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ABSTRACT. In this paper we study the regularity problem of a three dimen-
sional chemotaxis-Navier-Stokes system. A new regularity criterion in terms of
only low modes of the oxygen concentration and the fluid velocity is obtained
via a wavenumber splitting approach. The result improves certain existing
criteria in the literature.
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1. INTRODUCTION

We consider the following chemotaxis-Navier-Stokes system

ng+u-Vn=An—-V-(nx(c)Ve),
¢t +u-Ve=Ac—nf(e),

us+ (u-V)u+ VP = Au+nVo,
V-u=0, (tx)eRT xRS

(1.1)

This coupled system arises from modelling aerobic bacteria, e.g. Bacillus subtilis,
suspended into sessile drops of water. It describes a scenario in which both the
bacteria, whose population density is denoted by n = n(t,z), and oxygen, whose
concentration is denoted by ¢ = ¢(t, x), are transported by the fluid and at the same
time diffuse randomly. In addition, the bacteria, which have chemotactic sensitivity
x(c), tend to swim towards their nutrient oxygen and consume it at a per-capita
rate f(c). Meanwhile, since the bacteria are heavier than water, their chemotactic
swimming induces buoyant forces which affects the fluid motion. This buoyancy-
driven effect is reflected in the third equation in system (1.1), represented by an
extra term nV® added to the Navier-Stokes equation. In this extra term, ® denotes
the gravitational potential, whereas the Navier-Stokes equation is conventionally
written with u = u(t, z) denoting the fluid velocity, and P = P(¢,x) the pressure.
In this paper, we study a simple yet prototypical case in which

(1.2) V® = const., x(c) =const.,, f(c)=c

We note that in this case, solutions to system (1.1) satisfy the following scaling
property:

na(t,r) = N2n(\%t, \x), cx(t,z) = c(\2t, Ax), u(t,z) = (N, Ax)
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solve (1.1) with initial data
nao = )\Qn()\x), exo = c(Ax), uxo = Au(Az),

if (n(tw),c(t,:lc),u(t,a?)) solves (1.1) with initial data (ng(z),co(z),uo(z)). It is
obvious that in 3D the Sobolev space H= 2 x H2 x H? is scaling invariant (aka
critical) for (n, ¢, u) under the above natural scaling of the system.

Experiments showed that under the chemotaxis-fluid interaction of system (1.1),
even almost homogeneous initial bacteria distribution can evolve and exhibit quite
intricate spatial patterns (see [10, 31, 25]). In [25] Lorz proved the existence of a
local-in-time weak solution to the 3D chemotaxis-Navier-Stokes system on bounded
domains. In a recent work by Winkler [34], the existence of global weak solutions
was proved under more general assumptions via entropy-energy estimates. We refer
readers to the works of Winkler [32, 33, 34], Liu and Lorz [24], Duan, Lorz and
Markowich [11], Chae, Kang and Lee [3, 4], Jiang, Wu and Zheng [16] as well as He
and Zhang [14] for more details about the well-posedness results for the chemotaxis-
Navier-Stokes system.

As of now, the global regularity of the 3D Navier-Stokes equations remains an
outstanding unresolved problem, which is a fundamental reason why a mathemat-
ical theory for system (1.1) is yet to be completed. A classical result due to Prodi
[27], Serrin [30] and Ladyzhenskaya [25] states that if a Leray-Hopf solution u to
the 3D Navier-Stokes equations satisfies

3 2
(1.3) lull ago, 50y < 00, » + . =1, 3<p<oq

then wu is in fact smooth on [0, 7). It is also well-known that a smooth solution to
the Navier-Stokes equations on [0,7) can be extended beyond time 7' if

T
(1.4) / IV X ul|feedt < oo,
0

which is the Beale-Kato-Majda regularity criterion (see [2]). Among a myriad of
refined or generalized criteria for the Navier-Stokes equations, we list the ones from
[8, 12, 19, 26]. Particularly relevant to this paper is the regularity criterion due to
Cheskidov and Shvydkoy (see [8]). It was discovered that by devising the concept of
the critical wavenumber 29, the condition in Beale-Kato-Majda regularity criterion
can be weakened into

T
(1.5) |17 xw)<gllm, e <
0

with By, ., being a Besov space and (V xu)<q the low frequency part of V xu below
the wavenumber 29, both of which can be clearly defined within the framework of
Littlewood-Paley theory in the upcoming sections. Intuitively speaking, condition
(1.5) implies that the integrability of a certain lower frequency part of a solution
alone can ensure the regularity of the solution. The idea of separating high and low
frequency parts by a wavenumber originates in Kolmogorov’s theory of turbulence,
which predicts the existence of a critical wavenumber above which the dissipation
term is dominant. Recently, this wavenumber splitting mechanism has been applied
to various fluid models, e.g., the liquid crystal model with Q-tensor configuration
(see [9]), leading to a series of refined regularity criteria.
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Concerning the three dimensional chemotaxis-Navier-Stokes system, we are aware
of several regularity criteria. In [3]|, Chae, Kang and Lee obtained local-in-time clas-
sical solutions and Prodi-Serrin type regularity criteria. In particular, suppose that

3 2
(1.6) ullLaco,rse) + [IVellL2(0, 1) < 00, v + P 1, 3<p<oo,

then the corresponding classical solution can be extended beyond time T'. In [4],
Chae, Kang and Lee also obtained regularity criteria in terms of the LP norms of
uw and n. Jiang, Wu and Zheng, in their recent paper [17], proved that a classical
solution to the initial boundary value problem of the Keller-Segel model i.e. the
fluid free version of system (1.1), can be extended beyond time 7" if

HVC”LZ(O,T;LOC) < 00,

3 3
or ||nllpeoriry <00, —+=<2, - <p<oo.
P q 2

In this paper, we aim to establish a regularity condition only imposed on the low
frequency part of the concentration function ¢ and the velocity field u. For a given
solution (n,c,u) without knowing its regularity, we shall define the wavenumber
A, = 29 and A, = 29 for u and c as in (3.10), respectively, according to the
structure of the equations. Let u<g, and c<g, denote the low modes of the velocity
and oxygen concentration below wavenumber A, and A., respectively. The main
result is stated as follows.

