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Abstract

Motivation: Genome-wide profiles of chromatin accessibility and gene expression in diverse cellu-
lar contexts are critical to decipher the dynamics of transcriptional regulation. Recently, convolu-
tional neural networks have been used to learn predictive cis-regulatory DNA sequence models of
context-specific chromatin accessibility landscapes. However, these context-specific regulatory se-
quence models cannot generalize predictions across cell types.

Results: We introduce multi-modal, residual neural network architectures that integrate cis-regula-
tory sequence and context-specific expression of trans-regulators to predict genome-wide chroma-
tin accessibility profiles across cellular contexts. We show that the average accessibility of a gen-
omic region across training contexts can be a surprisingly powerful predictor. We leverage this
feature and employ novel strategies for training models to enhance genome-wide prediction of
shared and context-specific chromatin accessible sites across cell types. We interpret the models
to reveal insights into cis- and trans-regulation of chromatin dynamics across 123 diverse cellular

contexts.

Availability and implementation: The code is available at https:/github.com/kundajelab/

ChromDragoNN.
Contact: akundaje@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cost-effective, sequencing-based functional genomics assays such as
RNA-seq, ChIP-seq, DNase-seq and ATAC-seq have enabled large-
scale profiling of epigenomes and transcriptomes across diverse cellu-
lar contexts (Consortium, 2012; Kundaje et al., 2015). These datasets
provide a unique resource to understand the relationship between
regulatory DNA sequence, chromatin state and gene expression.

DNase-seq (Boyle et al., 2008; Thurman et al., 2012) or ATAC-
seq (Buenrostro et al., 2013) experiments profile the accessible chro-
matin landscape typically bound by regulatory DNA binding pro-
teins such as transcription factors (TFs). Chromatin accessibility is
highly dynamic across cellular contexts (Thurman ez al., 2012).
Chromatin accessibility of a regulatory element is largely a function
of the combinatorial cis-regulatory code of TF binding sequence
motifs embedded in its DNA as well as the availability and activity
of the trans-regulatory proteins such as TFs that bind them.

©The Author(s) 2019. Published by Oxford University Press.

A large body of literature has focused on developing computation-
al models to decipher the cis-regulatory sequence code of cell-type spe-
cific chromatin accessibility landscapes. Recently, convolutional
neural networks (CNNs) have been used to learn the cis-regulatory
grammars encoded in regulatory DNA sequences associated with cell-
type specific in2 vivo TF binding and chromatin accessibility (Alipanahi
et al., 2015; Kelley et al., 2016; Quang and Xie, 2016; Zeng et al.,
20165 Zhou and Troyanskaya, 2015). By learning a series of de-novo
motif-like pattern detectors (called convolutional filters) and non-
linear activation transformations, CNNs are able to map raw DNA se-
quence across the genome to binary or continuous measures of associ-
ated regulatory activity profiles without explicit feature engineering.

The Basset model (Kelley et al., 2016) is a state-of-the-art CNN
architecture that predicts binary chromatin accessibility in a specific
cellular context across the genome as a function of local 600 bp DNA
sequence context around each bin. The Basset model is also a multi-
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task architecture trained simultaneously on binary chromatin accessi-
bility profiles from multiple cellular contexts (each context is a predic-
tion task) and produces a vector of outputs for any genomic position
containing the probability of accessible chromatin state at that pos-
ition in each of the cellular contexts (task). The input DNA sequences
represented using a one-hot encoding is transformed by three convolu-
tion layers. A rectified linear unit (ReLU) non-linear transformation is
applied to the output of the final convolution layer and a pooling op-
eration takes the maximum across a window of adjacent positions.
These transformations are then passed to three fully connected layers
followed by a logistic non-linearity for each task (cellular context)
that outputs the probability of accessibility. The convolutional filters
learned by Basset were visualized and interpreted to infer putative cis-
regulatory sequence drivers of context-specific chromatin accessibility.
The model was also used to score putative regulatory genetic variants
using an in-silico mutagenesis approach.

The Basset model was recently enhanced by factorizing the con-
volution layers (Wnuk et al.,, 2017) (Factorized model). The
Factorized model increases the model depth—the three convolution
layers in Basset are replaced by nine convolution layers. Further, the
first two convolution layers in Basset which contain convolutional
filters (motif-like pattern detectors) of widths 19 and 11, respective-
ly, are factorized into multiple convolution layers with smaller
widths. The authors note that these modifications enhance predic-
tion performance and reduce learning time.

