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Abstract. In this paper we study the regularity problem of a three dimen-
sional chemotaxis-Navier-Stokes system. A new regularity criterion in terms of
only low modes of the oxygen concentration and the fluid velocity is obtained
via a wavenumber splitting approach. The result improves certain existing
criteria in the literature.
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1. Introduction

We consider the following chemotaxis-Navier-Stokes system

(1.1)


nt + u · ∇n = ∆n−∇ · (nχ(c)∇c),
ct + u · ∇c = ∆c− nf(c),

ut + (u · ∇)u+∇P = ∆u+ n∇Φ,

∇ · u = 0, (t, x) ∈ R+ × R3.

This coupled system arises from modelling aerobic bacteria, e.g. Bacillus subtilis,
suspended into sessile drops of water. It describes a scenario in which both the
bacteria, whose population density is denoted by n = n(t, x), and oxygen, whose
concentration is denoted by c = c(t, x), are transported by the fluid and at the same
time diffuse randomly. In addition, the bacteria, which have chemotactic sensitivity
χ(c), tend to swim towards their nutrient oxygen and consume it at a per-capita
rate f(c). Meanwhile, since the bacteria are heavier than water, their chemotactic
swimming induces buoyant forces which affects the fluid motion. This buoyancy-
driven effect is reflected in the third equation in system (1.1), represented by an
extra term n∇Φ added to the Navier-Stokes equation. In this extra term, Φ denotes
the gravitational potential, whereas the Navier-Stokes equation is conventionally
written with u = u(t, x) denoting the fluid velocity, and P = P (t, x) the pressure.
In this paper, we study a simple yet prototypical case in which

(1.2) ∇Φ ≡ const., χ(c) ≡ const., f(c) ≡ c.

We note that in this case, solutions to system (1.1) satisfy the following scaling
property:

nλ(t, x) = λ2n(λ2t, λx), cλ(t, x) = c(λ2t, λx), uλ(t, x) = λu(λ2t, λx)
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solve (1.1) with initial data

nλ,0 = λ2n(λx), cλ,0 = c(λx), uλ,0 = λu(λx),

if
(
n(t, x), c(t, x), u(t, x)

)
solves (1.1) with initial data (n0(x), c0(x), u0(x)). It is

obvious that in 3D the Sobolev space Ḣ−
1
2 × Ḣ 1

2 × Ḣ 3
2 is scaling invariant (aka

critical) for (n, c, u) under the above natural scaling of the system.
Experiments showed that under the chemotaxis-fluid interaction of system (1.1),

even almost homogeneous initial bacteria distribution can evolve and exhibit quite
intricate spatial patterns (see [10, 31, 25]). In [25] Lorz proved the existence of a
local-in-time weak solution to the 3D chemotaxis-Navier-Stokes system on bounded
domains. In a recent work by Winkler [34], the existence of global weak solutions
was proved under more general assumptions via entropy-energy estimates. We refer
readers to the works of Winkler [32, 33, 34], Liu and Lorz [24], Duan, Lorz and
Markowich [11], Chae, Kang and Lee [3, 4], Jiang, Wu and Zheng [16] as well as He
and Zhang [14] for more details about the well-posedness results for the chemotaxis-
Navier-Stokes system.

As of now, the global regularity of the 3D Navier-Stokes equations remains an
outstanding unresolved problem, which is a fundamental reason why a mathemat-
ical theory for system (1.1) is yet to be completed. A classical result due to Prodi
[27], Serrin [30] and Ladyzhenskaya [25] states that if a Leray-Hopf solution u to
the 3D Navier-Stokes equations satisfies

(1.3) ‖u‖Lq(0,T ;Lp) <∞,
3

p
+

2

q
= 1, 3 < p ≤ ∞,

then u is in fact smooth on [0, T ]. It is also well-known that a smooth solution to
the Navier-Stokes equations on [0, T ) can be extended beyond time T if

(1.4)
∫ T

0

‖∇ × u‖L∞dt <∞,

which is the Beale-Kato-Majda regularity criterion (see [2]). Among a myriad of
refined or generalized criteria for the Navier-Stokes equations, we list the ones from
[8, 12, 19, 26]. Particularly relevant to this paper is the regularity criterion due to
Cheskidov and Shvydkoy (see [8]). It was discovered that by devising the concept of
the critical wavenumber 2Q, the condition in Beale-Kato-Majda regularity criterion
can be weakened into

(1.5)
∫ T

0

‖(∇× u)≤Q‖B0
∞,∞

dt <∞,

with B0
∞,∞ being a Besov space and (∇×u)≤Q the low frequency part of∇×u below

the wavenumber 2Q, both of which can be clearly defined within the framework of
Littlewood-Paley theory in the upcoming sections. Intuitively speaking, condition
(1.5) implies that the integrability of a certain lower frequency part of a solution
alone can ensure the regularity of the solution. The idea of separating high and low
frequency parts by a wavenumber originates in Kolmogorov’s theory of turbulence,
which predicts the existence of a critical wavenumber above which the dissipation
term is dominant. Recently, this wavenumber splitting mechanism has been applied
to various fluid models, e.g., the liquid crystal model with Q-tensor configuration
(see [9]), leading to a series of refined regularity criteria.
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Concerning the three dimensional chemotaxis-Navier-Stokes system, we are aware
of several regularity criteria. In [3], Chae, Kang and Lee obtained local-in-time clas-
sical solutions and Prodi-Serrin type regularity criteria. In particular, suppose that

‖u‖Lq(0,T ;Lp) + ‖∇c‖L2(0,T ;L∞) <∞,
3

p
+

2

q
= 1, 3 < p ≤ ∞,(1.6)

then the corresponding classical solution can be extended beyond time T . In [4],
Chae, Kang and Lee also obtained regularity criteria in terms of the Lp norms of
u and n. Jiang, Wu and Zheng, in their recent paper [17], proved that a classical
solution to the initial boundary value problem of the Keller-Segel model i.e. the
fluid free version of system (1.1), can be extended beyond time T if

‖∇c‖L2(0,T ;L∞) <∞,

or ‖n‖Lq(0,T ;Lp) <∞,
3

p
+

2

q
≤ 2,

3

2
< p ≤ ∞.

In this paper, we aim to establish a regularity condition only imposed on the low
frequency part of the concentration function c and the velocity field u. For a given
solution (n, c, u) without knowing its regularity, we shall define the wavenumber
Λu = 2Qu and Λc = 2Qc for u and c as in (3.10), respectively, according to the
structure of the equations. Let u≤Qu and c≤Qc denote the low modes of the velocity
and oxygen concentration below wavenumber Λu and Λc, respectively. The main
result is stated as follows.

Theorem 1.1. Let (n(t), c(t), u(t)) be a weak solution to (1.1) on [0, T ] on R3.
Assume that (n(t), c(t), u(t)) is regular on [0, T ) and

(1.7)
∫ T

0

‖∇c≤Qc(t)(t)‖
2
L∞ + ‖u≤Qu(t)(t)‖B1

∞,∞
dt <∞,

then (n(t), c(t), u(t)) is regular on [0, T ].

Remark 1.2. We note that the quantity in (1.7) is invariant with respect to the
scaling of system (1.1). It is obvious that the condition on the oxygen concentration
c in (1.7) is weaker than that of (1.6). It was also shown that the condition on
velocity u in (1.7) is weaker than that of (1.6) (see [7]).

Remark 1.3. The same result as in Theorem 1.1 holds on torus T3 as well. How-
ever, on bounded domain with boundary, such result may not be acheived since the
analysis to obtain Theorem 1.1 relies heavily on harmonic analysis techniques and
Littlewood-Paley theory on bounded domain is more involved.