Theorem 1.1. Let (n(t),c(t),u(t)) be a weak solution to (1.1) on [0,T] on R3.
Assume that (n(t), c(t), u(t)) is regular on [0,T) and

T
(1.7 | IVecao @t~ + lusauoOllay, .t < o
then (n(t), c(t),u(t)) is reqular on [0,T].

Remark 1.2. We note that the quantity in (1.7) is invariant with respect to the
scaling of system (1.1). It is obvious that the condition on the oxygen concentration
¢ in (1.7) is weaker than that of (1.6). It was also shown that the condition on
velocity w in (1.7) is weaker than that of (1.6) (see [7]).

Remark 1.3. The same result as in Theorem 1.1 holds on torus T2 as well. How-
ever, on bounded domain with boundary, such result may not be acheived since the
analysis to obtain Theorem 1.1 relies heavily on harmonic analysis techniques and
Littlewood-Paley theory on bounded domain is more involved.

The upcoming sections are organized as follows — in Section 2, we shall give con-
cise introductions to the mathematical tools used in this paper and various notions
of solutions to system (1.1), then in Section 3 we shall formulate the wavenumbers
A, and A, via Littlewood-Paley theory and proceed to prove Theorem 1.1.

2. PRELIMINARIES

2.1. Notation. The symbol A < B denotes an estimate of the form A < C'B with
some absolute constant C', and A ~ B denotes an estimate of the form C;B < A <
C B with absolute constants C1, Ca. The Sobolev norm ||-||z» is shortened as || - ||,
without no confusion. The symbols W*P and H* represent the standard Sobolev
spaces and L?-based Sobolev spaces, respectively.
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2.2. Littlewood-Paley decomposition. The main analysis tools are the fre-
quency localization method and a wavenumber splitting approach based on the
Littlewood-Paley theory, which we briefly recall here. For a complete description
of the theory and applications, the readers are referred to the books [1] and [13].

We construct a family of smooth functions {¢,}72_; with annular support that
forms a dyadic partition of unity in the frequency space, defined as

_fete forg>0,
&) {x(ﬁ) for g = —1,

where A, = 29, ¢(€) = x(£/2) — x(&) and x € C3°(R?) is a nonnegative radial
function chosen in a way such that

)1, for €]
X(ﬁ)—{()’ for |¢]

Introducing h := F~'x and h := F 1y, we define the Littlewood-Paley projec-
tions for a function u € S’ as

ur = F (O F0) = [ Rtz - v
g = Agu = FHGOTOF0) = X [ BOw)ule — )y, 42 0.

Then the identity

holds in the sense of distributions. To simplify the notation, we denote

Q Q
Ug = Uq—1 + Ug + Ug41, U< = Z Ugq, UpQl = Z Ugq-
q=-1 g=P+1

We note that

o 3
[l s ~ (Z Aislluqllé’> :

g=-1
for each u € H® and s € R. Using the Littlewood-Paley projections, we can define

the Besov space B, ., as follows.

Definition 2.1. Let s € R, and 1 < p < co. The Besov space B? __ is the space of

S
tempered distributions u whose Besov norm |ul|p; _ < oo, where

Jull . = sup Xyl

Moreover, we recall Bernstein’s inequality, whose proof can be found in [1].

Lemma 2.2. Let d be the space dimension and 1 < s < r < oco. Then for all
tempered distributions u,

d(3-7)
l[ugllr < Aq g s-
Throughout the paper, we will also utilize Bony’s paraproduct decomposition

Ag(u-v) = Z Ag(usp—2-vp) + Z Ag(up - v<p—2) + Z Aq(up - Tp),

lg—p|<2 lg—p|<2 p>q—2
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as well as the commutator notation
[Ag,usp—2 - V]vp = Ag(ucp—2 - Vvp) — ugp— - VAup.
An estimate for the commutator is given by the following lemma, proven in [7].

Lemma 2.3. Let % + L = L we have the estimate
2 r3 T1

I[Ag; u<p—2 - V]vgllry S lvgllrs Z At [t [z

p'<p—2

2.3. Weak solution and regular solution to system (1.1). From [34], we
know that on bounded, smooth and convex domain €2 in three dimension, system
(1.1) has a global weak solution (n,c,u) which satisfies the equations in (1.1) in
the distributional sense, provided that the initial data (ng,co,uo) satisfy ng > 0,
co > 0, and

(2.8) no € L'NLlogL, co€ L™, \Jcg € H', up€ L? V-uy=0.

Global existence of weak solutions on the full space R? with d = 2, 3 was established
with initial data satisfying (2.8) in [14]. Adapting the same argument therein on a
periodic domain shows that initial data satisfying (2.8) also generate at least one
global weak solution (n,c,u).

We highlight the following properties of the weak solution (n,c¢,u) in particular

n € L>(0,00; L' (), ¢ € L>(0,00; L®()),
u € L52.(0,00; L2(Q)) N L, .(0, 00; HY ().

loc

A regular solution of (1.1) is understood in the way that the solution has enough
regularity to satisfy the equations of the system in a point-wise manner. Typically,
a solution in a space with higher regularity than its critical space can be shown
regular via bootstrap arguments. The local-in-time existence of regular solutions
to system (1.1) was shown in [3].

