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We argue here that it is a quirk of history
that both MRT and gene editing have
come to the forefront of public attention at
roughly the same time. The early start on
MRT in the United Kingdom enabled that
country to successfully developed quite
different regulatory policy approaches
to the two technologies’; in contrast, the
fear of germline gene editing in the
United States and Canada has frozen the
policy conversation on MRT. We should
not let fear drive use of a sledgehammer
for regulation when a scalpel will better
enable us to divide the good from the bad.

Although realistic about the barriers
to change, we have outlined possible ways
forward for both the United States and
Canada that would enable progress on
MRT, or possibly some limited germline
gene editing without opening the floodgate.
We argue that this path, and not outright
prohibition, is the best way forward
because citizens deserve to benefit
from the advancement of science and
its applications.

Moreover, in our globalized world,
national prohibitions cannot fully achieve
their goals. As the travel of patients to
Mexico for MRT performed by US doctors
demonstrates (as do other examples)”*,
patients who desperately wish to access
certain interventions will travel abroad
to get them. Unless countries such as the
United States and Canada are willing to limit
the entry of children born through these
technologies—were it even possible, and
we are skeptical—and extend their criminal
jurisdiction extraterritorially to prevent the

use of these technologies, the reality is that
some citizens of each country will bring
germline alterations back into the country.
Our view is that, to best protect citizens
from harm, limited regulatory pathways that
can be monitored and carefully delineated
are preferable to shadowy practices and a
potential regulatory race to the bottom. O
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The Kipoi repository accelerates community

OPEN

exchange and reuse of predictive models

for genomics

To the Editor — Advances in machine
learning, coupled with rapidly growing
genome sequencing and molecular

profiling datasets, are catalyzing progress in
genomics'. In particular, predictive machine
learning models, which are mathematical
functions trained to map input data to
output values, have found widespread usage.
Prominent examples include calling variants
from whole-genome sequencing data®?,
estimating CRISPR guide activity" and
predicting molecular phenotypes, including
transcription factor binding, chromatin
accessibility and splicing efficiency, from
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DNA sequence’'". Once trained, these
models can be probed in silico to infer
quantitative relationships between diverse
genomic data modalities, enabling several
key applications such as the interpretation
of functional genetic variants and rational
design of synthetic genes.

However, despite the pivotal importance
of predictive models in genomics, it is
surprisingly difficult to share and exchange
models effectively. In particular, there is
no established standard for depositing and
sharing trained models. This lack is in stark
contrast to bioinformatics software and

workflows, which are commonly shared
through general-purpose software platforms
such as the highly successful Bioconductor
project'?. Similarly, there exist platforms to
share genomic raw data, including Gene
Expression Omnibus (https://www.ncbinlm.
nih.gov/geo/), ArrayExpress (https://www.
ebi.ac.uk/arrayexpress) and the European
Nucleotide Archive (https://www.ebi.ac.uk/
ena). In contrast, trained genomics models
are made available via scattered channels,
including code repositories, supplementary
material of articles and author-maintained
web pages. The lack of a standardized
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Fig. 1| Overview of Kipoi. From left to right: at its core, Kipoi defines a programmatic standard for data-loaders and predictive models. Data-loaders translate
genomics data into numeric representations that can be used by machine learning models. Kipoi models can be implemented using a broad range of
machine-learning frameworks. The Kipoi repository allows users to store and retrieve trained models, together with associated data-loaders. Kipoi models are
automatically versioned, nightly tested and systematically documented with examples of their use. Kipoi models can be accessed through unified interfaces
from python, R and the command line. All models and their software dependencies can be installed in a fully automatic manner. Kipoi streamlines the
application of trained models to make predictions on new data, to score variants stored in the standard variant call format (.vcf) file format, and to assess the
effect of variation in the input to model predictions (feature importance score). Moreover, Kipoi models can be adapted to new tasks either by retraining them
or by building new composite models that combine existing ones. Newly defined models can be deposited in the repository.

framework for sharing trained models in
genomics hampers not only the effective
use of these models—and in particular their
application to new data—but also the use of
existing models as building blocks to solve
more complex tasks.