The upcoming sections are organized as follows – in Section 2, we shall give con-
cise introductions to the mathematical tools used in this paper and various notions
of solutions to system (1.1), then in Section 3 we shall formulate the wavenumbers
Λu and Λc via Littlewood-Paley theory and proceed to prove Theorem 1.1.

2. Preliminaries

2.1. Notation. The symbol A . B denotes an estimate of the form A ≤ CB with
some absolute constant C, and A ∼ B denotes an estimate of the form C1B ≤ A ≤
C2B with absolute constants C1, C2. The Sobolev norm ‖ ·‖Lp is shortened as ‖ ·‖p
without no confusion. The symbols W k,p and Hs represent the standard Sobolev
spaces and L2-based Sobolev spaces, respectively.
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2.2. Littlewood-Paley decomposition. The main analysis tools are the fre-
quency localization method and a wavenumber splitting approach based on the
Littlewood-Paley theory, which we briefly recall here. For a complete description
of the theory and applications, the readers are referred to the books [1] and [13].

We construct a family of smooth functions {ϕq}∞q=−1 with annular support that
forms a dyadic partition of unity in the frequency space, defined as

ϕq(ξ) =

{
ϕ(λ−1q ξ) for q ≥ 0,

χ(ξ) for q = −1,

where λq = 2q, ϕ(ξ) = χ(ξ/2) − χ(ξ) and χ ∈ C∞0 (Rd) is a nonnegative radial
function chosen in a way such that

χ(ξ) =

{
1, for |ξ| ≤ 3

4

0, for |ξ| ≥ 1.

Introducing h̃ := F−1χ and h := F−1ϕ, we define the Littlewood-Paley projec-
tions for a function u ∈ S ′ as

u−1 = F−1(χ(ξ)Fu) =

∫
h̃(y)u(x− y)dy,

uq := ∆qu = F−1(ϕ(λ−1q ξ)Fu) = λdq

∫
h(λqy)u(x− y)dy, q ≥ 0.

Then the identity

u =

∞∑
q=−1

uq

holds in the sense of distributions. To simplify the notation, we denote

ũq = uq−1 + uq + uq+1, u≤Q =

Q∑
q=−1

uq, u(P,Q] =

Q∑
q=P+1

uq.

We note that

‖u‖Hs ∼

( ∞∑
q=−1

λ2sq ‖uq‖22

) 1
2

,

for each u ∈ Hs and s ∈ R. Using the Littlewood-Paley projections, we can define
the Besov space Bsp,∞ as follows.

Definition 2.1. Let s ∈ R, and 1 ≤ p ≤ ∞. The Besov space Bsp,∞ is the space of
tempered distributions u whose Besov norm ‖u‖Bsp,∞ <∞, where

‖u‖Bsp,∞ := sup
q≥−1

λsq‖uq‖p.

Moreover, we recall Bernstein’s inequality, whose proof can be found in [1].

Lemma 2.2. Let d be the space dimension and 1 ≤ s ≤ r ≤ ∞. Then for all
tempered distributions u,

‖uq‖r . λ
d( 1
s−

1
r )

q ‖uq‖s.

Throughout the paper, we will also utilize Bony’s paraproduct decomposition

∆q(u · v) =
∑
|q−p|≤2

∆q(u≤p−2 · vp) +
∑
|q−p|≤2

∆q(up · v≤p−2) +
∑
p≥q−2

∆q(up · ṽp),
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as well as the commutator notation

[∆q, u≤p−2 · ∇]vp = ∆q(u≤p−2 · ∇vp)− u≤p−2 · ∇∆qvp.

An estimate for the commutator is given by the following lemma, proven in [7].

Lemma 2.3. Let 1
r2

+ 1
r3

= 1
r1
, we have the estimate

‖[∆q, u≤p−2 · ∇]vq‖r1 . ‖vq‖r3
∑

p′≤p−2

λp′‖up′‖r2 .

2.3. Weak solution and regular solution to system (1.1). From [34], we
know that on bounded, smooth and convex domain Ω in three dimension, system
(1.1) has a global weak solution (n, c, u) which satisfies the equations in (1.1) in
the distributional sense, provided that the initial data (n0, c0, u0) satisfy n0 > 0,
c0 > 0, and

(2.8) n0 ∈ L1 ∩ L logL, c0 ∈ L∞,
√
c0 ∈ H1, u0 ∈ L2, ∇ · u0 = 0.

Global existence of weak solutions on the full space Rd with d = 2, 3 was established
with initial data satisfying (2.8) in [14]. Adapting the same argument therein on a
periodic domain shows that initial data satisfying (2.8) also generate at least one
global weak solution (n, c, u).

We highlight the following properties of the weak solution (n, c, u) in particular

n ∈ L∞(0,∞;L1(Ω)), c ∈ L∞(0,∞;L∞(Ω)),

u ∈ L∞loc(0,∞;L2(Ω)) ∩ L2
loc(0,∞;H1

0 (Ω)).

A regular solution of (1.1) is understood in the way that the solution has enough
regularity to satisfy the equations of the system in a point-wise manner. Typically,
a solution in a space with higher regularity than its critical space can be shown
regular via bootstrap arguments. The local-in-time existence of regular solutions
to system (1.1) was shown in [3].

2.4. Parabolic regularity theory. We consider the heat equation on Rd with
d ≥ 2

(2.9) ut −∆u = f

with initial data u0. We shall see that the solution u turns out to be smoother than
the source term f.

Lemma 2.4. Let u be a solution to (2.9) with u0 ∈ Hα+1 and f ∈ L2(0, T ;Hα)
for α ∈ R. Then we have u ∈ L2(0, T ;Hα+2) ∩H1(0, T ;Hα).

Proof: Projecting equation (2.9) by ∆q and taking inner product of the resulted
equation with λ2α+4

q uq leads

1

2

d

dt
λ2α+4
q ‖uq‖22 + λ2α+4

q ‖∇uq‖22 = λ2α+4
q

∫
fquq dx.

Applying Hölder’s and Young’s inequalities to the right hand side yields

d

dt
λ2α+4
q ‖uq‖22 + λ2α+4

q ‖∇uq‖22 ≤ 4λ2α+2
q ‖fq‖22.
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As a consequence of Duhamel’s formula, summation in q and integration over [0, T ],
we obtain∫ T

0

∑
q≥−1

λ2α+4
q ‖uq(t)‖22 dt ≤

∫ T

0

∑
q≥−1

λ2α+4
q ‖uq(0)‖22e−λ

2
qt dt

+ 4

∫ T

0

∑
q≥−1

λ2α+2
q

∫ t

0

e−λ
2
q(t−s)‖fq(s)‖22ds dt.

The first integral on the right hand side is handled as∫ T

0

∑
q≥−1

λ2α+4
q ‖uq(0)‖22e−λ

2
qt dt ≤

∑
q≥−1

λ2α+2
q ‖uq(0)‖22

(
1− e−λ

2
qT
)
. ‖u0‖2Hα+1 .

In order to estimate the second integral, we exchange the order of integration to
obtain ∫ T

0

∑
q≥−1

λ2α+2
q

∫ t

0

e−λ
2
q(t−s)‖fq(s)‖22ds dt

≤
∫ T

0

∫ T

s

∑
q≥−1

λ2α+2
q e−λ

2
q(t−s)‖fq(s)‖22dt ds

≤
∫ T

0

∑
q≥−1

λ2αq ‖fq(s)‖22
(

1− e−λ
2
q(T−s)

)
ds

.‖f‖2L2(0,T ;Hα).

