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We demonstrate that the three dimensional incompressible magneto-hydrodynamics 
(MHD) system is ill-posed due to the discontinuity of weak solutions in a wide range 
of spaces. Specifically, we construct initial data which has finite energy and is small 
in certain spaces, such that any Leray-Hopf type of weak solution to the MHD 
system starting from this initial data is discontinuous at time t = 0 in such spaces. 
An analogous result is also obtained for the Navier-Stokes equation which extends 
the previous result of ill-posedness in Ḃ−1

∞,∞ by Cheskidov and Shvydkoy to spaces 
that are not necessarily critical. The region of the spaces where the norm inflation 
occurs almost touches L2.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The three dimensional incompressible magneto-hydrodynamics (MHD) system is given by:

ut − µ"u+ u · ∇u − b · ∇b+ ∇p = 0,
bt − ν"b+ u · ∇b − b · ∇u = 0,

∇ · u = 0, ∇ · b = 0,
(1.1)

with the initial conditions

u(x, 0) = u0(x), b(x, 0) = b0(x),
∇ · u0 = 0, ∇ · b0 = 0

(1.2)
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where x ∈ Ω = T 3, t ≥ 0, u is the fluid velocity, p is the pressure of the fluid, and b is the magnetic field. 
The parameter µ denotes the kinematic viscosity coefficient of the fluid and ν denotes the reciprocal of 
the magnetic Reynolds number. When the magnetic field b(x, t) vanishes, the incompressible MHD system 
reduces to the incompressible Navier-Stokes equation (NSE). In the case where the domain Ω is the whole 
space, the solutions to the MHD system share the same scaling property of the solutions to the NSE, that 
is,

uλ(x, t) = λu(λx,λ2t), bλ(x, t) = λb(λx,λ2t), pλ(x, t) = λ2p(λx,λ2t)

solve (1.1) with the initial data

u0λ = λu0(λx), b0λ = λb0(λx),

if (u(x, t), b(x, t)) solves (1.1) with the initial data (u0(x), b0(x)). A space that is invariant under the above 
scaling is called critical space. Examples of critical spaces associated with the above scaling in three dimen-
sion are

Ḣ
1
2 ↪→ L3 ↪→ Ḃ

−1+ 3
p

p|p<∞,∞ ↪→ BMO−1 ↪→ Ḃ−1
∞,∞.

Notice that Ḃ−1
∞,∞ is the largest critical space for both the NSE and the MHD system. In the periodic 

case there is no distinction between homogeneous and non-homogeneous spaces, so B
−1+ 3

p
p,∞ are also called 

critical.
The study of the Navier-Stokes equations in critical spaces has been a focus of the research activity 

since the initial work of Kato [11]. In 2001, Koch and Tataru [12] established the global well-posedness 
of the classical Navier-Stokes equations with small initial data in the space BMO−1. Then the question 
whether this result can be extended to the largest critical space Ḃ−1

∞,∞ had become of great interest. The 
first indication that such an extension might not be possible came in the work by Bourgain and Pavlović 
[3] who showed the norm inflation for the classical Navier-Stokes equations in Ḃ−1

∞,∞. More precisely, they 
constructed arbitrarily small initial data in Ḃ−1

∞,∞, such that mild solutions with this data become arbitrarily 
large in Ḃ−1

∞,∞ after an arbitrarily short time. This result was later extended to generalized Besov spaces 
smaller than B−1

∞,p, p > 2 by Yoneda [15]. Moreover, in [6] Cheskidov and Shvydkoy proved the existence 
of discontinuous Leray-Hopf solutions of the Navier-Stokes equations in Ḃ−1

∞,∞ with arbitrarily small initial 
data. Contrary to the Bourgain-Pavlović construction where the energy transfers from high to low modes 
to produce the norm inflation, the norm discontinuity in [6] is due to the forward energy cascade generated 
by local interactions. In [4] Cheskidov and Dai considered fractional Navier-Stokes equations and showed 
that the natural space for norm inflation is critical only when the power of the Laplacian is one. When the 
power od the laplacian is larger than one, the norm inflation occurs not only in critical spaces, but also in 
subcritical and supercritical.

For the MHD system, Miao, Yuan and Zhang [14] proved the existence of a global mild solution in 
(BMO−1)2 for small initial data and uniqueness of such solution in 

(
C([0,∞);BMO−1)

)2. Later, Dai, 
Qing and Schonbek [7] established several different types of “norm inflation” phenomena for the three 
dimensional MHD system in the largest critical space (Ḃ−1

∞,∞)2, by adopting the idea of [3]. Since the MHD 
system describes the coupling of velocity field and magnetic field, the authors were able to construct different 
initial data to produce different types of “norm inflation”. In particular, the magnetic field can develop norm 
inflation in short time even when the velocity remains small and vice versa. In [5] Cheskidov and Dai used 
their approach from [4] to extend the norm inflation results to even wider range of spaces that included 
critical, subcritical, and supercritical.