Repositories of trained models
(Supplementary Table 1), which are
routinely used for benchmarking and as
a starting point to rapidly develop new
models in computer vision and natural
language processing, hold the promise
to overcome these challenges. However,
although generic model repositories exist,
these are geared toward a technical audience
of machine-learning experts. In contrast, a
repository of trained models for genomics
needs to be easy to use and deliver robust
and well-documented software to enable
application by practitioners who do not
have expert knowledge in machine learning.
A second challenge is the heterogeneity of
machine-learning frameworks that are
used, including Keras (https://keras.io),
Tensorflow (https://tensorflow.org),
PyTorch (https://pytorch.org) and custom
model code, which is not addressed by
current repositories. Furthermore, a
model repository for genomics requires
additional developments to support data

formats and necessary processing steps

for data produced by different genomics
technologies. Finally, applications in
genomics impose specific requirements on
the interpretability of models, for example,
to understand changes in phenotype for
different DNA sequence inputs.

Here, we present Kipoi (Greek for
‘gardens’, pronounced ‘kipi’), an open science
initiative to foster sharing and reuse of
trained models in genomics. Already, the
Kipoi repository (Fig. 1, middle) offers more
than 2,000 individual trained models from
22 distinct studies that cover key predictive
tasks in genomics, including the prediction
of chromatin accessibility, transcription
factor binding, and alternative splicing
from DNA sequence. Kipoi is accessible via
GitHub and as web resource (https://kipoi.
org), providing a browsable interface to
explore and search models for specific tasks.

One of the core innovations of Kipoi
includes standardized data handling (data-
loaders) (Fig. 1, left). Data-loaders abstract
and unify the preprocessing of data stored
in bioinformatics file formats, yielding
numerical representations that can be used
as model inputs. Kipoi defines an application
programming interface (API; Fig. 1, right;
i.e., a standard way for software components
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to communicate with Kipoi models), which
allows programmers to interchangeably
use Kipoi models in their software with
minimal coding effort. The Kipoi APT is
accessible from python and R, two of the
most popular programing languages in
computational biology. The API can also
be accessed via the command line, which
facilitates the integration of Kipoi models
into bioinformatics workflows.

To ensure sustainability of trained
models and to facilitate their dissemination,
Kipoi builds on and interoperates with a
range of software development technologies
and standards. The model descriptions
and the code of Kipoi are stored in GitHub
repositories, providing issue tracking
to facilitate transparent and rapid user—
developer iterations. Moreover, by building
on GitHub, we track and index both the
Kipoi core code and contributed models,
which facilitates reproducible research.
The Kipoi model definition describes the
model inputs and outputs, specifies the
data-loader and required dependencies,
and provides information about the source
publication or the distribution license.
Kipoiseq (https://github.com/kipoi/
kipoiseq/), a companion python package,
provides ready-to-use data-loaders for
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Model Publication Type Input Framework Size Prediction Input sequence
modalities time (n = 256) length
Kulakovskiy et al. Position weight
pwm_HOCOMOCO 2015y matrix scav? DNA sequence Keras 16 KB 1.2ms 101 bp
. Alipanabhi et al. Convolutional
DeepBind p 2015 el e DNA sequence Keras 36 KB 2.4 ms 101 bp
Ghandi et al. Support vector
Isgkm-SVM 2014 i DNA sequence LS-GKM 4 MB 10s 101 bp
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DeepSEA Zhou et al. 2015 AEE] e DNA sequence PyTorch 211 MB 94 ms 1,000 bp
Convolutional DNA sequence
FactorNet Quang et al. 2017 and recurrent + DNase Keras 3-13 MB 118 ms 1,002 bp
neural network + annotation
b c
# Create and activate a new
0.5 Model # conda environment with all
# model dependencies installed
pwm_HOCOMOCO kipoi env create <Model>
DeepBind source activate kipoi-<Model>
0.4 7
Isgkm-SVM # Run model prediction and save
DeepSEA # the results sequentially into
031 FactorNet #.an.hde flle
8 kipoi predict <Model> \
o --dataloader_args="{
© “intervals_file”: “intervals.bed”,
021 “fasta_file”: “hg38.fa”}' \
-0 ‘<Model>.preds.h5'
0.1
0.0 T T T T
CEBPB JUND MAFK NANOG