Combining the estimates above, we conclude that u ∈ L2(0, T ;Hα+2) for α ∈ R.
To prove u ∈ H1(0, T ;Hα), we first project equation (2.9) to the q-th dyadic

shell
(ut)q = ∆uq + fq.

It follows
‖(ut)q‖22 ≤ 2‖∆uq‖22 + 2‖fq‖22.

Thus we deduce that∫ T

0

∑
q≥−1

λ2αq ‖(ut)q‖22 dt .
∫ T

0

∑
q≥−1

λ2αq ‖∆uq‖22 dt+

∫ T

0

∑
q≥−1

λ2αq ‖fq‖22 dt

.‖u‖2L2(0,T ;Hα+2) + ‖f‖2L2(0,T ;Hα).

It is then clear that u ∈ H1(0, T ;Hα), which completes the proof of the lemma.
�

3. Proof of Theorem 1.1

This section is devoted to the proof of the main result. Recall λq = 2q for any
integer q. We start by introducing the dissipation wavenumber Λu(t) for u and
Λc(t) for c, respectively

Λu(t) = min
{
λq : λ−1p ‖up(t)‖∞ < C0, ∀p > q, q ∈ N

}
,

Λc(t) = min
{
λq : λ

3
r
p ‖cp(t)‖r < C0, ∀p > q, q ∈ N

}
, r ∈

(
3,

3

1− ε

)
,

(3.10)
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where ε > 0 is a fixed arbitrarily small constant, and C0 is a small constant to be
determined later. Through out this section, we use C for various absolute constants
which can be different from line to line. In addition, we let Qu(t) and Qc(t) be the
integers such that

Λu(t) = λQu(t) and Λc(t) = λQc(t).

The constraint on the low modes is then defined as

f(t) := ‖∇c≤Qc(t)(t)‖
2
L∞ + ‖u≤Qu(t)(t)‖B1

∞,∞
.

Notice that the wavenumber Λu separates the inertial range from the dissipation
range where the viscous term ∆u dominates; and Λc has the analogous property.
Precisely, we have

‖u(t)Qu‖∞ ≥ C0Λu(t), Λ
3
r
c (t)‖c(t)Qc‖r ≥ C0;

λq‖u(t)q‖∞ < C0, ∀q > Qu; λ
3
r
q (t)‖c(t)q‖r < C0, ∀q > Qc.

The crucial part of the proof is to establish a uniform (in time) bound for each of
the unknowns n, u and c in a space with higher regularity than the critical Sobolev
space. In fact, it is sufficient to prove that

(n, u, c) ∈ L∞(0, T ; Ḣs1)× L∞(0, T ; Ḣs2)× L∞(0, T ; Ḣs3)

for some s1 > − 1
2 , s2 >

1
2 and s3 > 3

2 . Due to the complicated interactions among
the three equations in (1.1), the aforementioned goal will be achieved in two steps.
The first step is to show that

(n, u, c) ∈ L∞(0, T ; Ḣs)× L∞(0, T ; Ḣs+1)× L∞(0, T ; Ḣs+1)

for some s ∈ (− 1
2 , 0). The second step consists of applying bootstrap arguments,

the Lp–Lq theory for parabolic equations and a mixed derivative theorem to the
equation of oxygen concentration c to improve the regularity of c.

To start, we multiply the equations in (1.1) by λ2sq ∆2
qn, λ

2s+2
q ∆2

qc and λ2s+2
q ∆2

qu,
respectively. Integrating and summing lead to

1

2

d

dt

∑
q≥−1

λ2sq ‖nq‖22 ≤−
∑
q≥−1

λ2sq ‖∇nq‖22 −
∑
q≥−1

λ2sq

∫
R3

∆q(u · ∇n)nqdx

−
∑
q≥−1

λ2sq

∫
R3

∆q(∇ · (nχ(c)∇c))nqdx;

(3.11)

1

2

d

dt

∑
q≥−1

λ2s+2
q ‖cq‖22 ≤ −

∑
q≥−1

λ2s+2
q ‖∇cq‖22

−
∑
q≥−1

λ2s+2
q

∫
R3

∆q(u · ∇c)cqdx−
∑
q≥−1

λ2s+2
q

∫
R3

∆q(nf(c))cqdx;

(3.12)

1

2

d

dt

∑
q≥−1

λ2s+2
q ‖uq‖22 ≤ −

∑
q≥−1

λ2s+2
q ‖∇uq‖22

−
∑
q≥−1

λ2s+2
q

∫
R3

∆q(u · ∇u)uqdx−
∑
q≥−1

λ2s+2
q

∫
R3

∆q(n∇Φ)uqdx.

(3.13)
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For simplicity we label the terms

I := −
∑
q≥−1

λ2s+2
q

∫
R3

∆q(u · ∇u)uqdx, II := −
∑
q≥−1

λ2s+2
q

∫
R3

∆q(u · ∇c)cqdx,

III := −
∑
q≥−1

λ2sq

∫
R3

∆q(u · ∇n)nqdx,

IV := −
∑
q≥−1

λ2s+2
q

∫
R3

∆q(n∇Φ)uqdx, V := −
∑
q≥−1

λ2s+2
q

∫
R3

∆q(nf(c))cqdx,

V I := −
∑
q≥−1

λ2sq

∫
R3

∆q(∇ · (nχ(c)∇c))nqdx.

3.1. Estimate for I. We estimate the term I using the wavenumber splitting
method. As we shall see, the commutator reveals certain cancellation within the
nonlinear interactions.

Lemma 3.1. Let s > − 1
2 . We have

|I| . C0

∑
q>−1

λ2s+4
q ‖uq‖22 +Quf(t)

∑
q≥−1

λ2s+2
q ‖uq‖22.

Proof: Applying Bony’s paraproduct decomposition to I leads to

I =−
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

∆q(u≤p−2 · ∇up)uq dx

−
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

∆q(up · ∇u≤p−2)uq dx

−
∑
q≥−1

∑
p≥q−2

λ2s+2
q

∫
R3

∆q(up · ∇ũp)uq dx

=:I1 + I2 + I3.

Using the fact
∑
|q−p|≤2 ∆qup = uq and the commutator notation, we have

I1 =−
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

[∆q, u≤p−2 · ∇]upuq dx

−
∑
q≥−1

λ2s3q

∫
R3

u≤q−2 · ∇uquq dx

−
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

(u≤p−2 − u≤q−2) · ∇∆qupuq dx

=:I11 + I12 + I13.

Moreover we have I12 = 0 due to that div u≤q−2 = 0.
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We then split I11 based on definition of Λu(t)

|I11| ≤
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

|[∆q, u≤p−2 · ∇]upuq| dx

≤
∑

p≤Qu+2

∑
|q−p|≤2

λ2s+2
q

∫
R3

|[∆q, u≤p−2 · ∇]upuq| dx

+
∑

p>Qu+2

∑
|q−p|≤2

λ2s+2
q

∫
R3

|[∆q, u≤Qu · ∇]upuq| dx

+
∑

p>Qu+2

∑
|q−p|≤2

λ2s+2
q

∫
R3

∣∣[∆q, u(Qu,p−2] · ∇]upuq
∣∣ dx

=:I111 + I112 + I113.