In this paper we further investigate the method of [6] to study the ill-posedness problem of the NSE and 
the MHD system in a large class of spaces which may contain critical, supercritical and subcritical spaces. 
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Fig. 1. The region where the discontinuity for the NSE occurs on the plane of the smoothness index s vs 1/r.

First, modifying the initial data construction, we are able to obtain discontinuous weak solutions to the 
NSE in certain Besov spaces. Namely, we prove that

Theorem 1.1. Let 1 < r ≤ ∞ and 32 < θ ≤ 2 which satisfy either
{
2 ≤ θ + 3

r
< 3

}
; or

{
r ≥ 3

2 , 3 ≤ θ + 3
r
< 4, 2θ + 3

r
≤ 11

2

}
.

There exists an initial data u0 ∈ B
3
r+θ−3
r,∞ (that depends only on θ), such that every Leray-Hopf weak solution 

u ∈ Cw([0, T ); L2) ∩ L2([0, T ); H) to the NSE satisfies

lim sup
t→0+

‖u(t) − u0‖
B

3
r
+θ−3

r,∞
≥ δ (1.3)

for an absolute constant δ.

The region of the spaces where the discontinuity of the NSE occurs is diagrammed as in Fig. 1. One can 
see that the NSE develops discontinuous weak solutions in both critical and supercritical spaces. The region 
contains the largest critical space B−1

∞,∞, but also B0
2,∞ that has the same scaling as L2.

In the mean time, we obtain the same type of ill-posedness for the MHD system as follows:

Theorem 1.2. Let 1 < r ≤ ∞, 32 < θ ≤ 2 and γ > 3
2 with θ + γ ≤ 4. In addition, the triplet (r, θ, γ) satisfies 

either
{

γ ≤ 5
2 , 2 ≤ θ + 3

r
< 3, γ + 3

r
< 4

}
; or

{
r ≥ 3

2 , θ + 3
r

≥ 3, γ + 3
r
< 4, θ + γ + 3

r
≤ 11

2

}
.

There exists an initial data (u0, b0) ∈ B
3
r+θ−3
r,∞ × B

3
r+γ−3
r,∞ , such that every Leray-Hopf weak solution 

(u(t), b(t)) to (1.1)-(1.2) satisfies
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lim sup
t→0+

(
‖u(t) − u0‖

B
3
r +θ−3
r,∞

+ ‖b(t) − b0‖
B

3
r +γ−3
r,∞

)
≥ δ (1.4)

for an absolute constant δ.

Remark 1.1. We point out that the assumption on the parameter triplet (r, θ, γ) may not be optimal. In 
fact, in the proof of the theorem in Section 5, the assumption guarantees that a “jump” of ‖b(t)‖L2 occurs 
in the contradiction argument. One can verify that different (complementary) assumption on (r, θ, γ) may 
yield a “jump” of ‖u(t)‖L2 . We do not include the alternate assumption in the statement of the theorem due 
to the complication. However, under the current assumption, one can already see the discontinuity occurs 
in a wide range of spaces including critical, supercritical and subcritical ones.

The rest of the paper is organized as: in Section 2 we introduce some notations that shall be used 
throughout the paper and some auxiliary results; in Section 3 we present the initial data construction for 
both the NSE and the MHD system; Section 4 provides a brief proof of Theorem 1.1; Section 5 is devoted 
to proving Theorem 1.2.

2. Preliminaries and auxiliary results

2.1. Notation

We denote by A ! B an estimate of the form A ≤ CB with some constant C, and by A ∼ B an estimate 
of the form C1B ≤ A ≤ C2B with some constants C1, C2. We denote ‖ · ‖p = ‖ · ‖Lp(Tn) and the trilinear 
term

B(u, v, w) =
∫

T3

u ⊗ v : ∇w dx =
∫

T3

vi∂iwjuj dx. (2.5)

2.2. Littlewood-Paley decomposition

The techniques presented in this paper rely strongly on the Littlewood-Paley decomposition. We recall 
the Littlewood-Paley decomposition theory briefly. For a more detailed description on this theory we refer 
the readers to the books by Bahouri, Chemin and Danchin [1] and Grafakos [10].

We denote λq = 2q for integers q. A nonnegative radial function χ ∈ C∞
0 (Rn) is chosen such that

χ(ξ) =
{
1, for |ξ| ≤ 3

4
0, for |ξ| ≥ 1.

Let

ϕ(ξ) = χ(ξ/2) − χ(ξ), ϕq(ξ) =
{

ϕ(λ−1
q ξ) for q ≥ 0,

χ(ξ) for q = −1.

