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1. Introduction

The three dimensional incompressible magneto-hydrodynamics (MHD) system is given by:

ur — pAu+u-Vu—5b-Vb+ Vp =0,
by —vAb+u-Vb—0b-Vu=0, (1.1)
V-u=0, V:-b=0,

with the initial conditions

u(z,0) = up(z), b(z,0)=bo(x),

(1.2)
V'UQZO, v-bozo
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where z € Q = T3, t > 0, u is the fluid velocity, p is the pressure of the fluid, and b is the magnetic field.
The parameter u denotes the kinematic viscosity coefficient of the fluid and v denotes the reciprocal of
the magnetic Reynolds number. When the magnetic field b(x,t) vanishes, the incompressible MHD system
reduces to the incompressible Navier-Stokes equation (NSE). In the case where the domain Q is the whole
space, the solutions to the MHD system share the same scaling property of the solutions to the NSE, that
is,

un(z,t) = Au(dx, A\%t), ba(z,t) = Ab(Ax, \%t), pa(z,t) = N2p(Ax, \%t)
solve (1.1) with the initial data
U\ = )\Uo(AJE), bo)\ = Abo()\l‘),

if (u(x,t),b(x,t)) solves (1.1) with the initial data (ug(x),bo(z)). A space that is invariant under the above
scaling is called critical space. Examples of critical spaces associated with the above scaling in three dimen-
sion are

Y 143
Hz 3B P

—1 H—1
plp<oo00 BMO™ — Boom.

Notice that BZ!__ is the largest critical space for both the NSE and the MHD system. In the periodic

00,00
case there is no distinction between homogeneous and non-homogeneous spaces, so B, ;r ’ are also called
critical.

The study of the Navier-Stokes equations in critical spaces has been a focus of the research activity
since the initial work of Kato [11]. In 2001, Koch and Tataru [12] established the global well-posedness
of the classical Navier-Stokes equations with small initial data in the space BMO~'. Then the question
whether this result can be extended to the largest critical space Bo_ol,oo had become of great interest. The
first indication that such an extension might not be possible came in the work by Bourgain and Pavlovi¢
[3] who showed the norm inflation for the classical Navier-Stokes equations in BO_O{OO. More precisely, they

constructed arbitrarily small initial data in BZ!

.00s Such that mild solutions with this data become arbitrarily
large in Bgol’oo after an arbitrarily short time. This result was later extended to generalized Besov spaces
smaller than B3 , p > 2 by Yoneda [15]. Moreover, in [6] Cheskidov and Shvydkoy proved the existence
of discontinuous Leray-Hopf solutions of the Navier-Stokes equations in Bgofoo with arbitrarily small initial
data. Contrary to the Bourgain-Pavlovi¢ construction where the energy transfers from high to low modes
to produce the norm inflation, the norm discontinuity in [6] is due to the forward energy cascade generated
by local interactions. In [4] Cheskidov and Dai considered fractional Navier-Stokes equations and showed
that the natural space for norm inflation is critical only when the power of the Laplacian is one. When the
power od the laplacian is larger than one, the norm inflation occurs not only in critical spaces, but also in
subcritical and supercritical.

For the MHD system, Miao, Yuan and Zhang [14] proved the existence of a global mild solution in
(BMO~1)? for small initial data and uniqueness of such solution in (C([O,oo);BMO‘l))Q. Later, Dai,
Qing and Schonbek [7] established several different types of “norm inflation” phenomena for the three
dimensional MHD system in the largest critical space (350’01,00)27 by adopting the idea of [3]. Since the MHD
system describes the coupling of velocity field and magnetic field, the authors were able to construct different
initial data to produce different types of “norm inflation”. In particular, the magnetic field can develop norm
inflation in short time even when the velocity remains small and vice versa. In [5] Cheskidov and Dai used
their approach from [4] to extend the norm inflation results to even wider range of spaces that included
critical, subcritical, and supercritical.

In this paper we further investigate the method of [6] to study the ill-posedness problem of the NSE and
the MHD system in a large class of spaces which may contain critical, supercritical and subcritical spaces.
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Fig. 1. The region where the discontinuity for the NSE occurs on the plane of the smoothness index s vs 1/r.