Using (2.3), Hölder’s inequality, and definition of f(t), we obtain

I111 ≤
∑

1≤p≤Qu+2

∑
|q−p|≤2

λ2s+2
q ‖∇u≤p−2‖∞‖up‖2‖uq‖2

.f(t)
∑

1≤p≤Qu+2

‖up‖2
∑
|q−p|≤2

λ2s+2
q ‖uq‖2

∑
p′≤p−2

1

.Quf(t)
∑

1≤p≤Qu+2

λs+1
p ‖up‖2

∑
|q−p|≤2

λs+1
q ‖uq‖2

.Quf(t)
∑
q≥−1

λ2s+2
q ‖uq‖22;

and similarly

I112 ≤
∑

p>Qu+2

∑
|q−p|≤2

λ2s+2
q ‖∇u≤Qu‖∞‖up‖2‖uq‖2

.Quf(t)
∑

p>Qu+2

‖up‖2
∑
|q−p|≤2

λ2s+2
q ‖uq‖2

.Quf(t)
∑

p>Qu+2

λs+1
p ‖up‖2

∑
|q−p|≤2

λs+1
q ‖uq‖2

.Quf(t)
∑
q>Qu

λ2s+2
q ‖uq‖22.
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We estimate I113 with the help of Hölder’s inequality and Lemma (2.3)

I113 ≤
∑

p>Qu+2

∑
|q−p|≤2

λ2s+2
q ‖[∆q, u(Qu,p−2] · ∇]up‖2‖uq‖2

≤
∑

p>Qu+2

‖up‖2
∑
|q−p|≤2

λ2s+2
q ‖uq‖2

∑
Qu<p′≤p−2

λp′‖up′‖∞

.C0

∑
p>Qu+2

‖up‖2
∑
|q−p|≤2

λ2s+2
q ‖uq‖2

∑
Qu<p′≤p−2

λ2p′

.C0

∑
p>Qu+2

λ2s+4
p ‖up‖22

∑
Qu<p′≤p−2

λ2p′−p

.C0

∑
p>Qu+2

λ2s+4
p ‖up‖22.

We split I13 according to the definition of Λu(t)

|I13| ≤
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

∣∣(u≤p−2 − u≤q−2) · ∇∆qupuq
∣∣ dx

≤
∑

−1≤q≤Qu

∑
|q−p|≤2

λ2s+2
q

∫
R3

∣∣(u≤p−2 − u≤q−2) · ∇∆qupuq
∣∣ dx

+
∑
q>Qu

∑
|q−p|≤2

λ2s+2
q

∫
R3

∣∣(u≤p−2 − u≤q−2) · ∇∆qupuq
∣∣ dx

=:I131 + I132.

Using Hölder’s inequality and definition of f(t) we can bound I131.

|I131| ≤
∑

−1≤q≤Qu

λ2s+3
q ‖uq‖∞

∑
|q−p|≤2

‖u≤p−2 − u≤q−2‖2‖up‖2

.f(t)
∑

−1≤q≤Qu

λ2s+2
q

∑
|q−p|≤2

‖u≤p−2 − u≤q−2‖2‖up‖2

.f(t)
∑

−1≤q≤Qu

λ2s+2
q ‖uq‖22.

And we estimate I132 using Hölder’s inequality and the definition of Λu(t),

|I132| ≤
∑
q>Qu

λ2s+3
q ‖uq‖∞

∑
|q−p|≤2

‖u≤p−2 − u≤q−2‖2‖up‖2

.C0

∑
q>Qu

λ2s+4
q

∑
|q−p|≤2

‖u≤p−2 − u≤q−2‖2‖up‖2

.C0

∑
q>Qu

λ2s+4
q ‖uq‖22.
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We omit the detailed estimation of I2 as it is similar to that of I11. Meanwhile,
for I3 we have for s > − 1

2

|I3| ≤
∑
q≥−1

∑
p≥q−2

λ2s+2
q

∫
R3

|∆q(up ⊗ ũp)∇uq| dx

≤
∑
q>Qu

λ2s+3
q ‖uq‖∞

∑
p≥q−2

‖up‖22 +
∑

−1≤q≤Qu

λ2s+3
q ‖uq‖∞

∑
p≥q−2

‖up‖22

≤C0

∑
q>Qu

λ2s+4
q

∑
p≥q−2

‖up‖22 + f(t)
∑

−1≤q≤Qu

λ2s+2
q

∑
p≥q−2

‖up‖22

.C0

∑
p>Qu

λ2s+4
p ‖up‖22

∑
Qu<q≤p+2

λ2s+4
q−p + f(t)

∑
p≥−1

λ2s+2
p ‖up‖22

∑
q≤p+2

λ2s+2
q−p

.C0

∑
q>Qu

λ2s+4
q ‖uq‖22 + f(t)

∑
q≥−1

λ2s+2
q ‖uq‖22.

We combine the above estimates to conclude that

|I| . C0

∑
q>−1

λ2s+4
q ‖uq‖22 +Quf(t)

∑
q≥−1

λ2s+2
q ‖uq‖22.

�

3.2. Estimate for II.

Lemma 3.2. Let s > − 1
2 . We have

|II| ≤
(
CC0 +

1

32

) ∑
q>−1

(
λ2s+4
q ‖cq‖22 + λ2s+4

q ‖uq‖22
)

+ CQuf(t)
∑
q≥−1

λ2s+2
q ‖cq‖22.

Proof: We start with Bony’s paraproduct decomposition for II,

II =
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

∆q(u≤p−2 · ∇cp)cq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

∆q(up · ∇c≤p−2)cq dx

+
∑
q≥−1

∑
p≥q−2

λ2s+2
q

∫
R3

∆q(up · ∇c̃p)cq dx

=II1 + II2 + II3.

Using the commutator notation, we rewrite II1 as

II1 =
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

[∆q, u≤p−2 · ∇]cpcq dx

+
∑
q≥−1

λ2s+2
q

∫
R3

u≤q−2 · ∇cqcq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

(u≤p−2 − u≤q−2) · ∇∆qcpcq dx

=:II11 + II12 + II13.

Here, just as in proposition (3.1), we used
∑
|q−p|≤2 ∆pcq = cq to obtain II12, which

vanishes as div u≤q−2 = 0.
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One can see that II11 enjoys the same estimates that I11 does. Splitting the
summation by Qu(t) yields

|II11| ≤
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

|[∆q, u≤p−2 · ∇]cpcq| dx

≤
∑

p≤Qu+2

∑
|q−p|≤2

λ2s+2
q

∫
R3

|[∆q, u≤p−2 · ∇]cpcq| dx

+
∑

p>Qu+2

∑
|q−p|≤2

λ2s+2
q

∫
R3

|[∆q, u≤Qu · ∇]cpcq| dx

+
∑

p>Qu+2

∑
|q−p|≤2

λ2s+2
q

∫
R3

∣∣[∆q, u(Qu,p−2] · ∇]cpcq
∣∣ dx

=:II111 + II112 + II113.

We estimate the first two of the above three terms by Hölder’s inequality, Lemma
(2.3) and the definition of f(t).

II111 ≤
∑

1≤p≤Qu+2

∑
|q−p|≤2

λ2s+2
q ‖∇u≤p−2‖∞‖cp‖2‖cq‖2

.Quf(t)
∑

1≤p≤Qu+2

λs+1
p ‖cp‖2

∑
|q−p|≤2

λs+1
q ‖cq‖2

.Quf(t)
∑
q≥−1

λ2s+2
q ‖cq‖22,

II112 ≤
∑

p>Qu+2

∑
|q−p|≤2

λ2s+2
q ‖∇u≤Qu‖∞‖cp‖2‖cq‖2

.Quf(t)
∑

p>Qu+2

λs+1
p ‖cp‖2

∑
|q−p|≤2

λs+1
q ‖cq‖2

.Quf(t)
∑
q>Qu

λ2s+2
q ‖cq‖22.