While these and other sequence-only models (Kelley er al.,
2018; Zhou and Troyanskaya, 2015) have provided useful insight
into context-specific cis-regulatory sequence features and the
context-specific impact of regulatory genetic variants, these models
cannot be used to predict chromatin accessibility or other regula-
tory protfiles in cellular contexts not present in the training set. This
is largely because these sequence-only models do not model the
regulatory activity of frans-factors that vary across cellular con-
texts. Gene expression levels of frans-factors as measured by RNA-
seq provide a useful, albeit indirect surrogate for their availability
and activity in different cellular contexts. Models that can integrate
cis-regulatory DNA sequence and trans-regulator expression should
in principle be able to generalize to predict chromatin accessibility
landscapes across cellular contexts. Such a model would be very
valuable because it would enable prediction of chromatin accessi-
bility profiles in large collections of cellular contexts that are cur-
rently characterized only by RNA-seq (Collado-Torres ez al.,
2017). Moreover, interpreting such an integrative model would
also provide insights into cis-regulatory sequence features and
trans-regulators that are predictive of chromatin dynamics across
cellular contexts.

Deep-learning architectures allow this kind of flexibility to inte-
grate multi-modal data i.e. DNA sequence coupled with RNA expres-
sion profiles. Hence, we expand upon previous work to predict
genome-wide maps of chromatin accessibility using sequence and
gene expression data (Kelley er al.,, 2016; Wnuk ez al., 2017). We
introduce multi-modal, residual neural network (ResNet) architec-
tures (He et al., 2016) that integrate cis-regulatory sequence and
context-specific expression of trans-regulators to predict genome-wide
chromatin accessibility profiles across cellular contexts. We show that
the average accessibility of a genomic region across training contexts
can be a powerful baseline predictor. We leverage this feature and em-
ploy novel strategies for training models to enhance prediction per-
formance of shared and context-specific chromatin accessible sites
across cell types. Further, we show that we can interpret these cross-
cell type models to reveal insights into cis- and trans-regulators of
chromatin dynamics across 123 diverse cellular contexts.

2 Materials and methods

2.1 Chromatin accessibility data

DNase-seq datasets profiling genome-wide chromatin accessibility
were downloaded from the Roadmap Epigenomics Project (http://
www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/) and ENCODE
(https://www.encodeproject.org/). The complete list of DNase-seq
datasets and their identifiers is provided in Supplementary Table S1.
The fastq files were aligned with BWA aln (v0.7.10), where all data-
sets were treated as single-end, with ENCODE default alignment
parameters. After mapping, reads were filtered to remove unmapped
reads and mates, non-primary alignments, reads failing platform/
vendor quality checks and PCR/optical duplicates (-F 1804). Low
quality reads (MAPQ < 30) were also removed. Duplicates were
then marked with Picard MarkDuplicates and removed. The final
filtered file was then converted to tagAlign format (BED 3 + 3) using
bedtools bamtobed. Cross-correlation scores were then obtained for
each file using phantompeakqualtools (v1.1).

All files were checked to have cross-correlation with a quality tag
above 0 and discarded if not. For the ENCODE data generated from
the Stam Lab protocol, all datasets were trimmed to 36 bp and then
technical replicates were combined. Read depths were considered, and a
standardized depth of 50 million reads was set for the final datasets. As
such, the files were filtered to remove mitochondrial reads, filtered for
mappability (MAPQ > 30) and then subsampled to 50 million reads.
For the ENCODE data generated from the Crawford Lab protocol, the
same procedure as above was performed, except reads were trimmed to
20 bp due to the different library generation protocol. For the Roadmap
data, which was all generated by the Stam Lab protocol, the same pro-
cedure as above was performed with trimming to 36 bp, and files were
only combined to give a minimum read depth of 50 million reads, since
each file came from a different developmental time point. These
trimmed, filtered, subsampled tagAlign files were then used to generate
signal tracks and call peaks. Signal tracks and peaks were called with a
loose threshold (P < 0.01) with MACS2 to generate bigwig files (fold
enrichment and P-value) and narrowPeak files, respectively.

To identify reproducible peaks, we performed pseudoreplicate
subsampling on the pooled reads across all replicates (taking all
reads from the final tagAligns and splitting in half by random assign-
ment to two replicates) and retaining reproducible peaks passing an
Irreproducible Discovery Rate (v2.0.3) (Li et al., 2011) (https://
github.com/kundajelab/idr) threshold of 0.1 to get a reproducible
peaks for each DNase experiment. The pipeline is available in a
Zenodo record https://doi.org/10.5281/zenodo.156534.