First, modifying the initial data construction, we are able to obtain discontinuous weak solutions to the
NSE in certain Besov spaces. Namely, we prove that

Theorem 1.1. Let 1 < r < 00 and % < 0 < 2 which satisfy either
3
2<0+-<3;; or
r
11
r2§, 3§9+§<4, 29+§§— .
2 r r 2

349
There exists an initial data ug € B;",;—oe ° (that depends only on ), such that every Leray-Hopf weak solution
u € Cyw([0,7); L?) N L2([0,T); H) to the NSE satisfies

lim sup [[u(t) — wol|_s40y > 6 (1.3)
t50+ B

T,00

for an absolute constant §.

The region of the spaces where the discontinuity of the NSE occurs is diagrammed as in Fig. 1. One can
see that the NSE develops discontinuous weak solutions in both critical and supercritical spaces. The region

-1
00,007

contains the largest critical space B but also BS’OO that has the same scaling as L.

In the mean time, we obtain the same type of ill-posedness for the MHD system as follows:

Theorem 1.2. Let 1 < r < oo, % <0<2and~vy> % with 0 4+~ < 4. In addition, the triplet (r,0,~) satisfies
either

5 3 3
{’yg, 2<0+-<3, ’y+<4}; or
2 T T
3 3 3 3 11
{7"2—,9+—23,7+—<4,9+7+—§—}.
2 r r r 2

3 9 E
There exists an nitial data (ug,by) € Bﬁ:f ? % Brﬁot? ® such that every Leray-Hopf weak solution

(u(t),b(t)) to (1.1)-(1.2) satisfies
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t—0t

s (u(0) = woll g oms 100 =Bl ) 25 (1.4)
for an absolute constant §.

Remark 1.1. We point out that the assumption on the parameter triplet (r,6,~) may not be optimal. In
fact, in the proof of the theorem in Section 5, the assumption guarantees that a “jump” of ||b(¢)||rz occurs
in the contradiction argument. One can verify that different (complementary) assumption on (r,8,~y) may
yield a “jump” of ||u(t)| 2. We do not include the alternate assumption in the statement of the theorem due
to the complication. However, under the current assumption, one can already see the discontinuity occurs
in a wide range of spaces including critical, supercritical and subcritical ones.

The rest of the paper is organized as: in Section 2 we introduce some notations that shall be used
throughout the paper and some auxiliary results; in Section 3 we present the initial data construction for
both the NSE and the MHD system; Section 4 provides a brief proof of Theorem 1.1; Section 5 is devoted
to proving Theorem 1.2.

2. Preliminaries and auxiliary results

2.1. Notation

We denote by A < B an estimate of the form A < CB with some constant C', and by A ~ B an estimate

of the form C1B < A < CoB with some constants C1, Cy. We denote [ - ||, = || - [[z»(T~) and the trilinear
term
B(u,v,w) = /u ®v: Vwdr = /vi(’?iwjuj dz. (2.5)
T3 T3

2.2. Littlewood-Paley decomposition

The techniques presented in this paper rely strongly on the Littlewood-Paley decomposition. We recall
the Littlewood-Paley decomposition theory briefly. For a more detailed description on this theory we refer
the readers to the books by Bahouri, Chemin and Danchin [1] and Grafakos [10].

We denote A\, = 27 for integers g. A nonnegative radial function y € C§°(R") is chosen such that

L, for ] < 3
X0 = {0, for |£] > 1.

Let

ap()\q’lf) for ¢ > 0,

= 2) — ) q =
e(&) = x(£/2) — x(&) ©q(&) {x(&) for ¢ = 1.