2.4. Parabolic regularity theory. We consider the heat equation on R¢ with
d>2
(2.9) u — Au = f

with initial data ug. We shall see that the solution u turns out to be smoother than
the source term f.

Lemma 2.4. Let u be a solution to (2.9) with ug € H*™* and f € L*(0,T; H%)
for a € R. Then we have u € L*(0,T; H**2) N HY(0,T; H).

Proof: Projecting equation (2.9) by A, and taking inner product of the resulted
equation with A2%Hu, leads

1 d (o3 [} (o3
3 2 gl 4 X2 g B = 324 [
Applying Holder’s and Young’s inequalities to the right hand side yields
d

SN g3 22 T3 < 4N22 1, .
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As a consequence of Duhamel’s formula, summation in ¢ and integration over [0, T,
we obtain

/ EjVMw%<ma</ S 2oty (0)] 25t at
0

g>—1 g>—1
2
a3 e [ 0 asa
g>—1
The first integral on the right hand side is handled as
/ZNM%qMAW<ZVWMMth@smm%
q>—1 q>—1

In order to estimate the second integral, we exchange the order of integration to

obtain
Q/ZVM/”WWMWW

q>—1
2
//ZW””WMWW
S og>-1
<[ X B (1) ag
q>—1

SIFIZ20,75100) -
Combining the estimates above, we conclude that v € L?(0,T; H**?) for a € R.
To prove u € H(0,T; H*), we first project equation (2.9) to the ¢g-th dyadic
shell
(w)g = Aug + fy.
It follows
[[(ue)qll3 < 2[| Augll3 + 21143

Thus we deduce that

T T T

[ X s [ 50w o [ 30 xR
0 g>-1 0 g>-1 0 ¢>-1
5”“’”%2(0,T;H0+2) + ”fH%Q(O,T;HW)'

It is then clear that u € H'(0,T; H®), which completes the proof of the lemma.
|

3. PrROOF OF THEOREM 1.1

This section is devoted to the proof of the main result. Recall A\, = 27 for any
integer q. We start by introducing the dissipation wavenumber A, (t) for u and
A.(t) for ¢, respectively

Au(t) :min{/\q : )\1,71||up(t)||Oo < Cy,Vp >q,q € N},

(3.10) 3 3
A(t) :min{)\q A5 lep(@)]lr < Co,¥p > q,q € N}, re <3, > ,

1—c¢
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where € > 0 is a fixed arbitrarily small constant, and Cjy is a small constant to be
determined later. Through out this section, we use C for various absolute constants
which can be different from line to line. In addition, we let Q,(t) and Q.(t) be the
integers such that

Au(t) = )\Qu(t) and Ac(t) = )‘Qc(t)'

The constraint on the low modes is then defined as

f@t) = Ve<qu O~ + llu<q. @)l

Notice that the wavenumber A, separates the inertial range from the dissipation
range where the viscous term Awu dominates; and A, has the analogous property.
Precisely, we have

[u()@.lloc = CoMu(t), A& (B)lle()q.llr > Co

Agllu®)gllee < Co, Vg > Qus Ag (B)l|c(t)qllr < Co, Vg > Qe

The crucial part of the proof is to establish a uniform (in time) bound for each of
the unknowns n,u and c in a space with higher regularity than the critical Sobolev
space. In fact, it is sufficient to prove that

(n,u c) € L>(0,T; HSl) x L°°(0,T; H®2) x L>=(0,T; H*)

for some 51 > —35,52 > 5 L and s3 > £. Due to the complicated interactions among
the three equatlons in (1.1), the aforementmned goal will be achieved in two steps.
The first step is to show that

(n,u,c) € L=(0,T; H*) x L=(0,T; H**t1) x L=(0,T; H**1)

for some s € (—%,O). The second step consists of applying bootstrap arguments,
the LP—L? theory for parabolic equations and a mixed derivative theorem to the
equation of oxygen concentration ¢ to improve the regularity of c.

To start, we multiply the equations in (1.1) by A2*A%n, A2**2A%c and A2+2 A2,

respectively. Integrating and summing lead to

th Z A7 lIngll3 < - Z Ao l1Vngll3 — Z )\2‘;/ Ag(u - Vn)ngdz

(3.11) = =
CY [ AT @
g>—1
1d } s
53 2 ARl < - Y ARV,
(3.12) = =
- Z )\23+2/ q(u-Ve)e,do — Z A§s+2/ Ay(nf(c))eqda;
a>—1 g=—1 R
1d
53 2 M lugll3 < = D0 NVl
(3.13) = =

- Z )\25+2/ Ag(u - Vu)ugde — Z )\25+2/ Ag(nVO)u,de.

a>—1 a>—1 R3
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For simplicity we label the terms

Ii== " 2202 | Ay(u-Vuugde, ITi=— )" Ais“/ Aq(u- Ve)eqda,

qz-1 R q>—1 RS
IT:=—= )" A2 [ Ay(u-Vn)ngde,
q2—1 R
1V .= — Z /\33+2/ Ay(nVO)uyde, Vi=-— Z /\33“/ Ay(nf(e))cqde,
qz-1 B g>—1 RS
VI :=— Z )\33 /]R3 AG(V - (nx(c)Ve))ngda.
q=-1

3.1. Estimate for I. We estimate the term I using the wavenumber splitting
method. As we shall see, the commutator reveals certain cancellation within the
nonlinear interactions.

Lemma 3.1. Let s > —%. We have

111S Co Y N luglls + Quf(8) D Aa=+2luqll3.