Transcription factor

Fig. 2 | Using Kipoi to apply and benchmark alternative models for transcription factor binding prediction. a, Five models for predicting transcription factor
binding based on alternative modeling paradigms: first, position weight matrices provided by the HOCOMOCO database?®; second, Isgkm-SVM®™, a support
vector machine classifier; third, the convolutional neural network DeepBind®; fourth, the multi-task convolutional neural network DeepSEA; and finally,
FactorNet, a multimodal deep neural network with convolutional and recurrent layers that further integrates chromatin accessibility profile and genomic
annotation features. Models differ by both the size of genomic input sequence (DeepSEA’ and FactorNET® consider ~1 kb, whereas other models are based on
~100 bp sequence inputs) and the parametrization complexity, with the total size of stored model parameters ranging from 16 kB (pwm_HOCOMOCO) to 211
MB (DeepSEA). b, Performance of the models in a for predicting ChIP-seq peaks of four transcription factors on held-out data (chromosome 8), quantified
using the area under the precision recall curve (auPRC). More complex models yield more accurate predictions than the simpler models such as the commonly
used position weight matrices. ¢, Example use of Kipoi from the command line to install software dependencies, download the model, extract and preprocess
the data, and write predictions to a new file. Results as shown in b can be obtained for all Kipoi models listed in a using these generic commands by varying the
placeholder <Model>.

canonical sequence-related bioinformatics
data types. Model parameters or other
non-source files are hosted on Zenodo or
Figshare—data repositories that offer a
digital object identifier (DOI) and ensure
long-term data access. Kipoi enables
seamless installation of models and their
software dependencies independently of the
programming language of the model (by
providing containers or using Conda and
pip package managers, hence leveraging
the Bioconda distribution’’; Supplementary
Methods). New models can be contributed
using a simple, well-documented workflow
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(Supplementary Methods). Moreover, all
models are subjected to nightly tests using
a continuous integration service (CircleCI),
thereby ensuring that all models are
executable and yield reproducible outputs
on test datasets'’. Below, we illustrate usage
of Kipoi through five relevant use cases and
make the code available for each of them.

Benchmarking alternative models for
predicting transcription factor binding
Practitioners are often faced with the
choice between multiple predictive
models. Identifying the most appropriate

model often requires them to perform

a benchmark on data relevant to the
application. Access to a wide range of
models through a common API facilitates
the systematic comparison of models. To
illustrate this use case, we benchmarked
five models for predicting genomic binding
sites of transcription factors (Fig. 2a). These
models span different modeling paradigms,
including methods based on classical
position weight matrices, gapped k-mer
support vector machines (Isgkm-SVM")
and deep learning (DeepBind®, DeepSEA’
and FactorNet®). The models were
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Fig. 3 | Using Kipoi for adapting existing models to new tasks (transfer learning). a, Architecture of alternative models for predicting chromatin accessibility
from DNA sequence. Model parameters were either randomly initialized (left) or transferred from an existing neural network pretrained on 421 other
biosamples (cell lines or tissues, right). b, Predictive performance measured using the area under the precision recall curve (auPRC), comparing randomly
initialized (light blue) versus pretrained (dark blue) models. Shown is the performance on held-out data (chromosomes 1, 8 and 21) for 10 biosamples that
were not used during pretraining. ¢, Training curves, showing the auPRC on the validation data (chromosome 9) as a function of the training epoch. The dashed
vertical line denotes the training epoch at which the model training was completed. Pretrained models required fewer training epochs than randomly initialized

models and achieved more accurate predictions.

assessed for distinguishing bound from
unbound regions, where bound regions
were defined as high-confidence binding
events in chromatin immunoprecipitation
sequencing (ChIP-seq) experiments for
four transcription factors in different cell
lines: CEBPB in HeLa-S3, JUND in HepG2,
MAFK in K562 and NANOG in H1-hESC
(Supplementary Methods). With the
exception of Isgkm-SVM (Supplementary
Table 1), all Kipoi implementations of
the considered models are based on
implementations provided by the respective
publications and were trained by the
original authors. The performance of all
models was assessed on chromosome 8,
which was not used to train any of the
considered models.