And with the help of Hölder’s inequality, Lemma (2.3) and the definition of Λu(t),
we estimate I113 as

II113 ≤
∑

p>Qu+2

∑
|q−p|≤2

λ2s+2
q ‖[∆q, u(Qu,p−2] · ∇]cp‖2‖cq‖2

≤
∑

p>Qu+2

∑
|q−p|≤2

λ2s+2
q ‖cq‖2

∑
Qu<p′≤p−2

λp′‖up′‖∞‖cp‖2

≤
∑

p>Qu+2

‖cp‖2
∑
|q−p|≤2

λ2s+2
q ‖cq‖2

∑
Qu<p′≤p−2

λp′‖up′‖∞

.C0

∑
p>Qu+2

‖cp‖2
∑
|q−p|≤2

λ2s+2
q ‖cq‖2

∑
Qu<p′≤p−2

λ2p′

.C0

∑
p>Qu+2

λ2s+4
p ‖cp‖22

∑
Qu<p′≤p−2

λ2p′−p

.C0

∑
p>Qu+2

λ2s+4
p ‖cp‖22.
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II13 can be estimated in the same fashion as I13. Splitting the sum by the
wavenumber Qu(t), we have

|II13| ≤
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

∣∣(u≤p−2 − u≤q−2) · ∇∆qcpcq
∣∣ dx

≤
∑

−1≤q≤Qu

∑
|q−p|≤2

λ2s+2
q

∫
R3

∣∣(u≤p−2 − u≤q−2) · ∇∆qcpcq
∣∣ dx

+
∑
q>Qu

∑
|q−p|≤2

λ2s+2
q

∫
R3

∣∣(u≤p−2 − u≤q−2) · ∇∆qcpcq
∣∣ dx

=:II131 + II132,

which, using Hölder’s inequality along with the definition of f(t) and Λu(t), we
estimate as

|II131| ≤
∑

−1≤q≤Qu

λ2s+3
q ‖cq‖2

∑
|q−p|≤2

‖u≤p−2 − u≤q−2‖∞‖cp‖2

.f(t)
∑

−1≤q≤Qu

λ2s+2
q ‖cq‖2

∑
|q−p|≤2

‖cp‖2

.f(t)
∑

−1≤q≤Qu

λ2s+2
q ‖cq‖22,

|II132| ≤
∑
q>Qu

λ2s+3
q ‖cq‖2

∑
|q−p|≤2

‖u≤p−2 − u≤q−2‖∞‖cp‖2

.C0

∑
q>Qu

λ2s+3
q ‖cq‖2

∑
|q−p|≤2

λp‖cp‖2

.C0

∑
q>Qu

λ2s+4
q ‖cq‖22.

To estimate II2, we make use of the wavenumberQc(t) instead ofQu(t). Splitting
the summation by Qc(t) yields

II2 =
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

∆q(up · ∇c≤p−2)cqdx

=
∑
q≥−1

∑
|q−p|≤2,p≤Qc+2

λ2s+2
q

∫
R3

∆q(up · ∇c≤p−2)cqdx

+
∑
q≥−1

∑
|q−p|≤2,p>Qc+2

λ2s+2
q

∫
R3

∆q(up · ∇c≤Qc)cqdx

+
∑
q≥−1

∑
|q−p|≤2,p>Qc+2

λ2s+2
q

∫
R3

∆q(up · ∇c(Qc,p−2])cqdx

=:II21 + II22 + II23.
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It follows from Hölder’s and Young’s inequalities that

|II21| ≤
∑
q≥−1

∑
|q−p|≤2,p≤Qc+2

λ2s+2
q

∫
R3

∣∣∆q(up · ∇c≤p−2)cq
∣∣dx

≤
∑
q≥−1

λ2s+2
q ‖cq‖2

∑
|q−p|≤2,p≤Qc+2

‖up‖2‖∇c≤p−2‖∞

≤‖∇c≤Qc‖∞
∑
q≥−1

λs+1
q ‖cq‖2

∑
|q−p|≤2,p≤Qc+2

λs+2
p ‖up‖2λ−1p

≤ 1

32

∑
q≥−1

λ2s+4
q ‖uq‖22 + Cf(t)

∑
q≥−1

λ2s+2
q ‖cq‖22.

While the term II22 can be treated the same way as II21, the third term is estimated
as follows, by utilizing the definition of Λc(t)

|II23| ≤
∑
q≥−1

∑
|q−p|≤2,p>Qc+2

λ2s+2
q ‖up‖2‖cq‖2‖∇c(Qc,p−2]‖∞

.
∑
q>Qc

λ2s+2
q ‖uq‖2‖cq‖2‖∇c(Qc,q]‖∞

.
∑
q>Qc

λ2s+2
q ‖uq‖2‖cq‖2

∑
Qc<p≤q

λ
1+ 3

r
p ‖cp‖r

.C0

∑
q>Qc

λ2s+2
q ‖uq‖2‖cq‖2

∑
Qc<p≤q

λp

.C0

∑
q>Qc

λs+2
q ‖uq‖2λs+1

q ‖cq‖2
∑

Qc<p≤q

λp−q

.C0

∑
q>Qc

λ2s+4
q ‖uq‖22 + C0

∑
q>Qc

λ2s+2
q ‖cq‖22.

As for II3, we first integrate by parts, then split by the wavenumber Qu(t),

|II3| ≤

∣∣∣∣∣∣
∑
p≥−1

λ2s+2
q

∑
−1≤q≤p+2

∫
R3

∆q(up ⊗ c̃p)∇cq dx

∣∣∣∣∣∣
≤
∑
p>Qu

λ2s+2
q

∑
−1≤q≤p+2

∫
R3

|∆q(up ⊗ c̃p)∇cq| dx

+
∑

−1≤p≤Qu

λ2s+2
q

∑
−1≤q≤p+2

∫
R3

|∆q(up ⊗ c̃p)∇cq| dx

=:II31 + II32.
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Proceeding with the help of Hölder’s, Young’s and Jensen’s inequalities, we have
for s > − 1

2

|II31| .
∑
p>Qu

‖up‖∞‖cp‖2
∑

−1≤q≤p+2

λ2s+3
q ‖cq‖2

.C0

∑
p>Qu

λp‖cp‖2
∑

−1≤q≤p+2

λ2s+3
q ‖cq‖2

.C0

∑
p>Qu

λs+2
p ‖cp‖2

∑
−1≤q≤p+2

λs+2
q ‖cq‖2λs+1

q−p

.C0

∑
p>Qu

λ2s+4
p ‖cp‖22 +

 ∑
−1≤q≤p+2

λs+2
q ‖cq‖2λs+1

q−p

2


.C0

∑
q≥−1

λ2s+4
q ‖cq‖22,

and

|II32| .
∑

−1≤p≤Qu

‖up‖∞‖cp‖2
∑

−1≤q≤p+2

λ2s+3
q ‖cq‖2

.f(t)
∑

−1≤p≤Qu

λ−1p ‖cp‖2
∑

−1≤q≤p+2

λ2s+3
q ‖cq‖2

.f(t)
∑

−1≤p≤Qu

λs+1
p ‖cp‖2

∑
−1≤q≤p+2

λs+1
q ‖cq‖2λs+2

q−p

.f(t)
∑
q≥−1

λ2s+2
q ‖cq‖22.

We combine the above estimates to conclude that

|II| . C0

∑
q≥−1

(λ2s+4
q ‖cq‖22 + λ2s+4

q ‖uq‖22) +Quf(t)
∑
q≥−1

λ2s+2
q ‖cq‖22.