For a tempered distribution vector field v on the torus Tn we consider the Littlewood-Paley projections

vq(x) =
∑

k∈Zn

v̂(k)ϕq(k)eik·x, q ≥ −1. (2.6)

The following Littlewood-Paley decomposition
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v =
∞∑

q=−1
vq

holds in the distribution sense. Essentially the sequence of the smooth functions ϕq forms a dyadic partition 
of the unit. To simplify the notation, we denote

v≤q =
q∑

j=−1
vj , ṽq = vq−1 + vq + vq+1.

By the definition of ϕq, it is noticed that supp (ϕp) ∩ supp (ϕp′) = ∅ if |p − p′| ≥ 2.
By the Littlewood-Paley projection we define the Besov spaces Bs

r,l on the torus T 3 for s ∈ R and 
1 ≤ l, r ≤ ∞. Denote the norm

‖f‖Ḃs
r,l

=




∑

q≥−1
(λs

q‖fq‖r)l



1/l

.

Then

Ḃs
r,l(Tn) =

{
f ∈ S ′ : ‖f‖Ḃs

r,l
< ∞

}
,

where S ′ denotes the space of all tempered distributions. Notice that Bs
r,l(Tn) = Ḃs

r,l(Tn) on torus.
We will often use the following inequality for the dyadic blocks of the Littlewood-Paley decomposition 

(see [13]):

Lemma 2.1. (Bernstein’s inequality) For all α ∈ Nn, q ∈ Z, 1 ≤ p ≤ ∞ and for all tempered distributions 
f ∈ S ′, we have

∥∥∥∥
∂α

∂xα
fq

∥∥∥∥
p

∼ λ|α|
q ‖fq‖p. (2.7)

2.3. The existence of Leray-Hopf type of weak solution to the incompressible MHD system

We recall the result on the existence of weak solutions for the MHD system by Duvaut and Lions [8].

Theorem 2.2. For any (u0, b0) ∈ (L2)2 there exists a weak solution (u, b) to (1.1)-(1.2) satisfying

u, b ∈ L∞(0,∞;L2) ∩ L2(0,∞;H1).

Moreover, there exists a weak solution satisfying the energy inequality

‖u(t)‖22 + ‖b(t)‖22 + 2
t∫

0

(
µ‖∇u(s)‖22 + ν‖∇b(s)‖22

)
ds ≤ ‖u0‖22 + ‖b0‖22, (2.8)

for all t > 0.
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3. Construction of initial data

In this section we construct initial data u0 ∈ B
3
r+θ−3
r,∞ for the NSE and (u0b, b0) ∈ B

3
r+θ−3
r,∞ × B

3
r+γ−3
r,∞ for 

the MHD system with finite energy. The construction is similar to the one in [6].
Let θ, γ > 3/2. We take any strictly decreasing sequence {qj} such that

λ4−θ
qi ≤ λ2θ−3

qi+1 , λ4−θ
qi ≤ λ2γ−3

qi+1 , λ4−γ
qi ≤ λθ+γ−3

qi+1 . (3.9)

Given c > 0, consider the following sets:

Lj =
(
[λqj , (1 + c)λqj ] × [−cλqj , cλqj ]2

)
∩ Z3

Mj =
(
[−cλqj−1, cλqj−1]2 × [λqj−1, (1 + c)λqj−1]

)
∩ Z3

Nj = Lj +Mj

L∗
j = −Lj , M∗

j = −Mj , N∗
j = −Nj .

Let p(k) be the symbol of the Leray-Hopf projection

p(k) = I − k ⊗ k

|k|2 .

We denote

,e1(k) = p(k),e1, ,e2(k) = p(k),e2, k ∈ Z3 \ {0} ,

where ,ej stands for a standard basis vector. Define

ψ1,j(k) = ,e2(k)χLj∪L∗
j
+ i(,e2(k) −,e1(k))χNj − i(,e2(k) −,e1(k))χN∗

j
,

ψ2,j(k) = ,e1(k)χMj∪M∗
j
.

For the NSE, we choose initial data u0 = U , where

U =
∑

j≥1
λ−θ
qj F−1 (ψ1,j(ξ) + ψ2,j(ξ)) (3.10)

Due to the fact that ψi,j(ξ) is flat around spheres |ξ| = λq for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3, one can check that 
for c small enough we have

F(Uqj )(ξ) = λ−θ
qj ψ1,j(ξ), F(Uqj−1)(ξ) = λ−θ

qj ψ2,j(ξ), F(Uqj+1)(ξ) = 0.

Hence Ũqj = Uqj−1 + Uqj . It is also clear that ∇ · u0 = 0.
For the MHD system, we choose initial data u0b and b0 as

u0b =
∑

j≥1
Uqj , b0 =

∑

j≥1
Bqj , with

F(Bqj )(ξ) = λ−γ
qj ψ2,j(ξ).