We bin the human genome (GRCh37 assembly) into 200 bp bins
(£) every 50 bp. For each of the 123 cellular contexts (j = {1...123}),
all bins are assigned binary labels (y;; € {0,1}) corresponding to ac-
cessible (+1) or inaccessible (0) state based on whether they overlap
(>50% overlap) context-specific reproducible DNase-seq peaks or
not. The genome-wide binary labels for each task j (cellular context)
are highly imbalanced (Proportion of positive bins: min=3%,
median =7%, max=10% across cell types). The complete binary
label matrix is available via a Zenodo archive https:/doi.org/10.5281/
2en0d0.2603199. The cis-regulatory sequence context (S;) for each
bin i is represented using 1000 bp of genomic DNA sequence centered
at the bin. We use a 1000 bp sequence context since previous work
showed performance gains using contexts up to 1000 bp (Avsec et al.,
2018; Zhou and Troyanskaya, 2015).

2.2 Gene expression data
RNA-seq fastq files (no subsampling, no filtering, no trimming)
from Roadmap and ENCODE were mapped using the STAR aligner
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(version 2.4.1d), using ENCODE default parameters. GENCODE
release 19 (GRCh37.p13) transcriptome annotations were used. To
determine the strandedness of the file (which is needed for RSEM
quantification), the infer_experiment.py script from RSeQC (version
2.6.4) was used in conjunction with the STAR output that was
sorted by coordinate. The strandedness and the pairedness (paired-
end or single-end) of the experiment were passed on to RSEM (ver-
sion 1.2.21). For RSEM, we used ‘—estimate-rspd’ to estimate read
start position distribution, and we did not calculate confidence
bounds. If the experiment was stranded, we set ‘~forward-prob’ to
be 0, and unstranded experiments were left at default. The transcrip-
tome aligned file from STAR was used in the RSEM run. The com-
plete list of RNA-seq datasets and their identifiers is provided in
Supplementary Table S3. The pipeline is available at https://github.
com/ENCODE-DCC/rna-seq-pipeline (v1.0).

The final dataset includes RNA-seq data associated with each of
the 123 cell types. We extract the transcripts per million (TPM) val-
ues and use the log transformed TPM values.

The trans-regulatory feature space R; for each cellular context
j={1...123} is represented by the log(TPM) expression levels of a
list of 1630 putative TFs as curated by the FANTOMS consortium
(http://fantom.gsc.riken.jp/5/sstar/Browse_Transcription_Factors_h
g19) of human TFs. The TF gene expression feature matrix is avail-
able via a Zenodo archive https://doi.org/10.5281/zenod0.2603199.

2.3 ChromDragoNN neural network architecture

Our goal is to learn a model F(S;, R;) that can predict the binary
chromatin accessibility state y;; at any bin 7 in genome in any cellu-
lar context j as a function of the one-hot encoded 1 kb cis-regulatory
sequence context Si of bin i and the expression of 1630 TFs R; in cel-
lular context j. We use a multi-modal neural network model to inte-
grate the cis-sequence and trams-expression modalities and
optionally the mean accessibility of the bin across cell types.

The one-hot encoded sequence S; for each bin 7 in the genome is
fed into a residual convolutional neural network (ResNet) model
(Fig. 1A). The ResNet architecture includes hierarchically arranged
convolution layers that are able to map one-hot encodings of raw
DNA sequence input data to learn complex representations without
explicit feature engineering. Each convolution layer learns and scans
a set of weight matrix pattern detectors (convolutional filters) across
its input and detects patterns in the input sequence. ResNets (He
et al., 2016) have been shown to be more effective for training
CNNs with a large number of layers by introducing skip connec-
tions between blocks of convolution layers to optimize gradient
flow and improve learning. Utilizing these concepts, we use a
ResNet architecture to extend previous models (Kelley et al., 2016;
Wnuk et al., 2017). The residual network (He et al., 2016) consists
of blocks in which the input is transformed through one or more
convolutional layers to an intermediate output to which the input is
added back. In our model, the convolution layers within a block pre-
serve the input dimensions.

To provide the model with quantitative information on the avail-
ability of trans-regulator TFs, we follow recent work (Wnuk ez al.,
2017) that extended the Basset model to predict chromatin accessi-
bility in held-out cellular contexts, using RNA-seq profiles as surro-
gates of cell-type specific availability and activity of trans-
regulators. RNA-seq profiles have been shown to uniquely identify
individual cell types while preserving biological similarity between
cell types (Sudmant ez al., 2015). We use log(TPM) RNA expression
levels of 1630 TFs as a meaningful representation of trans-regula-
tory cell state, as TFs are the DNA binding proteins that would

affect chromatin accessibility by binding cis-regulatory sequence
patterns. The sequence ResNet-CNN component of the model
learns cis-regulatory sequence patterns and returns a transformed
sequence-based feature space as intermediate representation. The TF
RNA-seq vector R; for cellular context j is concatenated with this
intermediate sequence representation, which is then passed through
fully connected neural network layers and a logistic non-linearity to
produce an output F(S;, R;) representing the predicted probability
that the bin i is accessible in the cellular context j. The mean accessi-
bility for bin 7 across all training cell types, if used, is concatenated
at the final fully connected layer. The complete sequential network
is as follows:

