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Kinks and nanofriction: Structural phases in few-atom chains

Dorian A. Gangloff ,1,* Alexei Bylinskii,2 and Vladan Vuletić3,†
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The frictional dynamics of interacting surfaces under forced translation are critically dependent on lattice
commensurability. The highly nonlinear system of an elastic atomic chain sliding on an incommensurate periodic
potential exhibits topological defects, known as kinks, that govern the frictional and translational dynamics.
Performing experiments in a trapped-ion friction emulator, we observe two distinct structural and frictional
phases: a commensurate high-friction phase where the ions stick-slip simultaneously over the lattice, and an
incommensurate low-friction phase where the propagation of a kink breaks that simultaneity. We experimentally
track the kink’s propagation with atom-by-atom and sublattice site resolution and show that its velocity increases
with commensurability. Our results elucidate the commensurate-incommensurate transition and the connection
between the appearance of kinks and the reduction of friction in a finite system, with important consequences
for controlling friction at nanocontacts.
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I. INTRODUCTION

Commensurability at the interface between two atomically
smooth, elastic surfaces can fundamentally alter the energetic
cost of their forced relative motion [1,2]. Commensurate
surfaces experience the largest sticking forces, and thus the
most discontinuous form of motion: stick-slip friction [3].
At sufficient mismatch between the two surface lattices,
the interface develops defects distributed over a collection
of atoms—kink solitons—that result in an incommensurate
phase with smoother surface translation, reduced energy bar-
riers, and reduced friction [4]. Thus the appearance of kinks,
that requires finite lattice mismatch, marks the commensurate-
incommensurate (C-I) transition [5–8].

In the solid state, two-dimensional versions of the C-I
transition were observed at the interface between krypton
monolayers and graphite [9], and between graphene and
hexagonal boron nitride [10]. There, rotation between two sur-
faces introduced a lattice mismatch and the transition between
a commensurate and an incommensurate phase. However, a
direct experimental link between the C-I transition and the
appearance of a finite kink density, supported by an atomistic
calculation of the energy landscape [11], is challenging in
such systems.
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Typically, the Frenkel-Kontorova model [12] is used to
describe the physics of commensurability of extended inter-
faces. In this model, the motion of kinks occurs within a
potential landscape, the Peierls-Nabarro (PN) potential. The
concepts of the PN potential and kinks naturally extend to
small systems, as for example in the diffusion of epitaxial
islands and surface adsorbates [4,13–15]. Small systems offer
an opportunity to study the formation of kinks under condi-
tions where a direct link between concepts and experimental
observations can be established.

Friction emulators with synthetic interfaces consisting of
colloidal particles [16] or cold trapped ions [17] have im-
proved our understanding of fundamental surface science,
owing to in-situ tuning of fundamental parameters, and to the
ability to image individual particles. Such emulators [18–20]
have been used to observe the Aubry transition [21–23] and
kink transport [16,24]. Cold trapped-ion systems [25–28]
have been used to study fundamental aspects of atomistic
friction, such as mismatch-induced lubricity [17], the temper-
ature and velocity dependence of friction [29], and multislip
friction [30].

In this paper, we use a trapped-ion friction emulator to
experimentally observe a structural phase transition captured
by the appearance of kinks: the few-atom analog of the C-I
transition. We observe the stick-slip dynamics of the chain
atom by atom, find that a critical degree of commensurabil-
ity is required for kinks to form, and tie their appearance
to a reduction in the observed friction. In our finite one-
dimensional system, a kink is a metastable configuration of
the atoms [4,36,37]—it has a higher energy than the global
minimum with respect to translation—that is manifested
in our experimental signal by atoms slipping at different
times.
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FIG. 1. Ion-crystal friction emulator for the study of structural phases and kinks. (a) Our friction emulator system [17,28,31] consisting
of an ion chain in a Paul trap (support) with typical axial vibrational frequency ω0/(2π ) ∼ 360 kHz and average interion spacing d ∼ 5 μm,
subject to an optical-lattice potential (substrate) with depth U/kB ∼ 1 mK and lattice constant a = 185 nm. The ions are laser-cooled into
the optical lattice to temperatures �0.05U/kB. The crystal is displaced across the lattice with ion-trap electric fields. Each ion’s position
relative to the lattice is observed via the position-dependent ion fluorescence that results from lattice-assisted laser cooling [17], as the trap
center X is translated at velocity vt . Each ion’s interaction with the support and with its neighbor are captured by spring constants K and
g, respectively [21,32] (see Appendix H). The lattice-free misfit p0 is measured at low lattice depth U (red). At high lattice depth (blue),
displacement hysteresis is equivalent to friction Fs. (b) Schematic structural phase diagram for a two-ion chain in the (p0,U ) plane. Arrows
highlight transitions of interest. (c) Adiabatic path (white curve) of a two-ion chain through the lattice energy landscape (minima in blue,
maxima in yellow) as the trap is translated vs ion positions x1, x2, shown for points of interest in the (p0,U ) plane.

