglot-ism in GitHub. In Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering (EASE ’14). Article 17, 4 pages.
Meng-Jung Tsai, Jyh-Chong Liang, Huei-Tse Hou, and Chin-Chung Tsai. 2012.
University students’ online information searching strategies in different search
contexts. Australasian Journal of Educational Technology 28, 5 (Jul. 2012).
Medha Umarji, Susan Sim, and Crista Lopes. 2008. Archetypal Internet-Scale
Source Code Searching. International Federation for Information Processing Digital
Library; Open Source Development, Communities and Quality; 7, 257-263.

Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and
Zhenchang Xing. 2017. What Do Developers Search for on the Web? Empirical
Softw. Engg. 22, 6 (Dec. 2017), 3149-3185.

Jun Xu, Wei Wu, Hang Li, and Gu Xu. 2011. A Kernel Approach to Addressing
Term Mismatch. In Proceedings of the International Conference Companion on
World Wide Web (WWW °11). 153-154.

Hongyu Zhang, Anuj Jain, Gaurav Khandelwal, Chandrashekhar Kaushik, Scott
Ge, and Wenxiang Hu. 2016. Bing Developer Assistant: Improving Developer
Productivity by Recommending Sample Code. In Proceedings of the International
Symposium on Foundations of Software Engineering (FSE 2016). 956-961.
Xiangmin Zhang, H.G.B. Anghelescu, and Xiao-Jun Yuan. 2005. Domain knowl-
edge, search behaviour, and search effectiveness of engineering and science
students: An exploratory study. Information Research 10 (01 2005).

Le Zhao and Jamie Callan. 2012. Automatic Term Mismatch Diagnosis for Selec-
tive Query Expansion. In Proceedings of the International Conference on Research
and Development in Information Retrieval (SIGIR °12). 515-524.

171