For a tempered distribution vector field v on the torus T™ we consider the Littlewood-Paley projections

vg(w) = Y 0(k)pg(k)e™™, ¢ > -1 (2.6)
kezZn

The following Littlewood-Paley decomposition
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00
v = E Vg
q=-1

holds in the distribution sense. Essentially the sequence of the smooth functions ¢, forms a dyadic partition
of the unit. To simplify the notation, we denote

q
U<q = E Vj, Vg = Vg—1+ Vg + Vg1
i=1

By the definition of ¢, it is noticed that supp (¢,) N supp () =0 if [p —p'| > 2.
By the Littlewood-Paley projection we define the Besov spaces By, on the torus T2 for s € R and
1 <I,r < o0. Denote the norm

1/1
1f]

= | 2 gl

g>—1

Then
BT ={f e |flls,, <oo},

where " denotes the space of all tempered distributions. Notice that B;,(T") = Bﬁyl(T") on torus.
We will often use the following inequality for the dyadic blocks of the Littlewood-Paley decomposition
(see [13]):

Lemma 2.1. (Bernstein’s inequality) For all « € N, g € Z, 1 < p < 0o and for all tempered distributions
€S8, we have

aa
‘a?fq

~ A'qa'qullp- (2-7)

p

2.3. The existence of Leray-Hopf type of weak solution to the incompressible MHD system

We recall the result on the existence of weak solutions for the MHD system by Duvaut and Lions [8].
Theorem 2.2. For any (uo, bo) € (L?)? there exists a weak solution (u,b) to (1.1)-(1.2) satisfying
u,b € L>(0,00; L?) N L*(0,00; HY).

Moreover, there exists a weak solution satisfying the energy inequality

t

[u(t)]I3 + [Ib(t)113 +2/ (ulVu(s)]13 + v Vo(s)3) ds < [luoll3 + [[boll3, (2.8)
0

for all ¢ > 0.
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3. Construction of initial data
349 349 ERV
In this section we construct initial data ug € B/, :09 ? for the NSE and (uop, bo) € By ;29 % x By o % for
the MHD system with finite energy. The construction is similar to the one in [6].
Let 6,y > 3/2. We take any strictly decreasing sequence {g;} such that

4—0 20—-3 4—0 2v—3 44— 0+~v—3
)\qi S >\Qi+1 ’ )\qi S >\Qi+1 ! )\th S >\Qi+1 : (39)

Given ¢ > 0, consider the following sets:
L;= ([)\q]., (14 c)Ag,] x [fc/\qj,c)\qj}Q) nz3
M; = ([—eAg;—1,Aq;—1]% X [Ag;—1, (1 + ) Ag,—1]) N Z3
N;j =L;+ M;
L} =-L;, M;=-M;, N=-Nj.

Let p(k) be the symbol of the Leray-Hopf projection

We denote
(k) =pk)er, (k) =pk)ez, ke Z\{0},
where €; stands for a standard basis vector. Define
Y1,5(k) = & (k)xrurs +i(e2(k) — @(k))xn, —i(e2(k) — € (k))xn;,
¢2,j(k) =0 (k)XMJUM;-

For the NSE, we choose initial data ug = U, where

U= Z )\q_j‘g]:_l (11,5 (&) + 1¥2,(8)) (3.10)

Jj=1

Due to the fact that 1; ;(§) is flat around spheres |{| = A\, for 1 <¢ < 2 and 1 < j < 3, one can check that
for ¢ small enough we have

FU)E) =2 015(8),  FUg-1)(€) = A 02,6, F(Uyg41)() =0.

Hence Uq_j = Uy, —1 + Uy, It is also clear that V - ug = 0.
For the MHD system, we choose initial data ug, and by as

Ugp = Z qu, by = Z qu, with

i>1 i>1 (3.11)
F(Bg,)(§) = Ay ¥2,5(6)-

It also holds that

V- ugy =V by = 0.
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+v-3
oo

3.9_ 3
Lemma 3.1. Let 6 > 3/2. For all 1 < r < oo, we have ug, ugp € B,lj:oe % and by € By, . In particular,

U, Ugy € H=3-% and by € HY—3-s for any s > 0.

Proof. We only prove the conclusions for ug. On the block L;, for 1 < r < oo, we have, by the boundedness
of the Leray-Hopf projection and the LP estimate of Dirichlet kernel (see [9])

I F @ xe) e S ACIF 0l
SN,

On all the other blocks, we have similar estimates. Hence,

346-3 24+6-3
/\qg' ”qu Hr S 1, >‘q1 ||qu71||r g 1.