Position weight matrix models performed
poorly across all transcription factors
(Fig. 2b), likely owing to their inability to

account for additional sequence features,
such as motifs of other cooperating and
competing transcription factors. More
complex models (for example, DeepSEA
and FactorNet) consistently outperformed
simpler ones (for example, DeepBind and
Isgkm-SVM). FactorNet consistently yielded
the most accurate predictions, most likely
because the model combines sequence and
DNA accessibility information (Fig. 2b and
Supplementary Fig. 1).

In this example, Kipoi greatly simplifies
an otherwise cumbersome task. The
considered models are implemented with
different software frameworks (Fig. 2a),
require different input file formats, and
return predictions in different output
formats. Furthermore, installing and
validating the appropriate software
dependencies for each model is difficult and
time consuming when done manually. With

NATURE BIOTECHNOLOGY | VOL 37 | JUNE 2019 | 589-600 | www.nature.com/naturebiotechnology

Kipoi, the entire procedure of installing
and executing a model reduces to executing
three simple commands (Fig. 2c). As these
three commands are common to all models
and the predictions are stored in a common
format, the benchmark can be very simply
scripted with workflow management tools
(Supplementary Methods).

Improving predictive models of
chromatin accessibility via transfer
learning

Training new models can be time consuming
and requires large training datasets. One
way this can be facilitated is via transfer
learning (i.e., reusing models trained on one
prediction task to initialize a new model

for a different but related task)'°. Transfer
learning typically enables more rapid
training, reduces the required amount of
data for training and improves the predictive

595



correspondence

...ACGAT...

...ACTAT...

[ Transform: e.g., subtract

# Annotate VCF file with

# variant scores

kipoi veff score variants \
<Model> \
--dataloader_args="'{

“fasta file”: “hg38.fa”}"' \

--vcf_path 'input.vcf' \
-0 ‘annotated.vcf’

d

# Create a mutation map
kipoi veff create_mutation_map \
<Model> \

--dataloader _args="'{
“intervals_file”: “int.bed”,
“fasta file”: “hg38.fa"}"' \

-0 ‘mmap.h5’

—E

Variant-centered

Fig. 4 | Variant effect prediction and feature importance scores. a, Schema of variant effect prediction using in silico mutagenesis. Model predictions
calculated for the reference allele and the alternative allele are contrasted and written into an annotated copy of the input variant call format file Cvcf).

b, Kipoi uniformly supports variant effect prediction for models that can make predictions anywhere in the genome (top) and also for models that can make
predictions only on predefined regions such as exon boundaries (bottom). ¢, Generic command for variant effect prediction. d, Generic command to compute
the importance scores using in silico mutagenesis. e, Feature importance scores visualized as a mutation map (heat map: blue, negative effect; red, positive
effect) for variant rs35703285 and the predicted GATA2 binding difference between alleles for four different models. The black boxes in the mutation maps
highlight the position and the alternative allele of the respective variant. Stars highlight variants annotated in the human variant database ClinVar, with red

indicating likely pathogenic; green, likely benign; gray, uncertain, conflicting significance, and any other type.

performance compared with models trained
from scratch. Deep neural networks are well
suited to transfer learning. They consist of
successive layers that transform input data
into increasingly abstract representations.
Most of the low-level abstractions—for
instance, edge detection for images or
transcription factor motifs in genomics—
turn out to be common to multiple
prediction tasks. Consequently, it is often
sufficient to train only the more abstract
layers when transferring such models to
solve a new task. Transfer learning of deep
neural networks has been successfully
applied across multiple domains, including
biological imaging"’, natural language
processing'® and genomics'.