(3.11)

It also holds that

∇ · u0b = ∇ · b0 = 0.
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Lemma 3.1. Let θ > 3/2. For all 1 < r ≤ ∞, we have u0, u0b ∈ B
3
r+θ−3
r,∞ and b0 ∈ B

3
r+γ−3
r,∞ . In particular, 

u0, u0b ∈ Hθ− 3
2 −s and b0 ∈ Hγ− 3

2 −s for any s > 0.

Proof. We only prove the conclusions for u0. On the block Lj , for 1 < r < ∞, we have, by the boundedness 
of the Leray-Hopf projection and the Lp estimate of Dirichlet kernel (see [9])

‖λ−θ
qj F−1(,e2(ξ)χLj )‖r ! λ−θ

qj ‖F−1(χLj )‖r

! λ−θ
qj λ

3(1− 1
r )

qj .

On all the other blocks, we have similar estimates. Hence,

λ
3
r+θ−3
qj ‖Uqj‖r ! 1, λ

3
r+θ−3
qj ‖Uqj−1‖r ! 1.

Therefore, u0 ∈ Ḃ
3
r+θ−3
r,∞ , for 1 < r < ∞. When r = ∞,

‖Uqj‖∞ ! ‖F(Uqj )‖1

! λ−θ
qj




∫

χLj∪L∗
j

1dξ +
∫

χNj

1dξ +
∫

χN∗
j

1dξ





! λ3−θ
qj .

And similarly, we have

‖Uqj−1‖∞ ! λ3−θ
qj .

Therefore, u0 ∈ Ḃθ−3
∞,∞. In particular, for r = 2, the embedding Ḃθ− 3

2
2,∞ ⊂ Hθ− 3

2 −s holds for all s > 0. Similar 
conclusion holds for b0. ✷

Remark 3.2. Specifically the assumption θ, γ > 3
2 implies that u0 ∈ L2 and (u0b, b0) ∈ L2 × L2 which 

indicates the initial data has finite energy.

As a consequence of Lemma 3.1, one can see that, for 1 < p ≤ ∞

‖Uqj−1‖p + ‖Uqj‖p ! λ
3−θ− 3

p
qj , ‖Bqj‖p ! λ

3−γ− 3
p

qj . (3.12)

The following estimates are essential to produce the discontinuity of the weak solutions.

Lemma 3.3. Let u0, u0b, b0 be defined as in (3.10)-(3.11). Then the trilinear terms satisfy

B(u0, u0, Uqj ) ∼ B(u0b, u0b, Uqj ) ∼ λ7−3θ
qj , B(b0, b0, Uqj ) ∼ λ7−2γ−θ

qj ,

B(u0b, b0, Bqj ) ∼ λ7−2γ−θ
qj , B(b0, u0b, Bqj ) ∼ λ7−2γ−θ

qj .

Proof. We only give a proof for the first one. The other estimates can be obtained in a similar way. Note 
that supp

{
Ûi

}
∩ supp

{
Ûj

}
= ∅ for any |i − j| ≥ 2. We decompose the term as
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B(u0, u0, Uqj ) =
∑

k≥j+1
B(Ũqk , Ũqk , Uqj ) + B(Ũqj , Ũqj , Uqj )

+ B(U≤qj−1 , Ũqj , Uqj ) + B(Ũqj , U≤qj−1 , Uqj )

∼
∑

k≥j+1
B(Ũqk , Ũqk , Uqj ) + B(Uqj−1, Uqj , Uqj )

− B(Uqj , Uqj , U≤qj−1) ≡ I + II − III

where we used integration by parts and the divergence free property of Uqj .
Applying Bernstein’s inequality (2.7) and (3.12) yields, for θ > 3/2

|I| ! λqj‖Uqj‖∞
∑

k≥j+1
‖Ũqk‖22 ! λ4−θ

qj

∑

k≥j+1
λ3−2θ
qk !

λ4−θ
qj

λ2θ−3
qj+1

≤ ε.

Similarly,

|III| ! ‖Uqj‖3−2θ
2

∑

k≤j−1
λqk‖Uqk‖∞ !

λ4−θ
qj−1

λ2θ−3
qj

≤ ε.

Using (2.7) and (3.12), the term II is estimated as

|II| ! λqj‖Uqj‖22‖Uqj‖∞ ∼ λ7−3θ
qj .

The conclusion follows immediately. ✷

4. Discontinuous weak solutions to the NSE

In this section, we investigate the Navier-Stokes equation

ut − µ"u+ u · ∇u+ ∇p = 0,
∇ · u = 0,

(4.13)

with initial data u0 given by (3.10). By an analogous analysis as in [6], we show that the weak solutions of 
(4.13) are discontinuous at initial time in a large class of Besov spaces, as stated in Theorem 1.1.