53463
Therefore, ug € B;;;ro , for 1 < r < co. When r = oo,

||quH<>o 5 ||]:(qu)||1

A / 1d§+/1d§+/1d§

LjuL_;f XN XN]’.‘
< )\379.

~ 7'qj

And similarly, we have
—6
||qu71||oo 5 >\§j .

. .9_3
Therefore, ug € B% 3 . In particular, for r = 2, the embedding Bg_’oj C H?=%-% holds for all s > 0. Similar

,00
conclusion holds for by. O

Remark 3.2. Specifically the assumption 6,y > % implies that ug € L? and (ugp,bp) € L? x L? which
indicates the initial data has finite energy.

As a consequence of Lemma 3.1, one can see that, for 1 < p < oo

3—6-2 3—y—3
1Ugs=1lly + 1Ugllp S Aay 7 1Bg; llp S Ags 7 (3.12)

The following estimates are essential to produce the discontinuity of the weak solutions.

Lemma 3.3. Let ug, ugp, bo be defined as in (5.10)-(5.11). Then the trilinear terms satisfy

B(ug, uo, Ug;) ~ B(uop, wob, Ug; ) ~ /\ZJ.‘”, B(bo, by, Uy, ) ~ )\;j—zw—e7

B(uop, bo, By,) ~ N7 7%, B(bo, uop, By,) ~ Af

Proof. We onlir give a proof for the first one. The other estimates can be obtained in a similar way. Note

that supp {Ui N supp {UJ} = @ for any |i — j| > 2. We decompose the term as
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B(uo,v0,Uq Z B Ugro» Uges q;)"‘B( 4+ Uq;, Ugy)
k>j+1
+B(U<(Ig 17UQJ7 qg)+8( q‘]7U§qj717qu)
~ Z B(UQk7UQk’Uq;‘)+B(UQj71’U‘Ij7U‘Ij)

k>j+1

— B(U,,, Uy, Usq, ) =T+ 1T —III

where we used integration by parts and the divergence free property of Uy, .
Applying Bernstein’s inequality (2.7) and (3.12) yields, for § > 3/2

4 0
111 S 21U llee D T3 S 2570 D A < /\29 ; <e
k>j+1 k>j+1 9j+1
Similarly,
A4_9
—920 qi_
FERIDS ”quHg ? Z A lUgelloo S )\25_13 <e
k<j—1 qaj

Using (2.7) and (3.12), the term IT is estimated as

ILI] S Mg, UG, 131U, oo ~ AG2.
The conclusion follows immediately. O
4. Discontinuous weak solutions to the NSE

In this section, we investigate the Navier-Stokes equation

— pAu~+u-Vu+ Vp =0,
V-u=0,

(4.13)

with initial data ug given by (3.10). By an analogous analysis as in [6], we show that the weak solutions of
(4.13) are discontinuous at initial time in a large class of Besov spaces, as stated in Theorem 1.1.
Denote E(t fo | Vul|3ds. Multiplying (4.13) by @ li;, integrating over the space, and applying Lemma 3.3
yields
g, (0)I3 21Uy, 13 — nE(t) + 1A, >t

(4.14)
—02/|B(u,u,qu)—B(U, U,qu)|ds7

for some positive constants ¢; and cy. One contradiction argument will lead the conclusion of the theorem.
Suppose that for every § > 0 there exists g = to(d) > 0 such that ||u(t) —U||B%,3+@ < dforall0 <t <tg.

Denoting w = u — U, it follows
_p_3
[[wp|r < (D\;;o; ¢ r, forallp>-—1.

After writing
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B(ua u, U’IIj) - B(Ua U7 U(Ij)
=B(w,U,Uq,) + B(u,w,Uy,) + B(u,u,wy,) = A+ B+ C,

we estimate each term through the Bony’s para-product (cf. [2]) decomposition as follows.