�

3.3. Estimate for III.

Lemma 3.3. Let s < 0. We have

|III| .C0

∑
q≥−1

λ2s+2
q ‖nq‖22 +Quf(t)

∑
q≥−1

λ2sq ‖nq‖22.

Proof: We start with Bony’s paraproduct decomposition for both of the terms.

III =
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

∆q(u≤p−2 · ∇np)nq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

∆q(up · ∇n≤p−2)nq dx

+
∑
q≥−1

∑
p≥q−2

λ2sq

∫
R3

∆q(up · ∇ñp)nq dx

=III1 + III2 + III3.
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Since we can estimate III1 and III3 in the same manner as II1 and II3, respectively,
the details of computation are omitted for simplicity. We claim

|III1|+ |III3| . C0

∑
q≥−1

λ2s+2
q ‖nq‖22 +Quf(t)

∑
q≥−1

λ2sq ‖nq‖22.

We are then left with the estimation of III2 to complete the conclusion. Splitting
the term by the wavenumber Qu(t), we have

III2 =
∑

−1≤p≤Qu

∑
|q−p|≤2

λ2sq

∫
R3

∆q(up · ∇n≤p−2)nqdx

+
∑
p>Qu

∑
|q−p|≤2

λ2sq

∫
R3

∆q(up · ∇n≤p−2)nqdx

=:III21 + III22.

Applying Hölder’s, Young’s and Jensen’s inequalities, we have for s < 1

|III21| ≤
∑

−1≤p≤Qu

‖up‖∞
∑
|q−p|≤2

λ2sq ‖nq‖2
∑

p′≤p−2

λp′‖np′‖2

≤
∑

−1≤p≤Qu

λp‖up‖∞
∑
|q−p|≤2

λ2s−1q ‖nq‖2
∑

p′≤p−2

λp′‖np′‖2

≤
∑

−1≤p≤Qu

λp‖up‖∞
∑
|q−p|≤2

λsq‖nq‖2
∑

p′≤p−2

λsp′‖np′‖2λs−1q−p′

.f(t)
∑

−1≤p≤Qu

(
λ2sp ‖nq‖22 +

( ∑
p′≤p−2

λsp′‖np′‖2λs−1p−p′
)2)

.f(t)
∑
q≥−1

λ2sq ‖nq‖22,

and for s < 0

|III22| ≤
∑
p>Qu

‖up‖∞
∑
|q−p|≤2

λ2sq ‖nq‖2
∑

p′≤p−2

λp′‖np′‖2

≤
∑
p>Qu

λ−1p ‖up‖∞
∑
|q−p|≤2

λ2s+1
q ‖nq‖2

∑
p′≤p−2

λp′‖np′‖2

≤C0

∑
q>Qu−2

λs+1
q ‖nq‖2

∑
p′≤q

λs+1
p′ ‖np′‖2λ

s
q−p′

.C0

∑
q≥−1

λ2s+2
q ‖nq‖22.

�

3.4. Estimate for IV . Here we use Hölder’s and Young’s inequalities to obtain

|IV | ≤
∑
q≥−1

λs+1
q ‖nq‖2λs+1

q ‖uq‖2

≤ 1

32

∑
q≥−1

λ2s+2
q ‖nq‖22 + C

∑
q≥−1

λ2s+2
q ‖uq‖22

(3.14)

for an absolute constant C.
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3.5. Estimate for V .

Lemma 3.4. If r > 3 and s < 0, we have

|V | ≤
(

1

32
+ CC0

) ∑
q≥−1

(
λ2s+4
q ‖cq‖22 + λ2s+2

q ‖nq‖22
)

+ C(f(t) + 1)
∑
q≥−1

(
λ2s+2
q ‖cq‖22 + λ2sq ‖nq‖22

)
.

Proof: Bony’s paraproduct decomposition leads to

V =
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

∆q(n≤p−2cp)cqdx

+
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

∆q(npc≤p−2)cqdx

+
∑
q≥−1

∑
p≥q−2

λ2s+2
q

∫
R3

∆q(ñpcp)cqdx

=:V1 + V2 + V3.

We further split V1 by the wavenumber Λc(t)

V1 =
∑
q≤Qc

∑
|q−p|≤2

λ2s+2
q

∫
R3

∆q(n≤p−2cp)cqdx

+
∑
q>Qc

∑
|q−p|≤2

λ2s+2
q

∫
R3

∆q(n≤p−2cp)cqdx

=:V11 + V12.

To estimate V11, Hölder’s inequality gives

|V11| ≤
∑
q≤Qc

λ2s+2
q ‖cq‖∞

∑
|q−p|≤2

‖cp‖2
∑

p′≤p−2

‖np′‖2

.
∑
q≤Qc

λq‖cq‖∞
∑
|q−p|≤2

λs+2
p ‖cp‖2

∑
p′≤p−2

λsp′‖np′‖2λs−1p−p′λ
−1
p′ .

Since s− 1 < 0 for s < 0, we apply Young’s and Jensen’s inequalities to obtain

|V11| ≤
1

32

∑
q≤Qc+2

λ2s+4
q ‖cq‖22 + C

∑
q≤Qc+2

λ2q‖cq‖2∞

∑
p′≤q

λsp′‖np′‖2λs−1q−p′

2

≤ 1

32

∑
q≤Qc+2

λ2s+4
q ‖cq‖22 + Cf(t)

∑
q≤Qc+2

∑
p′≤q

λ2sp′ ‖np′‖22λs−1q−p′

≤ 1

32

∑
q≤Qc+2

λ2s+4
q ‖cq‖22 + Cf(t)

∑
q≤Qc

λ2sq ‖nq‖22.
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Regarding V12, we have

|V12| ≤
∑
q>Qc

λ2s+2
q ‖cq‖∞

∑
|q−p|≤2

‖cp‖2
∑

p′≤p−2

‖np′‖2

.
∑
q>Qc

λ
2s+2+ 3

r
q ‖cq‖r

∑
|q−p|≤2

‖cp‖2
∑

p′≤p−2

‖np′‖2

.C0

∑
q>Qc−2

λ2s+2
q ‖cq‖2

∑
p′≤q

‖np′‖2

.C0

∑
q>Qc−2

λs+2
q ‖cq‖2

∑
p′≤q

λsp′‖np′‖2λsq−p′ .

Again, since s < 0, we can apply Young’s and Jensen’s inequalities

|V12| .C0

∑
q>Qc−2

λ2s+4
q ‖cq‖22 +

∑
q>Qc

∑
p′≤q

λsp′‖np′‖2λsq−p′

2

.C0

∑
q>Qc−2

λ2s+4
q ‖cq‖22 +

∑
q≥−1

λ2sp′ ‖np′‖22.