II. NANOFRICTION EMULATOR

Our emulator [17,28,31] consists of a self-organized one-
dimensional Coulomb crystal of N laser-cooled 174Yb+ ions
in a linear Paul trap [33], sliding over a periodic optical
potential of depthU and lattice spacing a = 185 nm generated
by a standing wave of light [Fig. 1(a)]. The Paul trap’s vibra-
tional frequency is tuned over the range 350–375 kHz, and
the optical lattice depth is calibrated to be U = 19 MHz (see
Appendix C) for all experiments (except during calibration
measurements of the lattice-free misfit p0, during which it is
set to U ≈ 4 MHz). A translation of the Paul trap’s potential
minimum X with respect to the optical lattice transports the
ion crystal at adjustable speed vt over the periodic potential.
Continuous laser cooling of the ions turns the optical lattice
potential that each ion feels into a proportional amount of
fluorescence (see Appendix A). As a result, the position of
each ion relative to the optical lattice is tracked with sub-
wavelength resolution via their fluorescence, allowing us to
measure each ion’s hysteresis loops [17] and to reconstruct a
kink traveling through the ion chain. Continuous laser cooling
of the ion chain removes heat generated by friction, and sets
an ion-chain temperature T = 0.05U/kB when measured in
the absence of external drive. Meanwhile the effects of a
finite temperature are reduced by performing experiments at
sufficiently high translation speed [29], here fixed at vt/a =
2000 per second.

Although the intrinsic interion spacing dj, j+1, from ion j
to ion j + 1 ( j = 1, . . . ,N − 1), of a few micrometers is not
uniform along the chain, it can be controlled with nanometer
precision by adjusting the Paul trap harmonic potential in
order to introduce a misfit p0 between the ion crystal and
the lattice [Fig. 1(a)]. This is measured under translation of
the ion chain over an optical lattice that only weakly affects
the ion chain motion (U � Ka2/2π2), as follows (see also

Appendix B). We label X (i)
j the ith position of the Paul trap

minimum at which ion j passes a lattice antinode during trans-
lation, which appears as a fluorescence maximum. We set our
reference as X (1)

1 = 0—i.e., we reference the position of all
maxima to the edge ion first maximum—and we set our length
unit as X (2)

1 − X (1)
1 = 1—i.e., we set the distance between two

slips of the same ion, and therefore the lattice period, to be
unity. A simultaneous measurement of each ion’s fluorescence
can thus be used to determine X (i)

j in these units. Because
all ions necessarily pass a lattice antinode if the chain is
translated by one lattice period a, X (i)

j+1 − X (i)
j is a direct mea-

surement of the average distance between ion j and ion j + 1
relative to the lattice spacing: (dj, j+1/a) mod 1. Averaging this
quantity over the ion chain is our measure of the lattice-free
misfit,

p0/2 = 1

N − 1

N−1∑
j=1

(d j, j+1/a) mod 1. (1)

The chain is in-registry with the substrate when each ion
spacing d j, j+1 is an integer multiple of the lattice spacing
a, (d j, j+1/a) mod 1 = 0, corresponding to no misfit, p0 =
0. A departure from this configuration introduces a misfit
p0 > 0 whose value can be tuned continuously up to its
maximum p0 = 1 for N = 2, and up to p0 ≈ 0.8 for N = 5
(limited to this value owing to spacing inhomogeneities in
the longer ion chain). Equation (1) is useful for quasiuni-
form phase spacing of the chain, i.e., |[(dj+1, j+2/a) mod 1] −
[(dj, j+1/a) mod 1]| � 1, and is valid for 0 � (d j, j+1/a) mod
1 � 0.5; beyond 0.5, corresponding to the maximal misfit
p0 = 1, the system “wraps around” and the misfit decreases.
A nonzero misfit can cause up to Np0/2 kinks, i.e., the kink
density pk is at most p0 [5]. Here we tune the lattice-free misfit
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p0 from 0 to 1 for N = 2, and from 0 to 0.4 for N = 5, which
introduces at most one kink.

III. STRUCTURAL PHASES

Several structural phases are expected as a function of
the lattice-free misfit p0 and the lattice depth U , as shown
schematically in Fig. 1(b). For large misfit p0 ∼ 1, emulating
the maximally incommensurate case for infinite chains, the
Aubry transition [34] at critical lattice depth Uc takes the sys-
tem from a frictionless phase (for U < Uc) to a pinned phase
(forU > Uc), as observed previously in our finite system [21].
By contrast, the C-I transition occurs as a function of the misfit
p0, and can be identified by the appearance of kinks [5].