A= Z B(wy, Upr, Uy,) + B(wsg,, Uq
P >q;
Ip’—p"|<2

UQj)

G

+B(1D(Ij7U§(Ij7U(]j) —TA :Al +A2+A3 —Ta,

with 74 being the overlap of A; and As. Later rg,r¢, rp, g, rr have the same meaning. Combining Holder’s
inequality, and Bernstein’s inequalities, we obtain

|A1] < ”Vqu lloo Z ”wp’Hr”Up”

. < )40 3—-20 < 7—360
SN0 T ONE 20 < oNT,

1

for 0 > 3;
| A2| = [B(Uy;, Uy wzq,)| < U, lloo1Ug, | -2 | Vo, |l
248 _g_3
Sag TN e T e
P<g;
for 6 + % < 4;
| As| < Ag; 10U, | 25 1U<q; lloo g, ||
4-26 3—6 7—30
ST AT S oA
P<g;
for 6 < 3. We have shown
7—36 3 3
|A[ S 6Ag ", for 3 < 0 <3, and 0+ - < 4. (4.15)
r

We decompose B similarly,

B = § B(up , wpr, qu) + B(Uﬁq]‘ » Wa; qu)
’ 1"
> .
">
[p'—p"|<2

—‘v‘B(aqj,wgqj,qu) —rg=By+ Bs+ By —rp;

3042 2-6-2
2 > Ny llallwpr e < A, Yo IVl

T
P=>Aqg;

[1B1l S Ag; [1Ug, |

< 5\320 Ag; e < 5)2720
S O0Ag Z N IVupll2 S A3 V2

p>Xg; NP
for 6 + f > 2;

9920

|Ba| = |B(Uy,, By, uq;)| < Uq, || 2, 10, 1[I Vusg, ll2 < 03¢, [ Vull2;
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| Bs| < [[tg;[l2lw<g; - [ VUq |

3043 - 3-6-3
2o SO Vi, ll2 Y Ay

r

p<q;

N | Vula, i+ 2 <3,

3_gy3
SNVl i+ 2 >3,
3_9+3 3 3
NG Tl Vull2, if 0+ 2 =3.
We thus obtain
9 .
O Vull,  if2<6+3 <3,
3_gu3 .
1Bl S Qoxe " |Vl 1043 >3, (4.16)
5—0+2 .
AT G|Vl 0+ 3 =3
Similarly,
C= Z B(up, uprr, we;) + Blu<g;, g, , Wy, )
p'\p" >q;
lp'—p" <2
+B(ﬂqwuﬁquq]‘) —rg =014+ Co+C3 —r¢;
- . 4-0-2 3_9
Cil < IVwg,lle DY Napllallipll 2z, S X, 7 Y X Va3
p2q;—2 P>q;—2
3
-0
< 6)\3], [Vu|3,  forr> 3
|Col < | Vullzlltig, || 2o, llw, [l S 6X5 0 I Vull3;
~ 70 ~
15| S Mg, llwe, [l llg, || 2=, llullz < 0XG [V, |12
Thus,

1C1 S X2V ul3 4+ 033|| Vg, - (4.17)

Combining (4.15), (4.16), (4.17) yields that, if 2 <6+ 2 < 3
to
/ |B(u, u,uq,) — B(U,U, Uy, )| ds
0
to
SONT=0t0 + XY/ 27 201/% 4 5220 4 5230 / [Viig, (s)]|2 ds
0
to
KON [ty + AL 24y/% 4 N200 N2 / Vi, ()]2 ds | ;
0

orif 3<60+2 <4,
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to
/ |B(u, u,uq,) — B(U,U, Uy, )| ds
0
to
— 3
SONTH 4+ AT A0 g oA / Vg, (s)]2 ds
0

to
_ 2043 1L /9 _ _ -
SOAT L to+ Ay 24l F AT+ N 4/||quj(s)||2ds ;
0

otherwise, if 6 + % =3,

to
/ |B(u, u,uq,) — B(U,U,Uy,)| ds
0

to
3_11
SO0t 4 Ag T T gyty!? o A205 4 A0 / Vg, (s)]]2 ds
0
In the first case, we assume 0 < 2. Using the fact that
to
/||Vﬂqj(s)H2ds — 0, asj— oo,
0
we can chose small enough § and large enough jg such that for j > jg
to
/’B(u,u,qu) — B(U,U,U,,)|ds < ;—1A5739t0.
cy
0