We also split V2 by the wavenumber Λc(t) as

V2 =
∑
q≥−1

∑
|q−p|≤2

λ2s+2
q

∫
R3

∆q(npc≤p−2)cqdx

=
∑
q≥−1

∑
|q−p|≤2,p≤Qc+2

λ2s+2
q

∫
R3

∆q(npc≤p−2)cqdx

+
∑
q≥−1

∑
|q−p|≤2,p>Qc+2

λ2s+2
q

∫
R3

∆q(npc≤Qc)cqdx

+
∑
q≥−1

∑
|q−p|≤2,p>Qc+2

λ2s+2
q

∫
R3

∆q(npc(Qc,p−2])cqdx

=:V21 + V22 + V23.
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Hölder’s and Young’s inequalities yield the following estimate on V21,

|V21| .
∑
q≥−1

λ2s+2
q ‖cq‖2

∑
|q−p|≤2

‖np‖2
∑

p′≤p−2≤Qc

‖cp′‖∞

.
∑
q≥−1

λs+1
q ‖cq‖2

∑
|q−p|≤2

λs+1
p ‖np‖2

∑
p′≤p−2≤Qc

λp′‖cp′‖∞λ−1p′

≤ 1

32

∑
q≥−1

λ2s+2
q ‖nq‖22 + C

∑
p≥−1

λ2s+2
p ‖cp‖22

 ∑
p′≤p−2≤Qc

λp′‖cp′‖∞λ−1p′

2

≤ 1

32

∑
q≥−1

λ2s+2
q ‖nq‖22 + C

∑
p≥−1

λ2s+2
p ‖cp‖22

∑
p′≤p−2≤Qc

λ2p′‖cp′‖2∞λ−1p′

≤ 1

32

∑
q≥−1

λ2s+2
q ‖nq‖22 + Cf(t)

∑
p≥−1

λ2s+2
p ‖cp‖22

∑
p′≤p−2≤Qc

λ−1p′

≤ 1

32

∑
q≥−1

λ2s+2
q ‖nq‖22 + Cf(t)

∑
q≥−1

λ2s+2
q ‖cq‖22.

Note that V22 can be estimated in the same way. Provided 3
r ≤ 1, the last term V23

is estimated as follows,

|V23| ≤
∑
q≥−1

∑
|q−p|≤2,p>Qc+2

λ2s+2
q ‖np‖2‖cq‖ 2r

r−2
‖c(Qc,p−2]‖r

.
∑
q≥−1

λ
2s+2+ 3

r
q ‖nq‖2‖cq‖2

∑
q>Qc,Qc<p′≤q

‖cp′‖r

.C0

∑
q≥−1

λ
2s+2+ 3

r
q ‖nq‖2‖cq‖2

∑
q>Qc,Qc<p′≤q

λ
− 3
r

p′

.C0

∑
q≥−1

λs+1
q ‖nq‖2λs+2

q ‖cq‖2λ
3
r−1
q

∑
q>Qc,Qc<p′≤q

λ
− 3
r

p′

.C0

∑
q≥−1

λs+1
q ‖nq‖2λs+2

q ‖cq‖2

.C0

∑
q≥−1

λ2s+2
q ‖nq‖22 + C0

∑
q≥−1

λ2s+4
q ‖cq‖22.

The term V3 can be dealt with in a similar way as V1. We first split the sum,

V3 =
∑
q≤Qc

∑
p≥q−2

λ2s+2
q

∫
R3

∆q(ñpcp)cqdx

+
∑
q<Qc

∑
p≥q−2

λ2s+2
q

∫
R3

∆q(ñpcp)cqdx.

Without giving details, we claim that

|V3| ≤
(

1

32
+ CC0

) ∑
q≥−1

λ2s+4
q ‖cq‖22 + C(f(t) + 1)

∑
q≥−1

λ2sq ‖nq‖22.

�
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3.6. Estimate for V I.

Lemma 3.5. Let − 1
2 < s < 0 and 3 < r < 3

1+s . We have

|V I| ≤
(

1

32
+ CC0

) ∑
q≥−1

λ2s+2
q ‖nq‖22 + Cf(t)

∑
q≥−1

λ2sq ‖nq‖22.

Proof: Utilizing Bony’s paraproduct, V I can be decomposed as

V I =−
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

∆q(n≤p−2∇cp)∇nq dx

−
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

∆q(np∇c≤p−2)∇nq dx

−
∑
q≥−1

∑
p≥q−2

λ2sq

∫
R3

∆q(ñp∇cp)∇nq dx

=:V I1 + V I2 + V I3.

We continue to decompose V I1 by Qc,

V I1 =−
∑
q≥−1

∑
|q−p|≤2,p≤Qc

λ2sq

∫
R3

∆q(n≤p−2∇cp)∇nq dx

−
∑
q≥−1

∑
|q−p|≤2,p>Qc

λ2sq

∫
R3

∆q(n≤p−2∇cp)∇nq dx

=:V I11 + V I12.

To estimate V I11, we apply Hölder’s inequality first,

|V I11| .
∑
q≥−1

λ2s+1
q ‖nq‖2

∑
|q−p|≤2,p≤Qc

‖∇cp‖∞
∑

p′≤p−2

‖np′‖2

.
∑
q≥−1

λs+1
q ‖nq‖2

∑
|q−p|≤2,p≤Qc

‖∇cp‖∞
∑

p′≤p−2

λsp′‖np′‖2λsp−p′ .

We then apply Young’s and Jensen’s inequalities,

|V I1| ≤
1

32

∑
q≥−1

λ2s+2
q ‖nq‖22 + Cf(t)

∑
q≥−1

( ∑
p′≤q

λsp′‖np′‖2λsq−p′
)2

≤ 1

32

∑
q≥−1

λ2s+2
q ‖nq‖22 + Cf(t)

∑
q≥−1

λ2sq ‖nq‖22,

where we require s < 0 to ensure
∑
p′≤p−2 λ

s
p−p′ <∞.
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Again, applying Hölder’s inequality first to V I12 yields

|V I12| ≤
∑
q≥−1

∑
|q−p|≤2,p>Qc

λ2sq ‖∇nq‖2‖∇cp‖r‖n≤p−2‖ 2r
r−2

.
∑
q≥−1

∑
|q−p|≤2,p>Qc

λ
2s+2− 3

r
q ‖nq‖2λ

3
r
p ‖cp‖r

∑
p′≤p−2

λ
3
r

p′‖np′‖2

.C0

∑
q≥−1

λ
2s+2− 3

r
q ‖nq‖2

∑
p′≤q

λ
3
r

p′‖np′‖2

.C0

∑
q≥−1

λs+1
q ‖nq‖2

∑
p′≤q

λs+1
p′ ‖np′‖2λ

s+1− 3
r

q−p .

Following Young’s and Jensen’s inequalities, we obtain for s+ 1 < 3
r

|V I12| ≤CC0

∑
q≥−1

λ2s+2
q ‖nq‖22 + CC0

∑
q≥−1

∑
p′≤q

λs+1
p′ ‖np′‖2λ

s+1− 3
r

q−p

2

≤CC0

∑
q≥−1

λ2s+2
q ‖nq‖22 + CC0

∑
q≥−1

∑
p′≤q

λ2s+2
p′ ‖np′‖22λ

s+1− 3
r

q−p

≤CC0

∑
q≥−1

λ2s+2
q ‖nq‖22.

The first step of dealing with V I2 is to split it by Qc as well,

V I2 =−
∑
q≥−1

∑
|q−p|≤2,p≤Qc+2

λ2sq

∫
R3

∆q(np∇c≤p−2)∇nq dx

−
∑
q≥−1

∑
|q−p|≤2,p>Qc+2

λ2sq

∫
R3

∆q(np∇c≤Qc)∇nq dx

−
∑
q≥−1

∑
|q−p|≤2,p>Qc+2

λ2sq

∫
R3

∆q(np∇c(Qc,p−2])∇nq dx

=:V I21 + V I22 + V I23.