Figure 1(c) illustrates these important transitions for a
finite system in the limiting case N = 2. For a sufficiently
commensurate arrangement p0 ∼ 0 [Fig. 1(b), diamond 1],
as the trap position X is translated over the lattice potential,
the chain is pinned into a configuration where the atoms are
in-registry with the lattice, and where the forced translation
of the chain creates sudden transitions towards the same
stable configuration shifted by one lattice site [Fig. 1(c),
diamond 1]. The stick-slip events of all atoms in the chain
are synchronous and result in the largest friction force—a
regime well described by Prandtl-Tomlinson physics [1]. As
the misfit p0 is increased, the different atoms experience
different lattice forces—a regime better described by Frenkel-
Kontorova physics [12]. At a critical value p0 � pc(U ), it
becomes energetically favorable under forced translation for
some of the atoms in the chain to slip to the next lattice site,
while the rest of the chain remains in its initial lattice site
[Fig. 1(c), diamond 2]. This event defines a configurational
change in the chain to a new metastable state that contains
a kink defect [4,35] [Fig. 1(b), diamond 2]. The appearance
of a kink embodies a C-I transition [5] for a finite system,
although the metastable kink state is not truly incommensurate
[4,36,37]. In this configuration, the PN barriers are finite:
kinks are trapped, the translation of the chain is still dominated
by stick-slip events, and the adiabatic trajectory has gaps
and is thus not analytic. Below a critical value of the lattice
depth (U < Uc), marking the Aubry transition, the PN barriers
disappear: the movement of kinks is free, the translation of the
chain over the substrate is continuous, the function defining
its adiabatic trajectory is analytic, and friction disappears
[Figs. 1(b) and 1(c), diamond 3]. PN barriers also disappear
at p0 ∼ 0 when the trap force exceeds the maximal substrate
force [38], U < Ka2/2π2 [Fig. 1(b), diamond 4].

IV. C-I TRANSITION, KINK DENSITY, AND FRICTION

The kink density pk is simply the misfit measured in the
presence of the lattice [5], as it quantifies the deviation per
particle from a commensurate arrangement. At a critical value
of p0 that depends on the lattice depth U , the kink density
pk undergoes a transition from pk = 0 to pk > 0, as shown
in Fig. 2(a) for an infinite Frenkel-Kontorova chain. This
critical point pc(U ), beyond which pk quickly converges to
p0, indicates the C-I transition [5], and this pk versus p0

parametrisation is precisely how we observe it.

FIG. 2. The C-I transition via kink density and hysteresis.
(a) Kink density pk vs lattice-free misfit p0 in the infinite one-
dimensional Frenkel-Kontorova model, showing the C-I transition
[5] at the critical misfit pc separating the commensurate (C) and
incommensurate (I) phases. (b-c) Simulated ion positions x j (mod
a) vs trap position X , for two ions, in their lattice-free position (red)
and lattice-perturbed position (blue), where forward and backward
translation results in static friction Fs. The difference in trap positions
at which the ions pass lattice maxima x j = 0 corresponds to the misfit
p0 (red) and the kink density pk (blue). (b) p0 = 0.3 and (c) 0.8.

To observe this transition in our finite chain, we measure
pk in an identical way to p0, albeit in the presence of a deep
lattice U = 4.6Ka2/2π2: from fluorescence measurements
we obtain the trap positions X (i)

j at which ion j, under forced
translation, passes a lattice maximum (x j = 0) in relation
to its neighbor j + 1. A difference X (i)

j+1 − X (i)
j , leading to

pk > 0, captures whether slip events are asynchronous and
therefore whether a kink is present. In the prototypical case
N = 2, Figs. 2(b) and 2(c) shows the simulated trajectories
x1, x2 of two ions against trap position X (see Appendix E
for N = 5). The red curves are the lattice-free (U = 0) tra-
jectories: the horizontal distance between them is the lattice-
free misfit p0, and overlapping curves (p0 = 0) show the
chain is commensurate with the lattice. The blue curves are
trajectories in the presence of a deep lattice (U > Uc): they
exhibit hysteresis—and therefore friction—corresponding to
a gapped adiabatic trajectory [Fig. 1(c)]. At misfits below
the C-I transition [Fig. 2(b)], the trajectory has a single gap
(per lattice period), and the hysteresis loops of the two ions
overlap almost completely. This corresponds to synchronous
slip events characterized by a kink density pk ∼ 0. At large
misfit [Fig. 2(c)], the hysteresis loops exhibit no overlap, cor-
responding to asynchronous slip events and to the maximum
possible kink density pk ∼ p0. The doubling of gaps (per
lattice period) in the adiabatic trajectory, and the consequent
doubling of hysteresis loops, can be understood as two transi-
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FIG. 3. Kinks in a two-ion chain (left) and a five-ion chain
(right). Kink density pk [(a) and (b)], deformation |p0 − pk| [(c) and
(d)], and static friction force Fs [(e) and (f)], measured vs lattice-free
misfit p0 for N = 2 [blue, (a), (c), and (e)] and N = 5 [red, (b),
(d), and (f)]. Lines in (a) and (b) are the kink density pk = p0

for U = 0. Solid curves in (a)–(f) are numerical simulations for
parameters matching those of the data shown, using kBT/U = 0.2
[(a), (c), and (e)] and 0.5 [(b), (d), and (f)]. Dashed curves are
T = 0 simulations. The critical misfit pc(U ) is the misfit p0 that
maximizes p0 − pk: pc(U ) = 0.55 (N = 2) and pc(U ) = 0.25 (N =
5). Numbered diamonds match Fig. 1 points of interest. Fmax is the
maximal friction in the single-slip regime [29,30].

tions: the entry of a kink at one end of the chain, and its exit at
the other end. The intermediate state is a distinct, metastable
configuration of the chain containing a trapped kink [4].