One-hot input sequence of dimension 1000. Two convolutional
layers with 48 and 64 channels, respectively, filter size (3, 1). Two
residual blocks, each with three convolution layers with 64 channels
and filter size (3, 1). Two residual blocks, each with two convolu-
tion layers with 128 channels and filter size (7, 1). Two residual
blocks, each with three convolution layers with 200 channels and fil-
ter sizes (7, 1), (3, 1), (3, 1) respectively. Two residual blocks, each
with two convolution layers with 200 channels and filter size (7, 1).
The output is flattened and concatenated with gene expression. In
case of mean accessibility models, the mean is concatenated. Fully
connected layer with 1000 dimension output. Fully connected layer
with 1000 dimension output. Fully connected layer with one output
dimension.

A single convolution layer is present after each residual block
(except the third) to transform the number of channels. Batch nor-
malization (Ioffe and Szegedy, 2015) layers are present after each
layer. A max pool is applied after the last three residual blocks. We
use the ReLU non-linearity transform. We use a fixed dropout of 0.3
on the fully connected layers.

2.4 Multi-stage training

We randomly split our 123 cellular contexts into training, validation
and test sets across 5 folds (Supplementary Table S2). For each fold,
we train models genome-wide across the training cell types. The val-
idation set cell types are used for hyperparameter tuning. The mod-
els are evaluated based on their genome-wide predictions in the
held-out cell types in the test sets.

The shift from a multi-task, cell-type specific sequence-only
model to a single-task, cross-cell type, multi-modal model increases
the number of training examples by a factor of C, equal to the num-
ber of cell types in the training data. The increased size of the train-
ing data has implications for training. A naive training setup could
potentially take up to a factor C longer to train compared to a fixed
cell type model. To improve efficiency, performance and interpret-
ability, we train our models in two steps: the first stage pre-trains a
multi-task sequence-only model that maps sequence of each genomic
bin to accessibility labels in each of the cellular contexts in the train-
ing set as individual tasks. The second stage trains the multi-modal
model across all genomic bins and cellular contexts in the training
set by initializing the sequence-mode’s convolutional layer weights
using the pre-trained model. The two-stage training scheme provides
added flexibility in that during the second stage of training, the con-
volutional layer weights may or may not be frozen while the fully
connected layers are trained.

2.5 Model training and testing

We use the Adam optimizer (Kingma and Ba, 2014) on binary cross
entropy loss to update our network’s weights, along with batch nor-
malization on the convolution and fully connected layers. We use
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Fig. 1. Improved training methods and new architecture design enhances model performance (A) Model architecture for the ResNet model. The RNA-seq inputs
and mean accessibility (if used) are concatenated after the convolutional layers. (B) The validation set loss over training steps for a model (Basset architecture for
sequence mode) with and without two-stage learning (without mean accessibility as an input feature). In two-stage learning the weights of the convolutional layer
of the model are initialized from a model first trained to map sequence to chromatin accessibility for all training cell types. (C) The test set AUPRC of the original
Basset model, Factorized model and ResNet model under 4 training paradigms: with and without mean accessibility as an input feature, and with (Tune) and with-
out (Freeze) fine-tuning convolution layers in second stage. Numbers reported on a fixed training, validation and test split with 103 training, 10 validation and 10
test cell types. Models using mean accessibility as an input feature significantly outperform models without mean accessibility. (D) Five-fold cross-validation per-
formance of the ResNet model compared to the Factorized model with and without mean locus accessibility as an input to the model. Each fold contains a split
over 123 cell types in the dataset. All models trained using 2-stage scheme with all weights tunable in second stage. Wilcoxon signed rank test (single-tailed) was
performed with n=5, n.s. not significant, * P<0.05. (E) Binned AUPRC of Factorized model without mean accessibility, ResNet model without mean accessibility
and ResNet model with mean accessibility. Loci are binned by the fraction of training cell types that are accessible, and AUPRC is computed for predictions on
test cell types for each bin. Note that AUPRC is computed for the minority class—when fraction of accessible cell types >0.5, AUPRC is computed on non-access-
ible regions. Gray bars indicate the fraction of loci having a certain fraction of accessible cell types. Numbers reported on a training, validation and test split same

as for (C)

the default PyTorch v0.4 parameter initialization method (LeCun
et al., 2012). We perform hyperparameter searches for all stage 1
models with batch sizes (128, 256) and learning rates (2e-2, 2e-3,
2e-4), and for stage 2 models with batch sizes (256, 512, 1024) and
learning rates (le-3, le-4). To mitigate the class imbalance, we
maintained a 1:3 ratio of positives to negatives per batch by upsam-
pling accessible regions in the second stage of training.