Here we revisit a transfer learning
example in genomics”, predicting chromatin
accessibility profiles for 431 biosamples (cell
lines or tissues; Supplementary Methods).
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Initially, we trained a genome-wide multi-
task model to predict chromatin accessibility
for 421 biosamples (tasks), while holding
out 10 biosamples. For the 10 held-out
biosamples, we trained single-task models,
one per biosample, transferring all model
parameters but the final layer (Fig. 3a).
The final two layers of this model were
then retrained for each task while keeping
the remaining model parameters fixed. For
comparison, we also considered single-
task models with randomly initialized
parameters but otherwise identical
architecture. Models initialized with
transferred model parameters yielded
improved predictive accuracy for all
biosamples, with a 15.1% larger area under
the precision recall curve on average,
compared to conventional training using
randomly initialized parameters (Fig. 3b).
Transfer learning also greatly reduced the

required training time, from over a day to 7
h on average (5.4 epochs versus 17.3 epochs
on average; Fig. 3¢).

Kipoi promotes transfer learning in
three ways. First, it provides access to a
comprehensive collection of state-of-the-
art models in genomics. Transfer learning
works better if the tackled task is similar to
the original task of the pretrained model'®.
Kipoi allows users to efficiently access a
large collection of trained models, which
can be browsed by name, tag or framework,
thus facilitating the identification of models
trained for related tasks. Second, each model
is easily installable and comes with a tested
data-loader. Most of the data-loaders can
be directly used to retrain models. Third,
for neural network models, Kipoi offers a
command to return and store the activation
of a desired intermediate layer rather than
the final, prediction layer. Using these
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Fig. 5 | Composite models using Kipoi for improved pathogenic splice variant scoring. a, |llustration of composite modeling for mRNA splicing. A model
trained to distinguish pathogenic from benign splicing region variants is easily constructed by combining Kipoi models for complementary aspects of splicing
regulation (MaxEntScan 3’ models the acceptor site, MaxEntScan 5" and HAL model the donor site, LaBranchoR models the branchpoint) and phylogenetic
conservation. These variant scores are combined by logistic regression to predict the variant pathogenicity (orange box). b, Different versions of the ensemble
model were trained and evaluated in tenfold cross-validation for the dbscSNV and ClinVar datasets (Supplementary Methods). The four leftmost models are
incrementally added to the composite model in chronological order of their publication: the leftmost point only uses information from the MaxEntScan 3’
model, while “+ conservation (KipoiSplice4)" uses all four models and phylogenetic conservation. These performances were compared to a logistic regression
model using state-of-the-art splicing variant effect predictors (SPIDEX, SPIDEX + conservation, dbscSNV). KipoiSplice4 achieves state-of-the-art performance
on the dbscSNV dataset and outperforms alternative models on ClinVar, which contains a broader range of variants. auROC, area under the receiver operating
characteristics curve. ¢, Fraction of unscored variants for different models in the dbscSNV and ClinVar datasets.

precomputed intermediate activations

can substantially speed the training of the
transferred model. A second advantage of
storing the intermediate activation is that
any framework can be used to train the top
layers. Altogether, leveraging pretrained
models—in particular, deep neural networks
that have been trained on large datasets
with a substantial investment in computing
time—allows researchers to train more
accurate models on smaller datasets while
saving time and computing costs.

Predicting the molecular effects of
genetic variants using interpretation
plugins

One important application of trained
models in genomics, with translational
relevance in human genetics and cancer
research, is to predict the effects of genetic
variants on molecular phenotypes”*.
Individually, variant effect prediction has
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been implemented by a subset of published
sequence-based predictive models, such

as DeepBind®, DeepSEA” and CpGenie®.
Kipoi provides a generic and standardized
implementation of variant effect prediction
as a plugin, which allows for annotating
variants obtained from the variant call
format (.vcf) files in conjunction with
DNA sequence-based models (98% of
models in the Kipoi repository). The
variant effect prediction plugin performs
in silico mutagenesis by contrasting model
predictions for the reference allele and for
the alternative allele (Fig. 4a,b). If the model
can be applied across the entire genome,
such as in chromatin accessibility models,
sequences centered on the queried variants
are extracted (top row, Fig. 4b). If instead
the model can only be applied to regions
anchored at specific genomic locations,
such as in splicing models at intron-exon
junctions, only sequences extracted from

www.nature.com/naturebiotechnology

valid regions that overlap with the variants
of interest are used (bottom row, Fig. 4b).
Kipoi provides a single command handling
both scenarios (Fig. 4c). Altogether, the
variant effect prediction plugin allows
integrating a broad range of genomics
predictive models into personal genome
annotation workflows, and it can be readily
extended to newly added models.