Figure 3 shows the measured kink density pk and static
friction force Fs as a function of the lattice-free misfit p0 for
a two- and a five-ion chain. The trap positions Xj at which
ion j passes a lattice antinode (the “slip” positions) appear
as fluorescence peaks in our experiment [17]. A linear fit of
the slip positions Xj versus j gives pk, while the difference
between forward and backward slips gives Fs. The lines pk =
p0 in Figs. 3(a) and 3(b) represent the expected behavior for
U � Uc, when ion movement is unperturbed by the lattice. A
finite lattice depth (U > Uc) pins the ions to lattice minima
even for p0 > 0, causing the ions to slip more synchronously,
and thereby lowering the kink density to pk � p0. Indeed,
measurements of pk as a function of p0 agree qualitatively
with the critical behavior expected from the infinite-chain
Frenkel-Kontorova physics [Fig. 2(a)]: for p0 less than a criti-

cal value pc, pk stays close to 0 (synchronous slipping), while
above that critical value, pk ascends rapidly back towards
p0 (asynchronous slipping). The transition is highlighted by
the deformation |p0 − pk|, which reaches a maximum at the
critical point pc(U ), as shown in Figs. 3(c) and 3(d).

The transition is smoother than expected from an infi-
nite Frenkel-Kontorova chain, which we attribute to finite-
temperature and finite-size effects. Simulations of a finite
chain at temperature T (see Appendix D), shown as solid
curves in Figs. 3(a)–3(d), are in good agreement with our data
using kBT/U = 0.2 for N = 2 and kBT/U = 0.5 for N = 5.
By comparison, zero-temperature simulations of the same
systems, shown as dashed curves, exhibit a sharper transition
that occurs at a higher value of the misfit p0. Temperature
effectively reduces the PN barriers that cause stick-slip mo-
tion, making it more likely for asynchronous slips to occur,
and thus increasing pk relative to its zero-temperature value.
The additional step structure for N = 5 reflects the fact that,
for N > 3, intermediate values of the misfit correspond to
the system entering higher-order commensurate phases. As
N grows the number of steps grows until, for N = ∞, this
structure constitutes a Devil’s staircase [5,12].

The transition points pc ∼ 0.55 for N = 2 and pc ∼ 0.25
for N = 5, associated with the appearance of kinks, also
delineate two frictional phases, as shown in Figs. 3(e) and
3(f). In the region p0 � pc (Fig. 1, diamond 1) where pk ∼ 0
and the slips are synchronous, friction is high, while in the
region p0 � pc (Fig. 1, diamond 2) where pk ∼ p0 and the
slips are asynchronous, friction is low. The transition point pc
also marks a reduction in the dependence of friction Fs on the
misfit p0, thus confirming that the presence of a kink defect
changes the frictional response of the system.

V. TRAVELING KINK

The incommensurate phase (p0 > pc) defined by asyn-
chronous slipping must exhibit a traveling kink, whose direct
measurement is possible in a sufficiently long chain. We
confirm this from the position of all ions in a five-ion chain as
they traverse the optical lattice. Using their known position-
dependent fluorescence across the lattice, which follows a
cos4(πx j ) function, we reconstruct each ion’s position from
its fluorescence [39]. We obtain pairwise the neighbor dis-
tance �x j, j+1 ( j = 1, . . . , 4), and track a compression and
extension in relative position within each ion pair as the back-
ground trap is translated [Fig. 4(a)]. Grey shading denotes low
fluorescence, and therefore limited reconstruction fidelity (see
Appendix G).

Clear oscillations in the neighbor distances [Fig. 4(a)]
reveal a density wave traveling through the discrete system: a
kink enters the chain at its free end, travels through it and exits
at the other free end, causing a staggered signal across pairs
which repeats at the lattice period a as the Paul trap translates
the chain. For a given pair, the distance �x j, j+1 reaches a
maximum when the kink profile is centered on that pair.
This analysis is supported by finite-temperature numerical
simulations of our experiment with a five-ion chain [Figs. 4(b)
and 4(c)]. In Fig. 4(b), the signal �x j, j+1 is reconstructed from
simulated fluorescence curves, processed identically with our
data. In Fig. 4(c), �x j, j+1 is calculated from the simulated
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FIG. 4. Propagation of a kink in a five-ion chain (a) The distance (�x j, j+1 = (x j − x j+1)) (mod a) between ion j and its nearest neighbor
j + 1 (with mean subtracted) vs trap position X . From top to botttom, j = 1, . . . , 4. Dashed line highlights propagation of the kink maximum
across the ion pairs. Grey shading indicates regions where fluorescence is low, and position is extracted with lower confidence. (b) Numerical
simulations for parameters matching those of data in (a). �x j, j+1 is reconstructed from a simulated fluorescence signal. Grey shading indicates
regions where simulated fluorescence is low. (c) �x j, j+1 from simulated position curves (see Appendix G). (d) Kink velocity vα , normalized
by trap velocity vt , against lattice-free misfit p0. The dashed line is from simulation.