Using Hölder’s and Young’s inequalities, and the fact that λsq−p ∼ C as p, q are
close to each other, we have

|V I21| ≤
∑
q≥−1

λ2s+1
q ‖nq‖2

∑
|q−p|≤2,p≤Qc+2

‖np‖2‖∇c≤p−2‖∞

≤
∑
q≥−1

λs+1
q ‖nq‖2

∑
|q−p|≤2,p≤Qc+2

λsp‖np‖2‖∇c≤p−2‖∞λsq−p

≤ 1

32

∑
q≥−1

λ2s+2
q ‖nq‖22 + Cf(t)

∑
q≥−1

λ2sq ‖nq‖22.
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We skip the computation for V I22 which can be estimated in a likely way as V I21.
We proceed to estimate V23, provided r > 3

|V I23| ≤
∑
q≥−1

∑
|q−p|≤2,p>Qc+2

λ2sq ‖np‖2‖∇c(Qc,p−2]‖r‖∇nq‖ 2r
r−2

.
∑
q≥−1

λ
2s+1+ 3

r
q ‖nq‖22

∑
Qc<p′≤q

λp′‖cp′‖r

.C0

∑
q≥−1

λ
2s+1+ 3

r
q ‖nq‖22

∑
Qc<p′≤q

λ
1− 3

r

p′

.C0

∑
q≥−1

λ2s+2
q ‖nq‖22

∑
Qc<p′≤q

λ
1− 3

r

p′−q

.C0

∑
q≥−1

λ2s+2
q ‖nq‖22.

Finally, we notice that V I3 can be handled in an analogous way of V I1; thus the
details of computation are omitted. It completes the proof of the lemma.

�
Summing inequalities in Lemma 3.1- Lemma 3.5 and (3.11)-(3.14) produces the

following Grönwall type of inequality,
d

dt

∑
q≥−1

(λ2sq ‖nq‖22 + λ2s+2
q ‖cq‖22 + λ2s+2

q ‖uq‖22)

≤(−2 + CC0)
∑
q≥−1

(λ2s+2
q ‖nq‖22 + λ2s+4

q ‖cq‖22 + λ2s+4
q ‖uq‖22)

+ CQuf(t)
∑
q≥−1

(λ2sq ‖nq‖22 + λ2s+2
q ‖cq‖22 + λ2s+2

q ‖uq‖22).

Thus, C0 can be chosen small enough such that CC0 <
1
4 . On the other hand,

combining the definition of Λu(t) and Bernstein’s inequality, one can deduce

1 ≤ C−10 Λ−1u ‖uQu‖∞ . C−10 Λ
1
2
u ‖uQu‖2 . C−10 Λ

− 1
2−s

u ‖u‖Ḣs+1 ,

which implies that for s > − 1
2 ,

Qu = log Λu . 1 + log ‖u‖Ḣs+1 .

Hence the energy inequality becomes
d

dt

∑
q≥−1

(λ2sq ‖nq‖22 + λ2s+2
q ‖cq‖22 + λ2s+2

q ‖uq‖22)

≤−
∑
q≥−1

(λ2s+2
q ‖nq‖22 + λ2s+4

q ‖cq‖22 + λ2s+4
q ‖uq‖22)

+ Cf(t) (1 + log ‖u‖Ḣs+1)
∑
q≥−1

(λ2sq ‖nq‖22 + λ2s+2
q ‖cq‖22 + λ2s+2

q ‖uq‖22).

By the hypothesis (1.7) and Grönwall’s inequality, we can conclude that

n ∈ L∞(0, T ;Hs) ∩ L2(0, T ;Hs+1),

c ∈ L∞(0, T ;Hs+1) ∩ L2(0, T ;Hs+2),

u ∈ L∞(0, T ;Hs+1) ∩ L2(0, T ;Hs+2).
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We consider a particular case s = −ε for small enough ε > 0. We realize that our
solution is regular via bootstrapping arguments. In fact, we have

n ∈ L∞(0, T ;H−ε), u ∈ L∞(0, T ;H1−ε), c ∈ L∞(0, T ;H1−ε) ∩ L∞(0, T ;L∞).

By scaling, it is known that H−
1
2 , H

1
2 , and H

3
2 are critical for n, u and c, respec-

tively. For small enough ε > 0, H−ε is subcritical for n; so is H1−ε for u. Thus, it
suffices to bootstrap the equation of c to obtain higher regularity for c. We recall

ct −∆c = −u · ∇c− nc.

Since u ∈ L∞(0, T ;H1−ε) and∇c ∈ L2(0, T ;H1−ε), by Sobolev embeddingH1−ε ↪→
L

6
1+2ε , we have u · ∇c ∈ L2(0, T ;L

3
1+2ε ). Similarly, the fact of c ∈ L∞(0, T ;H1−ε)

and n ∈ L2(0, T ;H1−ε) implies nc ∈ L2(0, T ;L
3

1+2ε ). Then the standard maximal
regularity theory of heat equation yields

c ∈ H1(0, T ;L
3

1+2ε ) ∩ L2(0, T ;W 2, 3
1+2ε ).

We need to bootstrap one more time. Now we have ∇c ∈ L2(0, T ;W 1, 3
1+2ε ) which,

along with u ∈ L∞(0, T ;H1−ε), implies u · ∇c ∈ L2(0, T ;L
6

1+6ε ). On the other
hand, we have nc ∈ L2(0, T ;L

6
1+2ε ) from the estimate n ∈ L2(0, T ;H1−ε) and the

maximal principle c ∈ L∞(0, T ;L∞). Again, the maximal regularity theory of heat
equation produces that

c ∈ H1(0, T ;L
6

1+6ε ) ∩ L2(0, T ;W 2, 6
1+6ε ).

As a consequence of the mixed derivative theorem (see [28]), we have

c ∈W 1−θ,2(0, T ;W 2θ, 6
1+6ε )

for any θ ∈ [0, 1]. In fact, if we take θ ∈ ( 1+6ε
4 , 12 ), Sobolev embedding theorem

shows that
c ∈W 1−θ,2(0, T ;W 2θ, 6

1+6ε ) ↪→ L∞(0, T ;H
3
2+ε0)

for an small enough constant ε0 > 0. Notice that H
3
2 is critical for c. Thus we can

stop the bootstrapping for c equation. Regarding the density function n, although
the obtained estimates are in subcritical space already, we would like to further
improve the estimates to reach spaces with even higher regularity (i.e. Sobolev
spaces with positive smoothness index). Indeed, we look at the n equation again,

nt −∆n = −u · ∇n−∇ · (n∇c).

Due to the fact ∇c ∈ L∞(0, T ;H
1
2+ε0) and n ∈ L2(0, T ;H1−ε), Sobolev embedding

theorem yields n∇c ∈ L2(0, T ;L2) and hence ∇ · (n∇c) ∈ L2(0, T ;H−1). While
u ∈ L∞(0, T ;H1−ε) and n ∈ L2(0, T ;H1−ε) together imply un ∈ L2(0, T ;L

3
1+2ε )

which is embedded in L2(0, T ;L2). Thus u · ∇n = ∇ · (un) ∈ L2(0, T ;H−1).
Applying Lemma 2.4 with α = −1 to the n equation, we claim

n ∈ H1(0, T ;H−1) ∩ L2(0, T ;H1).

Summarizing the analysis above gives us

n ∈ L∞(0, T ;H−ε) ∩ L2(0, T ;H1) ∩H1(0, T ;H−1),

u ∈ L∞(0, T ;H1−ε) ∩ L2(0, T ;H2−ε),

c ∈ L∞(0, T ;H
3
2+ε0) ∩ L2(0, T ;W 2, 6

1+6ε ).
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Since each of the three functions n, u and c is in higher regularity space than its
critical Sobolev space, further bootstrapping procedures for parabolic equations
and standard argument of extending regularity can be applied to infer that the
solution (u, n, c) is regular up to time T .

Acknowledgement. The authors would like to thank Prof. Gieri Simonett for
offering valuable references on maximal regularity theory. Thanks also go to the
anonymous referees, whose suggestions have improved the original manuscript a
lot.
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