Given the significant class imbalance in the labels, we use the
area under precision-recall curve (AUPRC) as our primary perform-
ance evaluation measure.

2.6 Motif extraction

The dynamics of chromatin accessibility of regulatory elements
across cellular contexts is a result of distinct subsets of context-
specific TFs binding combinations of motifs encoded in the sequence
of the regulatory elements (Sherwood ez al., 2014; Voss and Hager,
2014). Deep neural network models of regulatory DNA sequence
implicitly learn these motifs as distributed representations across the
convolutional filters. Hence, valuable insights on predictive regula-
tory sequence features can be obtained by interpreting the model. A
commonly used approach involves directly visualizing the convolu-
tional filters or deriving position weight matrices from subsequences
that maximally activate filters (Kelley et al., 2016). However, this

approach has the drawback that the motifs obtained from individual
filters are often redundant or incomplete since the models learn dis-
tributed representations (Shrikumar ez al., 2018). An alternative ap-
proach is to use feature attribution methods to interpret predictive
patterns in specific input DNA sequences. These feature attribution
methods (Shrikumar et al., 2017; Simonyan et al., 2013;
Sundararajan et al., 2017) decompose the output prediction of a
model for a specific input sequence of interest in the form of contri-
bution scores of individual nucleotides in the sequence. Nucleotides
with high positive scores can be interpreted as driving the prediction
for the sequence. Feature attribution methods allow for instance-by-
instance interpretation of predictive patterns but do not provide a
global summary of predictive motifs across all accessible sites within
and across cellular contexts. Hence, we used a new method we re-
cently developed called TF-MoDISco (v0.2.1) (Shrikumar ez al.,
2018) that (i) identifies predictive sequence patterns within the
sequences of each accessible site across the genome in a cell context
of interest as subsequences (called seqlets) with significant contribu-
tion scores derived using a feature attribution method (specified
below); (ii) computes a similarity matrix between all predictive seq-
lets across the accessible landscape and (iii) clusters the seqlets into
non-redundant motifs. To obtain nucleotide-resolution contribution
scores for each input sequence corresponding to accessible bins in
the genome in a specific cellular context, we used the gradient of the
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logit of the output probability of the model (predicted probability of
site being accessible in the specific cellular context) with respect to
the one-hot DNA sequence, gated by the observed nucleotides in the
input sequence. To focus on motifs associated with dynamic chro-
matin accessible sites, for each cellular context, we extracted the
contribution score profiles from the ResNet model (that does not
use mean accessibility as an input feature) for subsets of 20 000 bins
that are accessible in the given cellular context and in <30% of all
the cell types. Contribution score profiles computed for these 20K
sequences in each cellular context were passed to TF-MoDISco to
learn context-specific globally predictive motifs. The TF-MoDISco
motifs were matched against a database of known TF motifs using
Tomtom (Gupta et al., 2007).

3 Results

3.1 Accurate prediction of chromatin accessibility
across cellular contexts from DNA sequence and gene
expression with multi-stage training

We developed multi-modal neural network architectures to predict
the binary chromatin accessibility state at each bin in the genome in
any cellular context by integrating 1 kb cis-regulatory sequence con-
text around each genomic bin and gene expression levels of 1630
TFs in the specific cellular context. Models were trained on a subset
of training cell types and their performance was reported based on
genome-wide predictions in held-out test cell types. We developed a
two-stage learning strategy to improve efficiency, performance and
interpretability of the models. In the first stage, we pre-trained a
multi-task sequence-only model across all training cell types. In the
second stage, we trained a multi-modal model integrating sequence
and expression, where we initialized the convolutional layer weights
of the sequence model from the first stage. We found that tuning the
convolution layers in the second stage consistently improved per-
formance over freezing the weights of the layers at an increased
computational cost. Further, pre-training the sequence mode con-
sistently improved training time and performance (Fig. 1B).

We experimented with different CNN architectures, training
strategies and tested the impact of adding an additional feature—the
mean accessibility of a genomic bin across training cell types. After
evaluating the various models on our validation datasets, our best
model architecture achieves an average AUPRC=0.76 and area
under Receiver Operating Characteristic curve (AUROC)=0.954
across five folds, outperforming previously published model archi-
tectures trained and tested on matching data (average
AUPRC=0.69, AUROC=0.937 across five folds) (Fig. 1C).

3.2 Using mean accessibility as an input feature boosts
performance

A key difference between cell-type specific models and cross-cell
type models is that cross-cell type models can make use of statistics
based on the accessibility state of each genomic bin (locus) across
the training cell types. For each bin in the genome, we computed the
mean of the binary accessibility values across all cell types in the
training set. Since binary accessibility is 0 if the locus is closed and 1
if open, the mean accessibility is a value in [0, 1] that is equivalent to
the fraction of cell types in which the bin is accessible.