¢>-1 q=>-1

Proof: Applying Bony’s paraproduct decomposition to I leads to

I=- Z Z A /]RS Ag(ugp—2 - Vup)ugdr

q=—1|g—p|<L2

B Z Z ’\35+2 /RS Ag(up - Vugp_o)ug de

q=—1|g—p|<L2

o Z Z )‘35+2/ Aq(up - Viip)ug dz
R3

q>—1p>q—2
:Sll + 12 + 13.

Using the fact Z\qu\q Agu, = uq and the commutator notation, we have

L =- Z Z /\35+2/ Ag, u<p—2 - Vlupug dz

3
q>—1]q—p|<2 R

- Z >\353/ U<q—2 - VUuguqgde

q>—1 R?

— Z Z )\3”2/ U<po — U<q—2) - VAgupug, da

(
g>—1|g—p|<2 R
=:Iy1 + Iig + Ii3.

Moreover we have ;2 = 0 due to that divu<g—2 = 0.
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We then split I1; based on definition of A, (%)

11| < Z Z /\ZSH/ [Ag, u<p_2 - V]upuy| dz

q>—1|q—p|<L2

= Z Z /\23+2/R [Ags u<p—2 - V]upug| dz

P<Qu+2|g—p|<L2

+ Z Z /\25+2/ [Ag u<q, - V]upug| dz

P>Qu+2 [g—p|<2

+ Z Z AQQH/}R [Ag, w@u p2) - Vuptg| da

P>Qu+2|q p|<2
=111 + I112 + In13.

Using (2.3), Holder’s inequality, and definition of f(t), we obtain

hns Y Y A Vugyallwcluglla gl

1<p<LQu+2 |g—p|<L2

SIO D0 luwlls Yo N luglls Yo 1

1<p<Qu+2 lg—p|<2 p'<p—2
SQuF) Y Al D AT gl
1<p<Qu+2 lg—p|<2
SQuft) Y AT fug3;
q>—1

and similarly

T2 < Z Z )‘38+2||VUSQu||00||upH2||uq||2

p>Qu+2 |q—p|<L2

SQuF®) Yl Do ATyl

P>Qu+2 la—p|<2
SQuf(t) Z /\;JrlHup”? Z )‘2+1||Uq||2
P>Qu+t2 lg—p|<2

SQuf(t) Y AT g3

7>Qu
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We estimate I113 with the help of Holder’s inequality and Lemma (2.3)

I < Z Z A AG @2 - Vipll2llugl2
p>Qu+2|q—p|<2

< >0l Y0 A Fugll: Y Mlluwll

P>Qu+2 lg—p|<2 Qu<p'<p—2
SCo D> luplla Yo ATPlluglls D A
P>Qu+2 lg—p|<2 Qu<p'<p—2
SCo >0 AMuls YD AL,
p>Qu+2 Qu<p'<p—2

SCo Yo AR w3,
P>Qyu+2

We split 13 according to the definition of A, (¥)

[113] < Z Z )‘(218+2 /3 ’(USP—2 — U<q—2) 'VAq“puq’ dz
R

q=—1|q—p|<2

< Y X e

Al
—1<q<Qu |g—p|<2 R

DI

Al
¢>Qu [g—p|<2 R
=:I131 + I132.

U<p—2 — U<Lg—2) - VAqupuq’ dz

U<p—2 — U<q—2) - VAq“p“q| dx

Using Holder’s inequality and definition of f(¢) we can bound I;3;.

L < >0 AP uglee Y Nuscp-a — ucqallallupl
—1<¢<Qu lg—p|<2

SIE) D AT Y ugpa —u<q ol

—1<g<Qy lg—p|<2
SIO >0 ATl

—1<g<Qu

And we estimate I35 using Holder’s inequality and the definition of A, (t),

Lol < D0 AP fugllae Y llusp—2 — u<qallalupll2

7>Qu lg—pl<2
<Co 0 A ST Jlugpz — uzgoall2llupllz
q>Qu lg—p|<2

SCo D> AT g 3.
a>Qu
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We omit the detailed estimation of Iy as it is similar to that of I;;. Meanwhile,
for I3 we have for s > f%

EEDIDIR |

[ Ag(up @ tip) Vug| dz
R3

q>—1p>q—2
<D AP uglle D Iwlli+ D0 A2 ugllee Y lupll3
>Qu p>q—2 —1<g<Qu p>q—2
<Co Y AT AwpllB £ YD AT Y lwll3
a>Qu p>q—2 —1<q<Qu p>q—2
SCo Y NTHlulls D AR A D A llulls D AP
P>Qu Qu<g<p+2 p>—1 q<p+2
SCo >0 AT gl + £(8) D A2 ug3.
>Qy g>—1

We combine the above estimates to conclude that

111S Co Y N luglls + Quf(8) Y A3+ luqll3.

g>—1 g=-1

3.2. Estimate for I1.

Lemma 3.2. Let s > —%. We have

1 S S S
1112 (COot 35 ) 3 (3l + 324 ugl) + CQuI) T 324y

q>—1 q>—1
Proof: We start with Bony’s paraproduct decomposition for 17,

=YY ape /]R Ag(ugpz- Vey)egdu

q=—1|q—p|<2

+ Z Z )‘38+2 /]Rg Ag(up - Vecpa)egdz

q=—1|q—p|<2

+ Z Z )‘38+2 /]R3 Ag(up - Vep)eg da

q>—1p>q-2
=111 + 11, +11I5.