To inspect genomic regions containing
the variant in higher detail, variant effect
predictions for all possible single nucleotide
variants in the sequence can be computed
using a single command (Fig. 4d) and
visualized as a mutation map (Fig. 4e). This
helps to assess the predicted impact of a
variant of interest in the context of other
possible variants in the genomic region and
may help pinpoint affected cis-regulatory
elements. For example, the mutation maps
for transcription factor binding sites of
GATA2 show that the first four models
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from Fig. 2 agree on the effect of the variant
rs35703285. Interestingly, the three most
complex models (Isgkm-SVM, DeepBind
and DeepSEA) predict effects of similar
strength further away from the core motifs.
This likely reflects that these models capture
further regulatory sequences beyond the
core motif. The variant rs35703285 has
previously been classified as pathogenic

in the ClinVar dataset and is linked to
B-thalassemia (MedGen: C0005283),

a disease that reduces synthesis of the
hemoglobin subunit f (hemoglobin B chain)
and results in microcytic, hypochromic
anemia. The mutation map indicates

that similar loss of GATA2 binding

can be expected from other variants in

the region.

In addition to in silico mutagenesis,
which only applies to sequences, Kipoi
provides a plugin that can evaluate the
influence for any type of input on model
prediction by implementing feature
importance algorithms, including saliency
maps’' and DeepLIFT*. These algorithms
can offer complementary insights and are
computationally more efficient than in silico
mutagenesis.

Predicting pathogenic splice variants
by combining models
State-of-the-art models performing variant
effect prediction frequently combine scores
from multiple models. The advantage is
twofold. First, combined scores can cover
multiple biological processes. Second,
combined scores are more robust because
they average out conflicting predictions
of individual models. Combining models
or scores can be easily done in Kipoi
by leveraging the standardization and
modularity of models in combination
with the variant effect prediction plugin
introduced above. As a proof of concept,
we used Kipoi to define a pathogenicity
score of variants located near splice sites by
integrating four predictive models covering
complementary aspects of splicing (Fig. 5a)
into a single composite model.

Splicing defects are one of the most
frequent causes of genetic disease. In
the first step of splicing, the donor site
is attacked by an intronic adenosine to
form a branchpoint. In the second step,
the acceptor site is cleaved and spliced
(i.e., joined) to the 3" end of the donor
site. To cover variants possibly affecting
splicing through different mechanisms, we
considered four complementary models
trained on different types of data. The first
two models were 5" and 3" MaxEntScan,
which are based on a probabilistic model
that scores donor and acceptor site regions
and was trained on splice sites with cDNA
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support’; the third model was HAL, a k-
mer based linear regression model scoring
donor site regions that was trained on a
massively parallel reporter assay in which
hundreds of thousands of random sequences
probed the donor site sequence space'’;
and the fourth model was LaBranchoR, a
deep-learning model scoring the region
upstream of the acceptor site for possible
branchpoint locations that was trained from
experimentally mapped branchpoints'*.

Although MaxEntScan can be easily
applied to score genetic variants provided in
VCE files through Ensembl’s variant effect
predictor plugin®, HAL and LaBranchoR
do not offer this functionality out of the
box. Using Kipoi’s API, the variant effect
prediction is standardized for all these
models (Fig. 5a). We built a new Kipoi
model, KipoiSplice4, which is a logistic
regression model based on variant effect
predictions of these four Kipoi models
and phylogenetic conservation scores
(Supplementary Methods and Fig. 5a).
This combined model was trained on two
different datasets of splice variants classified
either as pathogenic or benign (dbscSNV
and ClinVar; Supplementary Methods).