Denote E(t) =
∫ t
0 ‖∇u‖22ds. Multiplying (4.13) by ũqj , integrating over the space, and applying Lemma 3.3

yields

‖ũqj (t)‖22 ≥‖Uqj‖22 − µE(t) + c1λ7−3θ
qj t

− c2

t∫

0

∣∣B(u, u, uqj ) − B(U,U,Uqj )
∣∣ ds,

(4.14)

for some positive constants c1 and c2. One contradiction argument will lead the conclusion of the theorem.
Suppose that for every δ > 0 there exists t0 = t0(δ) > 0 such that ‖u(t) −U‖

B
3
r

−3+θ
r,∞

< δ for all 0 < t ≤ t0. 
Denoting w = u − U , it follows

‖wp‖r ≤ δλ
3−θ− 3

r
p , for all p ≥ −1.

After writing
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B(u, u, uqj ) − B(U,U,Uqj )
=B(w,U,Uqj ) + B(u,w, Uqj ) + B(u, u, wqj ) = A+B + C,

we estimate each term through the Bony’s para-product (cf. [2]) decomposition as follows.

A =
∑

p′,p′′≥qj
|p′−p′′|≤2

B(wp′ , Up′′ , Uqj ) + B(w≤qj , Ũqj , Uqj )

+ B(w̃qj , U≤qj , Uqj ) − rA = A1 +A2 +A3 − rA,

with rA being the overlap of A2 and A3. Later rB, rC , rD, rE , rF have the same meaning. Combining Hölder’s 
inequality, and Bernstein’s inequalities, we obtain

|A1| ≤ ‖∇Uqj‖∞
∑

‖wp′‖r‖Up′′‖ r
r−1

! λ4−θ
qj

∑
δλ3−2θ

p′′ ! δλ7−3θ
qj ,

for θ > 3
2 ;

|A2| = |B(Uqj , Ũqj , w≤qj )| ≤ ‖Uqj‖∞‖Ũqj‖ r
r−1

‖∇w≤qj‖r

! λ
3−2θ+ 3

r
qj

∑

p≤qj

δλ
4−θ− 3

r
p ! δλ7−3θ

qj

for θ + 3
r < 4;

|A3| ≤ λqj‖Uqj‖ r
r−1

‖U≤qj‖∞‖w̃qj‖r

! δλ4−2θ
qj

∑

p≤qj

λ3−θ
p ! δλ7−3θ

qj

for θ < 3. We have shown

|A| ! δλ7−3θ
qj , for 3

2 < θ < 3, and θ + 3
r
< 4. (4.15)

We decompose B similarly,

B =
∑

p′,p′′≥qj
|p′−p′′|≤2

B(up′ , wp′′ , Uqj ) + B(u≤qj , w̃qj , Uqj )

+ B(ũqj , w≤qj , Uqj ) − rB = B1 +B2 +B3 − rB ;

‖B1‖ ! λqj‖Uqj‖ 2r
r−2

∑
‖up′‖2‖wp′′‖r ! δλ

5
2 −θ+ 3

r
qj

∑

p≥λqj

λ
2−θ− 3

r
p ‖∇up‖2

! δλ
9
2 −2θ
qj

∑

p≥λqj

(
λqj

λp

)θ+ 3
r −2

‖∇up‖2 ! δλ
9
2 −2θ
qj ‖∇up‖2

for θ + 3
r ≥ 2;

|B2| =
∣∣B(Uqj , w̃qj , u≤qj )

∣∣ ≤ ‖Uqj‖ 2r
r−2

‖w̃qj‖r‖∇u≤qj‖2 ≤ δλ
9
2 −2θ
qj ‖∇u‖2;
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|B3| ≤ ‖ũqj‖2‖w≤qj‖r‖∇Uqj‖ 2r
r−2

! δλ
3
2 −θ+ 3

r
qj ‖∇ũqj‖2

∑

p≤qj

λ
3−θ− 3

r
p

!






δλ
9
2 −2θ
qj ‖∇u‖2, if θ + 3

r < 3,
δλ

3
2 −θ+ 3

r
qj ‖∇u‖2, if θ + 3

r > 3,
δλ

3
2 −θ+ 3

r
qj qj‖∇u‖2, if θ + 3

r = 3.

We thus obtain

|B| !