Using the commutator notation, we rewrite I1; as

=Y Y art / Ay, <y o - V]eye, de

3
¢>—1|g—p|<2 R

+ /\2‘”2/ U<yg—2 - VCyCy dx
Zq 33(12 qCq

a>-1 R

T Z Z )‘38+2/ (u<p-2 — u<q—2) - VAgCpcq d
g2—1|q—p|<2 R
=111+ 1115+ I113.
Here, just as in proposition (3.1), we used Z\q7p|§2 A,cq = ¢4 to obtain I1q5, which
vanishes as divu<,_o = 0.
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One can see that I1;; enjoys the same estimates that [1; does. Splitting the
summation by @, (t) yields

[ < Z Z >\25+2/ [Ag u<p—2 - V]epey| dz

q=—1|q—p|<2

< Z Z )‘28+2/R [Ag, u<p—2 - Vleyey| do

P<Qu+2 |g—p|<2

T Z Z >‘25+2/ [Ag,u<q, - Vlepey| dx

P>Quy +2‘q p‘<2
T Z Z >‘25+2/ [Ag 1@, p—2 - Viepeq| dz
p>Qu+2‘q p‘<2
=T + 12 + 113,

We estimate the first two of the above three terms by Hdélder’s inequality, Lemma
(2.3) and the definition of f(t).

mn< Y X2 Vugyalslplalicle

1<p<Qu+2 |g—p|<L2

SQuE®) D ATl > A legl

1<p<Qu+2 lg—p|<2

SQuf(t) Y- AT lleqll3,

qg=>—1

IT2 < Z Z )\§S+2HVU§Qu

p>Qu+2 |g—p|<2

SQuf(t) Z )‘;+1||Cp||2 Z /\2+1||Cq||2

P>Qu+2 lg—p|<2
SQuf() D A eqll3-
>Qu

And with the help of Holder’s inequality, Lemma (2.3) and the definition of A, (¢),
we estimate [113 as

s < Y >0 AEP[Ag wq, p-2 - Viepl2llegll2
P>Qu+2|q—p|<2

< SN el Y. Mlluplllienl

P>Qu+2|q—p|<2 Qu<p’'<p—2

< Y el 3 2 el: S Al

P>Qu+2 lg—p|<2 Qu<p’'<p—2

<Co D0 el S0 A el YD A

P>Qu+2 lg—p|<2 Qu<p'<p—2

> NMeld Y A,

P>Qu+2 Qu<p’'<p—2

SCo D Aol
P>Qu+2

oo llepll2lleqll2
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1113 can be estimated in the same fashion as I;3. Splitting the sum by the
wavenumber Q,,(t), we have

‘I113| < Z Z )\(218+2/

3
4>—1|q—p|<2 R

<y oy

3
—1<q<Qu |q—p|<2 R

+ Z Z )\3‘”2 /}R3 |(u<p—2 — u<q—2) - VAgcpcq| da

4>Qu |g—p|<L2
=:I1131 + 11139,

U<p—2 — U<g—2) - VAqCqu| dz

U<p—2 — U<q—2) - VAqCqu’ dz

which, using Holder’s inequality along with the definition of f(t) and A,(t), we
estimate as

Tha| < >0 A2 Feglla Y usp-a — ucqallscllcpll
—1<¢<Qn lg—p|<2

S D0 AT llegllz Yo lesllz

—1<4<Qu la—pl<2

S D AT llegls.

—1<g<Qu

[Thas| < Y AP Pleglla D Nucp-2 — u<gallsollcyll2
q4>Qu lg—p|<2

<Co D AT lleallz Do Alleyl

4>Qu lg—p|<2

SCo Y ATl 3-
q>Qu

To estimate 5, we make use of the wavenumber Q. (t) instead of Q,,(t). Splitting
the summation by Q.(t) yields

I, = Z Z A /11&3 Aq(up - Vegp-z)eqda

q=—1|g—p|<2

- Z Z A /RS Ag(up - Vegpa)cqde

q>—1]g—p|<2,p<Qc+2

+ Z Z >‘35+2 /RS Aq(up - Ve<q, )eqda

q2—1]g—p|<2,p>Q-+2

+ Z Z A /R \ Ag(up - Veq, p2y)cqdr

q=—1|qg—p|<2,p>Q+2
=:Ip1 + Iy + I153.
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It follows from Hoélder’s and Young’s inequalities that

AED SENED SN el IO et

q2—1]g—p|<2,p<Q+2

<Y Al D w2 Vesp-2llo

q>-1 lg—p|<2,p<Qc+2

<IVe<aillo Y- A lleallz D0 AP lupllan,
g>-1 la—p|<2,p<Qc+2

1 S S
<3 DAL ugl3 + CEE) D AP eyl
g=>—1 g=>—1

While the term I 155 can be treated the same way as 1151, the third term is estimated
as follows, by utilizing the definition of A.(t)

sl <> 3 A Plwleleql2 Ve, p-aills

q=—1|q—p|<2,p>Q:+2

S0 AL ugllalleqll2l Veq, qllso

q>Q.
1+32
<S5 uglalleglls Y A Nl
7>Qe Q.<p<q
SCo > N ugllalieglls D
q>Qc Qc<pgq
<Co 3 Ny Pllugllahy el Y Ao
7>Qe Q.<p<q
SCo D A lugll3 + Co Y AT leqll3:
Q>Qc q>QC

As for I3, we first integrate by parts, then split by the wavenumber Q. (1),

I < A2s+2 /A &, Ve, d
|113] < Z q Z s q(up ® &) Veg da

p=>—1 —1<q<p+2
< A\Zst2 / Ay (u ¢,)Ve,| do
=D IPTAED SN I OELA
p>Qu —1<q<p+2
+ \25t2 / A, (up, ® E,)Ve,| dz
S o S [ s eave
—1<p<Qu —1<g<p+2

221131 + 1132.
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Proceeding with the help of Holder’s, Young’s and Jensen’s inequalities, we have
for s > f%

FRESIDS Z l[upllosllepll2 Z )‘35+3||Cq||2

P>Qu —1<q<p+2
<Co Z Apllepll2 Z )‘§S+3||Cq||2
P>Qu —1<q<p+2
SCo Y NPlells Y0 AP llegllaAgt
P>Qu —1<q<p+2