We observed that mean accessibility is a strong baseline predict-
or of chromatin accessibility across cell types [also recently reported
by Schreiber ez al. (2019)]. Setting the predicted accessibility of a
locus equal to its mean accessibility across training cell types yielded
an AUPRC of 0.579 and an AUROC of 0.902 on the test set. This

method is oblivious to the test cell type and in fact assigns the same
values to all test cell types for a given bin. A stronger baseline is
achieved by computing a weighted average of accessibility across
training cell types, where the weight is proportional to the similarity
between RNA-seq profiles of the training and test cell types. The
resulting predictions yield an AUPRC of 0.587 and AUROC of
0.903 which are marginally better than the unweighted version.

All our multi-modal models that use sequence and expression
substantially outperform this strong baseline predictor (mean base-
line AUPRC=0.579, weighted-mean baseline AUPRC=0.587,
Basset+expr AUPRC=0.656, FactorizedBasset+expr AUPRC =
0.692, ResNet+expr AUPRC =0.700). However, we decided to
capitalize on the strong mean baseline and decided to use it as an
auxiliary input feature to the multi-modal model. The single scalar
mean accessibility value for each bin is concatenated with the output
of first feed forward layer. We observe substantial improvements
when the mean accessibility feature is provided as an input to the
model (Fig. 1C and D). Across three different types of architectures
that we trained, incorporating the mean as an input feature
improves the performance of the model by as much as 0.09 AUPRC.

3.3 Residual network architecture outperforms previous
architectures

ResNets (He et al., 2016) have been shown to be highly effective for
training deeper CNNs with a large number of layers. ResNets pro-
vide added flexibility to CNNs by introducing skip connections be-
tween blocks of convolution layers. In practice, while the
performance of ordinary CNNs saturates or even drops with
increasing layers (Srivastava et al., 2015), ResNets have made pos-
sible training of CNNs often having >100 convolution layers.
ResNets have also recently been used to train high performance
deep learning sequence models of splicing (Jaganathan ez al., 2019).

We implemented a ResNet architecture that uses 23 convolution
layers across eight residual blocks. Following the Factorized model,
we used convolution filters with shorter widths. Figure 1D shows
the results of a 5-fold cross-validation performed on our dataset. We
compared the performance of the model with the Factorized model
with and without passing mean locus accessibility as an input to the
model. In both cases, the ResNet architecture improved upon the
performance of the Factorized model. Overall, our best performing
ResNet(+mean accessibility) model achieves a mean AUPRC of
0.76 while the previous best published model in the literature i.e. the
Factorized Basset model (Wnuk ez al., 2017) achieves 0.69 (Fig. 1C)
on a matched training/validation/test data split.

Next, in order to understand performance variation as a function
of cell-type specificity of accessible sites, we grouped genomic bins
based on the fraction of cell types in which bins exhibit accessibility.
For each group, we compared the AUPRC of our best ResNet model
that included mean accessibility as auxiliary input with the previous
best published model i.e. Factorized Basset without mean accessibil-
ity (Fig. 1E). Our models consistently outperform the previous state-
of-the-art across all groups.

3.4 Model interpretation reveals cell-type specific
cis-regulatory sequence features and associated
trans-regulators

Understanding what the model is utilizing in the DNA sequence in-
put is of interest, and previous work has successfully shown that
CNNs learn predictive motif-like patterns of cell-type relevant TFs
from regulatory DNA sequences (Kelley er al., 2016). However, the
model learns a distributed representation of the sequence features.
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Hence, interpreting individual convolutional filters results in redun-
dant and partially complete motifs. Instead, we use TF-MoDISco,
a new method we recently developed, for distilling consolidated
motifs from sequence-based deep learning models (Shrikumar ez al.,
2018). First, we use a feature attribution approach (gradientxinput)
to infer contribution scores attributed by the model to each nucleo-
tide in chromatin accessible sequences with respect to the output
prediction in each cellular context. Predictive nucleotides and motif
instances get highlighted with high positive contribution scores. The
same sequence can have different contribution score profiles across
different cellular contexts representing dynamic regulation of the re-
gion by different sequence motifs (Fig. 2A). For each cellular con-
text, we sample a subset of bins that are labeled accessible, obtain
contribution scores for corresponding input sequences and extract
motifs using TF-MoDISco with default parameters. The motifs are
matched against a database of known motifs of TFs using Tomtom
(Gupta et al., 2007). The sets of motifs retrieved for each cellular
context reflect the globally predictive TF motif patterns learned by
the model for that context (Fig. 2B).