δλ
9
2 −2θ
qj ‖∇u‖2, if 2 ≤ θ + 3

r < 3,
δλ

3
2 −θ+ 3

r
qj ‖∇u‖2, if θ + 3

r > 3,
δλ

3
2 −θ+ 3

r
qj qj‖∇u‖2, if θ + 3

r = 3.
(4.16)

Similarly,

C =
∑

p′,p′′≥qj
|p′−p′′|≤2

B(up′ , up′′ , wqj ) + B(u≤qj , ũqj , wqj )

+ B(ũqj , u≤qj , wqj ) − rC = C1 + C2 + C3 − rC ;

|C1| ≤ ‖∇wqj‖r
∑

p≥qj−2
‖ũp‖2‖ũp‖ 2r

r−2
! δλ

4−θ− 3
r

qj

∑

p≥qj−2
λ

3
r −2
p ‖∇up‖22

! δλ2−θ
qj ‖∇u‖22, for r ≥ 3

2 ;

|C2| ≤ ‖∇u‖2‖ũqj‖ 2r
r−2

‖wqj‖r ! δλ2−θ
qj ‖∇u‖22;

|C3| ! λqj‖wqj‖r‖ũqj‖ 2r
r−2

‖u‖2 ≤ δλ3−θ
qj ‖∇ũqj‖2.

Thus,

|C| ! δλ2−θ
qj ‖∇u‖22 + δλ3−θ

qj ‖∇ũqj‖2. (4.17)

Combining (4.15), (4.16), (4.17) yields that, if 2 ≤ θ + 3
r < 3

t0∫

0

∣∣B(u, u, uqj ) − B(U,U,Uqj )
∣∣ ds

!δλ7−3θ
qj t0 + δλ9/2−2θ

qj t1/20 + δλ2−θ
qj + δλ3−θ

qj

t0∫

0

‖∇ũqj (s)‖2 ds

!δλ7−3θ
qj



t0 + λθ−5/2
qj t1/20 + λ2θ−5

qj + λ2θ−4
qj

t0∫

0

‖∇ũqj (s)‖2 ds



 ;

or if 3 < θ + 3
r < 4,
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t0∫

0

∣∣B(u, u, uqj ) − B(U,U,Uqj )
∣∣ ds

!δλ7−3θ
qj t0 + δλ

3/2−θ+ 3
r

qj t1/20 + δλ2−θ
qj + δλ3−θ

qj

t0∫

0

‖∇ũqj (s)‖2 ds

!δλ7−3θ
qj



t0 + λ
2θ+ 3

r − 11
2

qj t1/20 + λ2θ−5
qj + λ2θ−4

qj

t0∫

0

‖∇ũqj (s)‖2 ds



 ;

otherwise, if θ + 3
r = 3,

t0∫

0

∣∣B(u, u, uqj ) − B(U,U,Uqj )
∣∣ ds

!δλ7−3θ
qj



t0 + λ
2θ+ 3

r − 11
2

qj qjt
1/2
0 + λ2θ−5

qj + λ2θ−4
qj

t0∫

0

‖∇ũqj (s)‖2 ds



 .

In the first case, we assume θ ≤ 2. Using the fact that

t0∫

0

‖∇ũqj (s)‖2ds → 0, as j → ∞,

we can chose small enough δ and large enough j0 such that for j ≥ j0

t0∫

0

∣∣B(u, u, uqj ) − B(U,U,Uqj )
∣∣ ds ≤ c1

2c2
λ7−3θ
qj t0.

In the second and third cases, we assume

θ ≤ 2, 2θ + 3
r

− 11
2 < 0.

Then for small enough δ and large enough j0, the same estimate holds. Going back to (4.14) it implies

‖ũqj (t0)‖22 ≥ ‖Uqj‖22 − νE(t0) + c1λ7−3θ
qj t0/2,

for all j > j0, which shows that u(t0) has infinite energy, a contradiction. In the end, we collect the conditions 
on the parameters and obtain that, either

3
2 < θ ≤ 2, 2 ≤ θ + 3

r
< 3; or

3
2 < θ ≤ 2, r ≥ 3

2 , 3 ≤ θ + 3
r
< 4, 2θ + 3

r
<

11
2 .

5. Discontinuous weak solutions to the MHD system

In the section, we show that, starting from data (u0b, b0) as defined in (3.11), a weak solution of the MHD 
system (1.1) does not come back to (u0, b0) in a large class of spaces. Namely we prove Theorem 1.2.
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Multiplying the second equation in (1.1) by bqj and integrating over the space and time interval [0, t]
yields

1
2‖b̃qj (t)‖22 − 1

2‖Bqj‖22 ≥
∫

T3

∂tb̃qj · bqjdx

≥ −ν

t∫

0

‖∇b‖22ds+
t∫

0

B(u, b, bqj ) − B(b, u, bqj )ds.

Denote Eb(t) =
∫ t
0 ν‖∇b‖22ds. By Lemma 3.3 we have

1
2‖b̃qj (t)‖22 ≥ 1

2‖Bqj‖22 − Eb(t) + c1λ7−2γ−θ
qj t

− c2

t∫

0

|B(u, b, bqj ) − B(u0b, b0, Bqj )|+ |B(b, u, bqj ) − B(b0, u0b, Bqj )|ds

≡ 1
2‖Bqj‖22 − Eb(t) + c1λ7−2γ−θ

qj t − c2R(t)

(5.18)

where R represents the remainder term, and c1, c2 are positive constants. Again, we use a contradiction 
argument to show the conclusion of the theorem.