In the second and third cases, we assume

11
0 <2, 20+§——<0.
r 2

Then for small enough § and large enough jo, the same estimate holds. Going back to (4.14) it implies
g, (to)lI3 = U4, 113 — vE(to) + 1Ay *t0/2,

for all j > jo, which shows that u(to) has infinite energy, a contradiction. In the end, we collect the conditions
on the parameters and obtain that, either

3 3
- <0<L2, 2<0+ - <3; or
2 r

11
§<t9§2, 7'2;, 3§0+§<4, 29+§<—.
2 2 T r 2

5. Discontinuous weak solutions to the MHD system

In the section, we show that, starting from data (uop, bo) as defined in (3.11), a weak solution of the MHD
system (1.1) does not come back to (ug,bg) in a large class of spaces. Namely we prove Theorem 1.2.
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Multiplying the second equation in (1.1) by by, and integrating over the space and time interval [0, ]
yields

30,13 = 515,13 > /at

= —V/ HVbllgds+/B (,b,bg;) — B(b, u, b, )ds.

Denote Ey(t) = fot v||Vb||3ds. By Lemma 3.3 we have

Lz 1
7”bq-7 )z §HBq_7' 13— En(t) + 01)\;’2“**975
_ CQ/IB u, b, by, ) — B(uow, bo, By, )| + |B(b, u, by, ) — B(bo, uow, By, )|ds (5.18)

1 2 7—2y—0
= §||qu H2 — Eb(t) + Cl)‘qj T — CQR(t)
where R represents the remainder term, and cj,co are positive constants. Again, we use a contradiction

argument to show the conclusion of the theorem.
Assume for every ¢ > 0 there exists ¢ = to(d) > 0 such that

|lu(t) — u0b||Bg,3+% + ||b(t) — bOHB”’”% <, forall 0 <t <tg. (5.19)
We claim that for a large enough jg, the remainder term R is bounded at % as

R(to) < %AZ;"*%O, for all j > jo. (5.20)

In the following we compute the second term in R to obtain the desired estimate. The first term can be
estimated similarly.

Let w = u — ugp and y = b — by. Note that by the assumption (5.19), we have

lwplle < SXT77 0 gl AT, forall p> 1. (5.21)

The difference of the trilinear terms can be rewritten as

B(b, u,bg;) — B(bo, uos, By;,)

=B(y, uop, By, ) + B(b,w, By,) + B(b, u,yq;) (5.22)
=D+ E+F.
We decompose D as
D= Z B(yp/, (Uob)p” ) qu) + B(yiqw (ﬁ‘Ob)‘Ij ) Bq;)

p'.p" 2q;,lp' —p"|<2
+ B(dq;» (wob)<q,+ Bg;) — D
=D1+Dy+Ds—1p

with rp being the overlap of Dy and Dj.
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Applying the Holder’s inequality, (5.21) and (3.12) yields,

|D1] < [|[VBy; [l > w1 [l (on) pr || =+
p'.p" 2q;,|p' —p"|<2
43 3_
SN 3 SN
p’\p" >q;,|p' —p"' | <2

S oA,

for 6 +~v > 3;
|D2| = |B(qu'7 (U)qg"yﬁfh)‘ < ||qu||oo||qu||7‘£1 ”v?JSQjHT
gyt B 3
S)\gj O—y+3 Z 5}\;17 Y5 55}\2;2779
P<q;
for v + % < 4;

| Ds| < 115, IV By, || = 1Ug; lloo S X527 D A0 S 62777

—

P<q;
for 6 < 3. Hence,
7—2v—6
DI S oAy, 7. (5.23)
We decompose E as,
E= Z B(by , wpr, By, ) + B(b<g,, Wq,, Bq,)
p’\p"'>q;,|p'—p"|<2
+ B(by;, w<q,, By,) — T
=F +Ey+ E3—rg
with rg being the overlap of Fs and Ej.
Similarly, we have,
|Er| < [[VBg, || 22, > [1bp [l2 ]| w1

p’\p" >q;,|p' —p”' | <2

3—y+3 2—-6-32
SAGTT X O IVl
P'>q;
6+3 -2
9_g— Ag. !
Sh D 6(A—> V76,2
P'>4q; P

9_9—
Song IV
for 6 + % > 2;