2

SCo > A ez + | D AlleallaAgth
P>Qu —1<q<p+2

SCo D AP leyll3,
g=—1

and

52| < Z lupllocllepll2 Z )‘<2JS+3HC<1H2

—1<p<Qy —1<q<p+2

SEO Y Nlells Yo Al
—1<p<Qy —1<q<p+2

Sf() Z >‘183+1Hcp||2 Z >‘Z+1||Cq||2/\(sli_?)
—1<p<Qy —1<q<p+2

SE) D AT legll3-
q>—1

We combine the above estimates to conclude that

I S Co Y0 AT lleqlls + A5 llugl3) + Quf (1) D7 AF 2 llell3.

qg>—1 g=—1

3.3. Estimate for I71.
Lemma 3.3. Let s < 0. We have
[I1] £Co D A2 ngll3 + Qur () D A Ingll3-
q>—1 q>—1
Proof: We start with Bony’s paraproduct decomposition for both of the terms.

r=>%" > ar /R Ag(ugp2 - Vny)ng da

q=—1|q—p|<2

T Z Z )‘38 /R3 Ag(up - Vigp o)ng de

q=—1|q—p|<2

+ Z Z )‘38 /R3 Ay (up - Vip)ng dz

q>—1p>q—2
=111 + 111, + I115.
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Since we can estimate I11; and 1113 in the same manner as I1; and I I3, respectively,
the details of computation are omitted for simplicity. We claim

[III| + [ITT5] S Co Y A2 |Ingll3 + Quf(t) Y A2%|Ingll3-
q>—1 q>—1

We are then left with the estimation of 1115 to complete the conclusion. Splitting
the term by the wavenumber @, (t), we have

L= Y Y AF / A, (uy - Ve, o)ngde

—1<p<Qu |g—p|<2

+ Z Z )\25/ Aq(up - Vnep_o)ngda

P>Qu |q—p|<2
:IIIIgl +III22

Applying Holder’s, Young’s and Jensen’s inequalities, we have for s < 1

I < Y0 gl Do APlngllz D Allnglle

—1<p<Qu lg—p|<2 p'<p—2
< D Mllwllee Do AT Hingllz Y Al
—1<p<Qu lg—p|<2 p'<p—2
< Y Mllwpllee Do Alinglla Do A llng A,
—1<p<Q. lg—p|<2 p'<p—2
<t 3 (BB + (S Al l2Xh)?)
_1§p§Qu /<P 2
SEH) D AelIngll3,
g>—1
and for s <0
|11z < Z oo Z )‘25||nq||2 Z Apllng 12
P>Qu lg—p|<2 p’<p—2
<Y N wllee Do AT Inglz D Apllngll2
P>Qu lg—p|<2 p'<p—2
<Co > ATInglla > A Ing ll2 Ay,
q>Qy—2 p'<q
SCo D) A Ingll3-
g=>—1

O

3.4. Estimate for I'V. Here we use Holder’s and Young’s inequalities to obtain

V<D A gl Ay lugll2

>_1
(3.14) =
_32 DA ngllz +C > A lugl
q>—1 q>—1

for an absolute constant C.
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3.5. Estimate for V.

Lemma 3.4. If r > 3 and s < 0, we have

1 S S
V1< (35 +Ch) 3 0 el + 324y )

g>—1

+CO(F) +1) Y (A5 llegll3 + A7 Ingll3) -

g=>—1
Proof: Bony’s paraproduct decomposition leads to

V= Z Z )‘§S+2 /RS Ag(n<p-20p)ced

q=—1|g—p|<2

+ Z Z >‘§S+2 /RS Ag(npe<p-2)cqda

q=—1|g—p|<2

+ Z Z )‘§S+2 /RS Ay (tpcp)eyda

q>—1p>q—2
=Vi+Va+ Vs
We further split V7 by the wavenumber A.(t)

Vi= Z Z )‘gSH/ Ay(nep—acp)cgdz
R3

9<Qc |g—p|<L2

T Z Z )‘§S+2/ Ag(n<p-acp)eqde
7>Qc [g—p|<2 R

=:V11 + V1.

To estimate Vi1, Holder’s inequality gives

Vil < 30 02 2lele 3 leplls 32 ngle

9<Qc lg—p|<2 p'<p—2
S0 Mdlleglloe Do NP leplla Do AnllngllzAgTh ALt
a<Qc lg—p|<2 p'<p—2

Since s — 1 < 0 for s < 0, we apply Young’s and Jensen’s inequalities to obtain

2

1 S S S—
Vil <55 Yo A3 +C Y0 Adllegll | Do A llnprllz =

15Qet2 q<Qc+2 »<q
1 —
S@ Z /\(215+4H0qH§—|—C’f(t) Z Z )\]29/5”71]9/”3)\;_11)/
q<Qc+2 1<Oot2 0 <q

1 S S
<33 Yo AT leqlls + CEE) D A lIngll3-

q<Qc+2 a<Qc
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Regarding V12, we have

Vial < 37 X llegllos Y- llepllz D Mgl

>Qe lg—p|<2 p'<p-2
254242
SN leglle > llepllz > lngll2
>Qc lg—p|<2 p'<p—2
SCo >0 Aol > lImyll2
G>Qc—2 p'<q
SCo Y N leqlle D A I ll2 X
7>Qc—2 p'<q