The model learned known DNA motifs of ubiquitous as well as
cell-type specific TFs that match the canonical roles of TFs in differ-
ent lineages (Fig. 2B). As reported in Kelley ef al. (2016), the model
learns the CTCF motif as a widely important sequence element for
accessible regions across cellular contexts (Ong and Corces, 2014).
The HNF1A and HNF4A motifs are more narrowly predictive of ac-
cessibility in hepatocyte-related, large and small intestinal contexts
(D’Angelo et al., 2010). The model discovers SIX2 motif as a key
predictor in kidney-related contexts (Kobayashi et al., 2008).
TWIST1 motif is retrieved for contexts of mesenchymal origin (Qin
et al., 2012), while RUNX1, ETS1 and IRF1 motifs are mainly dis-
covered only in specific hematopoietic cell types (Brien ez al., 2011).
GRHL2 motif is discovered in the lung, epithelial cells and kidneys,
which matches known differential expression patterns of GRHL
family TFs across cell types (Aue ez al., 2015). No prior information
about sequence motifs is provided to the model, suggesting that the
model is effective at extracting cell context relevant cis-regulatory
features from the DNA sequence input.

Many of the discovered motifs are cell-type specific, which sug-
gested that intersecting these results with the dynamics of RNA ex-
pression profiles of trans-regulators could potentially lead us to the
TFs that potentially bind these discovered motifs. For each discov-
ered motif, we determined all the TFs (often from the same family)
that could potentially bind the motif. We computed the binary vec-
tor of dynamic motif activity for each motif across cell types
(whether that motif was discovered by TF-MoDISco in the cell type
or not). We computed the Pearson correlation between the motif ac-
tivity vector and the vector of expression levels of matching TFs
across those cell types. We show the top 15 most correlated TFs in
Fig. 3A. This analysis highlighted several known key regulators,
both universal and cell-type specific, across a variety of cell types.
TWIST1 is a known regulator in mesenchymal cell types and is high-
lighted as important in muscle cell types and fibroblasts (Qin et al.,
2012). RUNX3 and IRF1 are important regulators in blood cell
types (Brien er al., 2011), while HNF4A is a master regulator in in-
testinal development (Babeu and Boudreau, 2014). HNFI1A,
GRHL2, SIX2 and HOXAY are all regulators known to be import-
ant in kidney development (Aue et al., 2015; Kobayashi ez al., 2008;
Martovetsky et al., 2013), and are highlighted here as important
specifically in kidney cell types. Interestingly, ASCL1 is highlighted
as important in thymus and spleen cell types, where the expression is
also very specifically high in these cell types—this suggests a role for
ASCL1 in these cell types that was not elucidated before, though

further work is required to fully validate this hypothesis. This ana-
lysis thus uncovers possible #rans-regulators that modulate cell
context-specific chromatin accessibility profiles through predictive
cis-regulatory motifs.

3.5 Biologically relevant segregation of cell types based
on predicted chromatin accessibility

We used our cross-cell type, multi-modal models to impute genome-
wide binary chromatin accessibility profiles in 250 additional cellu-
lar contexts (see Supplementary Table S3) that were not seen in our
original dataset and were profiled only using RNA-seq. These new
imputed samples were then embedded into a 2D visualization using
t-SNE (Maaten and Hinton, 2008) to determine how well the
imputed accessibility profiles group distinct and related cell types.
Comparing an equivalent t-SNE visualization in RNA-seq expres-
sion space (using the 1630 TFs as features) to the predicted chroma-
tin accessibility (Fig. 3B), we find that the t-SNE map from imputed
accessibility shows improved separation of distinct clusters of sam-
ples grouped by cell type and disease state. E.g. the carcinoma cell
types and the adenocarcinoma cell types are embedded near each
other in the t-SNE from predicted accessibility. Further, the pre-
dicted accessibility t-SNE embeds the adenocarcinomas as slightly
offset from the carcinomas. While t-SNE embeddings can be un-
stable and difficult to interpret, our visualizations do suggest that
the imputed accessibility profiles do capture biologically meaningful
differences and similarities between cell types and that these differ-
ences are not simply reflecting differences in expression of the TFs
that were used as predictors. This ability to distinguish cell types
through imputed accessibility profiles is important because it sug-
gests that given a new expression profile, these models can produce
distinct accessibility profiles that may be granular enough to poten-
tially reveal subtypes and finer grained structure beyond the expres-
sion profile.