Assume for every δ > 0 there exists t0 = t0(δ) > 0 such that

‖u(t) − u0b‖
Ḃ

θ−3+ 3
r

r,∞
+ ‖b(t) − b0‖

Ḃ
γ−3+ 3

r
r,∞

< δ, for all 0 < t ≤ t0. (5.19)

We claim that for a large enough j0, the remainder term R is bounded at t0 as

R(t0) <
c1
2c2

λ7−θ−2γ
qj t0, for all j ≥ j0. (5.20)

In the following we compute the second term in R to obtain the desired estimate. The first term can be 
estimated similarly.

Let w = u − u0b and y = b − b0. Note that by the assumption (5.19), we have

‖wp‖r ≤ δλ
3−θ− 3

r
p , ‖yp‖r ≤ δλ

3−γ− 3
r

p , for all p ≥ −1. (5.21)

The difference of the trilinear terms can be rewritten as

B(b, u, bqj ) − B(b0, u0b, Bqj )
=B(y, u0b, Bqj ) + B(b, w,Bqj ) + B(b, u, yqj )
≡D + E + F.

(5.22)

We decompose D as

D =
∑

p′,p′′≥qj ,|p′−p′′|≤2
B(yp′ , (u0b)p′′ , Bqj ) + B(y≤qj , (ũ0b)qj , Bqj )

+ B(ỹqj , (u0b)≤qj , Bqj ) − rD

≡D1 +D2 +D3 − rD

with rD being the overlap of D2 and D3.
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Applying the Hölder’s inequality, (5.21) and (3.12) yields,

|D1| ≤ ‖∇Bqj‖∞
∑

p′,p′′≥qj ,|p′−p′′|≤2
‖yp′‖r‖(u0b)p′′‖ r

r−1

! λ4−γ
qj

∑

p′,p′′≥qj ,|p′−p′′|≤2
δλ

3−γ− 3
r

p′ λ
3
r −θ
p′′

! δλ7−2γ−θ
qj ,

for θ + γ > 3;

|D2| = |B(Bqj , (Ũ)qj , y≤qj )| ≤ ‖Bqj‖∞‖Ũqj‖ r
r−1

‖∇y≤qj‖r

! λ
3−θ−γ+ 3

r
qj

∑

p≤qj

δλ
4−γ− 3

r
p ! δλ7−2γ−θ

qj

for γ + 3
r < 4;

|D3| ≤ ‖ỹqj‖r‖∇Bqj‖ r
r−1

‖U≤qj‖∞ ! δλ4−2γ
qj

∑

p≤qj

λ3−θ
p ! δλ7−2γ−θ

qj

for θ < 3. Hence,

|D| ! δλ7−2γ−θ
qj . (5.23)

We decompose E as,

E =
∑

p′,p′′≥qj ,|p′−p′′|≤2
B(bp′ , wp′′ , Bqj ) + B(b≤qj , w̃qj , Bqj )

+ B(b̃qj , w≤qj , Bqj ) − rE

≡E1 +E2 +E3 − rE

with rE being the overlap of E2 and E3.
Similarly, we have,

|E1| ≤ ‖∇Bqj‖ 2r
r−2

∑

p′,p′′≥qj ,|p′−p′′|≤2
‖bp′‖2‖wp′′‖r

! λ
5
2 −γ+ 3

r
qj

∑

p′≥qj

δλ
2−θ− 3

r
p′ ‖∇bp′‖2

! λ
9
2 −θ−γ
qj

∑

p′≥qj

δ

(
λqj

λp′

)θ+ 3
r −2

‖∇bp′‖2

! δλ
9
2 −θ−γ
qj ‖∇b‖2

for θ + 3
r ≥ 2;

|E2| = |B(Bqj , w̃qj , b≤qj )| ≤ ‖Bqj‖ 2r
r−2

‖w̃qj‖r‖∇b≤qj‖2 ! δλ
9
2 −θ−γ
qj ‖∇b‖2;
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|E3| ≤ ‖b̃qj‖2‖w≤qj‖r‖∇Bqj‖ 2r
r−2

! ‖∇b̃qj‖2‖Bqj‖ 2r
r−2

∑

p≤qj

δλ
3−θ− 3

r
p

! δλ
3
2 −γ+ 3

r
qj ‖∇b‖2

∑

p≤qj

λ
3−θ− 3

r
p

!






δλ
9
2 −θ−γ
qj ‖∇b‖2, if θ + 3

r < 3;
δλ

3
2 −γ+ 3

r
qj ‖∇b‖2, if θ + 3

r > 3,
δλ

3
2 −γ+ 3

r
qj qj‖∇b‖2, if θ + 3

r = 3.