position curves—which, unlike in the experiments, is directly
accessible in simulation. While the curves reconstructed from
fluorescence [Fig. 4(b)] are clearly deformed, and exhibit
the same erroneous deformations as our data in the low-
fluorescence regions (grey area), they are a good approxima-
tion to the true distance [Fig. 4(c)]. Although the true distance
[Fig. 4(c)] is accessible in simulations independent of the
fluorescence level, we apply grey shading to highlight that the
true kink deformations are indeed centered on regions of high
fluorescence.

Tracking the positions of the kink maximum across the
pairs as the trap is translated [Fig. 4(a)] yields the velocity vα

of the traveling kink. This is summarized in Fig. 4(d), where
the kink velocity is normalized by the trap translation velocity
vt = dX/dt . The dashed curve is obtained from our numerical
simulations of the fluorescence signal. Our data reproduce the
salient feature in the simulation: the kink velocity increases
with decreasing misfit p0 as expected from a system approach-
ing a commensurate phase with increasingly synchronous

slips. Below p0 ≈ 0.18, the staggered kink signal fades in
both data and simulation, in agreement with a transition to
the commensurate phase.

VI. SUMMARY AND OUTLOOK

In summary, we observe atom-by-atom the appearance of
a kink in a finite system and connect it to a structural phase
transition between a commensurate phase, where friction is
high, and an incommensurate phase, where friction is reduced.
This work could enable the study of interacting topological
defects and frustration at a nanocontact [12]. Control over the
atomic configuration of a chain yields detailed insight into the
stick-slip dynamics of a commensurate versus an incom-
mensurate phase, building intuition that could carry over to
experiments with, for example, two-dimensional heterostruc-
tures. Furthermore, quantum tunneling of ions through lattice
barriers, in principle realizable in our system [39–41], could
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introduce a quantum-mechanical picture of kinks with rele-
vance at the nanoscale and at cold surfaces.
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APPENDIX A: POSITION DETECTION
VIA FLUORESCENCE

Our dynamic position curves x j are reconstructed from the
observed ion fluorescence, which varies proportionally to the
optical potential energy U cos4(πx j ) experienced by the ion.
This is a result of our laser-cooling scheme, which uses the
optical lattice to couple the vibrational levels n and n − 2 of
the ion’s quantized motion in the optical lattice well [39,40].
The spatial dependence of this Raman coupling is such that
the off-resonant transition n → n, which on resonance would
be stronger by two orders of the Lamb-Dicke factor (which is
≈10% for our system), increases from lattice node to lattice
anti-node proportionally to the optical potential. The stronger
this coupling is, the larger the scattered fluorescence, resulting
in the position-dependent fluorescence signal, which, when
time-resolved, amounts to subwavelength imaging of the ion’s
average trajectory.

APPENDIX B: EXTRACTING p0 AND pk FROM ION
FLUORESCENCE TRACES

In Fig. 5, we show example fluorescence data, taken from
five ions in a five-ion chain. We collect the fluorescence
pairwise (ion 1 and ion 2, ion 2 and ion 3, etc.) on a pair
of photomultiplier tubes. The horizontal axis represents the
fraction of our experiment’s repetition time; each point is an
average over many repetitions of identical translations of the
chain, back and forth, over several lattice sites at a frequency
defined by our external drive (which controls the translation
velocity [39,40]). By syncing the time axes for commonly im-
aged ions (ion 2, 3, and 4 are imaged twice), we synchronize
imaging for the entire chain. As described in the main text:
we label X (i)

j the ith position of the Paul trap minimum at
which ion j passes a lattice antinode during translation, which
appears as a fluorescence maximum. We set our reference
as X (1)

1 = 0—i.e., we reference the position of all maxima
to ion 1’s first maximum—and we set our length unit as
X (2)

1 − X (1)
1 = 1—i.e., we set the distance between two slips

FIG. 5. Five-ion fluorescence traces. Experimental fluorescence
data from five ions simultaneously imaged as they are translated
through an optical lattice of depth 2π 2U/Ka2 = 4.6. Red vertical
lines indicate the positions of fluorescence peaks, found as the
maxima of parabolic fits of five data points near the maximum
fluorescence point. These data yield pk = 0.17.

and therefore the lattice period to be unity. A simultaneous
measurement of each ion’s fluorescence can thus be used to
determine X (i)

j in these units. Because all ions necessarily pass
a lattice antinode if the chain is translated by one lattice period
a, X (i)

j+1 − X (i)
j (>0) is a direct measurement of the average

distance between ion j and ion j + 1 relative to the lattice
spacing: (dj, j+1/a) mod 1.