To illustrate the benefit of integrating
multiple models, we incrementally
added the four splicing models in the
chronological order of model publication.
With an increasing number of models, the
performance increased in both dbscSNV
and ClinVar datasets (Fig. 5b, left four
methods). Next we evaluated the model
performance against two state-of-the-art
splicing scores: another integrative approach
that predicts pathogenic splicing-affecting
variants, dbscSNV*, and SPIDEX*. For a
fair comparison, we furthermore trained a
score combining SPIDEX and phylogenetic
conservation on each dataset, which reached
the same performance as the dbscSNV
model on ClinVar. While the performance
of KipoiSplice4 is similar to that of dbscSNV
for the dbscSNV dataset, KipoiSplice4
outperforms all other methods on the
ClinVar dataset. One reason for the better
performance of KipoiSplice4 is that it scores
more variants (Fig. 5¢). Neither SPIDEX
nor dbscSNV explicitly models the splicing
branchpoint, while KipoiSplice4 does so
using LaBranchoR.

By wrapping the individual models into
a data-loader, we made the ensemble model
KipoiSplice4 available in Kipoi. KipoiSplice4
can hence be executed on demand to
de novo predict effects of variants in splice
sites. Altogether, by wrapping existing
splice models into Kipoi, and thereby
leveraging the out-of-the-box variant effect
prediction, we developed a state-of-the-
art model for scoring the pathogenicity of

splicing variants. Additionally, with new
splicing models and more extensive training
datasets of better quality being published,
the ensemble model can be easily and
transparently improved.

A unique resource

We have introduced a repository and
programmatic standard for sharing and
reuse of trained models in genomics, thereby
addressing an unmet need. The Kipoi
model repository is dedicated to trained
models with applications in genomics in
the broad sense. Specifically, we request at
least one input data modality that can be
derived either from DNA sequence (which
includes amino acid sequence) or from an
-omics assay, such as ChIP-seq or protein
mass spectrometry. By providing a unified
interface to models, automated installation,
and nightly tests, Kipoi streamlines the
application of trained models, overcomes
the technical hurdles of their deployment,
improves their dissemination, and ultimately
facilitates reproducible research. The use
cases we have presented demonstrate that
Kipoi greatly facilitates the execution

and comparison of alternative models

for the same task, standardizes their use

to functionally interpret genetic variants,
and facilitates the development of new
models based on existing ones, either by
means of transfer learning or by model
combination.

The dissemination and sharing of trained
models offers key advantages over either
sharing precomputed predictions or sharing
code for users to train models from scratch.
Precomputed predictions are limited to
a narrow set of predefined input data. In
particular, for DNA sequence variations,
the combinatorial growth of possible
sequence variants renders this approach
impractical in terms of storage and compute
requirements. For example, storing variant
effect predictions is technically impossible
even for relatively short (<10 bp) indels.
Conversely, retraining models from scratch
is technically challenging and requires access
to potentially large training dataset, as well
as suitable computational resources. Trained
machine learning models can be regarded as
functions encoding data distributions”. We
anticipate the relevance of sharing trained
models increasing as larger datasets are
becoming available, with repositories such as
Kipoi filling an important gap between code
repositories and data archives.

Transfer learning appears to be a
promising avenue for training models
when data are scarce. Using prediction of
DNA accessibility as an example, we have
illustrated the potential of transfer learning
in a favorable scenario where multiple
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related datasets and tasks are available.

The utility of transfer learning depends

on how similar the new prediction task

is to those of available models. Although
the definition of generic measures for task
similarity is an open research question,

trial and error is a viable and pragmatic
strategy to design transfer learning schemes
because it is computationally cheap
compared to exploring model architectures
and parameter settings from scratch. A
starting point for this search is to use models
trained for tasks involving related biological
processes. For example, the available
models trained on in vitro transcription
factor binding assays can be good initial
models to train in vivo models of the same
transcription factors, or models trained on
different cell types of tissues. Multi-task
models are particularly useful because they
capture multiple biological processes, some
of which might be relevant for the new task.

At the core of our contribution is an
API, a unified way for software components
to interact with any of these models. APIs
provide modularity to software design and
help to reduce code redundancy. We have
demonstrated the utility of the API, which
provides a generic approach both to carry
out variant effect predictions and derive
feature importance scores for a wide range
of models. These examples are important
downstream functionalities that are typically
not provided by software implementations
of models as provided by authors, or they
may be implemented using diverse and
inconsistent paradigms and interfaces.