Again, since s < 0, we can apply Young’s and Jensen’s inequalities

Via| SCo D AP egll3+ Y2 | Do A ling Ay

q>Qc—2 7>Qc \p'<q
SCo D A egls + Y A lIng |3
>Qc.—2 g>—1

We also split V, by the wavenumber A.(¢) as

VQ = Z Z /\35+2 \/]RS Aq(anSP_Q)quI

q=—1|q—p|<2

- Z Z A /RS Ag(npc<p—2)cqde

q>—1]g—p|<2,p<Qc+2

+ Z Z ’\38“ /RB Aq(npe<q,)eqdz

q2—1]g—p|<2,p>Q-+2

+ D > A /RB Aq(npe(@. p-2))cqdz

q>—1|qg—p|<2,p>Q+2
=:Vo1 + Voo + Vas.
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Holder’s and Young’s inequalities yield the following estimate on Vaq,

Varl € D0 A5 legllz D ol Do el

q>-1 lg—p|<2 p'<p—2<Q.
SO A ellz D0 A Il YD Awllew ey
q>-1 lg—p|<2 p'<p—2<Q.
2
_32 Z )\25+2” q||2+c Z )\25+2” p||2 Z )‘p’HCP/Hoo)\;,l
>—1 p>—1 P’ <p—2<Q.
<o SN0 X lE Y Nl
q¢>—1 p>—1 p'<p—2<Q.
1 ) N _
<gz 2 APl Cr® Y0 A lelE Y0 A
q>—1 p>—1 p'<p—2<Q.
1
<3 D AT Ingll3 + C L) Y AT leqll3:
q>—1 q=—1

Note that Vo5 can be estimated in the same way. Provided % < 1, the last term Vo3
is estimated as follows,

WVl < A2 nlllleql] 2 lleupall

q=—1|q—p|<2,p>Q:+2

254243
Z Aq ’ " [Ingll2lleqll2 Z llep I

q>—1 3>Qc,Q:<p'<q
2s5+2+432 -3
SCo A T ngllaliegll: YD AT
q>—1 3>Qc,Qc<p'<q
3_1 _3
SCo D A Inglla Ay 2 lleqll2Ag >N
g>—1 3>Qc,Q:<p'<q
SCo Y A Inglla Ay lleq 2
g>—1
SCo D AP Ingll3 4 Co Y AZ T legl3.
q>-1 q=>—1

The term V3 can be dealt with in a similar way as V;. We first split the sum,

Vi = Z Z )\25+2/ Ag(Rpep)eqde

q<Qc p=q—2
+ Z Z /\2‘5+2/ Ag(Rpep)cqde.
q<Qc p=q—2
Without giving details, we claim that

1 ; s
Val < (g +CC0) T Al + 0+ 1) 3 B

q>—1 q>—1
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3.6. Estimate for V1.

Lemma 3.5. Let —% <s<0and3<r< liﬂ We have

1
Vi< (35 +C0) Rl + 010 ¥ Nl

q=—1 g=—1

Proof: Utilizing Bony’s paraproduct, VI can be decomposed as

VI=— Z Z A2 /RS Ay(n<p—2Vep)Vng da

q=—1|q—p|<2

N Z Z AL /11%3 Aq(npVesp—2)Vng dz

q=—1|q—p|<2

=) > /R DAy (1pVep) Vg da

q>—1p>q—2

::Vll + VIQ + VIg.

We continue to decompose VI; by Q.,

Vi = - Z Z Ay /R3 Aq(n<p-2Vep)Vng da

7>—1]q—p|<2,p<Q,

N Z Z )\gs /RS Aq(n<p—2Vep)Vng de

7>—1]q—p|<2,p>Q.

::VI11 + VIlg.

To estimate V' I1;, we apply Holder’s inequality first,

VI3 Z /\25+1an”2 Z Veplloo Z l[np 2

q=-1 lg—p|<2,p<Q. p'<p—2
SY Nl DS Vel Do A lingll2Ay_y
g2—1 lg—p|<2,p<Q. p'<p—2

We then apply Young’s and Jensen’s inequalities,

1
VLI <55 0 gl +CF0) Y (3 Ay lngllaryy)’

q>-1 q=—1 p'<q
1
<3 D AT Ingll3 + CF (1) Y AelIngll3s
q=—1 q=—1

3 S
where we require s < 0 to ensure ), 5 Aj_,, < 0.
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Again, applying Holder’s inequality first to V115 yields

|V < Z Z )\(QISHVTLQHQHVCPHT||n§p72||7,2%2

q=2—1|q—p|<2,p>Q.

2s+2—2 2 2
S Z Z v "lIngll2Ap llep |l Z A;:/”np/”Z

q=—1]g—p|<2,p>Qc p'<p—2
2542-32 2
SCo D AT gl D A Il
g>—1 p'<q
+1-2
SCo D A Inglla Y A Iy ll2A5 5,
g>—1 p'<gq

Following Young’s and Jensen’s inequalities, we obtain for s + 1 < %

2
+1-3
VI <CCo Y AZ2ngl3+CCo Y | Do A Ing oAy, "
q>—1 g>—1 \p'<q
; +1-2
<CCo Y AT Ingll3+CCo Y > A2 Ing 13X,
g=>—1 qg>—1p'<q
<CCo Y A2 Ingll3.
q=—1

The first step of dealing with VI, is to split it by Q. as well,

VIy=— Z Z Az /RS Ay(npVe<p—2)Vng da

q>—1]g—p|<2,p<Qc+2

— Z Z A2 /}R3 Ay(npVe<q,)Vng da

q2—1|g—p|<2,p>Qc+2

- Z Z )\25 /11&3 Ag(npVe@,p-2)Vng de

q=—1|q—p|<2,p>Q:+2
=:Vig1 + Vligg + Vlias.