In the main text, we provided an expression for p0 which
is valid for (d j, j+1/a) mod 1 � 0.5, which for a quasiuniform
chain (in mod space) is the largest possible misfit. Beyond, the
periodicity of the optical lattice ensures that the total misfit
decreases. For example, take the case where (dj, j+1/a) mod
1 = 0.99; there, nearby atoms experience very similar lattice
forces, and the misfit on a small chain is clearly close to 0. Let
us provide here a more complete expression for p0 which can
be used for all values of (dj, j+1/a) mod 1:

p0/2 = 1

N − 1

N−1∑
j=1

f (d j, j+1),

where

f (d j, j+1) =
{

(dj, j+1/a) mod 1 for 0 � (d j, j+1/a) mod 1 < 0.5

1 − (d j, j+1/a) mod 1 for 0.5 � (d j, j+1/a) mod 1 < 1
.

013380-6



KINKS AND NANOFRICTION: STRUCTURAL PHASES IN … PHYSICAL REVIEW RESEARCH 2, 013380 (2020)

At very low lattice depth 2π2U/Ka2 � 1, where the
motion of the ions is nearly unaffected by the lattice,
the procedure described above is used to obtain p0. At
large lattice depth 2π2U/Ka2 = 4.6, such as in Fig. 5, and
where we perform our measurements of the kink motion and
kink misfit, this procedure yields pk.

APPENDIX C: MEASUREMENT OF THE OPTICAL
LATTICE DEPTH

From the single-atom Prandtl-Tomlinson model [1], we
know that for 2π2U/Ka2 = 4.6 we obtain the largest friction
force in a bistable potential. There the position hysteresis
between forward and backward translation of an ion in the
optical lattice reaches a value of a exactly [39,40], meaning
the forward and backward fluorescence signals are delayed
by exactly one lattice spacing. This is because the metastable
well in which the ion sits just before a slip event goes critical
just when the harmonic trap sits above the next well a distance
a over. There, the friction force takes on the maximum value
allowed in the so-called single slip regime [30], Fs = Ka/2 ≡
Fmax. Measuring this for a single ion allows for our most
precise calibration of the normalized lattice-depth parameter
ηk = 2π2U/Ka2 and therefore of the lattice depth U . Since
K = mω2

0 and a are also known very precisely and inde-
pendently, this provides an independent measurement of our
lattice depth.

APPENDIX D: NUMERICAL SIMULATIONS WITH
LANGEVIN FORMALISM

We follow standard numerical methods [39,42,43] for cal-
culating the mean position of a single particle in a periodic
potential under the influence of an external shear force and a
fluctuating force. We calculate the average trajectory 〈x j (t )〉
of each particle j—cycling through all particles at each inte-
gration time step—over multiple integrations of the Langevin
equation of motion:

mẍ j + 2mγ ẋ j + K (x j − vt t ) + πU

a
cos

(πx j
a

)

−
∑
i 
= j

e2

4πε0

x j − xi
|x j − xi|3 = ξ j (t ),

where the fluctuating force ξ j (t ) satisfies the fluctuation-
dissipation theorem which relates its magnitude to the tem-
perature T and damping coefficient 2mγ : 〈ξ j (t )ξ j (t ′)〉 =
4mγ kBT δ(t − t ′). We have taken m = 2.88934 × 10−25 kg
(the mass of a 174Yb+ ion), γ = 2 × 104 s−1 [29], and phys-
ical constants: electron charge e, vacuum permittivity ε0, and
Boltzmann constant kB.

The friction force is the value of the external force on the
particle when it slips. The mean kink density pk, deformation
|pk − p0|, and friction force Fs presented in the simulation
curves throughout this paper are the values at the mean
slipping time of the particle, as determined from the average
trajectory 〈x j (t )〉.

For all presented simulation curves, we average 150 in-
stances of the simulation of forward and backward translation
in the presence of the stochastic Langevin force. This results

FIG. 6. Five-ion hysteresis loops for multiple misfits. Simulated
hysteresis loops of ion positions x j vs trap position X , in their
unperturbed position (red) and lattice-perturbed position (blue) as
they are translated forward and backward by the trap, for p0 = 0 (a),
0.26 (b), 0.38 (c), and 0.51 (d).

in a typical standard deviation at each ion position of 0.008a,
which is negligible compared to kink feature sizes on the order
of 0.1a (see Fig. 4).

APPENDIX E: APPEARANCE OF SECONDARY
HYSTERESIS LOOP FOR N = 5

As shown in Fig. 2 of the main text for N = 2, the increase
in the kink signal pk at the critical point pc is accompanied
by the appearance of secondary hysteresis loops. In Fig. 6, we
show simulations of hysteresis loops for N = 5, and kBT/U =
0.05, as the misfit p0 is increased. We see the same doubling
of hysteresis loops per lattice period as for N = 2, i.e. the
appearance of a kink state, occurring here around p0 ∼ 0.3.