We foresee a range of future plugins that
are of general use for different models.
Additionally, it is straightforward to set up
new instances of a Kipoi model repository.
It could even be adopted in domains other
than genomics because the Kipoi API is
agnostic to input or output data types and
machine learning frameworks.

While complying to a programmatic
standard can constrain contributors and
provide some initial overhead to adapting
legacy software, the long-term community
benefits from the standardization will
outweigh short-term investments. The
open software project Bioconductor
and the data archive Gene Expression
Omnibus are canonical examples of the
expected gains. These frameworks achieve
a suitable compromise between rigidly
enforced structure and no structure. With
this in mind, we have designed Kipoi’s
API to rigorously specify specific aspects,
such as providing example files to test
model executability, while leaving other
choices, such as the machine learning
modeling framework, open to developers.
We anticipate that community usage will

help to develop good practices and find a
reasonable balance between standardization
and flexibility.

An exciting next step would be to set up
open challenges for key predictive tasks in
genomics with open challenge platforms,
like DREAM (http://dreamchallenges.org)
or CAGI (https://genomeinterpretation.
org), and make the best models available in
Kipoi. This would simplify and modularize
the development of predictive models into
three steps: first, designing training and
evaluation datasets (challenge organizers);
second, training the best model (challenge
competitors); and third, making the model
easily available for others to use (repository
of trained models). Such modularization
would lower the entry barrier for
newcomers as well as machine learning
practitioners lacking domain expertise.
Moreover, as models and training datasets
continue to evolve, such best-in-class
models could be continuously updated and
made immediately available to all. Kipoi
provides important elements to this end:

a standardization for data loading and
model execution, nightly tests, and a
central repository.

A repository of interoperable models
opens the possibility of building composite
models that capture how genetic variation
propagates through successive biological
processes. Such a sequential, modular
modeling offers several advantages. First,
end-to-end fitting of a complex trait such
as a cellular behavior or the expression level
of a gene can be too difficult because the
amount of data is too scarce compared to the
complexity of the phenomena. In contrast,
today’s high-throughput technologies
focusing on a specific subprocess offer
more data at higher accuracy. For example,
massively parallel reporter assays allow
saturated screens in which almost the
complete combinatorial sequence space
can be probed for the selected molecular
processes. Hence accurate models may
be obtained for these elementary tasks
and serve as building blocks for modeling
more complex tasks. Second, modularity
is a hallmark of biological processes as
the same proteins are often involved in
multiple processes. We therefore anticipate
fruitful cross-talk between modelers sharing
individual components useful for different
modeling tasks. Third, such an approach
would lead to models that are interpretable
in terms of simpler biological processes, as
opposed to black box predictors. Whether
and how predictive models of elementary
steps can be sequentially combined and
jointly fitted to model multiple higher order
biological processes of increasing complexity
is an exciting research direction. Altogether,
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we foresee Kipoi being a catalyst in the
endeavor to model complex phenotypes
from genotype.

Data availability

All models used in this analysis are available
at https://doi.org/10.5281/zenodo.1637796.
The model configuration files in the
repository link to model parameters stored
in specific Zenodo digital objects and are
therefore guaranteed to be reproducible
and openly available. Chromatin
accessibility data used for training and
evaluating Divergent421 in the transfer-
learning section is available at https://
doi.org/10.5281/zenodo.2615128 in the
manuscript/data/raw/tlearn directory.

Code availability

Kipoi, kipoiseq, kipoi_veff, and kipoi_
interpret are available as python packages
on PyPI and their source code is available
at https://github.com/kipoi/kipoi, https://
github.com/kipoi/kipoiseq, https://github.
com/kipoi/kipoi-veff and https://github.
com/kipoi/kipoi-interpret, correspondingly.
Models are hosted at https://github.com/
kipoi/models. Analysis was performed
with the following versions: kipoi = 0.6.4,
kipoiseq = 0.2.2, kipoi_veff = 0.1.0, kipoi_
interpret = 0.1.0, model repository with
5a93b7b7ae1842c35b0052¢e2c17afdal5
ec8a890 commit SHA-1 hash. Code to
reproduce the results is available at https://
github.com/kipoi/manuscript. Code

and data are also available at https://doi.

org/10.5281/zenodo.2615128. a
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