4 Discussion

We present an optimized multi-modal residual network architecture
that can integrate cis-regulatory DNA sequence and expression of
trans-regulators to predict genome-wide binary chromatin accessi-
bility profiles across cellular contexts. The model can be used to pre-
dict genome-wide chromatin accessibility in cellular contexts that
are only profiled with RNA-seq. This is particularly useful given the
large number of profiled transcriptomes that do not have corre-
sponding experimentally profiled epigenomes. We demonstrate that
accessibility profiles predicted from sequence and TF expression do
not simply recapitulate the landscape of expression profiles across
cell types but rather provides a complementary feature space that
can discriminate between related and distinct cellular contexts.
Using enhanced training strategies, we achieve a new state-of-
the-art in terms of prediction performance across cellular contexts.
We show that a two-stage training strategy that pre-trains using
only sequence before integrating the expression data improves per-
formance and training time. This method of transfer learning is com-
mon in applications in computer vision and natural language
processing (Chen ef al., 2015; Oquab er al., 2014). In two-stage
model learning, we show that tuning the convolution layers in the
second stage offers a benefit over freezing the weights of the layers,
however, at an increased computational cost. Mean accessibility of
a given locus across contexts is a surprisingly strong predictor of
chromatin accessibility. Combining the mean accessibility with cis-
regulatory sequence and trams-regulator RNA expression allows
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Fig. 2. Cell-type specific TF motifs distilled from the ResNet model (A) Gradient x input contribution scores of each nucleotide (columns) in an example genomic
sequence (chr8: 128929715-128931715) across different cellular contexts (tasks shown as rows). The obtained nucleotide-resolution contribution scores for the
same genomic sequence can differ between cell-types reflecting differential chromatin accessibility and differences in regulation of the sequence, as shown in
this example locus. (B) Summary of motifs learned by the model for individual cell types. The TF-MoDISco method is used to distill consolidated motifs learned
by the model for each cell type using a subset of sequences which are accessible in the respective cell type. The returned motifs are then matched to known

motifs of TFs using Tomtom (Gupta et al., 2007)

improved prediction performance. Notably, we find that adding
mean accessibility as a feature improves performance across all types
of accessible sites including the cell-type specific and ubiquitously
active.

We demonstrate that using a residual CNN architecture for
chromatin accessibility prediction results in superior performance
compared to previous architectures. Recent related work (Wnuk
et al., 2017) showed that increasing the number of convolution

layers while reducing the width of each convolution layer increases
the model performance. ResNets (He ez al., 2016) allows for con-
nections between non-adjacent layers and have been shown to con-
fer performance gains in deep networks. We observe and confirm
similar improvements in model performance for predicting chroma-
tin accessibility models.

Recently developed imputation methods such as ChromImpute
(Ernst and Kellis, 2015), BIRD (Zhou et al., 2017), PREDICTD
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Fig. 3. Predictive cis-sequence features and trans-regulators inferred from the models: (A) TF-MoDISco motifs (left) and row-normalized log TPM RNA-expression
values (right) for each training cell type, where each row is a matching motif and TF. (B) t-SNE embedding of 250 additional cell types (points) based on the RNA-
seq profiles of 1630 TFs (left) compared to t-SNE embedding of the same cell types based on the predicted chromatin accessibility profiles

(Durham et al., 2018) and Avocado (Schreiber et al., 2018) also
tackle the problem of predicting regulatory profiles in new cellular
contexts. In systematic comparisons on matched data, our models
outperform the BIRD method in predicting genome-wide binary
chromatin accessibility profiles from RNA expression data
(Supplementary Table S4). The imputation methods are based on
capturing and modeling the local correlation structure between pro-
files of multiple biochemical markers such as RNA, histone modifi-
cations and chromatin accessibility within and across diverse cell
types. In our framework, we instead use only one widely available
auxiliary modality, the gene expression of trans-regulators.
Moreover, the above mentioned imputation methods do not model
cis-regulatory DNA sequence and hence lack the ability to interpret
biologically meaningful predictive sequence features from the mod-
els. Our models enable interpretation of predictive cis-sequence fea-
tures learned by the models. Using model interpretation methods,
we show that our models learn motifs of ubiquitous and lineage spe-
cific TFs. Correlating the RNA profiles of TFs with the dynamic pre-
dictive activity of motifs discovered by the model provides insights
into the TFs that might bind these motifs and the relationship be-
tween cis- and trans-regulatory features.

Our current models predict genome-wide binary chromatin
accessibility profiles instead of continuous, quantitative profiles.
However, our models can be easily adapted to predict continu-
ous, quantitative profiles at finer resolutions by using regression
loss functions (Kelley et al., 2018). Our models can also be
extended to include additional input data modalities or predict

other types of genome-wide regulatory profiles such as histone
modification profiles. Finally, improved approaches for inter-
preting multi-modal neural networks will provide significantly
more nuanced insights into the complex interactions between cis-
regulatory sequence features and frans-regulatory features. More
transparent encodings of the gene expression space (e.g. using la-
tent variables that directly model modules of functionally related
genes or pathway annotations) would also improve interpretabil-
ity. Our study highlights the promise of integrative multi-modal
deep learning models for learning predictive models that general-
ize across cellular contexts and obtaining insight into the dynam-
ics of gene regulation.
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