APPENDIX F: DEPENDENCE OF C-I TRANSITION POINT
ON N ANDU

We show the simulated dependence of our kink de-
formation signal |pk − p0| as a function of N [Fig. 7(a)]
and U [Fig. 7(b)], demonstrating that the transition point—
associated with the appearance of a single kink—depends on
the length of the chain N and the lattice depth U . A longer
chain requires a smaller misfit to introduce a kink, while a
larger lattice depth requires a larger misfit.

APPENDIX G: KINK RECONSTRUCTION AND
NUMERICAL SIMULATIONS

Reconstructing the dynamic position curves x j—used to
get the neighbor distance �x j, j+1—from fluorescence traces
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FIG. 7. The C-I transition as a function of N and U . (a) Simu-
lated kink deformation signal |pk − p0| at ηk = 2π 2U/Ka2 = 4.6 for
N = 2, 3, 4, 5; and (b) at N = 5 for ηk = 2π 2U/Ka2 = 2.5, 4.6, 7.5.

requires a few processing steps. Firstly, it is assumed that
fluorescence maxima correspond to ions sitting at lattice
antinodes. This is true when the friction force is 0 (i.e., there is
no hysteresis, and all lattice positions are therefore allowed),
and it is a good approximation when the friction is low, which
is indeed the case in the incommensurate phase where kinks
can be detected. Secondly, as mentioned in the main text, the
fluorescence signal is insensitive to position around the lattice
nodes because of the cos4(πx j ) dependence, and because of
finite ion temperature which further averages the position-
dependence in that region. This results in a fixed fluorescence
signal around the nodes which makes it appear as though the
ion is not moving. This in turn creates a signal resembling
a compression, and thus a kink, when looking at the posi-
tion difference with another ion whose fluorescence signal is

FIG. 8. Langevin numerical simulation of kinks in a five-ion
chain. (a) The ion position x j of ion j reconstructed from simulated
fluorescence traces, expressed in units of lattice spacing a, as a
function of the support position X . From red to blue, j = 1, . . . , 5.
Grey shading indicates regions where simulated fluorescence is low,
and therefore position is extracted with lower confidence. (b) The
reconstructed distance �̃x j, j+1 = (x j − x j+1) between ion i and its
nearest neighbor i + 1 (with mean subtracted), from positions x j

shown in (a), expressed in units of lattice spacing a, as a function
of the support position X . From red to blue, j = 1, . . . , 4. (c) The
true distance between ion j and its nearest neighbor j + 1, �x j, j+1 =
(x j − x j+1), directly from the integrated equations of motion.

delayed (owing to asynchronous motion). This lower confi-
dence in the reconstructed position of each ion is highlighted
by grey shading in Fig. 4(a), representing trap positions where
the average fluorescence of a pair of ions is low. By contrast,
fluorescence is very sensitive to position on the slope of the
lattice potential, and there temperature only plays a small
role fractionally. This is why we can ignore the fluorescence
information around the nodes, while using the fluorescence
information elsewhere.

To further support this procedure, it is replicated identically
on simulated fluorescence curves for which the true position
information is available. Using the Langevin formalism (see
Appendix D), we obtain finite-temperature average trajec-
tories for each ion in a five-ion chain, as well as average
fluorescence for each ion. Shown in Fig. 8(a) are the five
position curves reconstructed from the simulated fluorescence
curves. Shown in Fig. 8(b) is the same as Fig. 4(b): the four
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pair position difference curves calculated from the simulated
reconstructed position curves, showing the kinks propagating
from pair-to-pair. Shown in Fig. 8(c) is the same as Fig. 4(c):
the four pair position difference curves calculated directly
from the simulated position curves (these, evidently, are not
available in experiments), also showing kinks propagating
from pair-to-pair. All three panels also show as grey shading
sections of the curves where the simulated fluorescence signal
is low, and where therefore position reconstruction is expected
to be inaccurate. While the reconstructed position and direct
position curves in Figs. 8(b) and 8(c) differ in their exact
shape, the qualitative features of staggered order across pairs,
peak position, and skewness are replicated.

APPENDIX H: COULOMB FORCES AS NEXT-NEIGHBOR
SPRING FORCES

This section explains the correspondence between our
trapped-ion system and the Frenkel-Kontorova-Tomlinson
model [21,32]. The harmonic confinement by external springs
K is provided by the axial confinement in the linear Paul
trap at angular vibrational frequency ω0 = √

K/m, which
corresponds to the center-of-mass (COM) motion of the chain.
We take the interatomic springs g to correspond to the highest-

energy mode of the chain (ωmax)—this is the mode for which
the next neighbors near the center of the chain move in
anti-phase. This gives the interatomic spring stiffness as g ≈
1
4mω2

max. We show here why this is a valid approximation.
Consider a small displacement δx of one of the ions in

the chain comparable to the lattice constant a. This is small
compared to the equilibrium spacing of the ions in the Paul
trap, δx � a � di j where di j is the distance between any
two ions i and j in the chain. One can then approximate
the neighbor spring forces by linearizing the Coulomb forces
around the equilibrium distance:

δFi j ≈ −2
e2

4πε0|di j |3 δx.