Hence

|E| !






δλ
9
2 −θ−γ
qj ‖∇b‖2, if 2 ≤ θ + 3

r < 3;
δλ

3
2 −γ+ 3

r
qj ‖∇b‖2, if θ + 3

r > 3,
δλ

3
2 −γ+ 3

r
qj qj‖∇b‖2, if θ + 3

r = 3.
(5.24)

An analogously decomposition for F yields,

F =
∑

p′,p′′≥qj ,|p′−p′′|≤2
B(bp′ , up′′ , yqj ) + B(b≤qj , ũqj , yqj )

+ B(b̃qj , u≤qj , yqj ) − rF

≡F1 + F2 + F3 − rF

with rF being the overlap of F2 and F3.
Again using the Hölder’s inequality, Bernstein’s inequalities (2.7), (5.21) and (3.12) we infer that

|F1| ≤ ‖∇yqj‖r
∑

p′,p′′≥qj ,|p′−p′′|≤2
‖bp′‖2‖up′′‖ 2r

r−2

! δλ
4−γ− 3

r
qj

∑

p′,p′′≥qj ,|p′−p′′|≤2
‖∇bp′‖2‖∇up′′‖2λ−1

p′ λ
3
r −1
p′′

! δλ2−γ
qj ‖∇b‖2‖∇u‖2 ! δλ2−γ

qj (‖∇b‖22 + ‖∇u‖22)

for 3r ≤ 2;

|F2| = |B(yqj , ũqj , b≤qj )| ≤ ‖yqj‖r‖ũqj‖ 2r
r−2

‖∇b≤qj‖2

! δλ2−γ
qj ‖∇ũqj‖2‖∇b≤qj‖2 ! δλ2−γ

qj (‖∇u‖22 + ‖∇b‖22),

|F3| ≤ ‖b̃qj‖ 2r
r−2

‖u≤qj‖2‖∇yqj‖r ! λ4−γ
qj ‖b̃qj‖2‖u‖2 ! δλ3−γ

qj ‖∇b̃qj‖2.

Thus, we have, for r ≥ 3
2

|F | ! δλ2−γ
qj (‖∇u‖22 + ‖∇b‖22) + δλ3−γ

qj ‖∇b̃qj‖2. (5.25)
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Combining (5.22)–(5.25) and the estimate u, b ∈ L2(H1) gives that, if 2 ≤ θ + 3
r < 3

t0∫

0

|B(b, u, bqj ) − B(b0, u0b, Uqj )|ds

! δ



λ7−θ−2γ
qj t0 + λ

9
2 −θ−γ
qj t1/20 + λ2−γ

qj + λ3−γ
qj

t0∫

0

‖∇b̃qj (s)‖2 ds





! δλ7−θ−2γ
qj



t0 + t1/20 +
t0∫

0

‖∇b̃qj (s)‖2 ds





providing that γ ≤ 5
2 and θ + γ ≤ 4. Otherwise, if θ + 3

r ≥ 3,

t0∫

0

|B(b, u, bqj ) − B(b0, u0b, Uqj )|ds ! δλ7−θ−2γ
qj



t0 + t1/20 +
t0∫

0

‖∇b̃qj (s)‖2 ds





for θ + γ + 3
r < 11

2 and θ + γ ≤ 4.
Therefore we choose j0 large enough and δ small enough such that, for all j ≥ j0

t0∫

0

|B(b, u, bqj ) − B(b0, u0b, Uqj )|ds ≤ c1
4c2

λ7−θ−2γ
qj t0.

The first term in the integral R can be estimated analogously and satisfies

t0∫

0

|B(u, b, bqj ) − B(u0b, b0, Uqj )|ds ≤ c1
4c2

λ7−θ−2γ
qj t0,

for all j ≥ j0. Therefore, we have shown that the claim (5.20) holds under the assumption (5.19). It follows 
from (5.18) and (5.20) that

1
2‖b̃qj (t0)‖22 ≥ 1

2‖Bqj‖22 − Eb(t0) +
c1
2 λ7−θ−2γ

qj t0

which implies ‖b(t0)‖2 is infinity. It is a contradiction which is obtained under the conditions

3
2 < θ < 3, 3

2 < γ ≤ 5
2 , θ + γ ≤ 4, 2 ≤ θ + 3

r
< 3, γ + 3

r
< 4;

or

r ≥ 3
2 ,

3
2 < θ < 3, γ >

3
2 , θ + γ ≤ 4, θ + 3

r
≥ 3, γ + 3

r
< 4, θ + γ + 3

r
<

11
2 .

Anagolous analysis will give a contradiction that ‖u(t0)‖2 is infinity at a certain time t0 under an alternate 
assumption on the parameter triplet (r, θ, γ).
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