~ - 9_g_
| Bo| = |B(By,, @q;, b<q;)| < 1B, || 22, 10, 1[I V<, llz2 S 60 [[VB]l2;
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~ ~ 3—9—3
|Bs| < [1by, ll2llwsg, 111V Ba, Il 22, < 19Dy, 1211 By, | 22, Y o3~

r—2
p<q;

3

3_ 3—9—3
L2V AP P
P<q;
AT Vb, O+ 3 <3;
%] 5 r
oAV, i+ 2 >3,
AT G|V, 0+ 2 =3,

A

Hence

9797,\/ ) s
Bl S ox | Vbl 0+ 2 >3, (5.24)
3—+2 ) -
0AG, g Vbl2, ifO+2=3.

An analogously decomposition for F' yields,

F= Z B(by, uprs yq,) + B(b<g, Uq; > Yq,; )

p',p"">q;,|p'—p"|<2
+B(bqj’ugqj’yqj) —TF
EF1—|—F2—|—F3—TF

with rp being the overlap of Fy and Fj.
Again using the Holder’s inequality, Bernstein’s inequalities (2.7), (5.21) and (3.12) we infer that

[F1] < [[Vyg, llr > 16p 2l upr || 2o
p’\p" >q;,|p' —p" <2
4—ny—3 1 2-1
<N, T > Vb |2l Vg 22 A

p'\p" >q;,|p"—p”' | <2

< 0N IVBl2 I Vull2 S 0N (VB3 + [ Vull3)

for 3 <2
r

| Fy

= |B(ng'7aq]"b§qg')| < ||yqj'||T||aqg'|| ir ”VbSQjHQ

r—2

S 0N Vg, (2] Vb<g,ll2 S SAT Y (IVull3 + IVBII3),

|l < 1lbg, Il 2=, lusa, 1201 V9a, e S Agy 7 bg, ll2llullz < 8AZ (Wb, 2.

[Sl[9N)

Thus, we have, for r >

FI < A5 (IVull3 + 1V0113) + 0857 (Vg l2. (5.25)
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Combining (5.22)-(5.25) and the estimate u,b € L?(H?') gives that, if 2< 6+ 3 <3

to
/ IB(b, u, by, ) — B(bo, uon, Uy, )|ds
0

to
9_g_ -
SN o+ A T X A / Vg, (5)ll2 ds
0
to
SN b+ to/? + / Vb, ()2 ds
0
providing that v < % and 6 + v < 4. Otherwise, if 6 + % >3,
to to
_ < 5)\7T—0—2y 1/2 7
|B(b,u,by;) — B(bo, uos, Uy, )|ds < 0Ny to+ 1ty "+ [ [|[Vbg,(s)|l2ds
0 0

for 9+7+% < % and 6 4+~v < 4.
Therefore we choose jo large enough and § small enough such that, for all j > jg

to

€1 \7-9—
/‘B(b, u, bqj) - B(bo,UOb,qu)|ds < E)\Zj 0 .
0

The first term in the integral R can be estimated analogously and satisfies

to
c — 6 —
0

for all j > jo. Therefore, we have shown that the claim (5.20) holds under the assumption (5.19). It follows
from (5.18) and (5.20) that

1 - 1 €1 \7—6—
By, o) > S1B, I8 — Bulto) + ATty

which implies ||b(to)]|2 is infinity. It is a contradiction which is obtained under the conditions
3 3 5) 3 3
—<0<3, =—<~v<=, O0+9<4, 2<60+4+4-<3, v+ =<4
2 2 2 T T

or

11

3 3 3 3
<9<3,’Y>5,9+7S4,9+;Z3,v+;<4,0+7+;<__

>
"= 2

)

N W
N W

Anagolous analysis will give a contradiction that ||u(tg)]|2 is infinity at a certain time ¢y under an alternate
assumption on the parameter triplet (r,6,~).
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