This gives the effective neighbor spring constant constant
gi j = e2/2πε0|di j |3. From this expression, we can show that
next-neighbor interactions dominate the mean-field interac-
tion of a single ion with the rest of the chain, even for an
infinite homogeneous chain: the sum of forces from farther
neighbors, as a fraction of the nearest neighbor forces, is∑

n=2,∞
1
n3 = ζ (3) − 1 ≈ 20% (where ζ is the Riemann zeta

function).
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tion of Aubry-type transition in finite atom chains via friction,
Nat. Mater. 15, 717 (2016).

013380-9

https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1103/RevModPhys.85.529
https://doi.org/10.1002/pssb.201350154
https://doi.org/10.1002/pssb.201350154
https://doi.org/10.1002/pssb.201350154
https://doi.org/10.1002/pssb.201350154
https://doi.org/10.1038/nature02750
https://doi.org/10.1038/nature02750
https://doi.org/10.1038/nature02750
https://doi.org/10.1038/nature02750
https://doi.org/10.1016/0039-6028(90)90034-6
https://doi.org/10.1016/0039-6028(90)90034-6
https://doi.org/10.1016/0039-6028(90)90034-6
https://doi.org/10.1016/0039-6028(90)90034-6
https://doi.org/10.1088/0034-4885/45/6/001
https://doi.org/10.1088/0034-4885/45/6/001
https://doi.org/10.1088/0034-4885/45/6/001
https://doi.org/10.1088/0034-4885/45/6/001
https://doi.org/10.1103/PhysRevLett.42.65
https://doi.org/10.1103/PhysRevLett.42.65
https://doi.org/10.1103/PhysRevLett.42.65
https://doi.org/10.1103/PhysRevLett.42.65
https://doi.org/10.1103/PhysRevB.25.349
https://doi.org/10.1103/PhysRevB.25.349
https://doi.org/10.1103/PhysRevB.25.349
https://doi.org/10.1103/PhysRevB.25.349
https://doi.org/10.1103/PhysRevLett.90.130401
https://doi.org/10.1103/PhysRevLett.90.130401
https://doi.org/10.1103/PhysRevLett.90.130401
https://doi.org/10.1103/PhysRevLett.90.130401
https://doi.org/10.1103/PhysRevB.21.4170
https://doi.org/10.1103/PhysRevB.21.4170
https://doi.org/10.1103/PhysRevB.21.4170
https://doi.org/10.1103/PhysRevB.21.4170
https://doi.org/10.1038/nphys2954
https://doi.org/10.1038/nphys2954
https://doi.org/10.1038/nphys2954
https://doi.org/10.1038/nphys2954
https://doi.org/10.1103/PhysRevB.89.024104
https://doi.org/10.1103/PhysRevB.89.024104
https://doi.org/10.1103/PhysRevB.89.024104
https://doi.org/10.1103/PhysRevB.89.024104
https://doi.org/10.1016/0040-6090(80)90246-1
https://doi.org/10.1016/0040-6090(80)90246-1
https://doi.org/10.1016/0040-6090(80)90246-1
https://doi.org/10.1016/0040-6090(80)90246-1
https://doi.org/10.1103/PhysRevB.33.1904
https://doi.org/10.1103/PhysRevB.33.1904
https://doi.org/10.1103/PhysRevB.33.1904
https://doi.org/10.1103/PhysRevB.33.1904
https://doi.org/10.1103/PhysRevE.59.2347
https://doi.org/10.1103/PhysRevE.59.2347
https://doi.org/10.1103/PhysRevE.59.2347
https://doi.org/10.1103/PhysRevE.59.2347
https://doi.org/10.1038/nmat3204
https://doi.org/10.1038/nmat3204
https://doi.org/10.1038/nmat3204
https://doi.org/10.1038/nmat3204
https://doi.org/10.1126/science.1261422
https://doi.org/10.1126/science.1261422
https://doi.org/10.1126/science.1261422
https://doi.org/10.1126/science.1261422
https://doi.org/10.1038/ncomms1230
https://doi.org/10.1038/ncomms1230
https://doi.org/10.1038/ncomms1230
https://doi.org/10.1038/ncomms1230
https://doi.org/10.1103/PhysRevB.87.195418
https://doi.org/10.1103/PhysRevB.87.195418
https://doi.org/10.1103/PhysRevB.87.195418
https://doi.org/10.1103/PhysRevB.87.195418
https://doi.org/10.1103/PhysRevB.92.134306
https://doi.org/10.1103/PhysRevB.92.134306
https://doi.org/10.1103/PhysRevB.92.134306
https://doi.org/10.1103/PhysRevB.92.134306
https://doi.org/10.1038/nmat4601
https://doi.org/10.1038/nmat4601
https://doi.org/10.1038/nmat4601
https://doi.org/10.1038/nmat4601
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