Using Hoélder’s and Young’s inequalities, and the fact that A\;_, ~ C as p,q are
close to each other, we have

VIn| <Y A2 gl > Inpll2Ve<p—2lo
q=2-1 lg—p|<2,p<Qc+2
<> A Inglla > Mpllnpll2l[Ve<p—2|looAg—p
g=>—1 lg—p|<2,p<Qc+2
1

<% D AT lnglls + CE1) D AT Inagll3.

qg>—1 q>—1
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We skip the computation for VI35 which can be estimated in a likely way as V.
We proceed to estimate Va3, provided r > 3

V| < >

A2l Ve p—a) -1 Vig 2=,
q>—1|q—p|<2,p>Q+2

2s+1+2
S Z v r“”q”g Z Aprlleplr

g=>—1 Q:<p'<q
2s+142 1-2
SCo D AT gl Yo AT
g>—1 Qc:<p'<q
1—-3
SCo > AT EInglE Y N
q>—1 Qc<p'<q
SCo D A Ingll3-
g>—1

Finally, we notice that VI3 can be handled in an analogous way of V I7; thus the
details of computation are omitted. It completes the proof of the lemma.

O
Summing inequalities in Lemma 3.1- Lemma 3.5 and (3.11)-(3.14) produces the
following Gronwall type of inequality,

d

5 D7 Al 3+ X2 2l I3 + A2, 3)
q>-1

<(=24CCo) > (A2 [Ingll3 + A2 lcgll5 + A2 lug13)
g=>—1

qg=>—1

+CQu() D (N3 Inglls + AT 2lleq I3 + X572 llugl13).

1

Thus, Cy can be chosen small enough such that CCy < ;. On the other hand,
combining the definition of A, (¢) and Bernstein’s inequality, one can deduce

—15-1 < 173 < —lpTEs
1< Gy Ay ugulleo S Co Adlluqullz S Co Au® “llull grasss
which implies that for s > —%,

Qu =log Ay S 1+ log |lul| gess-
Hence the energy inequality becomes
d

37 2 A lngli3 + AT+ llegll3 + A3 lug[13)

qg=>—1

<= Y TP lnglls + A5 lleqll3 + AF llugll3)
q=—1

+CF() (L+1og lull gor) D A2lInglls + A2 lleqll3 + 222 ugll3)-
g>—1

By the hypothesis (1.7) and Gronwall’s inequality, we can conclude that
n € L>=(0,T; H*) N L*(0,T; H*™),
ce€ L=(0,T; H*TY) N L2(0,T; H*1?),
u € L=(0,T; H™) N L2(0,T; H*?).
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We consider a particular case s = —¢ for small enough € > 0. We realize that our
solution is regular via bootstrapping arguments. In fact, we have

n € L0, T;H ), uec L>®0,T;H°), cc L>(0,T; H )N L>(0,T; L*>).

By scaling, it is known that H’%, H%, and H? are critical for n,u and ¢, respec-
tively. For small enough € > 0, H—¢ is subcritical for n; so is H'~¢ for . Thus, it
suffices to bootstrap the equation of ¢ to obtain higher regularity for c. We recall

¢t — Ac= —u-Ve—nc.
Since u € L>°(0,T; H'~¢) and Ve € L?(0,T; H'~¢), by Sobolev embedding H'~¢ <
LH%, we have u-Vc € LQ(O,T;Lﬁ). Similarly, the fact of ¢ € L®°(0,T; H'~¢)
and n € L?(0,T; H'~¢) implies nc € L?(0,T; LH%). Then the standard maximal
regularity theory of heat equation yields
c€ H'(0,T; L™%) N L*(0,T; W),

We need to bootstrap one more time. Now we have Ve € L?(0, T} ler%e) which,
along with u € L®(0,T; H'~¢), implies u - Ve € L2(0,T; L% ). On the other
hand, we have nc € L?(0,T; Lu%s) from the estimate n € L2(0,T; H*~¢) and the
maximal principle ¢ € L>(0,T; L*°). Again, the maximal regularity theory of heat
equation produces that

c € HY(0,T; LT ) N L2(0, T; W62 ).

As a consequence of the mixed derivative theorem (see [28]), we have
ce Wi=02(0, T, W20 rie)

for any 6 € [0,1]. In fact, if we take 6 € (1£% 1) Sobolev embedding theorem
shows that
ce W02(0, T, W20t ) s L°°(0, T; H3 )

for an small enough constant €9 > 0. Notice that H 3 is critical for ¢. Thus we can
stop the bootstrapping for ¢ equation. Regarding the density function n, although
the obtained estimates are in subcritical space already, we would like to further
improve the estimates to reach spaces with even higher regularity (i.e. Sobolev
spaces with positive smoothness index). Indeed, we look at the n equation again,

ng— An=—u-Vn—V . (nVe).
Due to the fact Ve € L>(0,T; H%+E°) and n € L?(0,T; H'=¢), Sobolev embedding
theorem yields nVe € L?(0,T; L?) and hence V - (nVe) € L%(0,T; H-'). While
u € L®(0,T; H'=%) and n € L2(0,T; H'~¢) together imply un € L2(0,T; LTi%)
which is embedded in L?(0,7;L?). Thus u-Vn = V- (un) € L*0,T;H1).
Applying Lemma 2.4 with o = —1 to the n equation, we claim

ne HY0,T; H YN L*0,T; H").
Summarizing the analysis above gives us
n€ L>®0,T; H )N L*0,T; H" YN H'(0,T; H™'),
ue L0, T; H°) N L*(0,T; H*¢),
c€ L=(0,T; H3 ) N L2(0, T; W e ).
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Since each of the three functions n,u and c is in higher regularity space than its
critical Sobolev space, further bootstrapping procedures for parabolic equations
and standard argument of extending regularity can be applied to infer that the
solution (u,n,c) is regular up to time 7.
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